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Abstract
In this paper, we address the stochastic contextual linear bandit problem, where a decision maker
is provided a context (a random set of actions drawn from a distribution). The expected reward of
each action is specified by the inner product of the action and an unknown parameter. The goal is to
design an algorithm that learns to play as close as possible to the unknown optimal policy after a
number of action plays. This problem is considered more challenging than the linear bandit problem,
which can be viewed as a contextual bandit problem with a fixed context. Surprisingly, in this paper,
we show that the stochastic contextual problem can be solved as if it is a linear bandit problem.
In particular, we establish a novel reduction framework that converts every stochastic contextual
linear bandit instance to a linear bandit instance, when the context distribution is known. When the
context distribution is unknown, we establish an algorithm that reduces the stochastic contextual
instance to a sequence of linear bandit instances with small misspecifications and achieves nearly the
same worst-case regret bound as the algorithm that solves the misspecified linear bandit instances.
As a consequence, our results imply a O(d

√
T log T ) high-probability regret bound for contextual

linear bandits, making progress in resolving an open problem in (Li et al., 2019b, 2021). Our
reduction framework opens up a new way to approach stochastic contextual linear bandit problems,
and enables improved regret bounds in a number of instances including the batch setting, contextual
bandits with misspecifications, contextual bandits with sparse unknown parameters, and contextual
bandits with adversarial corruption.
Keywords: Bandits, contextual linear bandits, online learning

1. Introduction

Linear bandit and contextual linear bandit problems are attracting extensive attention - for example,
more than 17, 000 papers appear when searching for “linear contextual bandit” on Google Scholar
during the last 5 years - as they enable to support impactful active learning applications through
elegant formulations. In linear bandits, a learner at each time t ∈ [T ], where T is the time horizon,
pulls an arm at from a fixed action space A (that may be continuous or discrete), and receives a
reward rt = ⟨at, θ⋆⟩ + ηt, where θ⋆ is an unknown d-dimensional vector of parameters and ηt is
random noise. Contextual linear bandits add another layer of complexity by enabling at each round
the action space to be different to capture context; in this case, the learner at time t observes an
action space (context) At. That is, we can think of linear bandits as single-context contextual bandits,
observing At = A for all t. For example, while linear bandits are used in recommendation systems
where the set of actions is fixed and oblivious to the individual the recommendation is addressed
to, contextual linear bandits are used in personalized recommendations, where the action space gets
tailored to context attributes such as age, gender, income and interests of each individual.
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Algorithm Regret Bound Type Assumption/restriction

Abbasi-Yadkori et al. O(d
√
T log T ) w.h.p.

(Li et al., 2021) O(d
√
T log Tpoly(log log T )) exp

(Li et al., 2021) O(d
√
T log Tpoly(log log T )) w.h.p.

Ours O(d
√
T log T ) w.h.p. stochastic context

(Ruan et al., 2021) O(d
√

T log(d) log(T ) log log T ) exp batch learning with
Ours O(d

√
T log(T ) log log T ) w.h.p. O(log log T ) batches

(Foster et al., 2020) O(d
√
T log T + ϵ

√
dT ) exp misspecified

Ours O(d
√
T log T + ϵ

√
dT log T ) w.h.p.

(Foster et al., 2020) Õ(d4.5
√
T + d4C) w.h.p. adversarial corruption

Ours Õ(d
√
T + d3/2C) w.h.p.

Abbasi-Yadkori et al. O(
√
dsT log T ) w.h.p. sparse

Ours O(
√
dsT log T ) w.h.p.

Ours O(
√
dsT log T log log T ) w.h.p. sparse with

O(log log T ) batches

Table 1: Comparison of best known in literature vs. our approach regret bounds. Here, d is the model
dimension, T is the time horizon, ϵ is an upper bound on the amount of misspecification,
C limits the power of adversary, s is an upper bound on the number of non-zero elements
in the unknown parameter, exp indicates a regret bound in expectation, w.h.p. indicates a
regret bound that holds with probability at least 1− 1/T , and Õ hides log factors.

It is not surprising that, although more limited in applications, linear bandits are much better
understood in theory than contextual linear bandits. Indeed, algorithms for linear bandits often
leverage the fixed action space property, and cannot be easily extended to contextual linear bandits.
To give a concrete example, the algorithm Phased Elimination (PE) (Lattimore et al., 2020; Valko
et al., 2014) leverages the fixed action space by exploring a (small) core set of actions to achieve
good estimates of the rewards for all actions. This algorithm achieves a high probability regret bound
of O(d

√
T log T ). Nevertheless, despite several attempts over the last decade (Abbasi-Yadkori et al.,

2011; Li et al., 2021, 2019b), the best known regret upper bounds for contextual linear bandits have
a log (or iterated log) multiplicative gap over the O(d

√
T log T ) bound both in high probability

and in expectation. Similarly, the best known algorithms for several linear bandits problems (e.g.,
with misspecification, adversarial corruption, and others (Lattimore et al., 2020; Foster et al., 2020;
Bogunovic et al., 2021; Wei et al., 2022; Ruan et al., 2021)), perform better (in the worst-case) than
the corresponding algorithms for contextual linear bandits.

1.1. Our Results

THE REDUCTION

We show in this paper the surprising result that, provided the context comes from a distribution D
(stochastic context), contextual linear bandit problems can be reduced to solving (single context)
linear bandit problem when the context distribution D is known, and to linear bandits with Õ(1/

√
T )
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misspecification when the distribution D is unknown. These results are presented in the following
informal theorems and their exact statements are given in Theorems 1, 2 and Theorem 4 in App. A.

Informal Statement of Theorem 1. For any contextual linear bandit instance I with known
context distribution D, there exists (constructively) a linear bandit instance L with the same action
dimension, and any algorithm solving L solves I with the same worst-case regret bound as L.

Informal Statement of Theorem 2. For any contextual linear bandit instance I with un-
known context distribution D, there exist (constructively) log T misspecified linear bandit instances
L1, ..., Llog T , where Li operates on part of the horizon of length Ti, has Õ(1/

√
Ti)-misspecification

and the same action dimension, and any algorithm solving L1, ..., Llog T solves I with the same
worst-case regret bound as L1, ..., Llog T .

Informal Statement of Theorem 4. For any contextual linear bandit instance I with unknown
context distribution D but where now the action space has a component-wise product structure, there
exists (constructively) a linear bandit instance L with double the action dimension of I , and any
algorithm solving L solves I with the same worst-case regret bound as L.

Stochastic contextual bandits encompass practical cases where the context is not selected ad-
versarially; in our example of personalized recommendations, the age, gender, income, come from
distributions. Our framework simplifies the contextual linear bandit problem and enables to use
any existing (or future) linear bandit algorithms to solve the contextual case. Moreover, our results
separate the case of stochastic contexts from the harder case of adversarial contexts and explain why
good results, which are not achievable for adversarial contexts, are possible for stochastic contexts.

IMPLICATIONS AND RELATED WORK

The equivalence we proved opens up a new way to approach stochastic contextual linear bandit
problems, and results in a number of new results or recovery of existing results in a simpler manner;
we next present some of these implications (summarized in Table 1) and their positioning with respect
to related work. In the discussion next, d is the model dimension and T is the time horizon. These
implications are stated formally and proved in App. B.

• Tighter Regret Bounds. To the best of our knowledge, there is a gap in the regret bounds of
contextual linear bandits: the state-of-the-art lower bounds are, Ω(d

√
T ) for linear bandits (Lattimore

and Szepesvári, 2020) and Ω(d
√
T log T ) for linear contextual bandit with adversarial contexts (Li

et al., 2019b).
Our contribution [Corollary 5 in App. B]. Our approach achieves a regret upper bound
O(d

√
T log T ) with high probability even when the action set is infinite. While it is not known if a

Ω(d
√
T log T ) lower bound holds for stochastic contexts, our result improves over state of the art

high probability bounds by at least a factor of
√
log T and matches the best known upper bound for

linear bandits.
Related Work. The best attempts of upper bounds are (Abbasi-Yadkori et al., 2011; Li et al., 2021,
2019b). In particular, (Abbasi-Yadkori et al., 2011) achieves a regret bound of O(d

√
T log T )

with high probability; (Li et al., 2021) achieves O(d
√
T log Tpoly(log log T )) in expectation and

O(d
√
T log Tpoly(log log T )) with high probability; and (Li et al., 2019b) achieves

O(d
√
T log Tpoly(log log(T ))) in expectation and only when the number of actions is finite and

bounded by 2d/2.
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• Batch Learning. In batch learning, instead of observing the reward at the end of each round to
decide what action to play next, the learning agent is constrained to split the rounds into a fixed
number of M batches, use a predetermined policy within each batch, and it can only observe the
action outcomes and switch the policy at the end of each batch. This is a central problem in online
learning (Gao et al., 2019; Perchet et al., 2016; Ruan et al., 2021; Han et al., 2020) as limited
policy adaptivity enables parallelism and facilitates deployment of learning algorithms for large-scale
models.
Our Contribution [Theorem 6 in App. B]. Our batch algorithm for contextual linear bandits achieves
with high probability O(d

√
T log(T ) log log T ) regret bound for O(log log T ) batches, a

√
log d

better than the in expectation regret bound in (Ruan et al., 2021).
Related Work. A number of works have explored batched contextual linear bandits, both in ad-
versarial (Abbasi-Yadkori et al., 2011; Han et al., 2020) and non-adversarial settings (Ruan et al.,
2021; Zhang et al., 2021). The breakthrough work in (Ruan et al., 2021) achieved a nearly optimal
in expectation regret upper bound O(d

√
T log d log(T ) log log T ) using O(log log T ) batches for

the stochastic contexts setting. The near-optimality follows from the result in (Gao et al., 2019)
which shows that Ω(log log T ) batches are required to achieve a O(

√
T ) worst-case regret bound for

multi-armed bandits with a finite number of arms (this is a special case of contextual linear bandits).
If the contexts are chosen adversarially, Ω(

√
T ) batches are required to achieve a O(

√
T ) regret

bound (Han et al., 2020).

