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Abstract
We study universal rates for multiclass classification, establishing the optimal rates (up to log fac-
tors) for all hypothesis classes. This generalizes previous results on binary classification (Bousquet,
Hanneke, Moran, van Handel, and Yehudayoff, 2021), and resolves an open question studied by
Kalavasis, Velegkas, and Karbasi (2022) who handled the multiclass setting with a bounded num-
ber of class labels. In contrast, our result applies for any countable label space. Even for finite
label space, our proofs provide a more precise bounds on the learning curves, as they do not de-
pend on the number of labels. Specifically, we show that any class admits exponential rates if and
only if it has no infinite Littlestone tree, and admits (near-)linear rates if and only if it has no in-
finite Daniely-Shalev-Shwartz-Littleston (DSL) tree, and otherwise requires arbitrarily slow rates.
DSL trees are a new structure we define in this work, in which each node of the tree is given by
a pseudo-cube of possible classifications of a given set of points. Pseudo-cubes are a structure,
rooted in the work of Daniely and Shalev-Shwartz (2014) and recently shown by Brukhim, Car-
mon, Dinur, Moran, and Yehudayoff (2022) to characterize PAC learnability (i.e., uniform rates)
for multiclass classification. We also resolve an open question of Kalavasis, Velegkas, and Kar-
basi (2022) regarding the equivalence of classes having infinite Graph-Littlestone (GL) trees versus
infinite Natarajan-Littlestone (NL) trees, showing that they are indeed equivalent.
Keywords: Multiclass learning, Universal rates, Learning curve, Statistical learning, Online learn-
ing

1. Introduction

Multiclass classification, i.e., classifying data into multiple classes in some label (class) space Y
is a fundamental task in machine learning with direct application in a wide range of scenarios in-
cluding image recognition (Rawat and Wang, 2017), natural language processing (Young et al.,
2018), protein structure classification (Dietmann and Holm, 2001), etc. In practice, the number of
classes p|Y|q could be huge or infinite; e.g., in statistical language models (Song and Croft, 1999),
|Y| is the vocabulary size; for count data prediction (Hellerstein and Mendelsohn, 1993), Y is the
set of natural numbers. Thus, the study of multiclass learnability and error rates has been a cru-
cial problem in learning theory. However, even under the renowned PAC (Probably Approximately
Correct) learning framework (Valiant, 1984), until recently solved by Brukhim et al. (2022), the
characterization of multiclass learnability for infinite number of classes p|Y| “ 8q remained to
be a challenging problem for decades after the characterization of PAC learnability of binary clas-
sification (|Y| “ 2) with the finiteness of the Vapnik-Chervonenkis (VC) dimension (Vapnik and
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Chervonenkis, 1971; Blumer et al., 1989). Natarajan and Tadepalli (1988); Natarajan (1989) de-
fined two extentions of the VC dimension in multiclass learning, the Natarajan dimension (dimN )
and the Graph dimension (dimG) which both characterize the multiclass PAC learnability for finite
number of classes (|Y| ă 8). Though the Graph dimension was shown to be unable to character-
ize the multiclass PAC learnability when |Y| “ 8, it was conjectured if the Natarajan dimension
would do (Natarajan, 1989). Daniely and Shalev-Shwartz (2014) defined a new dimension named
the Daniely-Shalev-Shwartz (DS) dimension (dim) by Brukhim et al. (2022) and showed that finite
DS dimension is a necessary condition for PAC learnability. Recently, Brukhim et al. (2022) proved
that the DS dimension fully characterizes PAC learnability in the multiclass setting by proposing an
algorithm achieving Op

dimpHq3{2 log2pnq

n q (see Section 1.1 for details) error rate for any hypothesis
class H under the PAC framework. They also refuted the conjecture that the Natarajan dimen-
sion characterizes multiclass PAC learnability by providing a hypothesis class with the Natarajan
dimension 1 and an infinite DS dimension.

In terms of the learning curve, i.e., the error rate (measured on test data) as a function of the
number of training examples, due to its distribution-free nature, the PAC framework, however,
fails to capture the fine-grained and potentially faster distribution-dependent learning curves of
hypothesis classes. In the realizable setting, PAC learning considers the best worst-case (uniform)
performance of any algorithm on a hypothesis class against any realizable distribution. While in
real-world problems, the distribution for data generation is often fixed in one task and the study
of learning curves under fixed distributions is concerned. These thoughts motivate the proposition
of universal learning in the work of Bousquet et al. (2021), where they consider the distribution-
dependent error rate of a learning algorithm on a hypothesis class, holding universally for all re-
alizable distributions. They showed that for binary classification, the following trichotomy exists
for any hypothesis class H with |H| ą 3: H is either universally learnable with optimal rate e´n

(exponential rate), universally learnable with optimal rate 1{n (linear rate), or requires arbitrarily
slow rates (see Section 1.1 for details), which is fully determined by the combinatorial properties
of H (the nonexistence of certain infinite trees). Compared to the dichotomy in PAC learning: H
is either PAC-learnable with a linear uniform rate (1{n) or is not PAC-learnable at all, universal
learning provides more insights of the learning curve in binary classification.

A natural direction is to extend the framework of universal learning to multiclass classifica-
tion that would bring fine-grained disribution-dependent analysis of learning curves in multiclass
problems. Recently, Kalavasis et al. (2022) proved the same trichotomy for multiclass universal
learining assuming finite label space p|Y| ă 8q: a hypothesis class with finite label space is either
universally learnable with optimal rate e´n, universally learnable with optimal rate 1{n, or requires
arbitrarily slow rates, depending on the nonexistence of an infinite Littlestone tree and an infinite
Natarajan-Littlestone (NL) tree they defined (see Section 1.2 for details). However, their analysis
for the linear universal rate based on NL trees cannot be extended to the setting of countable label
spaces. As is pointed out in Kalavasis et al. (2022), it is an important next step to characterize
multiclass universal learning with infinite label space (|Y| “ 8).

However, for general uncountable label spaces, the existence of a universally measurable learn-
ing algorithm that is universally consistent (see Section 1.1 for details), i.e., with an error rate
converging to zero for any realizable distributions, remains unsolved to our knowledge, which is an
important problem in itself. Thus, we focus on countable label spaces in this paper and summarize
our contributions below.
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Contributions. In this paper, we study multiclass universal learning for general countable label
spaces (|Y| can be infinite). We prove in Theorem 8 that a hypothesis class with a countable label
space is either universally learnable with optimal rate e´n, universally learnable with optimal rate
in rΘp1{nq (near-linear rate), or requires arbitrarily slow rates, which is fully characterized by the
nonexistence of an infinite Littlestone tree and an infinite Daniely-Shalev-Shwartz-Littleston (DSL)
tree proposed by us (see Section 1.2 for details). In particular, we propose different universally mea-
surable learning algorithms that achieve the exponential and near-linear rates in those corresponding
settings. We also show that the NL tree does not characterize the near-linear rate by proving the ex-
istence of a hypothesis class that has an infinite DSL tree but has no NL tree of depth 2 for countable
label space in Theorem 9. Finally, we solve the first question in Kalavasis et al. (2022, Open ques-
tion 1) by proving in Theorem 10 that a hypothesis class with finite label space p|Y| ă 8q has an
infinite NL tree if and only if it has an infinite Graph-Littlestone (GL) tree defined in Kalavasis et al.
(2022, Definition 8), which implies that the GL tree is equivalent to the NL tree in determining the
universal rate of multiclass learning with finite label space.

Outline. In Section 1.1, we formally define the multiclass learning problem considered in this
paper and the universal error rate which is compared to the uniform error rate in PAC learning. In
Section 1.2, we introduce the definitions of the different tree structures of a hypothesis class and
state the main theoretical results. In Section 1.3, we discuss some future research directions in
multiclass learning. In Section 2, we provide three examples of the multiclass learning problem,
each corresponding to a different universal rate in the trichotomy. In Section 3, we summarize the
key technical details and the proof sketches of the main results. The complete proofs are included
in the appendix.

1.1. The multiclass learning problem and the universal rates

In this section, we introduce the multiclass learning problem considered in this paper and the con-
cept of universal learning. We refer readers to Appendix A.1 for the notation we used throughout the
paper. Let X denote the domain (feature space), Y denote the codomain (label space), and H Ď YX

denote the hypothesis class. To avoid measurability issues, we assume that X is a Polish space and
Y is countable with |Y| ě 2 throughout the paper.

A classifier in multiclass learning is a universally measurable function h : X Ñ Y . For any
probability distribution P on X ˆ Y , we define the error rate of h under P as

erphq “ erP phq :“ P ptpx, yq P X ˆ Y : hpxq ‰ yuq.

In this paper, we focus on realizable distributions: a distribution P is called (H-)realizable if
infhPH erP phq “ 0. We use REpHq to denote the set of all H-realizable distributions. A multi-
class learning algorithm is a sequence of universally measurable functions1

Hn : pX ˆ Yqn ˆ X Ñ Y, n P N0.

For a sequence of independent P -distributed samples ppX1, Y1qqiPN, the learning algorithm outputs
a data-dependent function for each n P N0

phn : X Ñ Y, x ÞÑ HnppX1, Y1q, . . . , pXn, Ynq, xq.

1. For notational convenience, we only defines deterministic algorithms here. However, our results still hold when
randomized algorithms are allowed, as all algorithms we construct to show the upper bounds are deterministic and
all proofs of lower bounds apply to randomized algorithms.

3



HANNEKE MORAN ZHANG

The objective of multiclass learning is to design a learning algorithm such that the expected error rate
of the output classifier Ererpphnqs decreases as fast as possible with the size of the input sequence
n. Since X is Polish and Y is countable, for H defined as the set of all measurable functions in
YX , there exists a universally consistent learning algorithm, i.e., a learning algorithm such that
Erphns Ñ 0 for all realizable distributions P (Hanneke et al., 2021) 2. Then, it is natural to ask about
the rate of the convergence.

Under PAC learning, the uniform error rate over all realizable distributions is concerned. For
multiclass learning, the following upper and lower bounds of the uniform rate is proved:

Ω

ˆ

dimpHq

n

˙

ď inf
phn

sup
PPREpHq

ErerP pphnqs ď O

ˆ

dimpHq3{2 log2pnq

n

˙

, (1)

where the upper bound can be derived from the proof of Brukhim et al. (2022, Theorem 1) (see
Corollary 64) and the lower bound can be found in Daniely and Shalev-Shwartz (2014). However,
the worst-case analysis of PAC learning is too pessimistic to reflect many practical machine learn-
ing scenarios where the sample distribution keeps unchanged with the increase of the sample size,
resulting in much faster decay in the error rate. Thus, Bousquet et al. (2021) proposed the concept
of universal learning to characterize the distribution-dependent universal error rate of a hypothesis
class. We state the definition of universal rates below.

Definition 1 (Universal rate, Bousquet et al. 2021, Definition 1.4) Let H be a hypothesis class.
Let R : N Ñ r0, 1s with Rpnq Ñ 0 be a rate function.

• H is learnable at rate R if there is a learning algorithm phn such that for every realizable
distribution P , there exist C, c ą 0 for which Ererpphnqs ď CRpcnq for all n.

• H is not learnable at rate faster than R if for every learning algorithm, there exists a realizable
distribution P and C, c ą 0 for which Ererpphnqs ě CRpcnq for infinitely many n.

• H is learnable with optimal rate R if H is learnable at rate R and H is not learnable at rate
faster than R.

• H is learnable but requires arbitrarily slow rates if there is a learning algorithm phn such
that Ererpphnqs Ñ 0 for every realizable distribution P , and for every Rpnq Ñ 0, H is not
learnable faster than R.

Note that in Definition 1, we define “H is learnable but requires arbitrarily rates” instead of defining
“H requires arbitrarily rates” (Bousquet et al., 2021, Definition 1.4) to emphasize the existence of
a universally consistent learning algorithm for X being Polish and Y being countable (Hanneke
et al., 2021). Thus, the case that H is not universally learnable does not exist. As is formalized in
the definition, the term “universal” refers to the requirement that the rate function R is universal
for all realizable distributions. The major difference between universal rates and uniform rates is
that the constants c and C can depend on the distribution P for universal rates, while the constants
must be distribution-independent (i.e., uniform) for uniform rates. As is depicted in Bousquet et al.
(2021, Figure 1), the distinction may results in the collapsing of exponential universal rates to
linear uniform rates; e.g., in Example 1, we provide an example in multiclass learning where an
exponential universal rate is achieved by the proposed algorithm, which is much faster than the

2. Actually, Hanneke et al. (2021) establishes the existence of a universally consistent learning algorithm assuming X
is essentially separable and Y is countable. Any Polish space, being separably metrizable, is essentially separable.
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linear uniform rate for finite label spaces. Bousquet et al. (2021) successfully characterized the
fined-grained trichotomy in the optimal universal rates of binary classification problems, which
motivates us to study the characterization of universal rates in multiclass learning with potentially
infinite label spaces.

1.2. Main results

In this section, we state the main results together with some key definitions. First, we rule out
some trivial hypothesis classes by considering H that is “nondegenerate” specified in the following
definition.

Definition 2 (Nondegenerate hypothesis class) A hypothesis class H P YX is called nondegener-
ate if there exist h1, h2 P H and x, x1 P X such that h1pxq “ h2pxq and h1px1q ‰ h2px1q. H is
called degenerate if it is not nondegenerate.

Indeed, for H that is degenerate, if h1, h2 P H satisfy h1 ‰ h2, then, we have h1pxq ‰ h2pxq for
any x P X . Thus, one sample suffices to reach zero error rate under any realizable distributions.

For the measurability of the learning algorithms we design in this paper, we need the following
definition regarding the measurability of the hypothesis class H.

Definition 3 (Measurable hypothesis class, Bousquet et al. 2021, Definition 3.3) A hypothesis class
H of functions h : X Ñ Y on Polish spaces X and Y is said to be measurable if there is a Polish
space Θ and a Borel-measurable map h : Θ ˆ X Ñ Y so that H “ thpθ, ¨q : θ P Θu.

As is discussed in Bousquet et al. (2021), the above definition is standard in the literature and almost
any H considered in practice is measurable. Bousquet et al. (2021) and Kalavasis et al. (2022) also
assume measurable hypothesis classes in their results.

The following theorem depicts the trichotomy in the universal rates of multiclass learning for
general countable label spaces.

Theorem 4 For any nondegenerate measurable hypothesis class H, exactly one of the following
holds:

• H is learnable with optimal rate e´n.

• H is learnable with optimal rate in rΘp1{nq.

• H is learnable but requires arbitrarily slow rates.

Then, we characterize the complexity measures of H that determine the universal rates of it: the
nonexistence of certain tree structures of H. We start with the Littlestone tree defined below.

Definition 5 (Littlestone tree) A Littlestone tree for H Ď YX is a complete binary tree of depth
d ď 8 whose internal nodes are labelled by X , and whose two edges connecting a node to its two
children are labelled by two different labels from Y , such that every finite path emanating from the
root is consistent with a concept h P H.

Equivalently, a Littlestone tree of depth d ď 8 for H can also be represented as a collection
!

pxu, y
0
u, y

1
uq P rX : u P t0, 1uk, 0 ď k ă d

)

Ď rX :“ tpx, y, y1q P X ˆ Y2 : y ‰ y1u (2)
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such that for any η P t0, 1ud and 0 ď n ă d, there exists a concept h P H such that hpxηďk
q “

y
ηk`1
ηďk

for each 0 ď k ď n, where ηďk :“ pη1, . . . , ηkq. We say that H has an infinite Littlestone
tree if there is a Littlestone tree for H of depth d “ 8.

The definition of the Littlestone tree was first proposed by Daniely et al. (2015) to generalize the
Littleston dimension to multiclass hypothesis classes, where they assume that X and Y are count-
able. Bousquet et al. (2021) restricted the definition to binary hypothesis classes and emphasized the
difference between having of an infinite Littlestone tree and having an infinite Littlestone dimension
(i.e., having Littlestone trees of arbitrarily large depth), where they prove that the nonexistence of
the former distinguishes the exponential rate and the linear rate. Kalavasis et al. (2022) restricted
the definition to multiclass hypothesis classes with finite label spaces (|Y| ă 8) and proved that the
nonexistence of an infinite Littlestone tree distinguishes the exponential rate and the linear rate for
finite Y .

Next, we introduce a new tree structure, the Daniely-Shalev-Shwartz-Littleston (DSL) tree
which builds on the concept of pseudo-cubes in the definition of the DS dimension (Brukhim et al.,
2022). For completeness, we state the definition of pseudo-cubes below.

Definition 6 (Pseudo-cube, Brukhim et al. 2022, Definition 5) For any d P N, a class C Ď Yd is
called a pseudo-cube of dimension d if it is non-empty, finite, and for every h P C and i P rds, there
is an i-neighbor of g P C of h (i.e., gpiq ‰ hpiq and gpjq “ hpjq for all j P rdsztiu).

For any d P N and hypothesis class H Ď Yd, let PCpHq denote the collection of all d-dimensional
pseudo-cubes contained in H . Then, we provide the definition of DSL trees below.

Definition 7 (DSL tree) A DSL tree for H Ď YX of depth d ď 8 is a tree of depth d satisfying the
following properties.

• For each integer k such that 0 ď k ă d and each node v in level k of the tree (assume that
the level of the root node is 0), node v is labelled with some x P X k`1. Moreover, there exists
some pseudo-cube C P PCpH|xq such that node v has exactly |C| children and each edge
connecting node v to its children is labelled with a unique element in C.

• For each integer k such that 0 ď k ă d and each node v in level k, denote the label of v with
xk P X k`1. Denote the labels of the nodes and the labels of the edges along the path emanat-
ing from the root node to node v with x0 P X 1, . . . , xk´1 P X k and y0 P Y1, . . . , yk´1 P Yk

correspondingly. Denote the number of the children of node v with n and the labels of the
edges connecting node v to its children with yk,1, . . . , yk,n P Yk`1. Then, for each i P rns,
there exists some h P H such that h|xt “ yt for all 0 ď t ď k ´ 1 and h|xk “ yk,i.

Similarly, we say that H has an infinite DSL tree if there is a DSL tree for H of depth d “ 8. The
definition of the DSL tree resembles those of the VCL tree (Bousquet et al., 2021, Definition 1.8),
the NL tree (Kalavasis et al., 2022, Definition 6), and the GL tree (Kalavasis et al., 2022, Definition
8). Each node in level k is labelled with a sequence of k ` 1 points in X for k P N0. However,
for VCL trees and NL trees, the edges connecting a node to its children correspond to a copy of the
Boolean-cube while they correspond to a pseudo-cube for DSL trees. Thus, the structure of a DSL
tree is much more complicated since the sizes of pseudo-cubes of fixed dimension are not fixed, and
it is hard to directly formulate a DSL tree like VCL trees or NL trees. For completeness and future
reference, we state the definitions of the NL tree and the GL tree in Appendix A.2.

Now, we are ready to present the characterization of the multiclass universal rates in terms of
those definitions.
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Theorem 8 For any nondegenerate measurable hypothesis class H, the followings hold:

• If H does not have an infinite Littlestone tree, then H is learnable with optimal rate e´n.

• If H has an infinite Littlestone tree but does not have an infinite DSL tree, then H is learnable
at rate log2 n

n and is not learnable at rate faster than 1
n .

• If H has an infinite DSL tree, then H is learnable but requires arbitrarily slow rates.

Since Theorem 4 follows immediately from Theorem 8, we directly prove Theorem 8 in this paper.
A major difference between Theorem 8 and Kalavasis et al. (2022, Theorem 2) lies in the com-
plexity measure that distinguishes the (near-)linear rate and arbitrarily slow rates: Kalavasis et al.
(2022, Theorem 2) uses the nonexistence of an infinite NL tree. Then, a natural question is whether
having an infinite DSL tree is equivalent to having an infinite NL tree for H Ď YX with |Y| “ 8.
Generalizing Brukhim et al. (2022, Theorem 2), we are able to show that they are not equivalent
even for countably infinite X and Y in the following theorem.

Theorem 9 There exist some countable sets X and Y , and a hypothesis class H Ď YX such that
H has an infinite DSL tree but does not have any NL tree of depth 2.

Thus, the nonexistence of an infinite NL tree does not distinguish the near-linear rate and arbitrarily
slow rates for infinite label space (|Y| “ 8).

We briefly comment on the log2 n gap between the upper and lower bounds of the optimal
universal rate in the second case (i.e., H has an infinite Littlestone tree but does not have an infinite
DSL tree) of Theorem 8. It is worth pointing out that the log2 n

n universal rate follows from the log2 n
n

uniform rate in (1). In fact, we prove in Theorem 66 that roughly speaking, a learning algorithm
achieving some uniform rate for hypothesis classes with finite DS dimensions implies a learning
algorithm achieving the same universal rate for any hypothesis class that does not have an infinite
DSL tree. The log2 n

n rate proved in Brukhim et al. (2022) is currently the sharpest uniform rate to
our knowledge, and a sharper uniform rate will narrow the gap between the upper and lower bounds
of the optimal universal rate. Nevertheless, the gap may also be narrowed by improving the lower
bound. We list this problem as a future direction in Section 1.3.

Furthermore, we solve the first question in Kalavasis et al. (2022, Open question 1) which asks
whether the existence of an infinite NL tree is equivalent to the existence of an infinite GL tree for
finite label spaces (|Y| ă 8). We prove that it is equivalent in the following theorem.

Theorem 10 Let K P Nzt1u, and let H Ď rKsX . Then, H has an infinite NL tree if and only if it
has an infinite GL tree.