• Misspecified Bandits. Linear bandit algorithms are designed under the assumption that the ex-
pected rewards are perfectly linear functions of the actions; misspecified bandits relax this assumption
by considering perturbations of the linear model measured by the amount of deviation in the expected
rewards (we call the case ϵ-misspecification if the deviation is upper bounded by ϵ). The non-linearity
in the model enables to better capture real-world environments and is of high interest in the literature
(Du et al., 2019; Crammer and Gentile, 2013; Lattimore et al., 2020; Foster et al., 2020; Ghosh et al.,
2017; Foster and Rakhlin, 2020).
Our Contribution [Theorem 7, 8 in App. B]. We provide a regret bound of
O(d

√
T log T + ϵ

√
dT log T ) with high probability for contextual bandits with unknown misspecifi-

cation, and O(d
√
T log T + ϵ

√
dT ) with high probability for ϵ known. To the best of our knowledge,

these results offer the first optimal regret bounds for ϵ-misspecified contextual linear bandits, and
improve over existing literature for unknown ϵ by providing high probability bounds and improved
log factors. We also present the first nearly optimal algorithm for misspecified contextual linear
bandits with O(log T ) batches.
Related Work. The work in (Lattimore et al., 2020) shows that PE with modified confidence intervals
achieves the optimal regret bound of O(d

√
T log T + ϵ

√
dT ) with high probability (matching the

Ω(ϵ
√
dT ) lower bound (Lattimore et al., 2020)) for linear bandits with known ϵ misspecification. If ϵ

is unknown, the same algorithm was shown to achieve a regret bound of O(d
√
T log T+ϵ

√
dT log T )

with high probability. The work in (Zanette et al., 2020; Lattimore et al., 2020) proposed variants of
LinUCB that achieve a regret bound of Õ(d

√
T + ϵ

√
dT )1 with high probability for contextual linear

bandits with known ϵ. However, changing action sets with unknown ϵ was left as an open problem.
The works in (Pacchiano et al., 2020; Foster et al., 2020) made progress in answering this question
by providing a regret bound of O(d

√
T log T + ϵ

√
dT ) in expectation (Foster et al., 2020). However,

1. Here Õ hides log factors.
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improving the log factors in the first term and strengthening the result to a high probability bound was
unresolved. Due to the challenge that changing action sets impose on the analysis, the techniques of
(Foster et al., 2020) cannot be directly extended to provide high probability bounds on the regret. Our
result of O(d

√
T log T + ϵ

√
dT log T ) regret removes the

√
log T factor from the first term and adds

a log T factor in the second term; depending on the value of ϵ this can lead to a tighter or looser bound.

• Bandits with Adversarial Corruption. Linear bandits with adversarial corruption recently at-
tracted significant interest (Lykouris et al., 2021; Chen et al., 2021; Jin et al., 2021; Li et al., 2019a;
Bogunovic et al., 2020, 2021; Lee et al., 2021; Wei et al., 2022) due to the vulnerability of online
learning applications to attacks. There are multiple adversarial models that are proposed in the
literature; here we consider a widely used model that assumes the adversary knows the policy, and
observes the history, but does not observe the current action before corrupting the rewards.
Our Contribution [Theorem 9 in App. B]. Our work provides the first algorithm for contextual
linear bandits that achieves a regret bound of Õ(d

√
T +d3/2C) with high probability for unknown C,

which upper bounds the total amount of corruption from the adversary. This improves over the best
known Õ(d4.5

√
T + d4C) bound for linear bandits with changing action sets in (Wei et al., 2022).

We note that in our regret bound, while the dependency on d in the first term is nearly optimal, the
dependency on d3/2 in the second term is not. However, we simplify the problem of improving this
dependency, as any algorithm that improves it for linear bandits will imply the same improvement
for contextual bandits with our reduction.
Related Work. The work in (Bogunovic et al., 2021) considers linear bandits with adversarial cor-
ruption and achieves a regret bound of Õ(d

√
T + d3/2C) with high probability for known corruption

level C and a regret bound of Õ(d
√
T + d3/2C +C2) with high probability for a stronger adversary

that observes the current action and unknown corruption level C, while the work in (Wei et al., 2022)
achieves a regret bound of Õ(d

√
T +d3/2C) with high probability for unknown corruption C. These

algorithms have optimal dependency on T,C but it is not known if the d3/2 dependency is tight
or not. The work in (Lee et al., 2021) improves the dependency on d for linearized corruption, by
achieving a regret bound of Õ(d

√
T + C) with high probability which is also nearly optimal (Lee

et al., 2021). The proposed algorithms and analysis rely on the assumption that the action set is fixed,
and as far as we know there are no known generalizations for changing action sets - beyond the work
in (Bogunovic et al., 2021) that considers changing action sets but imposes a strong assumption on
the context distribution. The work in (He et al., 2022) considers a stronger adversary, that observes
the current action, and achieves an Õ(d

√
T ) regret bound for unknown C ≤

√
T and linear regret

otherwise. The first paper to prove a regret bound with nearly optimal dependency on T,C for linear
bandits with changing action sets (linear contextual bandits) is (Wei et al., 2022) which achieves a
regret bound of Õ(d4.5

√
T + d4C) with high probability for unknown C. While the dependency

on T,C is nearly optimal, the dependency on d is clearly not - improving this was left as an open
problem. Our results take a step in this direction by removing a factor of d3.5 from the first term, by
removing a factor of d2.5 from the second term and by reducing the problem of further improving the
dependency of d in the second term to achieving this improvement over a linear bandit setup.

• Sparsity. High dimensional linear bandits with sparsity capture practical cases such as, when there
exist a large number of candidate features and limited information on which of them are useful; use
cases include personalized medicine and online advertising (Bastani and Bayati, 2020). This setup
results in sparsity in the unknown linear bandit parameters, which can be leveraged for more efficient
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learning.
Our Contribution [Theorem 10 in App. B]. Our work provides the first O(

√
dsT log T ) regret

bound with high probability for contextual linear bandits, improving a factor of
√
log T on the state

of the art, where s is an upper bound of the nonzero elements in the model.
Related Work. Due to its practical significance, a number of works have examined this setup
(Lattimore et al., 2015; Abbasi-Yadkori et al., 2012; Gerchinovitz, 2011; Carpentier and Munos,
2012; Chen et al., 2022; Dai et al., 2022; Jang et al., 2022; Hao et al., 2021, 2020). To the best of our
knowledge, the best known regret bound is O(

√
dsT log T ) with high probability (Abbasi-Yadkori

et al., 2012). While this is shown to be nearly optimal (Lattimore and Szepesvári, 2020), improving
the log T factor was left as an open problem. Our work resolves this.

1.2. Technical Overview

Our major technique innovation is in the conception and execution of a reduction from a stochastic
contextual linear bandit instance to a linear bandit instance. This reduction is made possible by
establishing a linear bandit action for each possible parameter θ of the contextual bandit instance. In
particular, for a given θ, we establish a new action g(θ) that is the expected best action (under the
distribution of the context At) with respect to the parameter θ, i.e., g(θ) = ED(argmaxã∈At⟨ã, θ⟩).
Note that g(θ) may not correspond to any valid action for the present context in the corresponding
contextual bandit instance. Yet, we show that if one plays an action argmaxã∈At⟨ã, θ⟩ that is optimal
with respect to θ, then the contextual bandit instance generates a linear reward with respect to g(θ).
Moreover, the linear bandit instances share the same optimal parameter θ⋆ as in the contextual
instance. Under standard boundedness assumptions of the contexts and actions, the reward noise in
the reduced linear instance and the contextual bandit instance also share a similar sub-Gaussian tail.
By mapping the linear bandit action g(θ) to the contextual bandit argmaxã∈At⟨ã, θ⟩ for any context
At and θ, any algorithm for the linear bandit problem can be immediately applied to solve for the
contextual bandit problem and suffer no additional regret in the worst-case.

The reduction becomes more challenging when the context distribution is unknown. One idea is
to estimate g(θ) for all possible θ. Unfortunately, doing so would require a large number of samples
resulting in unbounded regret. We resolve this issue by a batched approach where the batches provide
increasingly better estimates of g(θ). In each batch, we estimate g(θ) using all the contexts generated
in the previous batch. Note that this inevitably introduces error which ruins the linearity of the
collected reward from the contextual bandit instance. Hence, we can only apply algorithms that
are designed for misspecified linear bandits. Luckily, with a carefully designed batch sequence, we
show that a linear bandit algorithm that works for all misspecification levels ϵ ∈ [1/

√
T , 1] can be

applied to solve the contextual bandit instance. As it is hard to guarantee a good estimate of g for all
θ, we restrict our attention to a finite subset of the unknown parameter set Θ (discretization) that is
guaranteed to contain a good action. The amount of misspecification is bounded using a union bound
argument over the discretization of Θ. While the discretization of Θ may eliminate the optimal arm
and the function g is shown to be non-smooth, we show that the function r(θ) = ⟨g(θ), θ⋆⟩ is smooth
on a neighborhood of θ⋆. This is sufficient to show that if discretized finely, the discrete set will
contain a good arm. The final worst-case regret bound can be controlled by the regret bound of the
linear bandit algorithm and the batch lengths.

We next provide a high level explanation on why our reduction enables tighter regret bounds
for contextual linear bandits with stochastic contexts. Using the Phased Elimination algorithm
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(PE) (Lattimore et al., 2020) with modified confidence intervals to solve the misspecified linear
bandit instance, we prove a high probability bound of O(d

√
T log T ) on the regret of the contextual

bandit problem using our reduction. Existing analysis techniques for changing action sets suffer log
factors due to several reasons, such as bounding the radius of an ellipsoid that contains the unknown
parameter with high probability, bounding the regret by the radius of the ellipsoid, or summing the
regret over multiple episodes; in contrast, the log factors in our analysis appear only from a union
bound used to prove concentration of the estimated arm means with high probability.

The reduction also implies improved regret bounds for misspecified contextual linear bandits
by leveraging the optimal and nearly optimal regret bounds proved in the literature (Lattimore et al.,
2020) for fixed action sets. This results in high probability bounds; as opposed to the best known
results for changing action sets that add log factors and only hold in expectation. As the reduction
introduces a small Õ(1/

√
T ) misspecification, this adds to the possibly unknown misspecification ϵ.

There is a little subtlety here; some algorithms adapt to known ϵ better than the unknown case. To
avoid adding extra factors to the regret bounds by sub-optimal adaptation to the known Õ(1/

√
T )

part of misspecification, we slightly modify existing algorithms to account for this. This is done by
increasing the number of times an arm is explored by a constant factor. Similarly, our results allow to
carry over the better regret bounds for linear bandits with adversarial corruption to the contextual
setting. This is achieved by modifying the algorithms for linear bandits with adversarial corruption
to account for the known misspecification added by our reduction.

Our reduction has a byproduct; it limits the size of available actions in each round to the minimum
between |A| and the size of the parameter set Θ (recall that we construct an action g(θ) for each
θ ∈ Θ). While in general a discretization of size TΩ(d) is required to guarantee a good action in
the discrete set, if the unknown parameter follows some structure, a discretization of smaller size
can be sufficient. For example, for contextual linear bandits with s-sparse unknown parameter,
we show that a discretization of size TO(s) is sufficient. This directly implies a high probability
O(

√
dsT log T ) regret bound as opposed to the best known O(

√
dsT log T ) bound (Abbasi-Yadkori

et al., 2012) that loses extra log factors due to solving a linear regression problem over the space of
sparse unknown parameters.

As it is enough to make only batch updates to our estimates of the actions g(θ), our algorithm
can be modified to provide improved regret bounds for contextual linear bandits with O(log log T )
batches. We use batch lengths that were introduced in (Gao et al., 2019) which grow as T 1−2−m

.
In each batch, as action set is fixed, we utilize elimination algorithms with the G-optimal design.
However, at batch m, the gaps of sub-optimal actions depend on the confidence of our estimates in
batch m − 1, which rely on the G-optimal design using the estimates of g from batch m − 2. As
a result, the regret in batch m can be at most the ratio between the length of batch m and batch
m − 2. Considering the growth rate of the batch lengths, this ratio can be large, especially in the
first few batches. To fix this, we modify the batch lengths to grow in length only at the batches with
odd index, while even batches use the same length as the previous batch. Our algorithm results
in an O(d

√
T log T log log T ) regret bound using O(log log T ) batches, improving a

√
log d factor

(that appeared due to the distributional G-optimal design proposed in (Ruan et al., 2021)) in the
regret bound over the best known result (Ruan et al., 2021). Our result also provides the first high
probability bound under the O(log log T ) batches limitation.

As a consequence of the batch learning result and the fact that our reduction can limit the action
set based on the size of Θ, we provide the first algorithm with O(log log T ) batches for the sparse
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setting with a regret bounded by O(
√
dsT log T log log T ) with high probability, where s is the

sparsity parameter.

1.3. Paper organization

Section 2 describes our setup and reviews notation; Section 3 describes our reduction and main
theorems; App. A describes a spacial case of the reduction; and App. B uses our reduction to prove
improved regret bounds for a number of stochastic linear bandit problems.

2. Notation and Models

Notation. We use the following notation throughout the paper. For a vector X we use Xi to denote
the i-th element of the vector X . The set {1, ..., i} for i ∈ N, i > 0 is denoted by [i], where N is the
set of natural numbers. We say that y = O(f(x)) if there is x0 and a constant c such that y ≤ cf(x)
∀x > x0; we also use Õ(f(x)) to omit log factors. A δ-net (with respect to norm-2) of a set A ⊆ Rd

for δ > 0 is any set B ⊆ Rd such that for every a ∈ A, there exists b ∈ B with ∥a− b∥2 ≤ δ, where
R is the set of real numbers. For a set of sets S, ∪S denotes the union of all elements in S. For a
family of sets {Ai}ni=1 we use

∏n
i=1Ai = {(a1, ..., an)|ai ∈ Ai, ∀i ∈ [n]} to denote the product

set.
Contextual Linear Bandits. We consider a contextual linear bandit problem, where a learner
interacts with an environment over a time horizon of length T . At time t ∈ [T ], the learner observes
a set of admissible arms At representing the context, pulls an arm at ∈ At, and receives a reward

rt = ⟨at, θ⋆⟩+ ηt, (1)

where the context At is generated from a distribution D (independently from other iterations), at is a
function of the history Ht = {A1, a1, r1, ...,At}, θ⋆ is an unknown parameter vector of dimension d,
and ηt is a random noise. Here, the noise ηt follows an unknown distribution that satisfies E[ηt|Ft] =
0, E[exp(ληt)|Ft] ≤ exp(λ2/2) ∀λ ∈ R (sub-Gaussian), where Ft = σ{A1, a1, r1, ...,At, at}
is the filtration of all historic information up to time t, and σ(X) is the σ-algebra generated by
X . We follow the standard assumptions that θ⋆ ∈ Θ ⊆ {θ| ∥θ∥2 ≤ 1}, ∥a∥2 ≤ 1 ∀a ∈ At

and ∀t ∈ [T ] almost surely. The learner adopts a policy π that maps the history up to time t,
(A1, a1, r1, ...,At−1, at−1, rt−1,At), to a probability distribution over At; we denote the policy
π(A1, a1, r1, ...,At−1, at−1, rt−1,At) at time t by πt(At). The goal of the learner is to minimize
the regret defined as

RT =
T∑
t=1

max
a∈At

⟨a, θ⋆⟩ − ⟨at, θ⋆⟩. (2)

In the next sections we assume for simplicity that for each θ ∈ Θ, there is a unique at ∈ At that
satisfies ⟨at, θ⟩ = supa∈At

⟨a, θ⟩ almost surely. This is to avoid dealing with approximations and
choice functions (if there are multiple optimal actions) in the description of our algorithms. However,
our results do not need this assumption, please see App. C.1.
Batch Learning. In this setting, the learner is allowed to change the policy πt only at M pre-specified
time slots 1 ≤ t(1), ..., t(M) ≤ T , where M is the number of batches.
Misspecified Linear Bandits. Here pulling an action a ∈ At generates a reward perturbed as

rt = ⟨a, θ⋆⟩+ ηt + f(a), (3)

8
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where f is unknown perturbation function, θ⋆ is the unknown parameter vector, and ηt is a zero-mean
noise that is 1-subgaussian conditioned on the history. The amount of deviation in the rewards is
upper bounded by ϵ = supa∈∪Supp(D) |f(a)|, and ϵ is called the amount of misspecification, where
D is the context distribution and Supp(D) is the support set of D.
Adversarial Corruption. We assume an adversary that operates as follows at each time t:

• The adversary observes the history of all past contexts A1, ...,At−1, actions a1, ..., at−1,
rewards r1, ..., rt−1, and previously corrupted rewards r̃1, ..., r̃t−1, together with the current
context At.

• The adversary decides on a corruption function ct : At → R that determines the amount of
corruption for each action.

• The learner observes the history of contexts A1, ...,At, actions a1, ..., at−1, and previously
corrupted rewards r̃1, ..., r̃t−1.

• The learner pulls arm at and observes reward r̃t = rt + ct(at), where ct(at) is the corruption
provided by the adversary.

Note that the true reward rt follows the linear bandits model, while the corrupted rewards do not
need to. We assume that the amount of corruption the adversary can inflict is bounded as

T∑
t=1

sup
a∈At

|ct(a)| ≤ C, (4)

where C is the maximum amount of corruption.
Sparsity. We here assume that the d-dimensional parameter vector θ⋆ in (1) is sparse, namely
∥θ⋆∥0 ≤ s for some known s ∈ [d], where ∥θ⋆∥0 denotes the norm-0 or cardinality of the vector θ⋆.

3. Reduction from Stochastic Contextual to Linear Bandits

3.1. Reduction for Known Context Distribution D

We construct a contextual linear bandit algorithm M that operates at a high level as follows. At each
time t, the learner:
Step 1 (plays): observes a set of actions At, uses θt (i.e., the current estimate of θ∗) to decide which
action at ∈ At to play, and observes the associated reward rt;
Step 2 (learns): calculates θt+1, i.e., an updated estimate of θ∗.
In our reduction, we use a single-context algorithm Λ for learning the parameter θ⋆ in step 2, i.e.,
choose θt+1, and prove that we can achieve the same worst-case regret bound as Λ.

Fixed action space. We provide to the linear bandit algorithm Λ the fixed action space

X = {g(θ)|θ ∈ Θ}, where g(θ) = EAt∼D[argmax
a∈At

⟨a, θ⟩|θ]. (5)

That is, for each θ, we create an action g(θ) that is the expected best action (under the distribution of
the context D) with respect to the parameter θ. We illustrate using a simple example.

9
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Example 1. Assume that we may observe one out of the two following action sets {[1], [−1]}, {[1]}
randomly with probability 1/2. The function g(θ) : R → R can be calculated as follows

g(θ) =

{
1 if θ ≥ 0
0 if θ < 0

(6)

and thus X = {[0], [1]}.

Reduction Algorithm. The algorithm M proceeds at each time t as follows:

1. The single context algorithm Λ decides to play an action xt ∈ X , using the history Λ observed.
This action is never actually played. Instead, M observes what action xt that Λ selected, and
uses a θt with xt = g(θt) as its current estimate of θ⋆, where ties are broken arbitrarily.

2. M observes At, plays the action at = argmaxa∈At ⟨a, θt⟩ and receives reward rt. It provides
this reward to Λ.

3. Λ assumes that the reward rt it received was generated according to the linear bandit model
rt = ⟨g(θt), θ⋆⟩+ η′t, and adds the action-reward pair (g(θt), rt) to its history.

Note that the set of actions X we created contains actions that may not be part of the original
sets At’s; this is fine, since these actions are actually never played - they are used to simulate an
environment that enables Λ to correctly update its estimate of θ⋆. That is, although all actions
played come from the eligible sets At, all learning (updates on θt) is derived from the single context
algorithm Λ that never explicitly learns At. We also highlight that

Theorem 1 Let Λ be any algorithm for linear bandits and I be a contextual linear bandit instance
with stochastic contexts, unknown parameter θ⋆ and rewards rt generated as described in the
reduction algorithm described above. It holds that

• The reward rt is generated, by pulling the arm g(θt), from a linear bandit instance L with
action set X , and unknown parameter θ⋆.

• The reduction results in an algorithm M for contextual linear bandits such that with probability
at least 1− δ we have

|RM
T (I)−RΛ

T (L)| ≤ c
√
T log(1/δ), (7)

where RΛ
T (L) is the regret of Λ over the constructed linear bandit instance L, RM

T (I) is the
regret of algorithm M over the instance I and c is a universal constant.