Since it is not hard to see from definitions that a NL tree for H can be converted into a DSL tree for
H of the same depth, and a DSL tree for H can be converted into a GL tree for H of the same depth,
we immediately obtain the following corollary for |Y| ă 8.

Corollary 11 If |Y| ă 8, then for any H Ď YX , the followings are equivalent:

• H has an infinite NL tree.

• H has an infinite DSL tree.

• H has an infinite GL tree.

Thus, the term “infinite Natarajan-Littlestone tree” in Kalavasis et al. (2022, Theorem 2) can be
replaced with “infinite DSL tree” or “infinite GL tree”.
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1.3. Future direction

There are three immediate future directions following our current results in this paper. The first
direction is to bridge the gap between the near-linear upper bound and linear lower bound of the
optimal universal rate for hypothesis classes that have an infinite Littlestone tree but do not have
an infinite DSL tree. As is already pointed out, tighter analysis of the uniform rate for hypothesis
classes with finite DS dimensions would directly help in solving this problem. The second direction
is to analyze the universal rates for uncountable label spaces. We believe that the major difficulty
lies in proving the universal measurability of the learning algorithm constructed, and establishing
the existence of a universally measurable learning algorithm that is universally consistent for general
uncountable label spaces would shed light on this problem. Finally, it is an important next step to
extend the results to the agnostic setting.

2. Examples

In this section, we present three examples in multiclass learning with different universal rates.

Example 1 (Multiclass linear classifier on Nd) For d P N, K P Nzt1u, X “ Nd, and Y “ rKs,
consider the following hypothesis class

H :“
!

X Ñ Y, x ÞÑ maxpargmax
kPrKs

wk ¨ x ´ bkq :

w1 “ 0, pwkqj ď pwk`1qj , @ k P rKs, j P rds, pb1, . . . , bKq P p0,8qK
)

. (3)

Consider any sequence ppxi, yiqqiPN P pX ˆ Yq8 that is consistent with H; i.e., for any n P N and
Sn :“ ppxi, yiqqiPrns, there exists some hn P H with hnpxiq “ yi for all i P rns. For any n P N and
x P X , we define the set

YSn,x :“
!

k P rKs : Dz1 P r0,8qd such that x ´ z1 P Convptxi : pxi, kq P Sn, i P rnsuq

)

where ConvpHq :“ H and for any t P N and set tz1, . . . , ztu Ď X ,

Convptz1, . . . , ztuq :“

#

t
ÿ

i“1

αizt : pα1, . . . , αtq P r0, 1st,
t
ÿ

i“1

αi “ 1

+

denotes the convex hull of the set tz1, . . . , ztu. Then, we define the data-dependent classifier phn :
X Ñ Y by

phnpxq :“

#

minYSn,x, if YSn,x ‰ H,

1, otherwise.
(4)

We prove the following proposition in Appendix G.

Proposition 12 pphnqnPN defined in (4) only makes finitely many mistakes for any consistent se-
quence ppxn, ynqqnPN. Moreover, if phnpxn`1q “ yn`1, then we have phn`1 “ phn.

Thus, by the construction and proofs given in Bousquet et al. (2021, Section 4.1), such an adver-
sarial algorithm implies an online learning algorithm with exponential rate. By Theorem 8, H is
learnable with optimal rate e´n and H does not have an infinite Littlestone tree.
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Example 2 (Multiclass linear classifier on Rd) For d P N, K P Nzt1u, X “ Rd, and Y “

rKs, consider the hypothesis class H defined by (3). Notice that the class of threshold functions
constructed in Bousquet et al. (2021, Example 2.2) can be obtained from H by restricting pwkq1 “ 1,
pwkqj “ 0, and bk “ bK for all j P rdszt1u and k P rKszt1u. Thus, H has an infinite Littlestone
tree. By Daniely and Shalev-Shwartz (2014, Theorem 7), we have that dimN pHq ă 8. By Bendavid
et al. (1995); Daniely and Shalev-Shwartz (2014), we have

dimpHq ď dimGpHq ď 5 log2pKq dimN pHq (5)

which actually holds for any hypothesis class. It follows that dimpHq ă 8 and H does not have an
infinite DSL tree. Then, by Theorem 8, H is learnable with optimal rate in rΘp 1

nq.

Example 3 (A class with an infinite DSL tree but no NL tree of depth 2) Theorem 9 guarantees
the existence of a hypothesis class H that has an infinite DSL tree but does not have any NL tree of
depth 2 (see the proof of Theorem 9 in Appendix E for the construction of H). Then, by Theorem 8,
H is learnable but requires arbitrarily slow rates.

3. Technical Overview

In this section, we briefly discuss some key technical points in the proofs of our main results.

3.1. Exponential rates

We sketch the proof of the following theorem in this subsection.

Theorem 13 For any nondegenerate measurable hypothesis class H, if H does not have an infinite
Littlestone tree, then H is learnable with optimal rate e´n.

The complete proof is provided in Appendix B. Since H is nondegenerate, according to Bousquet
et al. (2021, Lemma 4.2) and its proof, we can show that H is not learnable at rate faster than
the exponential rate e´n. The main point of the proof is to construct a learning algorithm that
achieves the exponential universal rate if H does not have an infinite Littlestone tree. We follow the
framework in Bousquet et al. (2021) for the construction. First, we consider an adversarial online
learning game sB played in rounds between an adversary sPa and a learner sPl defined in Appendix
B.1. If we prove that for H that does not have an infinite Littlestone tree, there exists a universally
measurable strategy for the learner sPl in sB that only makes finitely many mistakes against any
adversary sPa and only changes its prediction function when a mistake happens, then by the analysis
in Bousquet et al. (2021, Section 4.1), there is a learning algorithm that achieves the exponential
universal rate.

From (2), we can naturally relate Littlestone trees to the following adversarial game B between
two players PA and PL. In each round τ P N:

• Player PA chooses a three-tuple ξτ “ pxτ , y
0
τ , y

1
τ q P rX and shows it to Player PL.

• Player PL chooses a point ητ P t0, 1u.

Player PL wins the game in round τ P N if Hξ1p1q,ξ1pη1`2q,...,ξτ p1q,ξτ pητ`2q “ H (see Appendix
A.1 for explanations of notation). Player PA wins the game if the game continues indefinitely. We

9
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prove in Lemma 19 that a winning strategy of PA is equivalent to an infinite Littlestone tree of
H. According to Bousquet et al. (2021, Theorem B.1), PL has a universally measurable winning
strategy if H has no infinite Littlestone tree. However, this winning strategy cannot be directly
applied for the construction of a strategy for sPl in sB as in Bousquet et al. (2021, Section 3.2) because
PA chooses two labels y0τ and y1τ in each round τ while sPa does not provide this information (for
the binary case, ty0τ , y

1
τu is trivially t0, 1u).

We tackle this problem by first defining the value function on the positions of sB, which extends
the value function defined on the positions of B (see Section B.1 for the terminologies and defini-
tions). Then, by Bousquet et al. (2021, Proposition B.8), for each round in sB, whatever point sPa

picks, there is at most one point in Y such that the value function does not decrease. Then, we can
define the function (7) which informally speaking, maps the current position and a point x P X to
the point in Y that does not decrease the value function. For Polish X , countable Y , and measur-
able H, we prove that this function is universally measurable. Moreover, when H has no infinite
Littlestone tree, we can prove that there is no infinite value-decreasing sequence of positions by the
well-ordering of the ordinals (Karel and Thomas, 2017). Then, by playing the strategy induced from
that defined function, sPl will only make finitely many mistakes because otherwise there will be an
infinite value-decreasing sequence.

3.2. Near-linear rates

In this subsection, we sketch the proof of the following theorem.

Theorem 14 For any nondegenerate measurable hypothesis class H, if H has an infinite Littlestone
tree but does not have an infinite DSL tree, then H is learnable at rate log2 n

n and is not learnable at
rate faster than 1

n .

The complete proof is provided in Appendix C. The fact that H is not learnable at rate faster than
1
n if it has an infinite Littlestone tree can be proved by generalizing the techniques used in the proof
of Bousquet et al. (2021, Theorem 4.6). The key difficulty is to construct a learning algorithm
that achieves log2 n

n universal rate when H does not have an infinite DSL tree. As is discussed in
Section 1.2, we show in Theorem 66 that a learning algorithm achieving some uniform rate for
any hypothesis class with a finite DS dimension implies a learning algorithm achieving the same
universal rate for any hypothesis class that does not have an infinite DSL tree. Since a learning
algorithm that achieves Op

dimpHq3{2 log2pnq

n q uniform error rate for any hypothesis class H Ď YX has
been constructed (Brukhim et al., 2022), it suffices to prove Theorem 66. We follow the framework
in Bousquet et al. (2021, Section 5). Similar to the case of exponential rates, we relate that the DSL
tree to the following game B between player PA and PL. At each round τ P N:

• Player PA chooses a sequence xτ “ px0τ , . . . , x
τ´1
τ q P X τ and a set Cτ P PCpYτ q.

• Player PL chooses a sequence yτ “ py0τ , . . . , y
τ´1
τ q P Yτ .

Player PL wins the game in round τ if

• either Cτ R PCpH|xτ q

• or ys P Cs for all 1 ď s ď τ and Hx1,y1,...,xτ ,yτ “ H, where

Hx1,y1,...,xτ ,yτ :“
␣

h P H : h
`

xis
˘

“ yis for 0 ď i ă s, 1 ď s ď τ
(

.

10
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Player PA wins the game if the game continues indefinitely. We emphasize the subtlety in the win-
ning rule of PL. In this way, we can ensure that B is a Gale-Stewart game and an infinite DSL
tree is equivalent to a winning strategy for PA (Lemma 49). Similar to the analysis of exponential
rates, there exists a mismatch between a winning strategy of PL and a “pattern avoidance function”
required in the template for constructing learning algorithms in the probabilistic setting in Bous-
quet et al. (2021, Section 5.2): in the adversarial learning problem, the adversary does not provide
a pseudo-cube as PA does. Thus, it is tricky to construct pattern avoidance functions which suc-
cessfully rule out label patterns from their mappings of the feature patterns for any H-consistent
sequence in a finite number of steps, and keeps unchanged after the success. We provide our defi-
nition of pattern avoidance functions in (8). Informally, for a consistent sequence, given the current
position in B as well as the current feature pattern and label pattern from the sequence, we traverse
all pseudo-cubes contained in the projection of H on the feature pattern, where by a feature (label)
pattern we refer to a consecutive subsequence of the feature (label) sequence ending at the current
point. If the value function defined on positions in B deceases after adding the feature pattern, the
current pseudo-cube, and label pattern into the position, we accept this new position, proceed one
round in B, and stop the traverse. If the value function never decreases after the traverse, we still use
the original position and does not change the round in B. Then, the feature pattern and label pattern
are updated accordingly. Now, we define the current pattern avoidance function as the mapping
from the current position and feature pattern to the set of all label patterns for which the position
will be updated after traversing all the pseudo-cubes in the projection of H on the feature pattern.
Then, with the similar idea of showing contradiction with nonexistence of infinite value-decreasing
sequences, we can prove the desired pattern avoidance property of the set functions we defined. The
next step is to show the universal measurability. Unlike the pattern avoidance function in Bousquet
et al. (2021); Kalavasis et al. (2022), our pattern avoidance function maps to a set of patterns. This
increases the difficulty in proving the universal measurability of the pattern avoidance functions we
define since then we need to pay attention to the topology on power sets. One key point to notice is
that since pseudo-cubes are finite by definition, PCpYτ q is countable as the set of finite subsets of a
countable set is also countable. We can use this point to show that certain sets served as the building
blocks in the pull-back set of the pattern avoidance functions are analytic. We also note that the
universal measurability of the winning strategy for PL or some value-decreasing function defined
in B does not obviously imply the universal measurability of the pattern avoidance functions since
there are repetitions when feeding the data sequence as inputs to the game B; both Bousquet et al.
(2021) and Kalavasis et al. (2022) does not provide a proof for this step (Bousquet et al., 2021,
Remark 5.4). Thus, we provide an explicit and complete derivation of the universal measurability
of the pattern avoidance functions that covers this step in our even more complicated setting, which
also turns out to be very tricky.

There are still several big technical obstacles in plugging the pattern avoidance functions and a
learning algorithm A with a uniform rate guarantee for hypothesis classes of finite DS dimensions
into the template algorithm in Bousquet et al. (2021, Section 5.2). We first upper bound the DS
dimension of the hypothesis class (11) constructed through a pattern avoidance function with its
length (i.e., the length of the pattern the function seeks to avoid) in Lemma 58, where informally,
(11) consists of projections of hypotheses in H on a given feature sequence such that any ordered
subsequence of the projection is avoided by the pattern avoidance function. Then, we prove in
Lemma 60 that informally, the uniform distribution over an independent and identically distributed
(i.i.d.) data sequence that defines (11) is realizable with the class (11) almost surely if the pattern

11
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avoidance function that defines (11) avoids an i.i.d. data sequence with probability 1. Then, we
would like to apply the the uniform learning algorithm A to (11) with that uniform distribution as
the realizable distribution. However, for the usage of A in the template specified in Theorem 66,
informally, given a sequence pX1, Y1, . . . , Xn, Ynq and a feature Xn`1, the training data for A are
drawn from the uniform distribution only over tp1, Y1q, . . . , pn, Ynqu as we do not know Yn`1, but
the test data is always fixed, i.e., n ` 1. In Lemma 65, we upper bound the error rate in this setting
with twice the error rate in the standard setting (i.e., both the training data and the test data are
drawn i.i.d. from the uniform distribution only over tp1, Y1q, . . . , pn ` 1, Yn`1qu with Yn`1 being
the label of Xn`1). Similar to Theorem 66, Lemma 65 is interesting in itself for dealing with partial
training distributions.

3.3. Arbitrarily slow rates

In this subsection, we sketch the proof of the following theorem.

Theorem 15 If H has an infinite DSL tree, then H is learnable but requires arbitrary slow rates.

The complete proof is provided in Appendix D. The proof follows the framework for the construc-
tion of distributions in Bousquet et al. (2021, Theorem 5.11). Since for DSL trees, the numbers of
the children of the nodes are not fixed in each level, to even formulate a uniform distribution over
the paths in the infinite DSL tree is non-trivial. The key for the proof is to show (18), which holds
trivially for both VCL trees (Bousquet et al., 2021) and NL trees (Kalavasis et al., 2022) since the
labels of the edges connecting a node to its children consist a copy of the Boolean cube. However,
such result for pseudo-cubes is novel; it actually implies an elegant proof for the Ωp

dimpHq

n q lower
bound of the uniform rate in (1). There are two key steps to show (18). We first prove that for
any pseudo-cube, any position, and any label, the proportion of hypotheses in the pseudo-cube that
maps that position to that label is at most half. Then, we prove that when restricting some arbitrary
positions to some arbitrary pattern, a pseudo-cube, projected to the unrestricted positions, is still a
pseudo-cube. Both steps follow from careful examination of the definition of pseudo-cubes.

Now, Theorem 8 directly follows from Theorem 13, Theorem 14, and Theorem 15.

3.4. Proof sketch of Theorem 9

The complete proof of Theorem 9 is provided in Appendix E. We use the disjoint pseudo-cubes
of all dimensions on disjoint finite label spaces constructed in the proof of Brukhim et al. (2022,
Theorem 2) as our starting point. We first build an infinite complete tree using these pseudo-cubes
as blocks and take the disjoint unions to construct a countable label space, a countable feature space,
and a hypothesis class. Then, we add to the label space a unique new element ‹ used for extending
the domain of a hypothesis to the whole feature space. Specifically, in a top-down manner of the
tree constructed, we extend the definition of a hypothesis which corresponds to an edge in the tree
to be consistent with the the hypotheses in the path eliminating from the root to its edge. Then, we
define its value to be ‹ on any other features. The fact that this class has an infinite DSL tree directly
follow from the tree we constructed and the way we extend the definitions of hypotheses. Then, we
prove that the class has a NL dimension 1 by considering the projection of the class on two arbitrary
features, which requires more sophisticated discussion compared with the proof of Brukhim et al.
(2022, Theorem 2).

12
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3.5. Proof sketch of Theorem 10

The complete proof of Theorem 10 is provided in Appendix F. The fact that a GL tree can be
obtained from a NL tree is obvious. The key is to construct an infinite NL tree from an infinite GL
tree. For each node in the infinite GL tree except the root, we can associate it with a hypothesis in H
that witnesses the requirement of the GL tree. Then, the rough idea is to construct for “each” node a
distinct new sequence of labels for which each edge between this node and its children corresponds
to a unique concept in the Boolean cube formed by this new sequence and the sequence provided by
the GL tree, and the associated hypothesis of each descendant of this node along the path starting
with this edge is consistent with the concept of the edge on this node. Here, by “each” we do not
mean to construct for each element in the infinite GL tree, but we actually mean to select a node in
the infinite GL tree for each position in the infinite NL tree to build.

We first deal with the consistency. In an infinite GL tree, for a node and an edge between the
node and one of its children, the associated hypotheses of its descendants along the path starting
with the chosen edge can predict differently on the chosen node, and the prediction can be used
to color each descendant of the chosen node starting with the chosen edge. Then, we obtain an
infinite colored subtree. Since |Y| “ K ă 8, the total number of colorings is finite. Thus, by
the Milliken’s tree theorem (Milliken, 1979), there is a strongly embedded subtree whose edges
have the same color. But we still need to prune this subtree so that it has the same structure as the
original subtree, after which we replace the original subtree with the monochromatic subtree. Now,
the prediction made by the associated hypothesis of each descendant along the path starting with
the chosen edge is the same on the chosen node. This step is formally presented in Lemma 70.

However, we still face the fact that the predictions specified for each edge of a given node in the
previous step do not necessary make a copy of a Boolean cube. For this problem, we observe that all
the predictions make a hypothesis class with its Graph dimension greater than d for d denoting the
length of the feature sequence of the given node. By (5), this class has a Natarajan dimension greater
than d{p5 log2pKqq, which implies a Boolean cube of dimension greater than d{p5 log2pKqq. Thus,
by skipping r5 log2pKqs levels in choosing nodes from the infinite GL tree in a top-down manner,
we are able to ensure the existence of a copy of a Boolean cube of required dimension for each level
of the NL tree constructed by some proper pruning. The proof is formalized by induction.
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Appendix A. Preliminaries

In this section, we describe the notation used in this paper and present the definitions of NL trees
and GL trees in the general multiclass setting.

A.1. Notation

We use the following notation throughout the paper. N denotes the set of positive integers. N0

denotes the set of non-negative integers. For any n P N, we define rns :“ t1, . . . , nu. For any
a, b P R, we define a ^ b :“ minta, bu and a _ b :“ maxta, bu. For a set A, |A| denotes its
cardinality and 2A denotes its power set. For any sets X,Y and hypothesis class F Ď Y X , let
dimpF q denote the Daniely-Shalev-Shwartz (DS) dimension of F , dimN pF q denote the Natarajan
dimension of F , and dimG denote the Graph dimension of F . For any n P N, any sequence
S “ px1, . . . , xnq P Xn, and any function f : X Ñ Y , we define the projection of f to S as
f |S :“ pfpx1q, . . . , fpxnqq P Y n and use Spiq to denote the i-th element in S (i.e., Spiq “ xi)
for any i P rns. By convention, f |H “ H. Then, we define the projection of F Ď Y X to S as
F |S :“ tf |S : f P F u Ď Y n. For any x1, . . . , xn P X and y1, . . . , yn P Y , we define

Fx1,y1,...,xn,yn :“ tf P F : fpx1q “ y1, . . . , fpxnq “ ynu.

A.2. NL trees and GL trees

In this section, we define NL trees and GL trees for the general multiclass setting.
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Definition 16 (NL tree) A Natarajan-Littlestone (NL) tree for H Ď YX of depth d ď 8 is the
following collection

Y0ďnăd

#

pxu, sp0q
u , sp1q

u q P X n`1 ˆ Yn`1 ˆ Yn`1 : u P

n
ź

l“1

t0, 1ul

+

such that for any 0 ď n ă d and u “ pu01, pu02, u
1
2q, . . . , pu0n, . . . , u

n´1
n qq P

śn
l“1t0, 1ul, the

followings hold:

• s
p0qi
u ‰ s

p1qi
u for all 0 ď i ď n.

• If n ě 1, then there exists some hu P H such that hupxiuďl
q “ s

p0qi
uďl

if uil`1 “ 0 and

hupxiuďl
q “ s

p1qi
uďl

otherwise for all 0 ď i ď l and 0 ď l ă n, where

uďl :“ pu01, pu02, u
1
2q, . . . , pu0l , . . . , u

l´1
l qq, xuďl

:“ px0uď1
, . . . , xluď1

q.

We call

Y1ďnăd

#

hu P H : u P

n
ź

l“1

t0, 1ul

+

the associated hypothesis set of the NL tree. We say that H has an infinite NL tree if it has a NL tree
of depth d “ 8.

Definition 17 (GL tree) A Graph-Littlestone (GL) tree for H Ď YX of depth d ď 8 is the follow-
ing collection

Y0ďnăd

#

pxu, suq P X n`1 ˆ Yn`1 : u P

n
ź

l“1

t0, 1ul

+

such that for any 0 ď n ă d and u “ pu01, pu02, u
1
2q, . . . , pu0n, . . . , u

n´1
n qq P

śn
l“1t0, 1ul, the

following holds:

• If n ě 1, then there exists some hu P H such that hupxiuďl
q “ siuďl

if uil`1 “ 0 and
hupxiuďl

q ‰ siuďl
otherwise for all 0 ď i ď l and 0 ď l ă n, where

uďl :“ pu01, pu02, u
1
2q, . . . , pu0l , . . . , u

l´1
l qq, xuďl

:“ px0uď1
, . . . , xluď1

q.