Proof Outline. The complete proof is provided in App. A; we here provide a brief outline. The basic
idea is to show that the action taken by algorithm M at time t is an unbiased estimate of g(θt), then
decompose RM

T (I) as

RM
T (I) =

T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]

+ E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩+ ⟨g(θ⋆), θ⋆⟩ − ⟨g(θt), θ⋆⟩,

(8)
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where the expectation is with respect to the randomness in the context generation At. We then prove
and use results such as ⟨g(θ′), θ′⟩ = maxθ∈Θ ⟨g(θ), θ′⟩, ∀ θ′ ∈ Θ, to arrive at

|RM
T (I)−RΛ

T (L)| ≤ |
T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]|

+ |
T∑
t=1

E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|, (9)

Next, we show that the quantity

ΣT :=

T∑
t=1

E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩

is a martingale (using that at is unbiased estimate of g(θt)) with a bounded difference (by boundedness
of Θ,At) and apply the Azuma–Hoeffding inequality to bound these terms with high probability. To
prove that the rewards rt come from a linear bandit instance L, we finally show that the reward rt
can be expressed as rt = ⟨g(θt), θ⋆⟩+ η′t, where η′t is a zero mean 1-sub-Gaussian noise conditioned
on the filtration of historic information θ1, ..., θt and rewards r1, ..., rt−1 of the instance L. □

Algorithm 1 Reduction from stochastic contexts to no context

Input: confidence parameter δ, phase lengths {t(m)}M+1
m=1 , and algorithm Λϵ for linear contextual

bandits with ϵ misspecification.
Initialize: g(1) : Θ′ → Rd randomly, ϵ1 = 1, and let X1 = {g(1)(θ)|θ ∈ Θ′}.
for m = 1 : M do

for t = t(m) + 1, ..., t(m+1) do
Let g(m)(θt) ∈ Xm be the arm selected by Λϵm after observing rewards rt(m)+1, ..., rt−1.
Play arm at = argmaxa∈At ⟨a, θt⟩ and receive reward rt. Provide rt to Λϵm .
end

Update: g(m+1)(θ) = 1
t(m+1)

∑t(m+1)

t=1 argmaxa∈At ⟨a, θ⟩, Xm+1 = {g(m+1)(θ)|θ ∈ Θ′}, and

ϵm+1 = 2
√

log(M |Θ′|/δ)/t(m+1).
end

3.2. Reduction for Unknown Context Distribution

As described in (5), calculating the function g(θ) requires knowledge of the distribution D. We do
not really need this knowledge; we prove it is sufficient to use empirical estimation of g(θ). As
a result, we prove that any stochastic linear contextual bandit instance, even for unknown context
distributions, can be reduced to a linear bandit instance albeit with a small misspecification.

Our basic approach follows the reduction in Section 3.1 but uses a sequence of functions g(m)

that approximate g increasingly well (as m increases). To do so, as it is hard to guarantee a good
estimate of g for all θ, we restrict our attention to a finite subset of Θ that is large enough to include a
good action. In particular, instead of considering actions in a continuous space Θ, we only consider a
finite subset of actions Θ′ ⊆ Θ, where Θ′ is an 1/T -net for Θ according to the norm-2 distance. We
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divide the time horizon T into M epochs, each of duration Tm = t(m+1) − t(m), m = 1 . . .M . For
each epoch, we construct an empirical estimate of g as g(m)(θ) = 1

t(m)

∑t(m)

t=1 (argmaxa∈At ⟨a, θ⟩),
and calculate the set of actions Xm = {g(m)(θ)|θ ∈ Θ′}. We then use at each epoch a single context
algorithm as before, but we now provide at epoch m the fixed set of actions Xm for the algorithm to
choose from. As a result, the regret of the linear bandit problem is defined as

RΛϵ
T =

T∑
t=1

max
θ∈Θ′

⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩. (10)

Our algorithm relies on Λϵ, an algorithm for linear bandits with ϵ misspecification. The mis-
specification reflects our confidence in our estimate of the function g, hence, decreases each epoch.
We start with a large value of the misspecification parameter ϵ1 = 1 and a random initialization
of the function g (which we cal g(1)), and hence random initialization of X denoted X1. At time
slot t of epoch m, the algorithm asks Λϵm for an action to play g(m)(θt) ∈ Xm given the history
of action and rewards {(g(m)(θi), ri)}t−1

i=t(m)+1
in epoch m only. The algorithm pulls the action

at = argmaxa∈At ⟨a, θt⟩ and observes rt. The reward rt is then passed to the algorithm Λϵm .
At the end of each epoch, the misspecification parameter, estimates g(m), and action set Xm are
updated. The pseudo-code of our reduction is provided in Algorithm 1, and the proof in App. B.
To achieve nearly optimal regret bounds, the misspecification ϵ need to be Õ(1/

√
T ) (recall the

Ω(
√
dϵT ) regret lower bound (Lattimore et al., 2020)). Attempting to use M = 2 to first estimate

g and then learn in the second epoch, would require the length of the first epoch to be Ω(T ), to
ensure the Õ(1/

√
T ) misspecification, resulting in linear regret. Instead, as we clarify next, we use

exponentially increasing epoch lengths to mix the learning with a gradual estimation of g resulting in
misspecification that is effectively Õ(1/

√
T ).

Theorem 2 Let Λϵ be an algorithm for linear bandits with ϵ misspecification and I be a contextual
linear bandit instance with stochastic contexts, unknown parameter θ⋆ and rewards rt are generated
as described in Algorithm 1. The following holds:

• Conditioned on Ht(m) = σ(A1, a1, r1, ...,At(m) , at(m) , rt(m)): in epoch m, the rewards rt
are generated, by pulling arm g(m)(θt), from a misspecified linear bandit instance Lm for
t = t(m) + 1, ..., t(m+1), action set Xm = {g(m)(θ)|θ ∈ Θ′}, unknown parameter θ⋆, mean
rewards ⟨g(θ), θ⋆⟩, and unknown misspecification ϵ′m.

• The misspecification ϵ′m is bounded by the known quantity ϵm with probability at least 1 −
cδ/M .

• With probability at least 1− δ we have that |RT (I)−
∑M

m=1R
Λϵm
Tm

(Lm)| ≤ c
√
T log(1/δ),

where RT (I) is the regret of Algorithm 1 over the instance I , RΛϵm
Tm

(Lm) is the regret of
algorithm Λϵm over the bandit instance Lm in phase m, Tm = t(m+1) − t(m), and c is a
universal constant.

As a consequence, we prove the following corollary in App. B.1.

Corollary 3 For Algorithm 1 with t(m) = 2m−1 and Λϵ to be PE with modified confidence
intervals (Lattimore et al., 2020), it holds that with probability at least 1 − cδ we have that
RT = O(d

√
T log(T/δ)).
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In App. A we describe an important special case where the reduction can be performed without
approximating g.

3.3. Computational Complexity

In this subsection, we show that our reduction can be made computationally-efficient with the help of
optimization oracles and linear regression oracles (Awerbuch and Kleinberg, 2008; Zhu et al., 2022),
which are standard assumptions when computation is a concern in bandit problems.

In particular, we are able to

• Efficiently construct a linear optimization oracle for the linear bandit instance Lm given a
linear optimization oracle for the original contextual bandit instance I . Together with the linear
regression oracle, this suffices to construct the linear bandit policy (Awerbuch and Kleinberg,
2008; Dani et al., 2008; Bubeck et al., 2012; Hazan and Karnin, 2016; Ito et al., 2019).

• Efficiently compute an inverse of the function g(m), which is performed in our reduction to
translate the linear bandit action to an action in the original instance.

Recall that a linear optimization oracle of the contextual bandit instance states that argmaxa∈At⟨a, θ⟩
can be efficiently solved for any context At. However, in the reduced bandit instance, we are solving
an optimization problem related to the reduced arms, Xm = {g(m)(θ)|θ ∈ Θ′}. In Lemma 16 in
App. E, we provide an efficient (approximate) optimization oracle for solving argmaxx∈Xm⟨x, θ⟩
by applying a careful discretization of the set Θ. By storing g(m)(θ) for all the arms pulled by the
linear bandit algorithm, we can then apply the (efficient) regression oracle for the original contextual
bandit instance to get a regression oracle in the reduced instance.

If all actions played by the linear bandit algorithm are the output of the linear optimization oracle
for some θ (Awerbuch and Kleinberg, 2008; Dani et al., 2008; Ito et al., 2019), then from Lemma 16
in App. E, the inversion of g(m)(θ) for the actions pulled by the linear bandit algorithm can be
performed by storing θ whenever the corresponding action g(m)(θ) is stored. This increases both the
space and time complexity only by a constant factor.

4. Conclusions

We presented a novel reduction from stochastic contextual linear bandit problems to (fixed-context)
linear bandit problems; our reduction explains why results, that are not achievable for adversarial
contexts, are possible for stochastic contextual bandits, and offers a framework that can be leveraged
to gain new algorithms and bounds for contextual linear bandit problems. We illustrate the power
of our approach by applying it to achieve improved bounds over a number of cases; this is not an
exhaustive list, and we hope that our approach will be a useful tool to researchers in this field.
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Appendix A. Reduction When Context is a Product Set

Algorithm 2 Reduction from stochastic contexts to no context for product context sets
Input: an algorithm Λ for linear contextual bandits with action set

X = {a′ ∈ {0, 1}2d| a′2i−1 + a′2i = 1 ∀i ∈ [d]} (11)

for t = 1 : T do
Ask Λ for an arm to play a′t ∈ X given the history r1, ..., rt−1.
Play arm at with (at)i = max{a ∈ A(i)

t } if a′2i−1 = 1 and (at)i = min{a ∈ A(i)
t } otherwise.

Receive reward rt.
end

We here consider the special case where the action distribution D is unknown, but the action
space has a coordinate-wise product structure, i.e.,

Assumption 1 At =
∏d

i=1A
(i)
t , where A(i)

t ⊂ R.

This is an important hard instance that appears in many lower bounds (Lattimore and Szepesvári,
2020). We will show that in this case, the d-dimensional stochastic contextual bandits can be reduced
to a linear bandit problem with no misspecification, although the distribution D is unknown, but
where now the parameter vector is over 2d dimensions.

The main idea of the reduction is that g(θ) can be factored into a coordinate-wise product
between an unknown vector that only depends on the context distribution and a known vector that
only depends on θ. The unknown vector can be incorporated with θ⋆ reducing the contextual instance
to a linear bandit instance but now with a different unknown parameter θ′⋆. In particular, we can write
⟨g(θ), θ⋆⟩ = ⟨a′(θ), θ′⋆⟩, where a′(θ) is a vector in R2d that does not depend on the distribution, and
equals

(a′(θ))2i =

{
1 if (θ)i < 0
0 otherwise

and (a′(θ))2i−1 = 1− (a′(θ))2i ∀i = 1, . . . , d, . (12)

Thus, we can follow the same reduction algorithm as in Section 3.1, but where now we call a
2d-dimensional linear bandit algorithm Λ and provide Λ with the fixed action set

X = {a′ ∈ {0, 1}2d| a′2i−1 + a′2i = 1 ∀i ∈ [d]} (13)

as the pseudocode Algorithm 2 describes.

Theorem 4 Let Λ be any algorithm for linear bandits, I be a contextual linear bandit instance with
stochastic contexts that satisfy Assumption 1 with unknown parameter θ⋆, and rt be the rewards
generated as described in Algorithm 2. It holds that
• The rewards rt are generated, by pulling arm a′t, from a linear bandit instance L with action set X
in (11), and unknown parameter θ′⋆ ∈ R2d with ∥θ′⋆∥2 ≤ 2.
• With probability at least 1− δ it holds that

|RT (I)−RΛ
T (L)| ≤ c

√
T log(1/δ), (14)

where RT (I) is the regret of Algorithm 2 over the instance I and RΛ
T (L) is the regret of algorithm Λ

over the instance L, and c is a universal constant.
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Proof The proof follows from Theorem 1 using the observation that

(g(θ))i =

{
EA∼D[maxa∈A(a)i] if (θ)i > 0
EA∼D[mina∈A(a)i] if (θ)i < 0

. (15)

and thus, given (13), we can define θ′⋆ ∈ R2d as

(θ′⋆)i =

{
E[maxa∈A(a)(i+1)/2](θ⋆)(i+1)/2 if i is odd
E[mina∈A(a)⌊(i+1)/2⌋](θ⋆)⌊(i+1)/2⌋ if i is even.

(16)

By definition of a′(θ), θ′⋆, we have that ⟨g(θ), θ⋆⟩ = ⟨a′(θ), θ′⋆⟩. To see that ∥θ′⋆∥ ≤ 2, we
observe that

d∑
i=1

|(θ′⋆)2i−1| =
d∑

i=1

|E[max
a∈A

(a)i](θ⋆)i| ≤ ⟨|g(1/
√
d)|, |θ⋆|⟩ ≤ 1, (17)

where absolute value of a vector is defined as a vector with (|θ⋆|)i = |(θ⋆)i|. Similarly,∑d
i=1 |(θ′⋆)2i| ≤ 1. Hence, ∥θ′⋆∥2 ≤ ∥θ′⋆∥1 ≤ 2.
As before, to construct the linear bandit instance, we need rewards that follow the stochastic

linear bandits model. The result follows from Proposition 12 and the fact that ⟨g(θt), θ⋆⟩ = ⟨at, θ′⋆⟩.

Appendix B. Implications

B.1. Tighter Regret Bound for Contextual Linear Bandits

We here show that our reduction leads to the first O(d
√
T log T ) high probability upper bound

for linear bandits with changing action sets. We recall that in all our results, we only consider
contextual linear bandits with unknown context distribution as described in Section 2. We rely on
the Phased Elimination (PE) (Lattimore et al., 2020) as our linear bandit algorithm Λϵ. PE is the
same as Algorithm 3, that we will use next in the batched setting, except that X , g are fixed (recall
that we apply PE within an epoch that fixes the estimate of g). The parameter γm in Algorithm 3
is called the confidence interval; we will specify its value in our theorems. In Algorithm 1, setting
t(m) = 2m−1 and Λϵ to be PE with modified confidence intervals (Lattimore et al., 2020) to account
for the misspecification we get the following corollary.

Corollary 5 For Algorithm 1 with t(m) = 2m−1 and Λϵm to be PE with
γm = 6

√
d log(T |Θ′|/δ)/t(m) it holds that with probability at least 1 − cδ we have that RT ≤

c
√
dT log(T |Θ′|/δ).

Proof Let the length of phase m be Tm = t(m+1) − t(m) = 2m−1. Conditioned on the event that the
misspecification in phase m is bounded by ϵm, PE with modified confidence intervals achieves a
regret RΛϵm

Tm
that is upper bounded by O(

√
dTm log(TmM |Θ′|/δ)) +

√
dTmϵm) with probability at

least 1− δ/M . Hence, by Proposition 14 and the union bound we have that it holds with probability
at least 1− cδ that

R
Λϵm
Tm

≤ c(
√

dTm log(T |Θ′|/δ) +
√
dTmϵm)∀m ∈ [M ], (18)
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where we used the fact that Tm ≤ T,M ≤ T . Substituting the value of ϵm we get that the following
holds with probability at least 1− cδ

R
Λϵm
Tm

≤ c(
√

dTm log(T |Θ′|/δ) +
√
dTm

√
log(M |Θ′|/δ)

t(m)
)

= c(
√
dTm log(T |Θ′|/δ) +

√
dTm log(M |Θ′|/δ))∀m ∈ [M ]. (19)

Hence, using M ≤ T , we get that with probability at least 1− cδ we have

R
Λϵm
Tm

≤ c
√
dTm log(T |Θ′|/δ) (20)

Substituting in Theorem 2, we get that with probability at least 1− cδ it holds that

RT ≤ c
√

T log T + c
√
d log(T |Θ′|/δ)

log T∑
m=1

√
Tm

≤ c′
√

dT log(T |Θ′|/δ)
log T∑
m=1

√
2m−log T

≤ c′
√

dT log(T |Θ′|/δ)
∞∑
i=0

√
2−i

≤ c′

1− 1/
√
2

√
dT log(T |Θ′|/δ). (21)

It is well known that if Θ ⊆ {a ∈ Rd|∥a∥2 ≤ 1}, then there is 1/T -net of Θ, Θ′, such that
|Θ′| ≤ (6T )d,Θ′ ⊆ Θ. This directly implies that RT = O(d

√
T log(T )) with probability at least

1− 1/T . This improves a factor of
√
log T log log T over (Li et al., 2021) and a factor of

√
log T

over (Abbasi-Yadkori et al., 2011).

B.2. Batch Learning

WE here show that our reduction can be applied to improve the result of (Ruan et al., 2021) for contex-
tual linear bandits with stochastic contexts by providing a regret upper bound of O(d

√
T log T log log T )

with high probability as opposed to the in expectation
O(d

√
T log d log T log log T ) regret bound in (Ruan et al., 2021). This can be achieved by replacing

Λϵm with the G-optimal design policy constructed using Xm. To compute t(i) we first define

um = T 1−2−m
,m = 1, ...,M/2. (22)

We let
t(m) = ⌊um//2+1⌋∀m ∈ [M ], t(M+1) = T. (23)

where // denotes integer division. For completeness, we include the pseudo-code in Algorithm 3.
The following result follows using Theorem 2.
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Theorem 6 For Algorithm 1 with M = 2 log log T (corresponds to 2 log log T + 1 batches), t(m)

given in (23) and Λϵm replaced by the G-optimal design policy constructed using Xm, it holds that
there is a constant c such that with probability at least 1− cδ, we have

RT ≤ c

√
dT log(

M |Θ′|
δ

) log log T. (24)

Proof We first notice that for M = log log T , we have that um+1/
√
um =

√
T∀m ∈ [M − 1],

uM+1/
√
uM =

√
2T . Hence, we have that

um+1/
√
um ≤

√
2T∀m ∈ [M ]. (25)

We also have that um+1 ≥ um ∀m ≥ 1 (since um ≤ T ). The proof follows from the properties of
the G-optimal design together with the properties of g(m) in the proof of Theorem 2. The G-optimal
design ensures that for any θ ∈ Θ′ the following holds with probability at least 1− δ

|⟨g(m)(θ), θ̂m − θ⋆⟩| ≤ 2ϵ′m
√
d+

√
4d

Tm
log 1/δ, (26)

where ϵ′m = supθ∈Θ′ |⟨g(m)(θ)− g(θ), θ⋆⟩|. By the triangle inequality, we have that

|⟨g(m)(θ), θ̂m⟩ − ⟨g(θ), θ⋆⟩| ≤ 2ϵ′m
√
d+

√
4d

Tm
log 1/δ + |⟨g(m)(θ)− g(θ), θ⋆⟩|

≤ ϵ′m(2
√
d+ 1) +

√
4d

Tm
log 1/δ (27)

By Proposition 14 we have that ϵ′m ≤ ϵm∀m ∈ [M ] with probability at least 1− δ. Hence, by the
union bound we have that the following holds with probability at least 1− δ

|⟨g(m)(θ), θ̂m⟩ − ⟨g(θ), θ⋆⟩| ≤ ϵm(2
√
d+ 1) +

√
4d

Tm
log(

M |Θ′|
δ

)∀θ ∈ Θ′∀m ∈ [M ]. (28)

Hence, with probability at least 1 − δ, the best arm is not eliminated and the arms that are not
eliminated at the end of batch m, will have a gap that is at most twice the confidence interval in (28),
otherwise, they satisfy the elimination criterion with θ⋆. Hence, the sum regret

∑M
m=1R

Λϵm
Tm

(Lm) is
bounded as follows with probability at least 1− δ

M∑
m=1

R
Λϵm
Tm

(Lm) ≤
√
T + c′

M∑
m=1

ϵm(2
√
d+ 1)Tm+1 + c′

√
4d

Tm
log(

M |Θ′|
δ

)Tm+1

=
√
T + c

√
d log(

M |Θ′|
δ

)

M∑
m=1

Tm+1√
Tm−1

+
Tm+1√
Tm

(i)

≤
√
T + 2c

√
d log(

M |Θ′|
δ

)

M∑
m=1

Tm+1√
Tm−1

+
√
T

(ii)

≤
√
T + 2c

√
d log(

M |Θ′|
δ

)

M∑
m=1

√
T +

√
T
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≤ c′′
√

dT log(
M |Θ′|

δ
) log log T, (29)

where (i) uses (25) and the fact that either Tm+1 ≤
√
2Tm or Tm+1 = Tm ≤

√
2TTm, and (ii)

follows from the fact that either (Tm = Tm−1 and Tm+1 ≤
√
2TTm) or (Tm ≤

√
2TTm−1 and

Tm+1 = Tm), hence, in both cases we have Tm+1 ≤
√
2TTm−1. The results follow by Theorem 2

and the union bound.