We call

Y1ďnăd

#

hu P H : u P

n
ź

l“1

t0, 1ul

+

the associated hypothesis set of the GL tree. We say that H has an infinite GL tree if it has a GL tree
of depth d “ 8.

Appendix B. Exponential Rates

In this section, we prove Theorem 13.
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B.1. Adversarial learning algorithm

We propose and analyze an adversarial learning algorithm in this section. Define ĂY2 :“ tpy, y1q P

Y2 : y ‰ y1u and rX :“ X ˆ ĂY2. For any ξ P rX , there exist x P X and y0, y1 P Y such that
ξ “ px, y0, y1q. Then, we let ξp1q denote x and ξpi`2q denote yi for i P t0, 1u. Then, a Littlestone
tree can be equivalently represented as the following collection

!

ξu “ pxu, y
0
u, y

1
uq P rX : u P t0, 1uk, 0 ď k ă d

)

Ď rX

such that for any η P t0, 1ud and 0 ď n ă d, there exists a concept h P H such that hpξηďk
p1qq “

ξηďk
pηk`1 ` 2q.

For the multiclass online learning problem, we can define the following online learning game sB
played in rounds between an adversary sPa and the learner sPl. In each round t ě 1:

• The adversary sPa chooses a point xt P X .

• The learner sPl makes a prediction pyt P Y .

• The adversary sPa reveals the true label yt “ hpxtq for some concept h P H such that h is
consistent with the previous points: y1 “ hpx1q, . . . , yt´1 “ hpxt´1q.

We would like to prove the following theorem.

Theorem 18 Let X and Y be Polish spaces. For any hypothesis class H Ď YX , we have the
following dichotomy.

• If H has an infinite Littlestone tree, then there is a strategy for the adversary sPa in sB such
that pyt ‰ yt in each round t ě 1 against any learner sPl.

• If H does not have an infinite Littlestone tree, then there is a strategy for the learner sPl in sB
that only makes finitely many mistakes against any adversary sPa.

Consider the following game B between two players PA and PL. In each round τ P N:

• Player PA chooses a three-tuple ξτ “ pxτ , y
0
τ , y

1
τ q P rX and shows it to Player PL.

• Player PL chooses a point ητ P t0, 1u.

We say that player PL wins the game in round τ P N if Hξ1p1q,ξ1pη1`2q,...,ξτ p1q,ξτ pητ`2q “ H,
where Hx1,y1,...,xt,yt :“ th P H : hpx1q “ y1, . . . , hpxtq “ ytu for any x1, . . . , xt P X and
y1, . . . , yt P Y . We say that player PA wins the game if the game continues indefinitely. We say a
strategy for PA is winning if playing that strategy, PA wins the game no matter what strategy PL

plays. We define a winning strategy for PL analogously. According to the rule of B, the set of
winning sequence of PL is

W :“
!

pξ,ηq P

´

rX ˆ t0, 1u

¯8

: Hξ1p1q,ξ1pη1`2q,...,ξτ p1q,ξτ pητ`2q “ H for some τ P N
)

.

Since W is finitely decidable (i.e., for any px1, y1, x2, y2, . . . q P W, there exists n P N such that
px1, y1, . . . , xn, yn, x

1
n`1, y

1
n`1, . . . q P W for all px1

n`1, y
1
n`1, x

1
n`2, y

1
n`2, . . . q P pX ˆ Yq8), B is

a Gale-Stewart game; then, either PA or PL has a winning strategy (Gale and Stewart, 1953). We
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refer readers to Bousquet et al. (2021, Appendix A.1) for detailed descriptions of the notion we use
above and Gale-Stewart games.

Then, we prove the following lemma that relates a winning strategy of PA to an infinite Little-
stone tree of H.

Lemma 19 Player PA has a winning strategy in the game B if and only if H has an infinite
Littlestone tree.

Proof Suppose that H has an infinite Littlestone tree represented by
!

pxu, y
0
u, y

1
uq : 0 ď k ă 8,u P t0, 1uk

)

.

Define a strategy for PA by ξτ pη1, . . . , ητ´1q :“ pxη1,...,ητ´1 , y
0
η1,...,ητ´1

, y1η1,...,ητ´1
q for any τ P N.

By the definition of Littlestone tree, we have that Hξ1p1q,ξ1pη1`2q,...,ξτ p1q,ξτ pητ`2q ‰ H for any τ P N.
Thus, PA has a winning strategy.

Suppose that PA has a winning strategy ξτ pη1, . . . , ητ´1q for any η1, . . . , ητ´1 P t0, 1u and
1 ď τ ă 8. Define an infinite binary tree represented by

␣

pxu, y
0
u, y

1
uq : u P t0, 1uk, 0 ď k ă 8

(

with

pxu1,...,uk
, y0u1,...,uk

, y1u1,...,uk
q :“ ξk`1pu1, . . . , ukq.

By the definition of winning strategy of PA in B, the tree defined above is an infinite Littlestone tree
of H.

For any n P N0, define Pn :“
´

rX ˆ t0, 1u

¯n
to be the set of positions of length n in the game

B, where a position of a game is a finite sequence of plays made by the two players alternatively
from the start to some round and P0 “ H by convention. A position is called active if PL has not
won yet after this position. Then, the set of active positions of length n in the game B can be written
as

An :“ YwPp rXˆt0,1uq8tv P Pn : pv,wq P Wcu.

Then, we define P :“ Y0ďnă8Pn to be the set of all positions and A :“ Y0ďnă8An to be the set
of all active positions in the game B.

Analogously, for any n P N0, we define sPn :“ pX ˆ Yq
n to be the set of all positions of

length n in the game sB. For notational convenience, we also define P8 :“
´

rX ˆ t0, 1u

¯8

and
sP8 :“ pX ˆ Yq

8.
As in Bousquet et al. (2021), we need to describe for how many rounds the game can be kept

active starting from an arbitrary position. The following definitions of decision trees and active
decision trees are the direct restriction of Bousquet et al. (2021, Definition B.4) for P in our setting.

Definition 20 (Bousquet et al. 2021, Definition B.4) Given a position v P Pk of length k P N0:

• A decision tree of depth n with starting position v is a collection of points

t “

!

ξη P rX : η P t0, 1ut, 0 ď t ă n
)

.

By convention, we call t “ H a decision tree of depth 0.

18



MULTICLASS LEARNING

• t is called active if pv, ξH, ηk`1, ξηk`1
, ηk`2, . . . , ξηk`1,...,ηk`n´1

, ηk`nq P Ak`n for all choices
of pηk`1, . . . , ηk`nq P t0, 1un.

• We denote by Tv the set of all decision trees with starting position v (and any depth n P N0),
and by TA

v Ď Tv the set of all active trees.

Note that Tv “ Tv1 for any v, v1 P P by the above definition.
We use ORD to denote the set of of all ordinals. We use ´1 to denote an element that is

smaller than every ordinal and Ω to denote an element that is are larger than every ordinal. Define
ORD˚ :“ ORD Y tΩ,´1u. We refer readers to Bousquet et al. (2021, Appendix A) for brief in-
troductions about the concepts of ordinals, well-founded relations, ranks, Polish spaces, universally
measurability, analytic sets, etc.

For any v P A, we define a relation ăv on TA
v . For t, t1 P TA

v , we say that t1 ăv t if and only if
the tree t is obtained from t1 by removing its leaves. Let ρăv : T

A
v Ñ ORD denote the rank function

of the relation ăv. Then, we define the following game value of on P as in Bousquet et al. (2021).

Definition 21 (Bousquet et al. 2021, Definition B.5) The game value val : P Ñ ORD˚ is defined
as follows.

• valpvq “ ´1 if v R A.

• valpvq “ Ω if v P A and ăv is not well-founded.

• valpvq “ ρăvpHq if v P A and ăv is well-founded.

According to Lemma 19 and Definition 21, we have the following Lemma about valpHq.

Lemma 22 We have valpHq ą ´1. If H does not have an infinite Littlestone tree, then valpHq ă

Ω.

Proof Obviously, H P A. If H does not have an infinite Littlestone tree, by Lemma 19, PA does
not have a winning strategy. Thus, ăH is well-defined. By Definition 21, we have valpHq ă Ω.

In order to define game values on sP, we prove the following lemma.

Lemma 23 For any k1, k2 P N0, va P Pk1 , vb P Pk1 , x P X , and y, y1, y2 P Y such that
y1 ‰ y and y2 ‰ y, we have TA

pva,px,y,y1q,0,vbq
“ TA

pva,px,y2,yq,1,vbq
“ TA

pva,px,y,y2q,0,vbq
. In particular,

valpva, px, y, y1q, 0, vbq “ valpva, px, y2, yq, 1, vbq “ valpva, px, y, y2q, 0, vbq.

Proof It suffices to show that TA
pva,px,y,y1q,0,vbq

“ TA
pva,px,y2,yq,1q,vb and valpva, px, y, y1q, 0, vbq “

valpva, px, y2, yq, 1, vbq. Indeed, since y ‰ y2, the above results immediately imply that

TA
pva,px,y,y2q,0,vbq “ TA

pva,px,y2,yq,1,vbq “ TA
pva,px,y,y1q,0,vbq

and
valpva, px, y, y2q, 0, vbq “ valpva, px, y2, yq, 1, vbq “ valpva, px, y, y1q, 0, vbq.

Let k “ k1 ` k2. Since va P Pk1 and vb P Pk2 , we have va “ pξ1, η1, . . . , ξk1 , ηk1q

and vb “ pξk1`2, η1, . . . , ξk`1, ηk`1q for some pξ1, . . . , ξk1q P rX k1 , pξk1`2, . . . , ξk`1q P rX k2 ,
pη1, . . . , ηk´1q P t0, 1uk1 , and pηk1`2, . . . , ηk`1q P Yk2 . Define ξ0k1`1 :“ px, y, y1q, η0k1`1 :“ 0,
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ξ1k1`1 :“ px, y2, yq, η1k1`1 :“ 1, v0 :“ pva, px, y, y1q, 0, vbq, and v1 :“ pva, px, y2, yq, 1, vbq. For
any decision tree

t “

!

ξη P rX : η P t0, 1ut, 0 ď t ă n
)

P Tv0

of depth n p0 ď n ă 8q, we have t P Tv1 .
If t P TA

v0 , for any η “ pηk`2, . . . , ηk`n`1q P t0, 1un, we have

v0,t,η :“ pv0, ξH, ηk`2, ξηk`2
, . . . , ξηk`2,...,ηk`n

, ηk`n`1q P Ak`n`1.

By the definition of Ak`n`1, there exists

w “ pξk`n`2, ηk`n`2, ξk`n`3, ηk`n`3, . . . q P

´

rX ˆ t0, 1u

¯8

such that pv0,t,η,wq P Wc.
For each t P rk1s Y tk1 ` 2, . . . , k ` 1u Y tk ` n ` 2, k ` n ` 3, . . . u, define xt :“ ξtp1q

and yt :“ ξtpηt ` 2q. Define xk1`1 :“ ξ0k1`1p1q “ x and yk1`1 :“ ξ0k1`1pη0k1`1 ` 2q “ y.
Define xk`2 :“ ξHp1q and yk`2 :“ ξHpηk`2 ` 2q. For each t P tk ` 3, . . . , k ` n ` 1u, define
xt :“ ξηk`2,...,ηt´1p1q and yt :“ ξηk`2,...,ηt´1pηt ` 2q.

Since pv0,t,η,wq P Wc, by the definition of W, for any 0 ď τ ă 8, there exists h P H such that
hpxtq “ yt for any 1 ď t ď τ . Since ξ1k1`1p1q “ x “ ξ0k1`1p1q “ xk1`1 and ξ1k1`1pη1k1`1 ` 2q “

y “ ξ0k1`1pη0k1`1 ` 2q “ yk1`1, we have pv1,t,η,wq P Wc where

v1,t,η :“ pv1, ξH, ηk`2, ξηk`2
, . . . , ξηk`2,...,ηk`n

, ηk`n`1q.

Thus, v1,t,η P Ak`n`1 for any η P t0, 1un. By the definition of TA
v1 , we have t P TA

v1 . Since it holds
for any t P TA

v0 , we have TA
v0 Ď TA

v1 .
By symmetry, we can also show that TA

v1 Ď TA
v0 , which implies that TA

v0 “ TA
v1 . Since

Tv0 “ Tv1 , we also have valpv0q “ valpv1q.

Now, we can define game values on sP using game values on P.

Definition 24 The game value val : sP Ñ ORD˚ is defined as follows. For H, valpHq is defined by
Definition 21. For any n P N and z “ px1, y1, . . . , xn, ynq P sPn, pick a sequence y1

1, . . . , y
1
n such

that y1
1 ‰ y, . . . , and y1

n ‰ yn. Define v :“ pξ1, η1, . . . , ξn, ηnq P Pn with ξi :“ pxi, yi, y
1
iq and

ηi :“ 0 for any i P rns. Define valpzq :“ valpvq.

By Lemma 23, val is well-defined on sP and the following corollary holds.

Corollary 25 For any 0 ď n ă 8 and pξ1, η1, . . . , ξn, ηnq P

´

rX ˆ t0, 1u

¯n
, we have

valpξ1p1q, ξ1pη1 ` 2q, . . . , ξnp1q, ξnpηn ` 2qq “ valpξ1, η1, . . . , ξn, ηnq. (6)
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Proof For n “ 0, we have valpHq “ valpHq. For any n ě 1, by Definition 24 and Lemma 23, we
have

valpξ1p1q, ξ1pη1 ` 2q, . . . , ξnp1q, ξnpηn ` 2qq

“valppξ1p1q, ξ1pη1 ` 2q, ξ1p3 ´ η1q, 0, . . . , pξnp1q, ξnpηn ` 2q, ξnp3 ´ ηnq, 0q

“valppξ1p1q, ξ1pη1 ` 2q, ξ1p3 ´ η1q, 0, . . . , pξnp1q, ξnp2q, ξnp3qq, ηnq

“valppξ1p1q, ξ1pη1 ` 2q, ξ1p3 ´ η1q, 0, . . . , ξn, ηnq

...

“valpξ1, η1, . . . , ξn, ηnq,

which gives (6).

According to Bousquet et al. (2021, Lemma B.7), we have the following Lemma.

Lemma 26 If W is coanalytic, then for any v P P, either valpvq “ Ω or valpvq ă ω1. In particular,
it follows that either valpHq “ Ω or valpHq ă ω1.

According to Bousquet et al. (2021, Proposition B.8), we have the following Proposition.

Proposition 27 Fix 0 ď n ă 8 and v P Pn such that 0 ď valpvq ă Ω. For any ξ “ px, y0, y1q P
rX , there exists η P t0, 1u such that valpv, ξ, ηq ă valpvq.

For any 0 ď n ă 8, define

Dn`1 :“ tpv, ξ, ηq P Pn`1 : valpv, ξ, ηq ă mintvalpvq, valpHquu

and

sDn`1 :“
␣

pz, x, yq P sPn`1 : valpz, x, yq ă mintvalpzq, valpHqu
(

.

The following lemma relates sDn`1 to Dn`1.

Lemma 28 For any 0 ď n ă 8, we have

sDn`1 “ tpξ1p1q, ξ1pη1 ` 2q, . . . , ξn`1p1q, ξn`1pηn`1 ` 2qq : pξ1, η1, . . . , ξn`1, ηn`1q P Dn`1u .

Proof For any pξ1, η1, . . . , ξn`1, ηn`1q P Dn`1, we have

valpξ1, η1, . . . , ξn`1, ηn`1q ă mintvalpξ1, η1, . . . , ξn, ηnq, valpHqu.

By Corollary 25, we have

valpξ1p1q, ξ1pη1 ` 2q, . . . , ξn`1p1q, ξn`1pηn`1 ` 2qq

“valpξ1, η1, . . . , ξn`1, ηn`1q

ămintvalpξ1, η1, . . . , ξn, ηnq, valpHqu.

“mintvalpξ1p1q, ξ1pη1 ` 2q, . . . , ξnp1q, ξnpηn ` 2q, valpHqu
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which implies that pξ1p1q, ξ1pη1 ` 2q, . . . , ξn`1p1q, ξn`1pηn`1 ` 2qq P sDn`1.
On the other hand, for any px1, y1, . . . , xn`1, yn`1q P sDn`1, define ξi :“ pxi, yi, y

1
iq for arbi-

trary y1
i P Y satisfying y1

i ‰ yi and ηi :“ 0 for each i P rns. Then, by Corollary 25, we have

valpξ1, η1, . . . , ξn`1, ηn`1q

“valpξ1p1q, ξ1pη1 ` 2q, . . . , ξn`1p1q, ξn`1pηn`1 ` 2qq

“valpx1, y1, . . . , xn`1, yn`1q

ămintvalpx1, y1, . . . , xn, ynq,minpHqu

“mintvalpξ1, η1, . . . , ξn, ηnq,minpHqu

Thus, pξ1, η1, . . . , ξn, ηnq P Dn`1 and ξip1q “ xi, ξipηi ` 2q “ yi for all i P rns. Therefore,

px1, y1, . . . , xn`1, yn`1q

P tpξ1p1q, ξ1pη1 ` 2q, . . . , ξn`1p1q, ξn`1pηn`1 ` 2qq : pξ1, η1, . . . , ξn`1, ηn`1q P Dn`1u .

In conclusion, Lemma 28 is proved.

According to Bousquet et al. (2021, Lemma B.10), we have the following lemma.

Lemma 29 For any 0 ď n ă 8, v P Pn, and κ P ORD, we have valpvq ą κ if and only if there
exists ξ P rX such that valpv, ξ, ηq ě κ for all η P t0, 1u.

Then, by Corollary 25 and Lemma 29, the following corollary holds.

Corollary 30 For any 0 ď n ă 8, z P sPn, and κ P ORD, we have valpzq ą κ if and only if there
exist x P rX and py, y1q P ĂY2 such that valpz, x, yq ě κ and valpz, x, yq ě κ and valpz, x, y1q ě κ.

Define

sW :“ tpx1, y1, . . . q P pX ˆ Yq8 : Hx1,y1,...,xτ ,yτ “ H for some 0 ď τ ă 8u.

Then, we can show that sW is coanalytic under the assumption that H is measurable.

Lemma 31 If X and Y are Polish and H is measurable, then sW is coanalytic.

Proof According to Definition 3, we have

sWc “ tpx1, y1, . . . q P pX ˆ Yq8 : Hx1,y1,...,xτ ,yτ ‰ H for all τ ă 8u

“ X8
τ“1 YθPΘ Xτ

t“1 tpx1, y1, . . . q P pX ˆ Yq8 : hpθ, xtq “ ytu .

For any h P H and 1 ď t ă 8, define rht : Θ ˆ pX ˆ Yq8 Ñ Y , pθ, x1, y1, . . . q ÞÑ hpθ, xtq and
lt : Θ ˆ pX ˆ Yq8 Ñ R, pθ, x1, y1, . . . q ÞÑ 1tyt ‰ rhtpθ, x1, y1, . . . qu.

Since H is measurable, h P H is Borel-measurable. Thus, rht is also Borel-measurable. Since the
mapping Θ ˆ pX ˆ Yq8 Ñ Y , pθ, x1, y1, . . . q ÞÑ yt is Borel-measurable, the mapping Θ ˆ pX ˆ

Yq8 Ñ Y2, pθ, x1, y1, . . . q ÞÑ pyt,rhtpθ, x1, y1, . . . qq is also Borel-measurable, which, together
with the fact that the mapping Y2 Ñ t0, 1u, py, y1q ÞÑ 1ty “ y1u is Borel-measurable, implies that
lt is Borel-measurable. Since

tpθ, x1, y1, . . . q P Θ ˆ pX ˆ Yq8 : hpθ, xtq “ ytu “ l´1
t pt1uq,
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we have that tpθ, x1, y1, . . . q P Θ ˆ pX ˆ Yq8 : hpθ, xtq “ ytu is Borel for any 1 ď t ă 8 and
h P H. Thus, for any 1 ď τ ă 8, Xτ

t“1 tpθ, x1, y1, . . . q P Θ ˆ pX ˆ Yq8 : hpθ, xtq “ ytu is
Borel. Since the union over θ P Θ corresponds to a projection and the intersection over τ is count-
able, the set sWc is analytic.

Define

sAn :“ YwPpXˆYq8

␣

z P sPn : pz,wq P sWc
(

.

Since X and Y are Polish, we have that sPn is Polish for any 0 ď n ď 8. If sW is coanalytic, then
sAn is an analytic subset of sPn for any 0 ď n ă 8.

Define sA :“ Y0ďnă8
sAn. We have the following lemma.

Lemma 32 valpzq ą ´1 for any z P sA.