As in App. B.1, this implies that RT = O(d
√

T log(T ) log log T ) with probability at least
1 − 1/T , which strengthens the result in (Ruan et al., 2021) to high probability result and also
improves a factor of log d in the regret bound. Moreover, as will be seen in the following appendices,
if θ⋆ is s-sparse, Theorem 6 implies a regret bound of O(

√
dsT log T log log T ) with probability at

least 1 − 1/T . To the best of our knowledge, this is the first nearly optimal algorithm for sparse
unknown parameters that uses O(log log T ) batches.

Algorithm 3 Batched algorithm for linear bandits with stochastic context

Input: confidence parameter δ, and phase lengths {t(m)}Mm=1.
Initialize: g(1) : Θ′ → Rd randomly, Θ1 = Θ′, and let X1 = {g(1)(θ)|θ ∈ Θ′}.
for m = 1 : M do

Find design ρ : Xm → [0, 1] with maxa∈Supp(ρ) ∥a∥2G−1(ρ) ≤ 2d, |Supp(ρ)| ≤ 4d log log d+ 16,
where G(ρ) =

∑
a∈Supp(ρ) ρ(a)aa

T .
Compute u(x) = ⌈ρ(x)Tm⌉ and u =

∑
x∈Supp(ρ) u(x).

Use the policy described by at = argmaxa∈At ⟨a, θ⟩ for u(g(m)(θ)) times for each θ ∈ Θm

with g(m)(θ) ∈ Supp(ρ).
θ̂m = (

∑
g∈Supp(ρ) u(g)gg

T )−1
∑u

i=1 rig
(m)(θi).

Update: Θm+1 =
{
θ ∈ Θm|maxθ′∈Θm ⟨θ̂m, g(m)(θ′)− g(m)(θ)⟩ ≤ γm

}
, γm =

10
√

d
Tm−1

log(M |Θ′|/δ).

Update: g(m+1)(θ) = 1
t(m+1)

∑t(m+1)

t=1 argmaxa∈At ⟨a, θ⟩, and Xm+1 = {g(m+1)(θ)|θ ∈ Θ′}.
end

B.3. Misspecified Contextual Linear Bandits

Our reduction framework can be used to improve regret bounds for misspecified contextual linear
bandits. By noticing that for ϵ misspecified contextual linear bandits, the total amount of misspecifi-
cation in epoch m is bounded by ϵm + ϵ with high probability, the following result follows directly
from (Lattimore et al., 2020).

Theorem 7 For contextual linear bandits with known misspecification that is bounded by ϵ, Algo-
rithm 1 with Λϵm being PE with γm = 6d

√
log(T )/Tm + ϵ

√
d achieves a regret bound

RT ≤ c(d
√
T log(T/δ) + ϵ

√
dT ) (30)

with probability at least 1− cδ.
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If ϵ is unknown, (Lattimore et al., 2020) showed that PE achieves a regret upper bounded by
O(d

√
T log(T ) + ϵ

√
dT log T with high probability. We notice that the dependency on ϵ has an

extra log T factor as compared to the known misspecification result. To avoid adding the log T factor
in the term containing ϵm, we exploit the knowledge of ϵm to modify the confidence intervals in
PE. We note that following the same analysis in (Lattimore et al., 2020) by replacing ϵ with ϵ+ ϵm
results in the same concentration of estimated means except for constant factors, which implies the
following result.

Theorem 8 For contextual linear bandits with unknown misspecification that is bounded by ϵ,
Algorithm 1 with Λϵm being PE with γm = 6d

√
log(T )/Tm achieves a regret bound

RT ≤ c(d
√
T log(T/δ) + ϵ

√
dT log T ) (31)

with probability at least 1− cδ.

Proof The proof follows similar steps as in the proof of Proposition 5.1 in (Lattimore et al., 2020)
with different constants due to the change in γm.

We note that as PE is performed in each epoch, the number of batches is Ω(log2 T ). However, we
constructed the algorithm this way only for simplicity. It is possible to perform PE once and update
the estimates of g at the end of each batch similar to Algorithm 3.

B.4. Bandits With Adversarial Corruption

Our reduction directly extends the results for linear bandits with adversarial corruption to the
contextual setting while maintaining the same regret bounds up to log factors. This leads to Õ(d

√
T +

d1.5C) high probability regret bound as opposed to the best known Õ(d4.5
√
T + d4C) regret bound.

It was shown in (Bogunovic et al., 2021) that PE with modified confidence intervals achieves an
Õ(d

√
T + d1.5C) high probability regret bound for unknown corruption C. A model selection based

approach in (Foster et al., 2020) that uses PE as a subroutine is shown to generalize this result for
unknown C without changing the regret bound except for log factors. By adapting the confidence
intervals of PE to account for the known ϵm misspecification the Õ(d

√
T + d1.5C) high probability

regret bound extends for a model with O(
√
d log T/T ) misspecification and known corruption C.

We will modify the PE confidence interval to be

γm = 8d
√
log(T )/t(m) +

2C(4d log log d+ 18)

Tm

√
8d. (32)

The model selection approach in (Foster et al., 2020) implies the following result.

Theorem 9 For contextual linear bandits with unknown corruption that is bounded by C, Algo-
rithm 1 with t(m) = 2m−1 and Λϵm being G-COBE in (Foster et al., 2020) with PE, that uses γm in
(32), as a subroutine, achieves

RT = Õ(d
√
T + d1.5C) (33)

with probability at least 1− c/T .
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Proof The proof follows by proving a regret bound for PE with the chosen γm for known C. Then
use the model selection result in (Foster et al., 2020) to prove a regret bound for unknown C and
finally apply our main theorem to bound the final regret.

We notice that

|⟨g(m)(θ), θ̂m⟩ − ⟨g(θ), θ⋆⟩| ≤ |⟨g(m)(θ), θ̂m − θ⋆⟩|+ |⟨g(m)(θ)− g(θ), θ⋆⟩|. (34)

Using Lemma 1 in (Bogunovic et al., 2021) and equation (26) to bound the first term and Proposi-
tion 14 to bound the second term, we obtain that |⟨g(m)(θ), θ̂m⟩−⟨g(θ), θ⋆⟩| ≤ γm/2 with probability
at least 1− c/T . A standard calculation in Theorem 1 in (Bogunovic et al., 2021) implies a regret
bound of Õ(d

√
T + d1.5C) with high probability. Hence, Theorem 4 in (Wei et al., 2022) implies a

regret bound of Õ(d
√
T + d1.5C) with high probability for G-COBE with unknown C. Applying

Theorem 2 and proceeding as in equation (21) concludes the proof.

B.5. Sparsity

For linear contextual bandits with s-sparse unknown parameter, our reduction can be used to prove
O(

√
dsT log(T )) regret bound with high probability as opposed to the best known O(

√
dsT log2 T )

regret bound. It is not hard to show that there is 1/T cover with size at most (6T )2s+1 in that case;
also proved below for completeness. The following result directly follows from Corollary 5.

Theorem 10 For Algorithm 1 with t(m) = 2m−1 and Λϵm to be PE with γm = 6
√
2ds log(T/δ)/t(m)

it holds that with probability at least 1− cδ we have that RT = O(
√
dsT log(T/δ)).

Proof By Corollary 5, we only need to show that Θ contains an 1/T -net with size at most (6T )2s+1.
We have that there is 1/2T -net for {ϕ ∈ Rs|∥ϕ∥2 ≤ 1} with size at most (6T )s. To construct
s-sparse vectors in Rd, there is

∑s
i=1

(
d
i

)
ways to choose the non-zero entries. This implies that the

set {θ ∈ Rd|∥θ∥2 ≤ 1, ∥θ∥0 ≤ s} has 1/2T -net N of size at most

|N | ≤ (6T )s
s∑

i=1

(
d

i

)
≤ (6T )s

s∑
i=1

di ≤ (6T )sds+1 ≤ (6T )2s+1. (35)

We next construct an 1/T -net that is subset of Θ (recall that this is required for Theorem 2). For
every x ∈ N , let Nx = {θ ∈ Θ|∥θ − x∥ ≤ 1/2T}. Let α : N → |N| be an ordering of the set N .
And let N ′ ⊆ N be defined as N ′ = {x ∈ N|Nx ̸⊆ ∪y:α(y)≤α(x)Ny}. Hence, {Nx|x ∈ N ′} is a
set of pairwise disjoint sets. By the axiom of choice, there is a set N ′′ such that N ′′ contains exactly
one element of each set Nx∀x ∈ N ′. By construction of N ′′ we have that N ′′ ⊆ Θ.

We also have that for each θ ∈ Θ, there is x ∈ N with ∥x − θ∥2 ≤ 1/2T . Then for each
y ∈ Nx, we have by the triangle inequality that ∥y − θ∥2 ≤ 1/T . By the definition of N ′, we have
that ∪N ′ = ∪z∈NNz. Then, by construction of N ′′, there is z ∈ N ′′ such that z ∈ Nx. Hence,
∥z − θ∥2 ≤ 1/T . This implies that N ′′ ⊆ Θ is an 1/T -net of Θ. We also have by construction that
also that |N ′′| ≤ |N | ≤ (6T )2s+1.
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B.6. Structured Unknown Parameters

In some cases, the dimension d can be large but the unknown parameter is mapped from a small
space of dimension s. In particular let f : Rs → Rd be such that Θ ⊆ {f(ϕ)|∥ϕ∥2 ≤ 1} and

∥f(ϕ)− f(ϕ′)∥2 ≤ c∥ϕ− ϕ′∥2, (36)

where c is a universal constant. Finding an 1/T -net for Φ = {ϕ|f(ϕ) ∈ Θ} implies a c/T -net for Θ
with the same size. Since Φ ⊆ {ϕ ∈ Rs|∥ϕ∥2 ≤ 1}, we have that there is an 1/T -net for Φ that is
contained in Φ with size at most (6T )s. The following result immediately follows from Corollary 5.