Proof Since z P sA, there exists 0 ď n ă 8 such that z P sAn. There exist px1, y1, . . . , xn, ynq P sPn

and pxn`1, yn`1, xn`2, yn`2, . . . q P pX ˆ Yq8 such that z “ px1, y1, . . . , xn, ynq and

Hx1,y1,...,xτ ,yτ ‰ H

for all 1 ď τ ă 8.
For any 1 ď i ă 8, define ηi “ 0 and ξi “ pxi, yi, y

1
iq for arbitrary y1

i P Y such that y1
i ‰ yi. It

follows that Hξ1p1q,ξ1pη1`2q,...,ξτ p1q,ξτ pητ`2q ‰ H for all 1 ď τ ă 8. Thus,

v :“ pξ1, η1, . . . , ξn, ηnq P An

and by Definition 21 and Definition 24, valpzq “ valpvq ą ´1.

Now, the corollary below holds.

Corollary 33 If sW is coanalytic, then the set

sAκ
n :“ tz P sAn : valpzq ą κu

is analytic for every 0 ď n ă 8 and ´1 ď κ ă ω1.

Proof Since sW is coanalytic, we have that sAn is analytic. For κ “ ´1, since valpzq ą ´1 for any
z P sAn by Lemma 32, we have that sA´1

n “ sAn is analytic for any 0 ď n ă 8. For κ ą ´1, suppose
that for all ´1 ď λ ă κ, sAλ

n is analytic for every 0 ď n ă 8. According to Corollary 30, for any
0 ď n ă 8, we have

sAκ
n “ Y

px,y,y1qPXˆĂY2

␣

z P sAn : valpz, x, yq ě κ and valpz, x, y1q ě κ
(

“ Ypx,y,y1qPXˆY2

`␣

z P sAn : valpz, x, yq ě κ and valpz, x, y1q ě κ and y ‰ y1
(˘

Consider the function f : sPn ˆ X ˆ Y2 Ñ sPn ˆ X ˆ Y2, pz, x, y0, y1q ÞÑ pz, x, y1, y0q. f is a
continuous function. Since by the induction hypothesis, sAλ

n`1 is analytic for any ´1 ď λ ă κ, we
have that fpsAλ

n`1q is also analytic. Thus,
␣

pz, x, y, y1q P sAn ˆ X ˆ Y2 : valpz, x, yq ě κ and valpz, x, y1q ě κ and y ‰ y1
(

“ X´1ďλăκ

´

sAλ
n`1 X fpsAλ

n`1q

¯

X sAn ˆ X ˆ ĂY2
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is also analytic. Since X and Y are Polish spaces, we have that sAκ
n is analytic. By induction, sAκ

n for
any 0 ď n ă 8 and ´1 ď κ ă ω1.

For any 0 ď n ă 8, define

sDn`1 :“
␣

pz, x, yq P sPn`1 : valpz, x, yq ă mintvalpzq, valpHqu
(

.

Then, we can show the following corollary.

Corollary 34 If valpHq ă ω1 and sW is coanalytic, then sDn`1 is universally measurable for any
0 ď n ă 8.

Proof By the definition of sDn`1, we have

sDn`1 “ Y´1ďκăvalpHq

␣

pz, x, yq P sPn`1 : valpz, x, yq ď κ and valpzq ą κ
(

“ Y´1ďκăvalpHq

␣

pz, x, yq P sPn`1 : pz, x, yq P psAκ
n`1qc and z P sAκ

n

(

“ Y´1ďκăvalpHq

`

psAκ
n`1qc X sAκ

n ˆ X ˆ Y
˘

with sAκ
n defined in Corollary 33. According to Corollary 33, psAκ

n`1qc X sAκ
n ˆ X ˆ Y is universally

measurable for any ´1 ď κ ă ω1. Since valpHq ă ω1, the union over ´1 ď κ ă valpHq is
countable. Thus, sDn`1 is universally measurable.

However, for the universal measurability of the learning strategy we defined, the above corollary
does not directly apply. We need more refined analysis of the projection set of sDn. For any 0 ď

n ă 8 and y P Y , define

sDy
n`1 :“

␣

pz, xq P sPn ˆ X : valpz, x, yq ă mintvalpzq, valpHqu
(

“
␣

pz, xq P sPn ˆ X : pz, x, yq P sDn`1

(

.

Then, we can proceed to show the following corollary.

Corollary 35 If valpHq ă ω1 and sW is coanalytic, then sDy
n`1 is universally measurable for any

0 ď n ă 8 and y P Y .

Proof By the definition of sDy
n`1, we have

sDy
n`1 “ Y´1ďκăvalpHq

␣

pz, xq P sPn ˆ X : valpz, x, yq ď κ and valpzq ą κ
(

“ Y´1ďκăvalpHq

␣

pz, xq P sPn ˆ X : pz, x, yq P psAκ
n`1qc and z P sAκ

n

(

“ Y´1ďκăvalpHq

`␣

pz, xq P sPn ˆ X : pz, x, yq P psAκ
n`1qc

(

X sAκ
n ˆ X

˘

with sAκ
n defined in Corollary 33. Note that

␣

pz, xq P sPn ˆ X : pz, x, yq P psAκ
n`1qc

(

“
␣

pz, xq P sPn ˆ X : pz, x, yq P sAκ
n`1

(c

“
`

Yy1PY
␣

pz, xq P sPn ˆ X : pz, x, y1q P sAκ
n`1 X sPn ˆ X ˆ tyu

(˘c
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According to Corollary 33, sAκ
n ˆ X is an analytic subset of sPn ˆ X and sAκ

n`1 X sPn ˆ X ˆ tyu is
an analytic subset of sPn`1 for any ´1 ď κ ă ω1. Thus,

␣

pz, xq P sPn ˆ X : pz, x, yq P psAκ
n`1qc

(

is coanalytic for any ´1 ď κ ă ω1. Since valpHq ă ω1, the union over ´1 ď κ ă valpHq is
countable. Thus, sDy

n`1 is universally measurable.

For any 0 ď n ă 8, z P sPn, and y P Y , define

sDz,y
n`1 :“ tx P X : valpz, x, yq ă mintvalpzq, valpHquu

“
␣

x P X : pz, x, yq P sDn`1

(

.

Then, we can show the following corollary.

Corollary 36 If valpHq ă ω1 and sW is coanalytic, then sDz,y
n`1 is universally measurable for any

0 ď n ă 8, z P sPn, and y P Y .

Proof By the definition of sDz,y
n`1, we have

sDz,y
n`1 “ Y´1ďκăvalpHq tx P X : valpz, x, yq ď κ and valpzq ą κu

“ Y´1ďκăvalpHq

␣

x P X : pz, x, yq P psAκ
n`1qc and z P sAκ

n

(

“ Yκ:´1ďκăvalpHq, zPsAκ
n

␣

x P X : pz, x, yq P psAκ
n`1qc

(

with sAκ
n defined in Corollary 33. Note that

␣

x P X : pz, x, yq P psAκ
n`1qc

(

“
␣

x P X : pz, x, yq P sAκ
n`1

(c

“

´

Ypw,y1qPsPnˆY
␣

x P X : pw, x, y1q P sAκ
n`1 X tzu ˆ X ˆ tyu

(

¯c

According to Corollary 33, sAκ
n`1XtzuˆXˆtyu is an analytic subset of sPn`1 for any ´1 ď κ ă ω1.

Thus,
␣

x P X : pz, x, yq P psAκ
n`1qc

(

is coanalytic for any ´1 ď κ ă ω1. Since valpHq ă ω1, the
union over κ is countable. Thus, sDz,y

n`1 is universally measurable.

Now, we are ready to define a value-decreasing function. For any 1 ď t ă 8, z P sPt´1,
and x P X , define the set Gt,z,x :“

␣

y P Y : pz, x, yq R sDt

(

. When Y is uncountable, define the
mapping gt : sPt´1 ˆ X Ñ Y by

gtpz, xq :“

#

arbitrary y P Gt,z,x, if Gt,z,x ‰ H,

arbitrary y P Y, if Gt,z,x “ H.
(7)

25



HANNEKE MORAN ZHANG

When Y is countable, we can enumerate Y as ty1, y2, y3, . . . , u. Then, the mapping gt : sPt´1ˆX Ñ

Y is defined as

gtpz, xq :“

#

yi, if Gt,z,x ‰ H and yj R Gt,z,x for all 1 ď j ď i ´ 1, yi P Gt,z,x,

y1, if Gt,z,x “ H.

“

#

yi, if pz, xq P sDyj

t for all 1 ď j ď i ´ 1 and pz, xq R sDyi

t ,

y1, if Gt,z,x “ H.

“

$

&

%

yi, if pz, xq P

´

X
i´1
j“1

sDyj

t

¯

X

´

sDyi

t

¯c
,

y1, if pz, xq P X8
j“1

sDyj

t .

Corollary 37 If Y is countable, valpHq ă ω1, and sW is coanalytic, then gt is universally measur-
able for any 1 ď t ă 8.

Proof For any 2 ď i ă 8, we have

g´1
t pyiq “

´

X
i´1
j“1

sDyj

t

¯

X

´

sDyi

t

¯c

which is universally measurable by Corollary 35. For i “ 1, we have

g´1
t py1q “

´

X8
j“1

sDyj

t

¯

Y

´

sDy1

t

¯c

which is also universally measurable by Corollary 35.

For any 1 ď t ă 8, z P sPt´1, and x P X , define the mapping gt,z : X Ñ Y , x ÞÑ gtpz, xq.
Then, we have the following corollary.

Corollary 38 If Y is countable, valpHq ă ω1, and sW is coanalytic, then gt,z is universally mea-
surable for any 1 ď t ă 8 and z P sPt´1.

Proof By the definition of gt,z, we have

gt,zpxq “

$

&

%

yi, if x P

´

X
i´1
j“1

sDz,yj
t

¯

X

´

sDz,yi
t

¯c
,

y1, if x P X8
j“1

sDz,yj
t .

Thus, for 2 ď i ă 8, we have

g´1
t,z pyiq “

´

X
i´1
j“1

sDz,yj
t

¯

X

´

sDz,yi
t

¯c

which is universally measurable by Corollary 36. For i “ 1, we have

g´1
t,z py1q “

´

X8
j“1

sDz,yj
t

¯

Y

´

sDz,y1
t

¯c

which is also universally measurable by Corollary 36.
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For any 1 ď t ă 8, define the mapping sgt : X t Ñ Y ,

px1, x2, . . . , xtq ÞÑ gtpx1, g1px1q, x2, g2px1, g1px1q, x2q, . . . , xt´1, gt´1px1, g1px1q, . . . , xt´1q, xtq

We can show the following lemma.

Lemma 39 For any 1 ď t ă 8, if gi is universally measurable for all i P rts, then sgt is also
universally measurable.

Proof For each i P rt ´ 1s, define the mapping rgi : sPi´1 ˆ X t´i`1 Ñ sPi ˆ X t´i,

px1, y1, . . . , xi´1, yi´1, xi, xi`1, . . . , xtq

ÞÑpx1, y1, . . . , xi, gipx1, y1, . . . , xi´1, yi´1, xiq, xi`1, xi`2, . . . , xtq.

Then, we have sgt “ gt ˝rgt´1 ˝ ¨ ¨ ¨ ˝rg1. Since gt is universally measurable, it suffices to show that rgi
is universally measurable for each i P rt ´ 1s. For any Polish space E1 and E2, let FpE1q denote the
Borel σ-field of E1 and FpE1q ˆ FpE2q denote the product σ-field of FpE1q and FpE2q on E1 ˆ E2.
Since X and Y are Polish spaces, we have FpsPj ˆ X kq “ pFpX q ˆ FpYqqj ˆ FpX qk for any
0 ď j, k ă 8. Thus, it suffices to show that rg´1

i pp
śi

j“1Aj ˆ Bjq ˆ p
śt

k“i`1Akqq is universally
measurable in sPi´1 ˆ X t´i`1 for any Aj P FpX q with j P rts, any Bj P FpYq with j P ris, and
any i P rt ´ 1s. By the definition of rgi, we have

rg´1
i

˜˜

i
ź

j“1

Aj ˆ Bj

¸

ˆ

˜

t
ź

k“i`1

Ak

¸¸

“

!

px1, y1, . . . , xi´1, yi´1, xi, xi`1, . . . , xtq P

˜

i´1
ź

j“1

Aj ˆ Bj

¸

ˆ

˜

t
ź

k“i

Ak

¸

:

gipx1, y1, . . . , xi´1, yi´1, xiq P Bi

)

“

˜

i´1
ź

j“1

Aj ˆ Bj

¸

ˆ

˜

t
ź

k“i

Ak

¸

X g´1
i pBiq ˆ

˜

t
ź

k“i`1

Ak

¸

Since gi is universally measurable, we have that g´1
i pBiq is a universally measurable subset of

sPi´1 ˆ X . It follows that g´1
i pBiq ˆ

`
śt

k“i`1Ak

˘

is universally measurable in sPi´1 ˆ X t´i`1.

Thus, rg´1
i

´´

śi
j“1Aj ˆ Bj

¯

ˆ
`
śt

k“i`1Ak

˘

¯

is universally measurable in sPi´1 ˆ X t´i`1.

The following corollary immediately follows from Corollary 37 and Lemma 39.

Corollary 40 If Y is countable, valpHq ă ω1, and sW is coanalytic, then sgt is universally measur-
able for any 1 ď t ă 8.

We have the following lemma.

Lemma 41 For any 1 ď t ă 8, z “ px1, y1, . . . , xt, ytq P sPt, we have

valpzq “ ´1 ðñ Hz “ H.
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Proof Define ξi :“ pxi, yi, y
1
iq for arbitrary y1

i P Yzty1
iu and ηi :“ 0 for each i P rts. Define

v :“ pξ1, η1, . . . , ξt, ηtq.
Assume that Hz “ H. Then, for any w P p rX ˆ t0, 1uq8, we have

Hξ1p1q,ξ1pη1`2q,...,ξtp1q,ξtpη`2q “ Hz “ H

which implies that pv,wq P W. Thus, we have v R A. By Definition 21, we have valpvq “ ´1. By
Corollary 25, we have valpzq “ valpvq “ ´1.

For the other direction, assume that valpzq “ ´1. By Corollary 25, we have valpvq “ valpzq “

´1. By Definition 21, we have pv,wq P W for any w P p rX ˆ t0, 1uq8. Suppose that Hz ‰ H.
Choose arbitrary h P Hz. Since h P YX , there exists x P X and y P Y such that hpxq “ y.
Choose arbitrary y1 P Yztyu. Define ξt`i :“ px, y, y1q and ηt`i :“ 0 for any 1 ď i ă 8,
and w :“ pξt`1, ηt`1, ξt`2, ηt`2, . . . q P p rX ˆ t0, 1uq8. Then, for any 0 ď τ ă 8, we have
h P Hξ1p1q,ξ1pη1`1q,...,ξτ p1q,ξτ pητ`1q. Then, we have pv,wq R W. A contradiction. Thus, Hz “ H.

Then, we can prove the following guarantee for gt.

Proposition 42 For any px1, x2, . . . q P X8, any y1 P Yztg1px1qu, and any yt P Y such that
yt ‰ gtpx1, y1, . . . , xt´1, yt´1, xtq with 2 ď t ă 8, if valpHq ă Ω, then there exists some positive
integer τ p1 ď τ ă 8q such that Hx1,y1,...,xτ ,yτ “ H.

Proof By Lemma 22, we have valpHq ě 0. Define ξt :“ pxt, yt, sgtpx1, . . . , xtqq, vt “ pξ1, 0, . . . , ξt, 0q,
and zt :“ px1, yt, . . . , xt, ytq for any 0 ď t ă 8 (when t “ 0, we have v0 “ H and z0 “ H).

We claim that for any 1 ď t ă 8, if 0 ď valpzt´1q ď valpHq, we have valpztq ă valpzt´1q.
Indeed, by the definition of gt, we have either valpzt´1, xt, gtpzt´1, xtqq ě mintvalpzt´1q, valpHqu

or valpzt´1, xt, yq ă mintvalpzt´1q, valpHqu for all y P Y .
If valpzt´1, xt, yq ă mintvalpzt´1q, valpHqu for all y P Y , it obviously follows that valpztq ă

mintvalpzt´1q, valpHqu. If valpzt´1, xt, gpzt´1, xtqq ě mintvalpzt´1q, valpHqu, since valpzt´1q ď

valpHq by our assumption, we have valpzt´1, xt, gpzt´1, xtqq ě valpzt´1q. By Corollary 25, we
have

valpvt´1, ξt, 1q ě valpvt´1q.

Then, by Proposition 27 and Corollary 25, we must have

valpztq “ valpvtq “ valpvt´1, ξt, 0q ă valpvt´1q “ valpzt´1q.

Thus, the above claim holds.
Now we claim that valpztq ď valpHq for t “ 0 and valpztq ă valpHq for any 1 ď t ă 8.

Indeed, when t “ 0, we have valpz0q “ valpHq. Suppose valpzt´1q ď valpHq for some 1 ď t ă 8.
If valpvt´1q “ ´1, by Lemma 41, we have valpztq “ valpzt´1q “ ´1 ă valpHq. If valpzt´1q ě 0,
we have valpztq ă valpzt´1q ď valpHq by the first claim. Thus, by induction, the claim holds.

By the two claims, we can conclude that valpHq ą valpz1q ą valpz2q ą ¨ ¨ ¨ ą valpztq as long
as valpztq ą ´1. If valpHq ă Ω, by the well-ordering of ORD, there exists some finite positive
integer τ such that valpzτ q “ ´1. Thus, by Lemma 41, we have Hzτ “ H.
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Now, we can present the proof of Theorem 18.
Proof of Theorem 18 Assume that H has an infinite Littlestone tree tξu : 0 ď k ă 8,u P

t0, 1uku. Define the following strategy for the adversary sPa: in each round t ě 1, sPa chooses
xt :“ ξpη1,...,ηt´1qp1q P X with ηi P t0, 1u p1 ď i ď t ´ 1q defined later (when t “ 1, we have
ξpη1,...,ηt´1q :“ ξH). After the learner sPl makes the prediction pyt, define

ηt :“

#

0, if ξpη1,...,ηt´1qp2q ‰ pyt,

1, otherwise.

Then, sPa reveals the true label yt :“ ξpη1,...,ηt´1qpηt ` 2q.
Since ξppy1,...,pyt´1qp2q ‰ ξppy1,...,pyt´1qp3q, we have yt ‰ pyt for each t ě 1. Besides, by the defini-

tion of Littlestone tree (Definition 5), px1, y1, . . . , xt, ytq is consistent with H for any ppy1, . . . , pytq P

Yt and t ě 1.
Assume that H does not have an infinite Littlestone tree. Consider the following strategy for the

learner sPl.

• Initialize τ Ð 1 and fpxq Ð g1pxq.

• For t Ð 1, 2, 3, ¨ ¨ ¨ :

– Predict pyt “ fpxtq.

– If pyt ‰ yt :

set rxτ “ xt, ryτ “ yt, fpxq Ð gτ`1prx1, ry1, . . . , rxτ , ryτ , xq, and τ Ð τ ` 1.

Suppose that there exists some adversary sPa such that sPl makes infinitely many mistakes at t1, t2, . . .
adopting the above strategy. Then according to Proposition 42, there exists some 1 ď k ă 8 such
that Hxt1 ,yt1 ,...,xtk

,ytk
“ H. However, this contradicts the rule of the online learning game sB be-

cause Hx1,y1,...,xtk
,ytk

“ H.

Also, the universal measurability of the learning strategy can be proved.

Corollary 43 If X is a Polish space, Y is countable, H is measurable as defined in Definition 3,
and H does not have an infinite Littlestone tree, then the learning strategy of sPl specified in Theorem
18 is universally measurable.

Proof Since H does not have an infinite Littlestone tree, according to Lemma 22, we have valpHq ă

Ω. Then, by Lemma 26, we have valpHq ă ω1. Since H is measurable, by Lemma 31, sW is coana-
lytic. Then, according to Corollary 37, gt is universally measurable for any 1 ď t ă 8. According
to Corollary 38, fpxq is also universally measurable for any 1 ď t ă 8. Thus, the learning strategy
for sPl specified in Theorem 18 is universally measurable.

B.2. Concluding proof

Proof of Theorem 13 First, according to Bousquet et al. (2021, Lemma 4.2), H is not learnable at
rate faster than the exponential rate e´n. Thus, the proof is completed once we construct a learning
algorithm which, for H without an infinite Littlestone tree, achieves exponential rate for any real-
izable distribution P . We use the learning algorithm constructed in Bousquet et al. (2021, Section
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4.1). According to Bousquet et al. (2021, Lemma 4.3, Lemma 4.4., and Corollary 4.5) and their
proofs, for the learning algorithm to achieve exponential rate, it suffices to have an adversarial on-
line learning algorithm with the properties that it only makes finitely many mistakes against any
adversary and it only changes when a mistake is made. According to Theorem 18 and its proof,
for H without an infinite Littlestone tree, the winning strategy constructed in the proof only makes
finitely many mistakes against any adversary and changes only when a mistake happens. Then, the
same proofs of Bousquet et al. (2021, Lemma 4.3, Lemma 4.4., and Corollary 4.5) can be applied
to show that the constructed online learning algorithm achieves exponential rate. In conclusion, if
H does not have an infinite Littlestone tree, then H is learnable with optimal rate e´n.

Appendix C. Near-Linear Rates

In this section, we prove Theorem 14.

C.1. Slower than exponential is not faster than linear

In this subsection, we prove the following theorem.

Theorem 44 If H has an infinite Littlestone tree, then for any learning algorithm A, there exists a
H-realizable distribution P such that for infinitely many n, Ererpphnqs ě 1

33n where phn “ ApH, Snq

with Sn „ Pn. Thus, H is not learnable at rate faster than 1
n .

Proof Suppose that H has an infinite Littlestone tree

!