Corollary 11 Under the considered structured unknown parameters assumption, Algorithm 1 with
t(m) = 2m−1 and Λϵm to be PE with γm = 6

√
ds log(T/δ)/t(m) satisfies that with probability at

least 1− cδ we have that RT = O(
√

dsT log(T/δ)).

Appendix C. Proof of Theorem 1

Theorem [Restatement of Theorem 1]Let Λ be any algorithm for linear bandits and I be a contextual
linear bandit instance with stochastic contexts, unknown parameter θ⋆ and rewards rt generated as
described in the reduction in Section 3.1. It holds that
• The reward rt is generated, by pulling the arm g(θt), from a linear bandit instance L with action
set X , and unknown parameter θ⋆.
• The reduction results in an algorithm M for contextual linear bandits such that with probability at
least 1− δ we have

|RM
T (I)−RΛ

T (L)| ≤ c
√
T log(1/δ), (37)

where RΛ
T (L) is the regret of Λ over the constructed linear bandit instance L, RM

T (I) is the regret of
algorithm M over the instance I and c is a universal constant.

Proof Following the reduction described in the section, we start by showing that RΛ
T (L), the regret

of the algorithm Λ on a linear bandit instance, is at most Õ(
√
T ) away from RM

T (I) with high
probability. Recall that the regret RΛ

T (L) is defined as

RΛ
T (L) =

T∑
t=1

max
θ∈Θ

⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩. (38)

We notice that the function g depends on the context distribution D. In the following we assume
for simplicity that for each θ ∈ Θ, there is a unique at ∈ At that satisfies ⟨at, θ⟩ = supa∈At

⟨a, θ⟩
almost surely. We discuss how to remove this assumption at the end of the proof.

The regret RM
T (I) of the contextual algorithm can be decomposed as

RM
T (I) =

T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩

=

T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − ⟨E[argmax
a∈At

⟨a, θ⋆⟩], θ⋆⟩

+ ⟨E[argmax
a∈At

⟨a, θt⟩|θt], θ⋆⟩ − ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩
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+ ⟨E[argmax
a∈At

⟨a, θ⋆⟩], θ⋆⟩ − ⟨E[argmax
a∈At

⟨a, θt⟩|θt], θ⋆⟩

=

T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]

+ E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩

+ ⟨g(θ⋆), θ⋆⟩ − ⟨g(θt), θ⋆⟩, (39)

where the expectation is with respect to the randomness in the context generation At. In the following
we will first show that ⟨g(θ⋆), θ⋆⟩ = maxθ∈Θ′ ⟨g(θ), θ⋆⟩.

Indeed,we observe that ∀θ′, θ′′ ∈ Θ we have

max
θ∈Θ

⟨g(θ), θ′⟩ ≥ ⟨g(θ′), θ′⟩ = E[max
a∈At

⟨a, θ′⟩]

≥ E[⟨argmax
a∈At

⟨a, θ′′⟩, θ′⟩] = ⟨g(θ′′), θ′⟩. (40)

The above inequalities have to be met with equality since we can select θ′′ = argmaxθ∈Θ ⟨g(θ), θ′⟩
making the first and last terms equal. Hence, we have proved that

⟨g(θ′), θ′⟩ = max
θ∈Θ

⟨g(θ), θ′⟩, ∀ θ′ ∈ Θ. (41)

Substituting in the last line of (39) using the triangle inequality, we get that

|RM
T (I)−RΛ

T (L)|
(i)
= |

T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]

+ E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|

≤ |
T∑
t=1

⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmax
a∈At

⟨a, θ⋆⟩, θ⋆⟩]|

+ |
T∑
t=1

E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|, (42)

where (i) follows by definition of RΛ
T (L) and (41).

We next bound the quantity

ΣT :=

T∑
t=1

E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]− ⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩. (43)

Let F ′
t = σ{θ1, r1, ..., θt} be the filtration of all historic information of the linear bandit problem up

to time t. we notice that

E[Σt|F ′
t] = E[Σt−1|F ′

t] + E[E[⟨argmax
a∈At

⟨a, θt⟩, θ⋆⟩|θt]|F ′
t]− E[⟨argmax

a∈At

⟨a, θt⟩, θ⋆⟩|F ′
t]

= Σt−1. (44)
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Hence, Σt is a martingale with a bounded difference (by boundedness of Θ,At). By Azuma–Hoeffding
inequality (Wainwright, 2019), we have that |ΣT | ≤ c

√
T log 1/δ with probability at least 1− δ

2 . For
completeness, we state a special case of the Azuma-Hoeffding inequality at the end of our proof. The
summation Σ′

T =
∑T

t=1 ⟨argmaxa∈At ⟨a, θ⋆⟩, θ⋆⟩ − E[⟨argmaxa∈At ⟨a, θ⋆⟩, θ⋆⟩] can be bounded
similarly. Hence, by (42), we have that with probability at least 1− δ

|RM
T (I)−RΛ

T (L)| ≤ c
√
T log 1/δ. (45)

We have shown that the regret of Algorithm 1 over the instance I is O(
√

T log 1/δ) away from
RΛ

T (L) with probability at least 1 − δ. It remains to show that the rewards rt generated by the
described interaction with the instance I , are generated from L by the interaction of algorithm Λ.

Proposition 12 The reward rt can be rewritten as

rt = ⟨g(θt), θ⋆⟩+ η′t, (46)

where E[η′t|F ′
t] = 0,E[exp(λη′t)|F ′

t] ≤ exp(2λ2) ∀λ ∈ R, and where F ′
t = σ{θ1, r1, ..., θt} is

the filtration of historic information up to time t.

Proof We have that

rt = ⟨at, θ⋆⟩+ ηt = ⟨argmax
b∈At

⟨b, θt⟩, θ⋆⟩+ ηt

= ⟨g(θt), θ⋆⟩+
(
ηt + ⟨argmax

b∈At

⟨b, θt⟩, θ⋆⟩ − ⟨g(θt), θ⋆⟩
)
. (47)

We let η′t = ηt + ⟨argmaxb∈At ⟨b, θt⟩, θ⋆⟩ − ⟨g(θt), θ⋆⟩. The proof that E[η′t|Ft] = 0 follows
similarly to (44)

E[η′t|Ft] = E[ηt|Ft] + E[⟨argmax
b∈At

⟨b, θt⟩, θ⋆⟩ − ⟨g(θt), θ⋆⟩|Ft]

= E[⟨argmax
b∈At

⟨b, θt⟩, θ⋆⟩ − ⟨g(θt), θ⋆⟩|θt] = 0. (48)

Lastly, E[exp(λη′t)|Ft] ≤ exp(2λ2)∀λ ∈ R follows by boundedness of η′t which follows by bound-
edness of ηt,Θ,At.

This concludes the proof.

Lemma 13 [Azuma’s Inequality (Wainwright, 2019)] Let Σ0,Σ1, ... be a martingale with respect to
filtration F0,F1, ... such that |Σi − Σi−1| ≤ c almost surely. Then for all ϵ > 0, we have that

P[|Σn − Σ0| > ϵ] ≤ 2 exp(− ϵ2

2nc2
). (49)

C.1. When supa∈At
⟨a, θ⟩ is not Unique

One solution is to choose at as any action ⟨at, θ⟩ ≥ supa∈At
⟨a, θ⟩ − δ for some δ > 0. The error

arising from performing this step can be controlled by δ, e.g., by setting δ = exp(−T ). Our proofs
will follow by choosing at as described above, using any deterministic or random choice function, as
long as the action at is measurable.
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Appendix D. Proof of Theorem 2

Theorem [Restatement of Theorem 2]Let Λϵ be an algorithm for linear bandits with ϵ misspecifica-
tion and I be a contextual linear bandit instance with stochastic contexts, unknown parameter θ⋆
and rewards rt are generated as described in Algorithm 1. The following holds:
• Conditioned on Ht(m) = σ(A1, a1, r1, ...,At(m) , at(m) , rt(m)): in epoch m, the rewards rt are
generated, by pulling arm g(m)(θt), from a misspecified linear bandit instance Lm for t = t(m) +
1, ..., t(m+1), action set Xm = {g(m)(θ)|θ ∈ Θ′}, unknown parameter θ⋆, mean rewards ⟨g(θ), θ⋆⟩,
and unknown misspecification ϵ′m.
• The misspecification ϵ′m is bounded by the known quantity ϵm with probability at least 1− cδ/M .
• With probability at least 1− δ we have that |RT (I)−

∑M
m=1R

Λϵm
Tm

(Lm)| ≤ c
√
T log(1/δ), where

RT (I) is the regret of Algorithm 1 over the instance I , RΛϵm
Tm

(Lm) is the regret of algorithm Λϵm

over the bandit instance Lm in phase m, Tm = t(m+1) − t(m), and c is a universal constant.

Proof Let Lm be a bandit instance with actions Xm = ⟨g(m)(θ)|θ ∈ Θ′⟩ indexed by the set Θ′, mean
rewards ⟨g(θ), θ⋆⟩∀θ ∈ Θ′, and t ∈ {t(m) + 1, ..., t(m+1)}. Let

Ht(m) = σ{A1, a1, r1, ...,At(m) , at(m) , rt(m)}

be the filtration of all historic information before epoch m. Note that g(m) is defined in line 7 of
Algorithm 1 and is the empirical estimate of g using history Ht(m) , hence, g(m) is Ht(m)-predictable.
Conditioned on Ht(m) , we have that Lm is a misspecified linear bandit instance with misspecification,
ϵ′m = supθ∈Θ′ ⟨g(θ)− g(m)(θ), θ⋆⟩. And the regret of the algorithm Λϵm over Lm is the random
quantity

R
Λϵm
Tm

(Lm) :=

t(m+1)∑
t=t(m)+1

max
θ∈Θ′

⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩.

As we have shown in Proposition 12, conditioned on Ht(m) , rt is generated from Lm by pulling arm
g(m)(θt). Define the event Em = {ϵ′m > ϵm} be the bad event that the random quantity ϵ′m is greater
than ϵm defined in Algorithm 1. We will show in Proposition 14 that

∑M
m=1 P[Em] ≤ δ.

We next bound the regret of Algorithm 1 in terms of the random quantities {RΛϵm
Tm

(Lm)}Mm=1.