ξu “ pxu, y
0
u, y

1
uq : 0 ď k ă d,u P t0, 1uk

)

.

Fix an arbitrary learning algorithm A. Let u “ tu1, u2, . . . u be a sequence of i.i.d. Bernoullip12q

random variables. Conditional on u, define the distribution Pu on X ˆ Y by

Puptxuďk
, y

uk`1
uďk

uq “ 2´k´1, @ k ě 0.

Note that the mapping u ÞÑ Pu is measurable.
By the definition of Littlestone tree, for any n ě 0, there exists a hypothesis hn P H such that

hnpxuďk
q “ y

uk`1
uďk

for any 0 ď k ď n. Thus, we have

eruphnq :“ Puptx, yq P X ˆ Y : hnpxq ‰ yuq ď

8
ÿ

k“n`1

2´k´1 “ 2´n´1.

Then, infhPH eruphq “ 0 and Pu is H-realizable.
Let T, T1, T2, . . . be i.i.d. random variables with distribution Geometricp12q (starting from 0).

Define X :“ xuďT , Y :“ yu
uT`1
ďT

, Xi :“ xuďTi
, and Yi :“ y

u
uTi`1
ďTi

for any i ě 1. Then, conditional

on u, by the definition of Pu, we know that pX,Y q, pX1, Y1q, pX2, Y2q, . . . is a sequence of i.i.d.
random variables with distribution Pu. Now, define phn “ ApH, ppX1, Y1q, . . . , pXn, Ynqqq. For any
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k ě 1, since u1, u2, . . . are i.i.d. Bernoullip12q random variables, we have

PpphnpXq ‰ Y, T “ k,maxtT1, . . . , Tnu ă kq

“PpphnpXq ‰ y
uk`1
uďk

, T “ k,maxtT1, . . . , Tnu ă kq

“ErPpphnpXq ‰ y
uk`1
uďk

|X,T, T1, . . . , Tnq1tT “ k,maxtT1, . . . , Tnu ă kus

“E
„

1

2
1tT “ k,maxtT1, . . . , Tnu ă ku

ȷ

“
1

2
PpT “ k,maxtT1, . . . , Tnu ă kuq

“2´k´2p1 ´ 2´kqn.

Define kn :“ r1`log2pnqs for n ě 1. Then, we have 2´kn´2 ą 1
16n and p1´2´knqn ě p1´ 1

2nqn ě
1
2 , which, together with the above result, implies that

PpphnpXq ‰ Y, T “ knq ěPpphnpXq ‰ Y, T “ kn,maxtT1, . . . , Tnu ă knq

ě2´kn´2p1 ´ 2´knqn

ą
1

32n
.

Since

nPpphnpXq ‰ Y, T “ kn|uq ď nPpT “ kn|uq “ nPpT “ knq “ n2´kn´1 ď
1

4
a.s.,

by Fatou’s lemma, we have

Erlim sup
nÑ8

nPpphnpXq ‰ Y, T “ kn|uqs ě lim sup
nÑ8

nPpphnpXq ‰ Y, T “ knq ě
1

32
.

Since

PpphnpXq ‰ Y, T “ kn|uq ď PpphnpXq ‰ Y |uq “ Ererupphnq|us a.s.,

we have Erlim supnÑ8 nErerupphnq|uss ě 1
32 ą 1

33 . Thus, there exists u1 P t0, 1u8 such that
Ereru1pphnqs ě 1

33n infinitely often. The proof is completed by setting P “ Pu1 .

C.2. Pattern avoidance functions

In this subsection, we design pattern avoidance functions in the adversarial setting and analyze their
properties. For any n P N and hypothesis class H Ď Yn, denote the collection of all n-dimensional
pseudo-cubes of H with PCpHq. For any m P N, denote the collection of all n-dimensional pseudo-
cubes of H of size m with PCmpHq. Then, we have PCpHq “ Y8

m“1PCmpHq. For any hypothesis
class F Ď Yn, let QpF q denote the union of all the pseudo-cubes of dimension n that are subsets of
F .

Consider the following game B between player PA and PL. At each round τ ě 1:
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• Player PA chooses a sequence xτ “ px0τ , . . . , x
τ´1
τ q P X τ and a set Cτ P PCpYτ q.

• Player PL chooses a sequence yτ “ py0τ , . . . , y
τ´1
τ q P Yτ .

• Player PL wins the game in round τ if

– either Cτ R PCpH|xτ q,
– or ys P Cs for all 1 ď s ď τ and Hx1,y1,...,xτ ,yτ “ H, where
Hx1,y1,...,xτ ,yτ :“

␣

h P H : h
`

xis
˘

“ yis for 0 ď i ă s, 1 ď s ď τ
(

.

The set of winning sequences of PL in B is

WB :“

#

px1, C1, y1, . . . q P

8
ź

t“1

pX t ˆ PCpYtq ˆ Ytq : Dτ P N such that

either Cτ Ę PCpH|xτ q, or yt P Ct for all t P rτ s and Hx1,y1,...,xτ ,yτ “ H

+

Obviously, WB is finitely decidable, which implies that B is a Gale-Stewart game and according to
Gale and Stewart (1953), either PA or PL has a winning strategy.

With regard to the universal measurability of the winning strategy, we assume that X is a Polish
space, Y is countable, and H is measurable in the sense of Definition 3. We first prove the following
lemma.

Lemma 45 For any t P N and xt P X t, PCpYtq and PCpH|xtq are countable sets.

Proof Since Y is countable, Yt and H|xt are also countable. By the definition of pseudo-cube, any
pseudo-cube is a finite subset of the hypothesis class. Since the set of all finite subsets of a countable
set is countable, PCpH|xtq and PCpYtq are countable sets.

For any t P N, define the set

XPCt :“ YxtPX ttxtu ˆ PCpH|xtq Ď X t ˆ PCpYtq

Then, we can prove the following property of XPCt.

Lemma 46 For any t P N, XPCt is an analytic subset of the Polish space X t ˆ PCpYtq.

Proof According to Lemma 45, PCpYtq is countable. Thus, X t ˆ PCpYtq is a Polish space. For
any t P N, we have

XPCt “ Y8
n“1

´´

X t ˆ PCnpYtq

¯

X

Ypθ1,...,θnqPΘn

!

px, y1, . . . , ynq P X t ˆ Ytn : hpθi, xq “ yi for all i P rns

)¯

where by hpθ, px1, . . . , xtqq “ py1, . . . , ytq, we mean that hpθ, xτ q “ yτ for all τ P rts. Indeed, for
any px, Cq P XPCt, we have x P X t and C P PCpH|xq. Then, by the definition of pseudo-cubes,
there exists a finite n P N such that C P PCnpH|xq. Since H|x Ď Yt, we have C P PCnpYtq and
px, Cq P X t ˆ PCnpYtq. Moreover, since C Ď H|x with |C| “ n, we can write C “ ty1, . . . , ynu
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such that there exist ph1, . . . , hnq P Hn satisfying hipxq “ yi for any i P rns. By Definition 3, there
exist pθ1, . . . , θnq P Θn such that hpθi, xq “ yi for all i P rns.

On the other hand, if px, ty1, . . . , ynuq P X tˆPCnpYtq is such that there exist pθ1, . . . , θnq P Θn

satisfying hpθi, xq “ yi for all i P rns, we have C :“ ty1, . . . , ynu Ď H|x and C is a pseudo-cube
of dimension t. Thus, C P PCpH|xq and px, ty1, . . . , ynuq P XPCt.

We claim that the set

St,n :“
␣

pθ1, . . . , θn, x, y1, . . . , ynq P Θn ˆ X t ˆ Ytn : hpθi, xq “ yi for all i P rns
(

is a Borel set. The reason is as follows. For any i P rns, define the function

l : Θn ˆ X t ˆ Ytn Ñ t0, 1, . . . , ntu, pθ1, . . . , θn, x, y1, . . . , ynq ÞÑ

n
ÿ

i“1

t
ÿ

τ“1

1thpθi, xτ q ‰ yiτu.

Since h is Borel-measurable, we can conclude that l is also Borel-measurable with the argument
analogous to that in the proof of Lemma 31. Thus, St,n “ l´1pt0uq is a Borel set. Then, the set

Ypθ1,...,θnqPΘn

␣

px, y1, . . . , ynq P X t ˆ Ytn : hpθi, xq “ yi for all i P rns
(

“ Ypθ1,...,θnqPΘn

␣

px, y1, . . . , ynq P X t ˆ Ytn : pθ1, . . . , θn, x, y1, . . . , ynq P St,n

(

is an analytic set for any t, n P N. Since PCpYtq is countable, we know that PCnpYtq is countable.
Since X is a Polish space, we have that X t ˆ PCnpYtq is an analytic set. In conclusion, XPCt is an
analytic set for any t P N.

Now, for any 0 ď n ď 8, define Pn :“
śn

t“1pX t ˆPCpYtq ˆYtq which is the set of positions
of length n of the game B and rPn :“

śn
t“1pXPCt ˆ Ytq Ď Pn. Define P :“ Y8

n“0Pn (with
P0 :“ H) to be the set of all positions of the Gale-Stewart game B. We can show the following
results according to Lemma 46

Corollary 47 For any 0 ď n ď 8, rPn is an analytic subset of the Polish space Pn.

Proof Since Yt and PCpYtq are countable and X is a Polish space, Pn “
śn

t“1pX tˆPCpYtqˆYtq

is also a Polish space for any 0 ď n ď 8. By Lemma 46, we know that XPCt ˆ Yt is an analytic
subset of X t ˆ PCpYtq ˆ Yt for any 0 ď t ă 8. Then, we have that rPn is an analytic subset of Pn

for any 0 ď n ă 8. For n “ 8, we have that

rP8 “ X8
n“1

˜

rPn ˆ

8
ź

t“n`1

pX t ˆ PCpYtq ˆ Ytq

¸

.

Since rPn ˆ
ś8

t“n`1pX t ˆPCpYtq ˆYtq is an analytic subset of P8 “
ś8

t“1pX t ˆPCpYtq ˆYtq

for any 1 ď n ă 8, we have that rP8 is also an analytic subset of P8.

Then, we can proceed to show that

Lemma 48 P8zWB is an analytic set.
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Proof We have

P8zWB “

!

px1, C1, y1, . . . q P

8
ź

t“1

pXPCt ˆ Ytq : for all τ P N, either Hx1,y1,...,xτ ,yτ ‰ H

or D s P rτ s s.t. ys R Cs

)

“ X8
τ“1

˜

´

YθPΘ Xτ
s“1

!

px, C1, y1, . . . , q P

8
ź

t“1

pXPCt ˆ Ytq : hpθ, xsq “ ys
)¯

Y

´

Yτ
s“1

!

px, C1, y1, . . . , q P

8
ź

t“1

pXPCt ˆ Ytq : ys R Cs

)¯

¸

.

By Lemma 45, Lemma 46, and Definition 3, for any s P N,

!

pθ, x, C1, y1, . . . , q P Θ ˆ

8
ź

t“1

pXPCt ˆ Ytq : hpθ, xsq “ ys
)

“

´

Θ ˆ

8
ź

t“1

pXPCt ˆ Ytq

¯

X

!

pθ, x, C1, y1, . . . , q P Θ ˆ

8
ź

t“1

pX t ˆ PCpYtq ˆ Ytq : hpθ, xsq “ ys
)

is an analytic set and

!

px, C1, y1, . . . , q P

8
ź

t“1

pXPCt ˆ Ytq : ys R Cs

)

“

´

8
ź

t“1

pXPCt ˆ Ytq

¯

X

!

px, C1, y1, . . . , q P

8
ź

t“1

pX t ˆ PCpYtq ˆ Ytq : ys R Cs

)

is also an analytic set. Thus, we have P8zWB is an analytic set.

We have the following lemma relating a winning strategy of PA in B to an infinite DSL tree of
H.

Lemma 49 PA has a winning strategy in B if and only if H has an infinite DSL tree.

Proof Suppose that PA has a winning strategy ξτ :
śτ´1

t“1 Yt Ñ X τ ˆ PCpYτ q for all τ P N in
B. Specifically, for any py1, ¨ ¨ ¨ , yτ´1q P

śτ´1
t“1 Yt, we have ξτ py1, ¨ ¨ ¨ , yτ´1q “ pxτ , Cq for some

xτ P X τ and C P PCpH|xτ q. For notational convenience, let ξτ py1, ¨ ¨ ¨ , yτ´1qp1q denote xτ and let
ξτ py1, ¨ ¨ ¨ , yτ´1qp2q denote C. Now, define the following infinite tree by induction.

• Let the root node of the tree be labelled with ξ1pHqp1q P X and have |ξ1pHqp2q| children
such that each edge between the root node and its children is labelled with a unique element
in ξ1pHqp2q.

• Suppose that for some τ P N, all the nodes in level 0, 1, . . . , τ have been defined, all the nodes
in level 0, 1, . . . , τ ´ 1 have been labelled, and the edges between each node in level k and its
children have been labelled for all k P t0, 1, ¨ ¨ ¨ , τ ´ 1u.
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Then, for each node v in level τ , denote the labels of the edges along the path eliminating from
the root node to node v with y1 P Y1, y2 P Y2, . . . , and yτ P Yτ . Now, let node v be labelled
with ξτ`1py1, ¨ ¨ ¨ , yτ qp1q and have |ξτ`1py1, ¨ ¨ ¨ , yτ qp1q| children such that each edge be-
tween node v to one of its children is labelled with a unique element in ξτ`1py1, ¨ ¨ ¨ , yτ qp2q.

By the definition of the winning strategy of PA in B, the infinite tree defined above is an infinite
DSL tree for H.

For the other direction, suppose that H has an infinite DSL tree. For any k P N0, denote the set
of nodes in the level k of the infinite DSL tree with Vk. Note that if there exists some τ P N such
that Ct Ď H|xt for all t P rτ s, H|x1,y1,...,xτ´1,yτ´1

‰ H, and yτ R Cτ , then PA wins in round τ of B.
Define the following strategy ξτ :

śτ´1
t“1 Yt Ñ X τ for PA in B and a corresponding node mapping

vτ :
śτ´1

t“1 Yt Ñ Vτ´1 by induction for all τ P N.

• For τ “ 1, let v1pHq denote the root node, ξ1pHqp1q denote the label of the root node of the
DSL tree, and ξ1pHqp2q denote the pseudo-cube in H|ξ1pHqp1q consisting of the labels of all
the edges between the root node and its children.

• Suppose that for some τ P t2, 3, . . . u, ηt and vt has been defined for all t P rτ ´ 1s. For any
y1 P Y1, . . . , yτ´1 P Yτ´1, there are two cases.

– If PA has not won in round τ ´ 1, define vτ py1, . . . , yτ´1q to be the node in Vτ´1

which is the ending node of the path in the DSL tree eliminating from the root along
the edges labelled with y1, . . . , yτ´1. Define ξτ py1, . . . , yτ´1qp1q to be the label of
vτ py1, . . . , yτ´1q. Define ξτ py1, . . . , yτ´1qp2q to be the pseudo-cube in H|ξτ py1,...,yτ´1qp1q

consisting of the labels of all the edges between vτ py1, . . . , yτ´1q and its children.

– If PA has already won, define vτ py1, . . . , yτ´1q to be the first child node of vτ´1py1, . . . , yτ´2q.
Define ξτ py1, . . . , yτ´1qp1q to be the label of vτ py1, . . . , yτ´1q. Define ξτ py1, . . . , yτ´1qp2q

to be the pseudo-cube in H|ξτ py1,...,yτ´1qp1q consisting of the labels of all the edges be-
tween vτ py1, . . . , yτ´1q and its children.

According to the definition of DSL trees and the rules of B, tξτuτPN is a winning strategy of PA in
B.

Moreover, we can ensure that there is a universally measurable winning strategy for PL in B
when H does not have an infinite DSL tree.

Proposition 50 If H does not have an infinite DSL tree, then there is a universally measurable
winning strategy for PL in B.

Proof Since B is a Gale-Stewart game, according to Lemma 49 and Bousquet et al. (2021, Theorem
A.1), we have that if H does not have an infinite DSL tree, then there is a winning strategy for PL

in B.
According to Lemma 45, Corollary 47, and Lemma 48, we know that B is a Gale-Stewart

game such that the action sets of PA pX t ˆ PCpYtq, t P Nq are Polish spaces, the action sets of
PL pYt, t P Nq are countable, and the set of winning sequences WB for PL is coanalytic. Then,
according to Bousquet et al. (2021, Theorem B.1), PL has a universally measurable winning strategy
(gt : Pt´1 ˆ X t ˆ PCpYtq Ñ Yt, t P N) for PL in B if H does not have an infinite DSL tree. For
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completeness, we provide the explicit definition of gt below for t P N according to the proof of
Bousquet et al. (2021, Theorem B.1). For any v P Pt´1, x P X t, and C P PCpYtq, enumerate Yt as
typt,iquiPN and define

gtpv, x, Cq :“

$

’

&

’

%

ypt,iq if valpv, x, C, ypt,jqq ě mintvalpvq, valpHqu for all 1 ď j ă i

and valpv, x, C, ypt,iqq ă mintvalpvq, valpHqu,

ypt,1q if valpv, x, C, ypt,jqq ě mintvalpvq, valpHqu for all j P N.

From now on we assume that H does not have an infinite DSL tree. Analogous to Definition 21,
we define the game value val : P Ñ ORD˚ according to Bousquet et al. (2021, Definition B.5). For
any τ P N, define the mapping ητ :

śτ
t“1

`

XPCt ˆ Yt
˘

Ñ t0, 1u by

ητ pv, x, C, yq :“

#

1 if valpv, x, C, yq ă mintvalpvq, valpHqu,

0 otherwise,

for any v P
śτ´1

t“1

`

XPCt ˆ Yt
˘

, px, Cq P XPCτ , and y P Yτ . Define the following online algorithm
which given a sequence of feature-label pairs px1, y1, x2, y2, . . . q P pX ˆ Yq8 chooses a sequence
of elements in Y8

τ“0

śτ
t“1pXPCt ˆ Ytq (“patterns”):

• Initialize τ0 Ð 1.

• At every time step t P N:

– Let τt Ð τt´1.

– For each C P PCpH|pxt´τt´1`1,...,xtqq:

* If

ητt´1

´

sx1, sC1,sy1, . . . ,sxτt´1´1, sCτt´1´1,syτt´1´1,

pxt´τt´1`1, . . . , xtq, C, pyt´τt´1`1, . . . , ytq
¯

“ 1 :

· Let sxτt´1 Ð pxt´τt´1`1, . . . , xtq, sCτt´1 Ð C, syτt´1
Ð pyt´τt´1`1, . . . , ytq,

and τt Ð τt´1 ` 1.
· Break.

We use pyt to denote the “ pattern avoidance mapping” defined after time step t of the above
algorithm; specifically, we define

pytpx
1
1, . . . , x

1
τtq :“YCPPCpH|

px1
1,...,x

1
τt

q
q

␣

y1 P C : ητtpsx1, sC1,sy1, . . . ,sxτt´1, sCτt´1,syτt´1, px1
1, . . . , x

1
τtq, C, y1q “ 1

(

for any t ě 0 and px1
1, . . . , x

1
τtq P X τt . From the above algorithm, we can also define the following

functions for any t ě 0,

Tt : pX ˆ Yqt Ñ t1, . . . , t ` 1u, px1, y1, . . . , xt, ytq ÞÑ τt,
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and

pYt : pX ˆ Yqt ˆ Y
t`1
s“1X

s Ñ Y
t`1
s“12

Ys
, px1, y1, . . . , xt, yt, x

1
1, . . . , x

1
τtq ÞÑ pytpx

1
1, . . . , x

1
τtq. (8)

We have the following proposition.

Proposition 51 For any sequence x1, y1, x2, y2, . . . that is consistence with H, we have

pyt´τt´1`1, . . . , ytq R pyt´1pxt´τt´1`1, . . . , xtq, τt´1 “ τt ă 8, and pyt´1 “ pyt

for all sufficiently large t.

Proof Suppose that there is an infinite sequence of times 1 ď t1 ă t2 ă ¨ ¨ ¨ such that

pyti´τti´1`1, . . . , ytiq P pyti´1pxti´τti´1`1, . . . , xtiq

for any i P N. Define xi :“ pxti´τti´1`1, . . . , xtiq, yi :“ pyti´τti´1`1, . . . , ytiq, Ci :“ sCτti´1 , and
vi :“ px1, C1, y1, . . . , xi, Ci, yiq for i P N. Since H does not have an infinite DSL tree and WB

is coanalytic, we have valpHq ă ω1. Thus, there is no infinite value-decreasing sequence, which,
together with the definition of pyt, implies that valpvkq “ ´1 for some k P N; i.e., PL wins at round
k of B under the sequence of positions vk. Since we have ensured that Ci Ď PCpH|xiq for all
i P N, we must have Hx1,y1,...,xk,yk “ H by the winning rule of PL in B. However, this contracts
the assumption that the sequence px1, y1, x2, y2, . . . q is consistent with H. Thus, there exists some
t0 P N such that

pyt´τt´1`1, . . . , ytq R pyt´1pxt´τt´1`1, . . . , xtq

for all t ě t0. Then, according to the definition of τt and pyt, we have τt´1 “ τt ď t0 ă 8 and
pyt´1 “ pyt for all t ě t0.

C.3. Universal measurability

In this section, we prove the following proposition about the universal measurability of the functions
Tt and pYt defined in the previous section.

Proposition 52 For any t ě 0, Tt and pYt are universally measurable.

We start with some definitions of the building blocks for analyzing the universal measurability. For
any t P N and any s P rts, fix an arbitrary sequence 1 ď j1 ď j2 ď ¨ ¨ ¨ ď js ď t ´ s ` 1. Define
j0 :“ 0 and J0 :“ 0. For any i P rss, define

Ji :“1 `

i
ÿ

k“2

rk ´ ppjk´1 ` k ´ 2 ´ jk ` 1q _ 0qs

“
ipi ` 1q

2
´

i
ÿ

k“2

ppjk´1 ` k ´ 1 ´ jkq _ 0q

and

Ii :“Ji´1 ` 1 ´ ppji´1 ` i ´ 2 ´ ji ` 1q _ 0q “ Ji´1 ` ppji ´ ji´1 ´ i ` 2q ^ 1q .
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In this section, for any k P N, i, j P rks, and k-tuple z “ pz1, z2, . . . , zkq, let zi:j denote the
subtuple pzi, zi`1, . . . , zjq if i ď j and denote H if i ą j. We assume the convention that H “ H.

For any 0 ď i ď s, define

Fj1,...,ji :“
␣

px1, C1, y1 . . . , xi, Ci, yiq P

i
ź

k“1

pX k ˆ PCpYkq ˆ Ykq :

x
1:pjk´1`k´1´jkq

k “ x
pjk´jk´1`1q:pk´1q

k´1 and

y
1:pjk´1`k´1´jkq

k “ y
pjk´jk´1`1q:pk´1q

k´1 for all 2 ď k ď i
(

.

Then, Fj1,...,ji is a closed subset of
śi

k“1pX k ˆ PCpYkq ˆ Ykq and is also analytic. Define

rFj1,...,ji :“ Fj1...,ji ˆ

8
ź

k“i`1

pX k ˆ PCpYkq ˆ Ykq.

Then, rFj1,...,ji is an analytic subset of
ś8

k“1pX k ˆ PCpYkq ˆ Ykq.
For any C1 P PCpY1q, . . . , Ci P PCpY iq, define Define

ZC1,...,Ci :“

˜

i
ź

k“1

pX k ˆ tCku ˆ Ykq

¸

and

rZC1,...,Ci :“

˜

i
ź

k“1

pX k ˆ tCku ˆ Ykq

¸

ˆ

˜

8
ź

k“i`1

pX k ˆ PCpYkq ˆ Ykq

¸

.

Since PCpYtq is countable by Lemma 45, we have that ZC1,...,Ci is an analytic subset of
śi

k“1pX kˆ

PCpYkq ˆ Ykq. Thus, rZC1,...,Ci is an analytic subset of
ś8

k“1pX k ˆ PCpYkq ˆ Ykq.
Define

XYj1,...,ji,C1,...,Ci :“
!

px1, y1, . . . , xJi , yJiq P pX ˆ YqJi :

px1, C1, y1, xI2:pI2`1q, C2, yI2:pI2`1q, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1qq P rPi

)

.

Then, we have

XYj1,...,ji,C1,...,Ci

“
ď

pC1
1,...,C

1
iqP

śi
k“1 PCpYkq

ď

´

x
1:ppj1`1´j2q_0q

2 ,y
1:ppj1`1´j2q_0q

2 ,...,x
1:ppji´1`i´1´jiq_0q

i ,y
1:ppji´1`i´1´jiq_0q

i

¯

P
śi

k“1pXˆYq
1:ppjk´1`k´1´jkq_0q

!

px1, y1, . . . , xJi , yJiq P pX ˆ YqJi :
´

x1, C
1
1, y1,

`

x
1:ppj1`1´j2q_0q

2 , xpJ1`1q:J2

˘

, C 1
2,
`

y
1:ppj1`1´j2q_0q

2 , ypJ1`1q:J2

˘

, ¨ ¨ ¨ ,

`

x
1:ppji´1`i´1´jiq_0q

i , xpJi´1`1q:Ji

˘

, C 1
i,
`

y
1:ppji´1`i´1´jiq_0q

i , ypJi´1`1q:Ji

˘

¯

P rPi X Fj1,...,ji X ZC1,...,Ci

)

.
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Since Pi, Fj1,...,ji , and ZC1,...,Ci are analytic sets, we can conclude that XYj1,...,ji,C1,...,Ci is an
analytic subset of pX ˆ YqJi .

Define the set

Aj1,...,ji,C1,...,Ci

:“
ď

wP
ś8

t“i`1pXPCtˆYtq

␣

px1, y1, . . . , xJi , yJiq P pX ˆ YqJi :

px1, C1, y1, xI2:pI2`1q, C2, yI2:pI2`1q, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q,wq P P8zWB

(

“
ď

wP
ś8

t“i`1pXPCtˆYiq

ď

pC1
1,...,C

1
iqP

śi
k“1 PCpYkq

ď

´

x
1:ppj1`1´j2q_0q

2 ,y
1:ppj1`1´j2q_0q

2 ,...,x
1:ppji´1`i´1´jiq_0q

i ,y
1:ppji´1`i´1´jiq_0q

i

¯

P
śi

k“1pXˆYq
1:ppjk´1`k´1´jkq_0q

!

px1, y1, . . . , xJi , yJiq P pX ˆ YqJi :
´

x1, C
1
1, y1,

`

x
1:ppj1`1´j2q_0q

2 , xpJ1`1q:J2

˘

, C 1
2,
`

y
1:ppj1`1´j2q_0q

2 , ypJ1`1q:J2

˘

, ¨ ¨ ¨ ,

`

x
1:ppji´1`i´1´jiq_0q

i , xpJi´1`1q:Ji

˘

, C 1
i,
`

y
1:ppji´1`i´1´jiq_0q

i , ypJi´1`1q:Ji

˘

,w
¯

P pP8zWBq X rFj1,...,ji X rZC1,...,Ci

)

.

By Lemma 48 and the analysis above, P8zWB, rFj1,...,ji , and rZC1,...,Ci are analytic subsets of P8.
Moreover,

śi
k“1pX ˆYq1:ppjk´1`k´1´jkq_0q is a Polish space. Thus, Aj1,...,ji,C1,...,Ci is an analytic

subsets of pX ˆ YqJi .

For any κ P ORD Y t´1u, any i P t2, 3, . . . , su, and any C1 P PCpY1q, . . . , Ci P PCpY iq,
define the sets

Ai :“
ď

wP
ś8

t“i`1pXPCtˆYtq

tv P Pi : pv,wq P P8zWBu,

Aκ
i :“ tv P Ai : valpvq ą κu,

and

Aκ
j1,...,ji,C1,...,Ci

:“
!

px1, y1, . . . , xJi , yJiq P Aj1,...,ji,C1,...,Ci :

val
`

x1, C1, y1, xI2:pI2`1q, C2, yI2:pI2`1q, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q

˘

ą κ
)

.
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When κ “ ´1, we have A´1
j1,...,ji,C1,...,Ci

“ Aj1,...,ji,C1,...,Ci and A´1
i “ Ai. According to Bousquet

et al. (2021, Corollary B.11), Aκ
i is an analytic subset of Pi for any ´1 ď κ ă ω1. Then, since

Aκ
j1,...,ji,C1,...,Ci

“
ď

pC1
1,...,C

1
iqP

śi
k“1 PCpYkq

ď

´

x
1:ppj1`1´j2q_0q

2 ,y
1:ppj1`1´j2q_0q

2 ,...,x
1:ppji´1`i´1´jiq_0q

i ,y
1:ppji´1`i´1´jiq_0q

i

¯

P
śi

k“1pXˆYq
1:ppjk´1`k´1´jkq_0q

!

px1, y1, . . . , xJi , yJiq P pX ˆ YqJi :
´

x1, C
1
1, y1,

`

x
1:ppj1`1´j2q_0q

2 , xpJ1`1q:J2

˘

, C 1
2,
`

y
1:ppj1`1´j2q_0q

2 , ypJ1`1q:J2

˘

, ¨ ¨ ¨ ,

`

x
1:ppji´1`i´1´jiq_0q

i , xpJi´1`1q:Ji

˘

, C 1
i,
`

y
1:ppji´1`i´1´jiq_0q

i , ypJi´1`1q:Ji

˘

¯

P Aκ
i X Fj1,...,ji X ZC1,...,Ci

)

,

we can conclude that Aκ
j1,...,ji,C1,...,Ci

is analytic subset of pX ˆ YqJi for any ´1 ď κ ă ω1.
According to Lemma 49 and the definition of the game value (Bousquet et al., 2021, Definition

B.5), we have valpHq ă Ω under the assumption that H does not have an infinite DSL tree. Then,
by Bousquet et al. (2021, Lemma B.7), we immediately have the following lemma.

Lemma 53 valpHq ă ω1 when H does not have an infinite DSL tree.

Now, for any m P N with ji ď m ď ji`1, any pC1, . . . , Ci`1q P
śi`1

k“1 PCpYkq, and any y1 “

py1
1, . . . , y

1
pm´ji`1q^pi`1q

q P Ypm´ji`1q^pi`1q, define the set

Dj1,...,ji,m,C1,...,Ci,Ci`1,y1

:“
!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

px1, y1, . . . , xJi , yJi , px1
k, y

1
kq

ppm´ji`1q^pi`1qq

k“1 q P XYj1,...,ji,m,C1,...,Ci,Ci`1 ,

val
`

x1, C1, y1, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q,
`

xpJi`1´ppji`i´mq_0qq:Ji , x
1
1:ppm´ji`1q^pi`1qq

˘

, Ci`1,
`

ypJi`1´ppji`i´mq_0qq:Ji , y
1
1:ppm´ji`1q^pi`1qq

˘˘

ă min
␣

valpHq, val
`

x1, C1, y1, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q

˘(

)

.

We prove the following result about the above set.

Lemma 54 For any m P N with ji ď m ď ji`1, any pC1, . . . , Ci`1q P
śi`1

k“1 PCpYkq, and
any y1 “ py1

1, . . . , y
1
pm´ji`1q^pi`1q

q P Ypm´ji`1q^pi`1q, Dj1,...,ji,m,C1,...,Ci,Ci`1,y1 is universally
measurable.
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Proof We can write

Dj1,...,ji,m,C1,...,Ci,Ci`1,y1

“
ď

´1ďκăvalpHq

!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

px1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1 q P XYj1,...,ji,m,C1,...,Ci,Ci`1 ,

val
`

x1, C1, y1, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q,
`

xpJi`1´ppji`i´mq_0qq:Ji , x
1
1:ppm´ji`1q^pi`1qq

˘

,

Ci`1,
`

ypJi`1´ppji`i´mq_0qq:Ji , y
1
1:ppm´ji`1q^pi`1qq

˘˘

ď κ,

val
`

x1, C1, y1, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q

˘

ą κ
)

“
ď

´1ďκăvalpHq

!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P XYj1,...,ji,m,C1,...,Ci,Ci`1zAκ
j1,...,ji,m,C1,...,Ci,Ci`1

,
`

x1, y1, . . . , xJi , yJi
˘

P Aκ
j1,...,ji,C1,...,Ci

)

“
ď

´1ďκăvalpHq

´!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P XYj1,...,ji,m,C1,...,Ci,Ci`1zAκ
j1,...,ji,m,C1,...,Ci,Ci`1

)

č

´

Aκ
j1,...,ji,C1,...,Ci

ˆ X pm´ji`1q^pi`1q
¯¯

.

By Lemma 53 and the previous results, for any ´1 ď κ ă valpHq ă ω1, we have that Aκ
j1,...,ji,C1,...,Ci

ˆ

X pm´ji`1q^pi`1q is an analytic subset of pX ˆ YqJi ˆ X pm´ji`1q^pi`1q. Moreover, for any ´1 ď

κ ă valpHq ă ω1, we have

!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P XYj1,...,ji,m,C1,...,Ci,Ci`1zAκ
j1,...,ji,m,C1,...,Ci,Ci`1

)

“

!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P XYj1,...,ji,m,C1,...,Ci,Ci`1

)

I!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P Aκ
j1,...,ji,m,C1,...,Ci,Ci`1

)
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with
!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P XYj1,...,ji,m,C1,...,Ci,Ci`1

)

“
ď

y2PYpm´ji`1q^pi`1q

!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

2
kq

pm´ji`1q^pi`1q

k“1

˘

P XYj1,...,ji,m,C1,...,Ci,Ci`1

č

´

pX ˆ YqJi ˆ

pm´ji`1q^i
ź

k“1

pX ˆ ty1
kuq

¯)

and
!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P Aκ
j1,...,ji,m,C1,...,Ci,Ci`1

)

“
ď

y2PYpm´ji`1q^pi`1q

!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

2
kq

pm´ji`1q^pi`1q

k“1

˘

P Aκ
j1,...,ji,m,C1,...,Ci,Ci`1

č

´

pX ˆ YqJi ˆ

pm´ji`1q^i
ź

k“1

pX ˆ ty1
kuq

¯)

.

Since we have proved that XYj1,...,ji,m,C1,...,Ci,Ci`1 and Aκ
j1,...,ji,m,C1,...,Ci,Ci`1

are analytic subsets
of pX ˆ YqJi`ppm´ji`1q^pi`1qq, we can conclude that the set

!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P XYj1,...,ji,m,C1,...,Ci,Ci`1

)

and the set
!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P Aκ
j1,...,ji,m,C1,...,Ci,Ci`1

)

are both analytic subsets of pX ˆ YqJi ˆ X pm´ji`1q^pi`1q. Therefore, the set
!

px1, y1, . . . , xJi , yJi , x
1
1:ppm´ji`1q^pi`1qqq P pX ˆ YqJi ˆ X pm´ji`1q^pi`1q :

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P XYj1,...,ji,m,C1,...,Ci,Ci`1zAκ
j1,...,ji,m,C1,...,Ci,Ci`1

)

is universally measurable. It follows from the fact that valpHq ă ω1 that Dj1,...,ji,m,C1,...,Ci,Ci`1,y1

is universally measurable.
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Next, we define the set

Dj1,...,ji,m,C1,...,Ci,Ci`1

:“
!

px1, y1, . . . , xJi , yJi , px1
k, y

1
kq

ppm´ji`1q^pi`1qq

k“1 q P XYj1,...,ji,m,C1,...,Ci,Ci`1 :

val
`

x1, C1, y1, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q,
`

xppJi`1´ppji`i´mq_0qq:Jiq, x
1
1:ppm´ji`1q^pi`1qq

˘

, Ci`1,
`

yppJi`1´ppji`i´mq_0qq:Jiq, y
1
1:ppm´ji`1q^pi`1qq

˘˘

ă min
␣

valpHq, val
`

x1, C1, y1, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q

˘(

)

and prove the following lemma.

Lemma 55 For any m P N with ji ď m ď ji`1 and any pC1, . . . , Ci`1q P
śi`1

k“1 PCpYkq,
Dj1,...,ji,m,C1,...,Ci,Ci`1 is universally measurable.

Proof We have

Dj1,...,ji,m,C1,...,Ci,Ci`1

“
ď

´1ďκăvalpHq

!

px1, y1, . . . , xJi , yJi , px1
k, y

1
kq

ppm´ji`1q^pi`1qq

k“1 q P XYj1,...,ji,m,C1,...,Ci,Ci`1 :

val
`

x1, C1, y1, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q,
`

xppJi`1´ppji`i´mq_0qq:Jiq, x
1
1:ppm´ji`1q^pi`1qq

˘

,

Ci`1,
`

yppJi`1´ppji`i´mq_0qq:Jiq, y
1
1:ppm´ji`1q^pi`1qq

˘˘

ď κ,

val
`

x1, C1, y1, . . . , xIi:pIi`i´1q, Ci, yIi:pIi`i´1q

˘

ą κ
)

“
ď

´1ďκăvalpHq

!

`

x1, y1, . . . , xJi , yJi , px1
k, y

1
kq

pm´ji`1q^pi`1q

k“1

˘

P

XYj1,...,ji,m,C1,...,Ci,Ci`1zAκ
j1,...,ji,m,C1,...,Ci,Ci`1

:
`

x1, y1, . . . , xJi , yJi
˘

P Aκ
j1,...,ji,C1,...,Ci

)

“
ď

´1ďκăvalpHq

´

`

XYj1,...,ji,m,C1,...,Ci,Ci`1zAκ
j1,...,ji,m,C1,...,Ci,Ci`1

˘

č

`

Aκ
j1,...,ji,C1,...,Ci

ˆ X pm´ji`1q^pi`1q
˘

¯

.

Since we have proved that XYj1,...,ji,m,C1,...,Ci,Ci`1 , Aκ
j1,...,ji,m,C1,...,Ci,Ci`1

, and Aκ
j1,...,ji,C1,...,Ci

are
analytic and valpHq ă ω1 (Lemma 53), we can conclude that Dj1,...,ji,m,C1,...,Ci,Ci`1 is universally
measurable.

Then, the following set

Dj1,...,ji,m,C1,...,Ci :“
ď

Ci`1PPCpYi`1q

Dj1,...,ji,m,C1,...,Ci,Ci`1

is also universally measurable because PCpY i`1q is countable.
Before proceeding to the next step, we will need the following lemmas regarding universal

measurability. For any measure spaces pA,A q and pB,Bq, let A ˚ and B˚ denote the universal
completion of A and B, respetively. Let A ˆ B denote the product σ-algebra of A and B on
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pAˆBq. Note that when A and B are Polish spaces, A ˆ B is also the Borel σ-algebra of AˆB.
A function f : A Ñ B is called A {B-measurable if f´1pEq P A for any E P B. We prove the
following lemmas.

Lemma 56 For any two measurable space pA,A q and pB,Bq, any function f : A Ñ B is
A ˚{B˚-measurable if and only if f is A ˚{B-measurable.

Proof Suppose that f is A ˚{B-measurable. For any probability measure µA on pA,A q, let
pA,A ˚

µA
, µ˚

Aq denote the completion of pA,A , µAq. Then, pA,A ˚, µ˚
Aq is also a probability space

because A ˚ Ď A ˚
µA

. Since f is A ˚{B-measurable, we can define µB : B Ñ r0, 1s, E ÞÑ

µ˚
Apf´1pEqq which is the pushforward of µ˚

A by f .
For any S P B˚, there exist U, V P B such that U Ď S Ď V and µBpV zUq “ 0. Then,

we have f´1pUq Ď f´1pSq Ď f´1pV q and f´1pUq, f´1pV q P A ˚ which implies that there
exist Ul, Uu, Vl, Vu P A such that Ul Ď f´1pUq Ď Uu, Vl Ď f´1pV q Ď Vu and µApUuzUlq “

µApVuzVlq “ 0. Moreover, it follows from the definition of µB that

µ˚
Apf´1pV qzf´1pUqq “ µ˚

Apf´1pV zUqq “ µBpV zUq “ 0.

Since µ˚
A is the completion of µA, there exists K P A with K Ě f´1pV qzf´1pUq and µApKq “ 0.

Therefore, we have Ul Ď f´1pUq Ď f´1pSq Ď f´1pV q Ď Vu and

VuzUl Ď pVuzVlq Y pUuzUlq Y K.

Since µApVuzVlq “ µApUuzUlq “ µApKq “ 0, we have µApVuzUlq “ 0. Thus, by the arbitrariness
of µ, we can conclude that f´1pSq P A ˚, which implies that f is A ˚{B˚.

The other direction is trivial.

Lemma 57 Consider any n P N Polish space A1, . . . , An with their Borel σ-algebras denoted as
A1, . . . ,An, respectively. For any m P rns, any sequence 1 ď i1 ă i2 ă ¨ ¨ ¨ ă im ď n, and any
set E P p

śm
k“1 Aikq˚, then we have

rE :“

#

px1, . . . , xnq P

n
ź

j“1

Aj : pxi1 , . . . , ximq P E

+

P

˜

n
ź

j“1

Aj

¸˚

.

Proof Consider the following collections of subsets of
śn

j“1Aj

G :“

##

px1, . . . , xnq P

n
ź

j“1

Aj : xi1 P B1, . . . , xim P Bm

+

: B1 P Ai1 , . . . , Bm P Aim

+

.

It is easy to see that G is a π-system on
śn

j“1Aj . Define G :“ σ pGq to be the σ-algebra generated
by G and define following the collection of subsets of

śn
j“1Aj

C :“

##

px1, . . . , xnq P

n
ź

j“1

Aj : pxi1 , . . . , ximq P S

+

: S P

m
ź

j“1

Aik

+

.
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It is obvious that C is a σ-algebra on
śn

j“1Aj . Since G Ď C, by Dynkin’s π-λ theorem, we have
G “ σpGq Ď C.

Next, define the following collection of subsets of
śm

k“1Aik

F :“
!

G|śm
k“1 Aik

: G P G
)

where for any G Ď
śn

j“1Aj , we define

G|śm
k“1 Aik

:“
␣

pxi1 , . . . , ximq : Dpx1
1, . . . , x

1
nq P G s.t. x1

ik
“ xik , @ j P rns

(

. (9)

We now show that F is a σ-algebra on
śm

k“1Aik .

• Since
śn

j“1Aj P G, we have
śm

k“1Aik P F.

• For any G1
1, G

1
2 P F with G1

1 Ď G1
2, there exists Gl P G such that G1

l “ Gl|
śm

k“1 Aik
for

l “ 1, 2. By (9) and the facts that G1
1 Ď G1

2 and G Ď C, we must have G1 Ď G2. Since G is
a σ-algebra, we have G2zG1 P G. By G Ď C again, we have pG2zG1q|śm

k“1 Aik
“ G1

2zG1
1,

which implies that G2zG1 P F.