By choosing δ sufficiently small, it it will be enough to bound R
Λϵm
Tm

(Lm) conditioned on Ht(m) and

the good event Gm = {ϵ′m ≤ ϵm}. Let us define the random quantity RΛϵ
T (Lϵ) =

∑M
m=1R

Λϵm
Tm

(Lm).
We show that RΛϵ

T (Lϵ) is at most Õ(
√
T ) away from RM

T with high probability. By definition of
R

Λϵm
Tm

(Lm) we have that

RΛϵ
T (Lϵ) =

T∑
t=1

max
θ∈Θ′

⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩. (50)

As in the proof of Theorem 1, we assume for simplicity that for each θ ∈ Θ, there is a unique
at ∈ At that satisfies ⟨at, θ⟩ = supa∈At

⟨a, θ⟩ almost surely. This can be relaxed in the same way as
in Theorem 1.

Recall that L is the linear bandit instance in Theorem 1 with access to the function g, and actions
in X = {g(θ)|θ ∈ Θ}. The regret RM

T (I) of the contextual algorithm can be bounded as

|RM
T (I)−RΛϵ

T (Lϵ)| ≤ |RM
T (I)−RΛ

T (L)|+ |RΛ
T (L)−RΛϵ

T (Lϵ)|, (51)
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where RΛ
T (L) is defined as follows

RΛ
T (L) =

T∑
t=1

max
θ∈Θ

⟨g(θ), θ⋆⟩ − ⟨g(θt), θ⋆⟩,

and {θt} are the actions played by {Λϵm}. The first term in (51) is bounded in Theorem 1. In the
following, we focus on bounding |RΛ

T (L)−RΛϵ
T (Lϵ)|. To that end, we first show that

|⟨g(θ⋆), θ⋆⟩ −max
θ∈Θ′

⟨g(θ), θ⋆⟩| ≤ 2/T. (52)

We recall from (41) that

⟨g(θ′), θ′⟩ = max
θ∈Θ

⟨g(θ), θ′⟩, ∀ θ′ ∈ Θ. (53)

From 1/T -net properties, we also have that there exists ϕ ∈ Θ′ such that ∥θ⋆ − ϕ∥2 ≤ 1/T . Hence,

max
θ∈Θ′

⟨g(θ), θ⋆⟩
(i)

≤ max
θ∈Θ

⟨g(θ), θ⋆⟩
(ii)
= ⟨g(θ⋆), θ⋆⟩

(iii)

≤ ⟨g(θ⋆), ϕ⟩+ 1/T

≤ max
θ∈Θ

⟨g(θ), ϕ⟩+ 1/T

(iv)
= ⟨g(ϕ), ϕ⟩+ 1/T

(v)

≤ ⟨g(ϕ), θ⋆⟩+ 2/T

(vi)

≤ max
θ∈Θ′

⟨g(θ), θ⋆⟩+ 2/T, (54)

where (i) follows from Θ′ ⊆ Θ, (ii) follows from (41), (iii) follows from ⟨g(θ⋆), θ⋆ − ϕ⟩ ≤
∥g(θ⋆)∥2∥θ⋆ − ϕ∥2 ≤ 1/T , (iv) follows from (41), (v) follows as in (iii), and (vi) follows from
ϕ ∈ Θ′. Eq. (52) follows. Note that in this part it is important to have Θ′ ⊆ Θ.

As a result |RΛ
T (L)−RΛϵ

T (Lϵ)| can be bounded as

|RΛ
T (L)−RΛϵ

T (Lϵ)| = |
T∑
t=1

max
θ∈Θ′

⟨g(θ), θ⋆⟩ −max
θ∈Θ

⟨g(θ), θ⋆⟩|

≤
T∑
t=1

|max
θ∈Θ′

⟨g(θ), θ⋆⟩ −max
θ∈Θ

⟨g(θ), θ⋆⟩|
(i)

≤ 2, (55)

where (i) follows uses (52) and (41).
Hence, by (51), Theorem 1, (55) and union bound, we have that with probability at least 1− δ

|RM
T (I)−RΛϵ

T (Lϵ)| ≤ c
√
T log 1/δ. (56)

Since RΛϵ
T (Lϵ) =

∑M
m=1R

Λϵm
Tm

(Lm), we have proved the second part of the theorem. It remains to
show that in each epoch m the rewards rt are generated from the for linear bandit instance Lm and
to bound the amount of misspecification. By Proposition 12, it suffices to show the following.
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Proposition 14 For each m ∈ [M ], we have that with probability at least 1− δ/M it holds that

|⟨g(θ), θ′⟩ − ⟨g(m)(θ), θ′⟩| ≤ 2

√
log(2M |Θ′|/δ)

t(m)
∀θ ∈ Θ′, θ′ ∈ Θ. (57)

Proof
Since for a fixed θ′ we have that ⟨argmaxa∈At ⟨a, θ⟩, θ′⟩ is 1/4-subgaussian with mean ⟨g(θ), θ′⟩,

we have that with probability at least 1− δ
M |Θ′|2 it holds that

|⟨g(θ), θ′⟩ − ⟨g(m)(θ), θ′⟩| = |⟨g(θ), θ′⟩ − 1

t(m+1)

t(m+1)∑
t=1

⟨argmax
a∈At

⟨a, θ⟩, θ′⟩|

≤ 2

√
log(2M |Θ′|/δ)

t(m)
. (58)

By the union bound, the following holds with probability at least 1− δ/M

|⟨g(θ), θ′⟩ − ⟨g(m)(θ), θ′⟩| ≤ 2

√
log(2M |Θ′|/δ)

t(m)
∀θ, θ′ ∈ Θ′. (59)

Let us pick arbitrary θ ∈ Θ′, θ′ ∈ Θ. We have that there is ϕ′ ∈ Θ′ such that ∥θ′ − ϕ′∥2 ≤ 1/T .
Hence, by Cauchy-Schwartz and the triangle inequality, we have that the following holds with
probability at least 1− δ/M

|⟨g(θ), θ′⟩ − ⟨g(m)(θ), θ′⟩| ≤ |⟨g(θ), ϕ′⟩ − ⟨g(m)(θ), ϕ′⟩|+ 2

T

≤ 2

√
log(2M |Θ′|/δ)

t(m)
+

2

T
∀θ ∈ Θ′, θ′ ∈ Θ. (60)

This concludes the proof.

Appendix E. Computational Complexity

In this appendix, we construct an efficient approximate linear optimization oracle over the set
Xm = {g(m)(θ)|θ ∈ Θ′}, defined in Algorithm 1. This construction relies on a linear optimization
oracle over the sets At, which we define next.

Definition 15 A linear optimization oracle for a set A is a function O(A; .) which takes as input
θ ∈ {a ∈ Rd|∥a∥2 ≤ 1} and outputs O(A; θ) ∈ A with ⟨O(A; θ), θ⟩ = supa∈A ⟨a, θ⟩.

We consider the following discretization of the set Θ that simplifies the construction of the
linear optimization oracle over Xm. The set Θ is discretized to Θ′ = {[θ]q|θ ∈ Θ}, where [θ]q =
q⌊θ

√
d/q⌋/

√
d and q is the discretization parameter. Note that for Θ ⊆ {a ∈ Rd|∥a∥2 ≤ 1}, the

size of the set Θ′ can be bounded as |Θ′| ≤ Cd(1/q)4d+2, where C is a universal constant. The
following lemma shows that g(m)([θ/∥θ∥2]q) for sufficiently small q can be used as an approximate
linear optimization oracle over the set Xm. We observe that g(m) can be calculated by invoking the
linear optimization oracle of the contextual bandit instance at most T times.
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Lemma 16 Consider a given m ∈ [M ] and let g(m)(θ) = 1
t(m)

∑t(m)

t=1 argmaxa∈At ⟨a, θ⟩, Xm =

{g(m)(θ)|θ ∈ Θ′}, where t(m) is the length of phase m and Θ′ = {[θ]q|θ ∈ Θ} is a discretization
of Θ, [θ]q = q⌊θ

√
d/q⌋/

√
d and q is the discretization parameter. For any θ ∈ {a ∈ Rd|∥a∥2 ≤

1}, ϵ ∈ R+, if q ≤ ϵ/2, we have that

⟨g(m)([θ/∥θ∥2]q), θ⟩ ≥ sup
a∈Xm

⟨a, θ⟩ − ϵ∥θ∥2. (61)

Proof We first observe that

0 ≤ θ − [θ]q = θ − ⌊θ
√
d/q⌋√
d/q

≤ q/
√
d1. (62)

It follows that ∥θ − [θ]q∥2 ≤ q. We notice that

⟨g(m)(θ), θ⟩ = 1

t(m)

t(m)∑
t=1

⟨O(At; θ), θ⟩ ≥
1

t(m)

t(m)∑
t=1

⟨O(At; θ
′), θ⟩

= ⟨g(m)(θ′), θ⟩, ∀θ′ ∈ Θ. (63)

Hence,
⟨g(m)(θ), θ⟩ ≥ sup

θ′∈Θ′
⟨g(m)(θ′), θ⟩. (64)

We also have that

⟨g(m)([θ]q), θ⟩ = ⟨g(m)([θ]q), [θ]q⟩+ ⟨g(m)([θ]q), θ − [θ]q⟩
≥ ⟨g(m)([θ]q), [θ]q⟩ − ∥g(m)([θ]q)∥2∥θ − [θ]q∥2
≥ ⟨g(m)([θ]q), [θ]q⟩ − q

(i)

≥ ⟨g(m)(θ), [θ]q⟩ − q

≥ ⟨g(m)(θ), θ⟩ − ∥g(m)(θ)∥2∥θ − [θ]q∥2 − q

≥ ⟨g(m)(θ), θ⟩ − 2q
(ii)

≥ sup
θ′∈Θ′

⟨g(m)(θ′), θ⟩ − 2q = sup
a∈Xm

⟨a, θ⟩ − 2q, (65)

where (i) and (ii) follow from (64). As (65) holds ∀θ ∈ Rd, we get that

⟨g(m)([θ/∥θ∥2]q), θ/∥θ∥2⟩ ≥ sup
a∈Xm

⟨a, θ

∥θ∥2
⟩ − 2q =

supa∈Xm
⟨a, θ⟩

∥θ∥2
− 2q. (66)

It follows that
⟨g(m)([θ/∥θ∥2]q), θ⟩ ≥ sup

a∈Xm

⟨a, θ⟩ − 2q∥θ∥2. (67)
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