• For any G1
1, G

1
2, ¨ ¨ ¨ P F, there exists G1, G2, ¨ ¨ ¨ P G such that G1

l “ Gl|
śm

k“1 Aik
for all

l P N. Then, we have Y8
l“1Gl P G. Since G Ď C, we have Y8

l“1G
1
l “ pY8

l“1Glq|śm
k“1 Aik

P F.

Thus, F is a σ-algebra on
śm

k“1Aik .
By the definition of product σ-algebras, we have

śm
k“1 Aik “ σpCq where

C :“

#

m
ź

k“1

Bk : B1 P Ai1 , . . . , Bm P Aim

+

is a π-system on
śm

k“1Aik . Obviously, C Ď F. Then, by Dynkin’s π-λ theorem, we have
śm

k“1 Aik “ σpCq Ď F. By the definition of F and C as well as the fact that G Ď C, we have
C Ď G. It follows that C “ G. Since G is a subset of the collection of all rectangles on

śn
j“1Aj ,

we have G Ď
śn

j“1 Aj . Thus, C Ď
śn

j“1 Aj .
For any probability measure µ on

śn
j“1 Aj , consider its projection µi1,...,im :“ µ|śm

k“1 Aik
on

śm
k“1Aik defined by

µi1,...,impSq :“ µ

˜#

px1, . . . , xnq P

n
ź

j“1

Aj : pxi1 , . . . , ximq P S

+¸

@S P

m
ź

k“1

Aik . (10)

Since we have proved C Ď
śn

j“1 Aj , the above definition makes sense and

˜

m
ź

k“1

Aik ,
m
ź

k“1

Aik , µi1,...,im

¸

is indeed a probability space.
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Since E P p
śm

k“1 Aikq˚ and µi1,...,im is a probability measure on p
śm

k“1Aik ,
śm

k“1 Aikq, there
exist sets U, V P

śm
k“1 Aik such that U Ď E Ď V and µi1,...,impV zUq “ 0. We define

rU :“

#

px1, . . . , xnq P

n
ź

j“1

Aj : pxi1 , . . . , ximq P U

+

and

rV :“

#

px1, . . . , xnq P

n
ź

j“1

Aj : pxi1 , . . . , ximq P V

+

.

By definition, we have rU, rE P C Ď
śn

j“1 Aj with rU Ď rE Ď rV . Moreover, by (10), we have

µprV zrUq “ µi1,...,impV zUq “ 0.

Thus, we can conclude that rE P

´

śn
j“1 Aj

¯˚

.

Now, we define the sets

D`

t,pj1,...,jiq,m,pC1,...,Ciq,Ci`1

:“
!

px1, y1, . . . , xt, ytq P pX ˆ Yqt :
`

xj1 , yj1 , xppj1`1q_j2q:pj2`1q, yppj1`1q_j2q:pj2`1q, . . . ,

xppji´1`i´1q_jiq:pji`i´1q, yppji´1`i´1q_jiq:pji`i´1q, xppji`iq_mq:pm`iq, yppji`iq_mq:pm`iq

˘

P

Dj1,...,ji,m,C1,...,Ci,Ci`1

)

,

D´

t,pj1,...,jiq,m,pC1,...,Ciq

:“
!

px1, y1, . . . , xt, ytq P pX ˆ Yqt :
`

xj1 , yj1 , xppj1`1q_j2q:pj2`1q, yppj1`1q_j2q:pj2`1q, . . . ,

xppji´1`i´1q_jiq:pji`i´1q, yppji´1`i´1q_jiq:pji`i´1q, xppji`iq_mq:pm`iq, yppji`iq_mq:pm`iq

˘

P
´

XYj1,...,ji,C1,...,Ci ˆ pX ˆ Yqpm´ji`1q^pi`1q
¯

zDj1,...,ji,m,C1,...,Ci

)

,

and

D_
t,j1,...,ji,C1,...,Ci,y1

:“
ď

Ci`1PPCpYi`1q

!

px1, y1, . . . , xt, yt, x1q P pX ˆ Yqt ˆ X i`1 :

`

xj1 , yj1 , xppj1`1q_j2q:pj2`1q, yppj1`1q_j2q:pj2`1q, . . . ,

xppji´1`i´1q_jiq:pji`i´1q, yppji´1`i´1q_jiq:pji`i´1q, x1
˘

P Dj1,...,ji,t`1,C1,...,Ci,Ci`1,y1

)

.

Since we have proved that the sets Dj1,...,ji,m,C1,...,Ci,Ci`1 , XYj1,...,ji,C1,...,Ci , Dj1,...,ji,m,C1,...,Ci , and
Dj1,...,ji,t`1,C1,...,Ci,Ci`1,y1 are universally measurable, by Lemma 57, we know that

D`

t,pj1,...,jiq,m,pC1,...,Ciq,Ci`1
, D´

t,pj1,...,jiq,m,pC1,...,Ciq
, and D_

t,j1,...,ji,C1,...,Ci,y1
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are also universally measurable.
For any t ě 1, 0 ď i ă t, 1 ď j1 ď ¨ ¨ ¨ ď ji ď t ´ i, pC1, . . . , Ciq P

śi
k“1 PCpY iq, and

y1 P Y i`1, define the set
Define the following sets

Vt,j1,...,js,C1,...,Cs :“
`

pD´
1,H,1,Hqj1´1 ˆ D`

1,H,1,H,C1
ˆ pX ˆ Yqt´j1

˘

č

“

X
s´1
i“1

``

X
ji`1´1
m“ji

D´

t,pj1,...,jiq,m,pC1,...,Ciq

˘

X D`

t,pj1,...,jiq,ji`1,pC1,...,Ciq,Ci`1

˘‰

č

`

X
t´s
m“js

D´

t,pj1,...,jsq,m,pC1,...,Csq

˘

and

Vt,j1,...,js :“
ď

pC1,...,CsqP
śs

k“1 PCpYkq

Vt,j1,...,js,C1,...,Cs .

By the results above, we can conclude that Vt,j1,...,js,C1,...,Cs is universally measurable. Thus,
Vt,j1,...,js is also universally measurable.

Finally, we can complete the proof.
Proof of Proposition 52 First note that the function T0 : H Ñ t1u is obviously universally
measurable.

For any t ě 1 and any 1 ď s ď t ` 1, we have

T´1
t psq “ Y1ďj1ď¨¨¨ďjs´1ďt´s`2Vt,j1,...,js´1

which is a universally measurable set according to the results proved above. Thus, Tt is universally
measurable.

For any t ě 1, any 1 ď s ď t , any y˚ “ py˚
1 , . . . , y

˚
s q P Ys, define Sy˚ “ tS Ď Ys : y˚ P Su.

Then, we have

pY
´1

t´1pSy˚q “
ď

1ďj1ď¨¨¨ďjs´1ďt´s`1

ď

pC1,...,Cs´1qP
śs´1

k“1 PCpYkq
”

`

Vt´1,j1,...,js´1,C1,...,Cs´1 ˆ X s
˘

X D_
t´1,j1,...,js´1,C1,...,Cs´1,y˚

ı

which is a universally measurable set according to the results proved above. Then, by Lemma 56,
pYt´1 is universally measurable.

C.4. Uniform rate implies universal rate

Now, we apply the pattern avoidance functions defined in the previous section into a template for
building learning algorithms in the probabilistic setting. Any learning algorithm with some guaran-
teed uniform rate for finite DS dimensional hypothesis classes can be plugged into this template to
construct a learning algorithm that achieves the same universal rate for classes without an infinite
DSL tree.

For any k ě 1, any n ě k, any function g : X k Ñ 2Y
k
, and any sequence S “ px1, . . . , xnq P

X n, define the concept set

HpS, gq :“ th P H|S : phpi1q, . . . , hpikqq R gpxi1 , . . . , xikq for all distinct 1 ď i1, . . . , ik ď nu.
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For any t ě 0, n ě τt, and any sequence S “ px1, . . . , xnq P X n, define the concept set

HpS,pytq :“ th P H|S : phpi1q, . . . , hpiτtqq R pytpxi1 , . . . , xiτt q for all distinct 1 ď i1, . . . , iτt ď nu.

(11)

We have the following lemma.

Lemma 58 For any t ě 0 and any sequence px1, y1, . . . , xt, ytq P pX ˆ Yqt (where we say
px1, y1, . . . , xt, ytq “ H if t “ 0) that is consistent with H, any n ě τt, and any S :“ px1

1, . . . , x
1
nq P

X n, we have dimpHpS,pytqq ă τt, where dimpHpS,pytqq denotes the DS dimension of HpS,pytq.

Proof Define k :“ τt. If dimpHpS,pytqq ě k, then there exists a sequence pi1, . . . , ikq and pseudo-
cube C P PCpHpS,pytq|pi1,...,ikqq. Define sxk “ pxi1 , . . . , xikq. Then, by the definition of pyt, for any
y1 P C, we have that

valpsx1, sC1,sy1, . . . ,sxk´1, sCk´1,syk´1,sxk, C, y1q

ěmintvalpsx1, sC1,sy1, . . . ,sxk´1, sCk´1,syk´1q, valpHqu. (12)

Since H does not have an infinite DSL tree; i.e., PA does not have a winning strategy, we have that
valpHq ă Ω and further by Bousquet et al. (2021, Lemma B.7), valpHq ă ω1. Here, we claim that
valpHq ě 0. Consider the sequence w “ px1, C1, y1, . . . q P P8 constructed as follows. First, fix
a hypothesis h P H. For each s ě 1, pick arbitrary pxs, Csq P XPCs, set ys “ hpxsq. Then, it is
obvious that w R WB. Thus, we have valpHq ě 0.

Suppose that for some j P t0, 1, . . . , k ´ 2u, we have that sys P sCs and

0 ď valpsx1, sC1,sy1, . . . ,sxs, sCs,sysq ă valpHq

for all s P t1, . . . , ju. Then, by the definition of pyt, we have

valpsx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1q ă valpsx1, sC1,sy1, . . . ,sxj , sCj ,syjq ă valpHq.

If syj`1 R sCj`1, then, for any w1 P
ś8

s“j`2 pXPCs ˆ Ysq, we claim that

w :“ psx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1,w1q R WB.

This is because for any τ P rjs, we must have H|
sx1,sy1,...,sxτ ,syτ ‰ H since valpsx1,sy1, sC1, . . . ,sxτ , sCτ ,syτ q ě

0 and sys P Cs for any s P rjs by the induction hypothesis. Then, if syj`1 R sCj`1, we must have
w R WB.

Since psx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1,w1q R WB for any w1 P
ś8

s“j`2 pXPCs ˆ Ysq, there is
an infinite active tree starting from sx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1, which implies that

valpsx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1q “ Ω.

However, this cannot happen because we have shown that valpsx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1q ă

valpHq ă ω1. Thus, it must hold that syj`1 P sCj`1 by contradiction.
Then, we claim that

valpsx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1q ě 0.
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If on the contrary valpsx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1q “ ´1, we will have H|
sx1,sy1,...,sxj`1,syj`1

“

H because we have shown that sys P sCs for any s P rj`1s and H|
sx1,sy1,...,sxj ,sxj ‰ H. However, since

px1, y1, . . . , xt, ytq is a consistent sequence with H, we must have H|
sx1,sy1,...,sxj`1,syj`1

‰ H. Thus,
there is a contradiction and we must have valpsx1, sC1,sy1, . . . ,sxj`1, sCj`1,syj`1q ě 0.

Now, by induction, we can conclude that that sys P sCs and

0 ď valpsx1, sC1,sy1, . . . ,sxs, sCs,sysq ă valpHq ă ω1

for all s P t1, . . . , k ´ 1u. For any y2 P YkzC, we must have

valpsx1, sC1,sy1, . . . ,sxk´1, sCk´1,syk´1,sxk, C, y2q “ Ω

according to the same arguments we used for the proof that syj`1 P sCj`1 in the induction step.
Then, by (12), we have that

valpsx1, sC1,sy1, . . . ,sxk´1, sCk´1,syk´1,sxk, C, yq

ěmintvalpsx1, sC1,sy1, . . . ,sxk´1, sCk´1,syk´1q, valpHqu

for any y P Yk. However, this contradicts Bousquet et al. (2021, Propostion B.8) since

0 ď valpsx1, sC1,sy1, . . . ,sxk´1, sCk´1,syk´1q ă ω1.

Thus, we have dimpHpS,pytqq ă k.

Let us fix a H-realizable distribution P on X ˆ Y . Let pΩP ,FP ,Pq denote the underlying
probability space. Let pX1, Y1q, pX2, Y2q, . . . be i.i.d. random variables on pΩP ,FP ,Pq with
pX1, Y1q „ P . We have the following result regarding the consistency of the random sequence
ppXt, Ytqqtě1 with H.

Lemma 59 If P is H-realizable and pX1, Y1q, pX2, Y2q, . . . are i.i.d. random variables with dis-
tribution P , then, with probability one, for any t ě 1, there exists some h P H such that hpXsq “ Ys
for all s P rts.

The proof of Lemma 59 can be found in the proof of Bousquet et al. (2021, Lemma 4.3.).
For any k P N and function g : X k Ñ 2Y

k
where 2S denotes the power set of the set S, we

define

perpgq “ PrpY1, . . . , Ykq P gpX1, . . . , Xkqs.

Now, let

τt :“ TtpX1, Y1, . . . , Xt, Ytq,

pytpx1, . . . , xτtq :“ pYtpX1, Y1, . . . , Xt, Yt, x1, . . . , xτtq.

We first prove the following result when perpgq “ 0.

Lemma 60 For any k, n P N with n ě k, any function g : X k Ñ 2Y
k
, and any sequence

S “ ppXi, Yiqqni“1 „ Pn, if perpgq “ 0, then ppi, Yiqqni“1 is consistent with HpS|X , gq and D is
HpS|X , gq-realizable a.s., where S|X :“ pX1, X2 . . . , Xnq and D denotes the uniform distribution
over tpi, Yiquni“1, i.e., Dptpi, Yiquq “ 1

n for any i P rns.
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Proof Since S „ Pn, according to Lemma 59, there exists a random variable H : Ω Ñ H such that
for P-a.e. ω P Ω, h “ Hpωq P H satisfies that hpXipωqq “ Yipωq for any i P rns. Since perpgq “ 0,
we have that for P-a.e. ω P Ω, pYi1pωq, . . . , Yikpωqq R gpXi1pωq, . . . , Xikpωqq for all distinct
1 ď t1, . . . , tk ď n. Thus, for P-a.e. ω P Ω, h “ Hpωq satisfies that phpXi1pωqq, . . . , hpXikpωqqq R

gpXi1pωq, . . . , Xikpωqq for all distinct 1 ď t1, . . . , tk ď n.
Define the random variable sH : Ω Ñ Y rns by sHpωqpiq :“ HpωqpXipωqq “ hpXipωqq where

h “ Hpωq. Then, by the definition of HpS|X , gq and sh, we have that for P-a.e. ω P Ω, sh “ sHpωq P

HpSpωq|X , gq and shpiq “ Yipωq for any i P rns. Thus,

PrshpIq ‰ YI |Ss “ PrhpXIq ‰ YI |Ss “
1

n
1thpXiq ‰ Yiu “ 0

where I is a random variable uniformly distributed over rns and is independent of S. Then, we
know that pI, YIq follows distribution D conditional on S. Therefore,

erpshq “ PrshpIq ‰ YI |Ss “ 0,P-a.s.

Thus, infh1PHpS|X ,gq erph
1q “ 0 a.s., which implies that D is HpS|X , gq-realizable a.s.

Similar to Bousquet et al. (2021, Lemma 5.7), we have the following lemma.

Lemma 61 Prperppytq ą 0s Ñ 0 as t Ñ 8.

Proof According to Lemma 59, we have that ppXi, YiqqiPN is consistent with H a.s.. Then, by
Proposition 51, we have that

T :“ sup
␣

s ě 1 : pYs´τs´1`1, . . . , Ysq P pys´1pXs´τs´1`1, . . . , Xsq
(

is finite a.s.. Since ppXi, YiqqiPN is an i.i.d. sequence of random variables, we have that for any
t ě 1, pyt´1 is independent of ppXi, Yiqqiět. Then, by the strong laws of large number, we have that
with probability one,

lim
mÑ8

1

m

m
ÿ

k“1

1
␣

pYt`pk´1qτt´1
, . . . , Yt`kτt´1´1q P pyt´1pXt`pk´1qτt´1

, . . . , Xt`kτt´1´1q
(

“ E
“

1
␣

pYt, . . . , Yt`τt´1´1q P pyt´1pXt, . . . , Xt`τt´1´1q
(‰

“ perppyt´1q.

Since T ă 8 implies that τs´1 “ τt´1 ă 8 and pys´1 “ pyt´1 for any T ă s, t ă 8, it follows that
for any t P N such that T ă t ă 8,

pYt`pk´1qτt´1
, . . . , Yt`kτt´1´1q R pyt´1pXt`pk´1qτt´1

, . . . , Xt`kτt´1´1q, @k P N

and thus,

lim
mÑ8

1

m

m
ÿ

k“1

1
␣

pYt`pk´1qτt´1
, . . . , Yt`kτt´1´1q P pyt´1pXt`pk´1qτt´1

, . . . , Xt`kτt´1´1q
(

“ 0.
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Therefore, we can conclude that for any t P N,

tT ă tu Ď

!

lim
mÑ8

1

m

m
ÿ

k“1

1
␣

pYt`pk´1qτt´1
, . . . , Yt`kτt´1´1q P pyt´1pXt`pk´1qτt´1

, . . . , Xt`kτt´1´1q
(

“ 0
)

.

Given the above results, we have

Prperppytq “ 0s

“P

«

lim
mÑ8

1

m

m
ÿ

k“1

1
␣

pYt`pk´1qτt´1
, . . . , Yt`kτt´1´1q P pyt´1pXt`pk´1qτt´1

, . . . , Xt`kτt´1´1q
(

“ 0

ff

ěP rT ă ts .

and

Prperppytq ą 0s “ 1 ´ Prperppytq “ 0s ď rT ě ts .

Since we have proved T ă 8 a.s., we have

lim sup
tÑ8

Prperppytq ą 0s ď lim
tÑ8

PrT ě ts “ 0

Therefore, limtÑ8 Prperppytq ą 0s “ 0.

Analogous to Bousquet et al. (2021, Lemma 5.10), we have

Lemma 62 Given any t˚ P N such that Prperppyt˚q ą 0s ď 1
8 , if n ě maxt4pt˚ ` 1q, Nu for

some N ě 1 dependent on the adversarial algorithm defined in Section C.2, P , and t˚, then there
exists a universally measurable function ptn “ ptnpX1, Y1, . . . , Xtn{2u, Ytn{2uq P rtn{4u ´ 1s whose
definition does not depend on the data distribution P and some constants C and c independent of n
(but dependent on the algorithm, P , and t˚) such that

Prptn P Tgoods ě 1 ´ Ce´cn,

where Tgood :“
␣

1 ď t ď t˚ : Prperppytq ą 0s ď 3
8

(

.

Proof For each 1 ď t ď tn{4u ´ 1 and 1 ď i ď tn{p4tqu, define

τ it :“ TtpXpi´1qt`1, Ypi´1qt`1, . . . , Xit, Yitq ď t ` 1 ď tn{4u,

pyitpx1, . . . , xτ it q :“ pYtpXpi´1qt`1, Ypi´1qt`1, . . . , Xit, Yit, x1, . . . , xτ it q

for @px1, . . . , xτ it q P X τ it , and

pet :“
1

tn{p4tqu

tn{p4tqu
ÿ

i“1

1
␣

pYs`1,...,Y
s`τit

q P pyitpXs`1,...,X
s`τit

q for some tn{4u ď s ď tn{2u ´ τ it
(

.
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Since perppyitq “ 0 implies that pYs`1,...,Y
s`τit

q R pyitpXs`1,...,X
s`τit

q for all tn{4u ď s ď tn{2u ´ τ it
a.s., we have that

pet ď et :“
1

tn{p4tqu

tn{p4tqu
ÿ

i“1

1
␣

perppyitq ą 0
(

a.s.

Define
ptn :“ min

␣

inf
␣

1 ď t ď tn{4u ´ 1 : pet ă 1{4
(

, tn{4u ´ 1
(

with the convention that inf H “ `8. Since t˚ ď tn{4u ´ 1, we can conclude that pet˚ ă 1{4
implies ptn ď t˚. Then, by Hoeffding’s inequality, we have

Prptn ą t˚s ď Prpet˚ ě 1{4s ď Pret˚ ´ Eret˚s ě 1{4s ď e´tn{p4t˚qu{32.

For any t P N such that t ď t˚ and Prperppytq ą 0s ą 3{8, since

lim
zÑ0

Prperppytq ą zs “ Prperppytq ą 0s ą 3{8

by the continuity of probability measures, there exists some εt ą 0 such that Prperppytq ą εts ą

1{4 ` 1{16. Because t˚ ă 8, there exists ε ą 0 such that Prperppytq ą εs ą 1{4 ` 1{16 for all
1 ď t ď t˚ such that Prperppytq ą 0s ą 3{8.

Fixing an arbitrary 1 ď t ď t˚ such that Prperppytq ą 0s ą 3{8, by Hoeffding’s inequality, we
have

P
” 1

tn{p4tqu

tn{p4tqu
ÿ

i“1

1 tperppytq ą εu ă
1

4

ı

ď e´tn{p4t˚qu{128.

For any 2 ď τ ď tn{4u and any g : X τ Ñ t0, 1uτ with perpgq ą ε, we have that

P
“

pYs`1, . . . , Ys`τ q R gpXs`1, . . . , Xs`τ q for all tn{4u ď s ď tn{2u ´ τ
‰

ďP
“

pYtn{4u`pk´1qτ`1, . . . , Ytn{4u`kτ q R gpXtn{4u`pk´1qτ`1, . . . , Xtn{4u`kτ q

for all 1 ď k ď tn{p4τqu
‰

“p1 ´ perpgqqtn{p4τqu

ďp1 ´ εqtn{p4τqu.

Thus, by union bound and the fact that τ it ď t ` 1 ď t˚ ` 1, we have

P
”

1
␣

perppyitq ą ε
(

ą 1
␣

pYs`1,...,Y
s`τit

q P pyitpXs`1,...,X
s`τit

q for some tn{4u ď s ď tn{2u ´ τ it
(

for some 1 ď i ď tn{p4tqu

ı

ďP
”

1
␣

pYs`1,...,Y
s`τit

q P pyitpXs`1,...,X
s`τit

q for some tn{4u ď s ď tn{2u ´ τ it
(

“ 0

for some 1 ď i ď tn{p4tqu

ı

“P
”

D1 ď i ď tn{p4tqu s.t. pYs`1,...,Y
s`τit

q R pyitpXs`1,...,X
s`τit

q for all tn{4u ď s ď tn{2u ´ τ it

ı

ďtn{p4tqup1 ´ εqtn{p4pt˚`1qqu.
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Then, we can conclude that

Prptn “ ts

ďPrpet ă 1{4s

ďP
” 1

tn{p4tqu

tn{p4tqu
ÿ

i“1

1 tperppytq ą εu ă
1

4

ı

` P
”

1
␣

perppyitq ą ε
(

ą 1
␣

pYs`1,...,Y
s`τit

q P pyitpXs`1,...,X
s`τit

q for some tn{4u ď s ď tn{2u ´ τ it
(

for some 1 ď i ď tn{p4tqu

ı

ďe´tn{p4t˚qu{128 ` tn{p4tqup1 ´ εqtn{p4pt˚`1qqu

and

Prptn R Tgoods ďPrptn ą t˚s ` Prptn ď t˚ and perppy
ptn

q ą 3{8s

“Prptn ą t˚s ` Prptn “ t for some t s.t. 1 ď t ď t˚ and perppytq ą 3{8s

ďe´tn{p4t˚qu{32 ` t˚e´tn{p4t˚qu{128 ` t˚tn{4up1 ´ εqtn{p4pt˚`1qqu

Note that e´tn{p4t˚qu{32 ď e
1
32 e´ n

128t˚ , e´tn{p4t˚qu{32 ď t˚e
1

128 e´ n
512t˚ , and

´ log
`

t˚tn{4up1 ´ εqtn{p4pt˚`1qqu
˘

ě
log

`

1
1´ε

˘

8t˚ ` 2
n ´ log

` t˚

1 ´ ε

˘

`
log

`

1
1´ε

˘

8t˚ ` 2
n ´ logpn{4q,

Since logpn{4q ď
?
n for all n ě 4, we have that

log
`

1
1´ε

˘

8t˚`2 n ě logpn{4q and

t˚tn{4up1 ´ εqtn{p4pt˚`1qqu ď
t˚

1 ´ ε
exp

´

´
log

`

1
1´ε

˘

8t˚ ` 2
n
¯

for all n ě maxt4,
`

8t˚`2
logp1´εq

˘2
u.

Thus, for any n ě max
␣

4pt˚ ` 1q,
`

8t˚`2
logp1´εq

˘2(, we have Prptn R Tgoods ď Ce´cn for c :“

min
!

1
512t˚ ,

log
`

1
1´ε

˘

8t˚`2

)

and C :“ e
1
32 ` t˚e

1
128 ` t˚

1´ε . Since ε depends on t˚, the data distribution
P , and the algorithm, but does not depend on n, the lemma is proved.

According to Brukhim et al. (2022, Theorem 1) and its proof in Brukhim et al. (2022, Section
4.5), we have the following theorem.

Theorem 63 Let H Ď YX be an hypothesis class with DS dimension d ă 8. There is a learning
algorithm A : Y8

n“1pX ˆYqn Ñ H with the following guarantee. For any H-realizable distribution
D, any δ P p0, 1q, any integer n ě 1, any sample pS, pX,Y qq „ Dn`1 where S P pX ˆ Yqn and
pX,Y q P X ˆ Y , the output hypothesis ApH, Sq satisfies that

PrApH, SqpXq ‰ Y |Ss ď O

˜

d3{2 log2pnq ` logp1{δq

n

¸

.

with probability at least 1 ´ δ.
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We immediately have the following corollary from Theorem 63.

Corollary 64 For the hypothesis class H, learning algorithm A, distribution D, and any integer
n ě 1 described in Theorem 63, we have

PrApH, SqpXq ‰ Y s ď
Cd3{2 log2pnq

n
.

for some constant C ą 0.

Proof Define R “ PrApSqpXq ‰ Y |Ss. Then, by Theorem 63, there exists some constant C1 ą 0
such that

P

«

R ě
C1d

3{2 log2pnq ` C1 logp1{δq

n

ff

ď δ.

Define t “
C1d3{2 log2pnq`C1 logp1{δq

n P p
C1d3{2 log2pnq

n ,8q. Then, we have δ “ exppd3{2 log2pnq ´

nt{C1q. It follows that

PrApSqpXq ‰ Y s “ErRs

“E

«

R1
!

R ď
C1d

3{2 log2pnq

n

)

ff

` E

«

R1
!

R ą
C1d

3{2 log2pnq

n

)

ff

ď
C1d

3{2 log2pnq

n
`

ż 8

C1d
3{2 log2pnq

n

PrR ě tsdt

ď
C1d

3{2 log2pnq

n
`

ż 8

C1d
3{2 log2pnq

n

exppd3{2 log2pnq ´ nt{C1qdt

“
C1d

3{2 log2pnq ` C1

n
.

Thus, there exists some constant C ą 0 such that PrApSqpXq ‰ Y s ď
Cd3{2 log2pnq

n .

The following lemma is very important in upper bounding the error probability for learning
algorithms with access to leave-one-out samples using their guarantees on all samples.

Lemma 65 Suppose that A is an algorithm that for any positive integer n, any feature space Z ,
and any label space W , given a hypothesis class H Ď WZ and a sequence of samples ppzi, wiqqni“1

consistent with H, outputs a hypothesis h P WZ .
Let X and Y denote the feature space and label space of the samples. Suppose that H :

Y8
n“1X n Ñ Y8

n“12
Yrns

is a function that for any positive integer n, given a sequence px1, . . . , xnq P

X n, constructs a hypothesis class Hppx1, . . . , xnqq Ď Y rns such that pp1, x1q, . . . , pn, xnqq is con-
sistent with Hppx1, . . . , xnqq.

For any positive integer n and any sequence S1 “ ppx1, y1q, . . . , pxn`1, yn`1qq P pX ˆ Yqn`1,
define S1|X :“ px1, x2, . . . , xn`1q. Let D1 denote the uniform distribution over tpi, yiqu

n`1
i“1 and D

denote the uniform distribution over tpi, yiquni“1 (i.e., D1ptpi, yiquq “ 1
n`1 for any i P rn ` 1s and

Dptpi, yiquq “ 1
n for any i P rns).
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Then, for any T „ Drn{2s and pT 1, pI, yIqq „ pD1qrn{2s`1 with T 1 P tpi, yiq : 1 ď i ď

n ` 1urn{2s, I P rn ` 1s, and rxs :“ mintn P Z : n ě xu for any x P R, we have

PrApHpS1|X q, T qpn ` 1q ‰ yn`1s ď 2PrApHpS1|X q, T 1qpIq ‰ yIs.

Proof Since pT 1, pI, yIqq „ pD1qrn{2s`1, we have that

Prpn ` 1, yn`1q P T 1s ď |T 1|
1

n ` 1
“

rn{2s

n ` 1
ď

1

2
.

By the assumption on H , we know that T 1 is consistent with HpS1|X q. Thus, by the assumption on
A, we have that ApHpS1|X q, T 1qpiq “ yi for any pi, yiq P T 1. It follows that

PrApHpS1|X q, T 1qpIq ‰ yIs

“ErPrApHpS1|X q, T 1qpIq ‰ yI |T 1ss

“
1

n ` 1

n`1
ÿ

i“1

PrApHpS1|X q, T 1qpiq ‰ yis

ě
1

n ` 1

n`1
ÿ

i“1

Er1tpi, yiq R T 1u1tApHpS1|X q, T 1qpiq ‰ yius

“Er1tpn ` 1, yn`1q R T 1u1tApHpS1|X q, T 1qpn ` 1q ‰ yn`1us

“Prpn ` 1, yn`1q R T 1sEr1tApHpS1|X q, T 1qpxn`1q ‰ yn`1u|pn ` 1, yn`1q R T 1s

ě
1

2
PrApHpS1|X q, T 1qpn ` 1q ‰ yn`1|pn ` 1, yn`1q R T 1s

“
1

2
PrApHpS1|X q, T qpn ` 1q ‰ yn`1s,

where the last inequality follows from the fact that PrT 1 P B|xn`1 R T 1s “ PrT P Bs for any
B Ď tppi1, yi1q, . . . , pirn{2s, yirn{2s

qq : 1 ď i1, . . . , irn{2s ď n ` 1u.

Now, we are ready to prove the main theorem that relates guarantees of learning algorithms on
uniform rates to universal rates.

Theorem 66 Suppose that A is a learning algorithm which for any hypothesis class H with DS
dimension at most d ă 8, any H-realizable distribution D, any number n P N, and any sample
S „ Dn, outputs a hypothesis ApH,Sq with ErerpApH,Sqqs ď rpn, dq, where r : N ˆ N Ñ r0, 1s

is some rate function non-increasing for any d P N. Then, there is an algorithm A1 satisfying that
for any hypothesis class H that does not have an infinite DSL tree and any H-realizable distribution
P , there exist some constants C, c ą 0 and d0 P N such that for all n P N and S „ Pn, A1 outputs
a hypothesis A1pH, Sq P H with

ErerpA1pH, Sqqs ď Ce´cn ` 32rprn{4s, d0q.

Proof According to Lemma 61, there exists t˚ P N such that Prperppyt˚q ą 0s ď 1
8 . Then, for any

n ě maxt4pt˚ ` 1q, Nu with N specified in Lemma 62, let ptn P rtn{4u ´ 1s be the random time
constructed in Lemma 62. For any t P rtn{4u ´ 1s and any i P rn{p4ptnqs, define

τ it :“ TtpXpi´1qt`1, Ypi´1qt`1, . . . , Xit, Yitq ď t ` 1 ď tn{4u,
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and

pyit : X τ it Ñ Yτ it , px1, . . . , xτ it q ÞÑ pYtpXpi´1qt`1, Ypi´1qt`1, . . . , Xit, Yit, x1, . . . , xτ it q

as in the proof of Lemma 62.
For any t P Tgood, since Prperppytq ą 0s ď 3

8 , by a Chernoff bound, we have

P

»

–

1

tn{p4tqu

tn{p4tqu
ÿ

i“1

1tperppyitq ą 0u ą
7

16

fi

fl ď e´tn{p4tqu{128 ď e´tn{p4t˚qu{128.

Using union bound, we have

P

»

–

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tperppyi
ptn

q ą 0u ą
7

16
,ptn P Tgood

fi

fl

ď
ÿ

tPTgood

P

»

–

1

tn{p4tqu

tn{p4tqu
ÿ

i“1

1tperppyitq ą 0u ą
7

16

fi

fl

ďt˚e´tn{p4t˚qu{128. (13)

Define the sequence S :“ pp1, Ytn{2u`1q, p2, Ytn{2u`2q, . . . , pn ´ tn{2u, Ynqq. Let D denote
the uniform distribution over the elements in S (i.e., Dptpi, Ytn{2u`iquq “ 1

n´tn{2u
for any i P

rn ´ tn{2us). Let T 1, . . . , T tn{p4ptnqu denote an i.i.d. sequence of random variables with T 1 „

Drpn´tn{2uq{2s. For any i P rtn{p4ptnqus and any x P X , define the hypothesis class Hipxq :“
HppXtn{2u`1, . . . , Xn, xq,pyi

ptn
q. Then, for any i P rtn{p4ptnqus, we can define the following predic-

tion function
pyi : X Ñ Y, x ÞÑ ApHipxq, T iqpn ´ tn{2u ` 1q.

Let phn be the majority vote of pyi for i P rtn{p4ptnqus. phn will be the final output of our learning
algorithm. Now, we need to upper bound the error rate Ererpphnqs.

Recall that P denotes the underlying data distribution that is H-realizable. Suppose that pX,Y q „

P and is independent of tpXi, Yiquni“1. Then, we have

Ererpphnqs

“PrphnpXq ‰ Y s

ďP

»

–

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tpyipXq ‰ Y u ě
1

2

fi

fl

ďPrptn R Tgoods ` P

»

–

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tperppyi
ptn

q ą 0u ą
7

16
,ptn P Tgood

fi

fl

` P

»

–
ptn P Tgood,

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tperppyi
ptn

q “ 0u ě
9

16
,

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tpyipXq ‰ Y u ě
1

2

fi

fl .

(14)

56



MULTICLASS LEARNING

Define the sequence S1 :“ pp1, Ytn{2u`1q, . . . , pn ´ tn{2u, Ynq, pn ´ tn{2u ` 1, Y qq and condi-
tional on S1, let D1 denote the uniform distribution over the elements in S1 (i.e., D1ptpi, Ytn{2u`iquq “

1
n´tn{2u`1 for any i P rn ´ tn{2us and D1ptpn ´ tn{2u ` 1, Y quq “ 1

n´tn{2u`1 ). Let T 1 „

pD1qrpn´tn{2uq{2s and pI, Y 1q „ D1 be two independent samples from S1 conditional on S1.
For any i P rtn{p4ptnqu, by Lemma 59, pX

pi´1qptn`1, Ypi´1qptn`1, . . . , Xiptn
, Yiptnq is consistent

with H a.s. Then, by Lemma 58, we have that with probability 1, dimpHipXqq ă τ i
ptn

and therefore,

1tptn P TgoodudimpHipXqq ă t˚.

Moreover, if perppyi
ptn

q “ 0, by Lemma 60, we have that S1 is consistent with HipXq and D1 is
HipXq-realizable a.s. Then, it follows from Lemma 65 and the property of A that

1tptn P Tgoodu1tperppyi
ptn

q “ 0uPrpyipXq ‰ Y |ppXj , Yjqqnj“1, X, Y s

“1tptn P Tgoodu1tperppyi
ptn

q “ 0uPrApHipXq, T iqpn ´ tn{2u ` 1q ‰ Y |ppXj , Yjqqnj“1, X, Y s

ď21tptn P Tgoodu1tperppyi
ptn

q “ 0uPrApHipXq, T 1qpIq ‰ Y 1|ppXj , Yjqqnj“1, X, Y s

ď2rprpn ´ tn{2uq{2s, t˚q.

By the properties of conditional expectation, we have that

1tptn P Tgoodu1tperppyi
ptn

q “ 0uP
”

pyipXq ‰ Y
ˇ

ˇppXj , Yjqq
tn{2u

j“1

ı

“E
”

1tptn P Tgoodu1tperppyi
ptn

q “ 0uPrpyipXq ‰ Y |ppXj , Yjqqnj“1, X, Y s
ˇ

ˇppXj , Yjqq
tn{2u

j“1

ı

ď2rprpn ´ tn{2uq{2s, t˚q.

Since 9
16 ` 1

2 “ 1 ` 1
16 , by Markov’s inequality and the above inequality, we have

P

»

–
ptn P Tgood,

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tperppyi
ptn

q “ 0u ě
9

16
,

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tpyipXq ‰ Y u ě
1

2

fi

fl

ďP

»

–1tptn P Tgoodu
1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tperppyi
ptn

q “ 0u1tpyipXq ‰ Y u ě
1

16

fi

fl

ď16E

»

–1tptn P Tgoodu
1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tperppyi
ptn

q “ 0u1tpyipXq ‰ Y u

fi

fl

“16E

»

–

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

1tptn P Tgoodu1tperppyi
ptn

q “ 0uP
”

pyipXq ‰ Y
ˇ

ˇppXj , Yjqq
tn{2u

j“1

ı

fi

fl

ď32E

»

–

1

tn{p4ptnqu

tn{p4ptnqu
ÿ

i“1

rprpn ´ tn{2uq{2s, t˚q

fi

fl

ď32rprpn ´ tn{2uq{2s, t˚q

ď32rprn{4s, t˚q. (15)
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By (14), (13), Lemma 62, and (15), we have

Ererpphqs ď C1e
´c1n ` t˚e´tn{p4t˚qu{128 ` 32rprn{4s, t˚q.

Then, we immediately have the following result.

Theorem 67 If H does not have an infinite DSL tree, then H is learnable at rate log2pnq

n .

Proof According to Corollary 64 and Theorem 66, we know that there exists an algorithm A
satisfies that for any H-realizable distribution P , there exists some constants C0, C1, c0 ą 0 and
d0 P N such that for all n P N large enough and S „ Pn, the output hypothesis ApH, Sq of A has
the error rate

ErApH, Sqs ď C0e
´c0n ` C1

d
3{2
0 log2pnq

n
.

Thus, there exists some constants C ą 0 such that

ErApH, Sqs ď C
log2pnq

n
,

which implies that H is learnable at rate log2pnq

n .

C.5. Concluding proof

We conclude with the proof of Theorem 14.
Proof of Theorem 14 Theorem 14 follows directly from Theorem 44 and Theorem 67.

Appendix D. Arbitrary Slow Rates

In this section, we provide the complete proof of Theorem 15. First, we show two lemmas regarding
the properties of pseudo-cubes.

Lemma 68 For any positive integer d, any label class Y , any pseudo-cube H Ď Yd of dimension
d, any j P rds, and any label y P Y , define N :“ |H| and Hj

y :“ th P H : hpjq “ yu. Then, we
have

|Hj
y | ď

1

2
N.

Proof We prove by contradiction. Suppose on the contrary that there exist some j P rds and y P Y
such that |Hj

y | ą 1
2n. The definition of pseudo-cube implies that |H| ě 2. Then, there exist

h, h1 P Hj
y with h ‰ h1. Let f and f 1 denote the j-neighbors of h and h1 in H; i.e., there exists

f, f 1 P H such that fpjq ‰ hpjq “ y, f 1pjq ‰ h1pjq “ y, fpiq “ hpiq, and f 1piq “ h1piq for
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any i P rdsztju. Since h ‰ h1 and hpjq “ y “ h1pjq, there exists some j1 P rdsztju such that
hpj1q ‰ h1pj1q. It follows that fpj1q “ hpj1q ‰ h1pj1q “ f 1pj1q and f 1 ‰ f . Then, we have

|th P H : hpjq ‰ yu| ě |Hj
y | ą

1

2
n

and

n “ |th P H : hpjq ‰ yu| ` |Hj
y | ą n,

which is a contradiction. Thus, we must have |Hj
y | ď 1

2n.

Lemma 69 For any integer d ě 2, n P rd ´ 1s, and 1 ď j1 ă ¨ ¨ ¨ ă jn ď d, any label class Y ,
any pseudo-cube H Ď Yd of dimension d, and any hypothesis g P H , define J :“ pj1, . . . , jnq and
K “ pk1, . . . , kd´nq such that 1 ď k1 ă ¨ ¨ ¨ ă kn´d ď d and tj1, . . . , jn, k1, . . . , kn´du “ rds.
Then, Hg,J :“ th|K : h P H,hpjiq “ gpjiq,@i P rnsu is a pseudo-cube of dimension n ´ d.

Proof For any f P Hg,J , there exists some f 1 P H such that f “ f 1|K. Then, for any i P rn ´ ds,
there exists some h1 P H such that h1pkiq ‰ f 1pkiq and h1plq “ f 1plq for all l P rdsztkiu. Since
ki R tj1, . . . , jnu, we have h1|J “ f 1|J “ g|J and h :“ h1|K P Hg,J. Then, we have hpiq “ h1pkiq ‰

f 1pkiq “ fpiq and hpmq “ h1pkmq “ f 1pkmq “ fpmq for any m P rn ´ dsztiu, which implies that
Hg,J is a pseudo-cube.

Now, we present the proof of Theorem 15
Proof of Theorem 15 Suppose that H has an infinite DSL tree. Fix an arbitrary rate R with
limnÑ8 Rpnq “ 0 and an arbitrary learning algorithm A. According to Bousquet et al. (2021,
Lemma 5.12), there exist a sequence of non-negative numbers ppiqiPN for which

ř8
i“1 pi “ 1, two

strictly increasing sequences of positive integers pniqiPN and pkiqiPN, and a constant 1
2 ď C ď 1

such that for all i P N, we have
ř

kąki
pk ď 1

ni
, nipki ď ki, and pki “ CRpniq.

For the infinite DSL tree, let vH P X denote the root node and cH P N denote the num-
ber of children of vH. For any i P rcHs, let vi denote the i-th child of vH and ci denote the
number of the children of vi. Suppose that for some k P N, vi1,...,ik and ci1,...,ik has been de-
fined for any i1 P rcHs, . . . , ik P rci1,...,ik´1

s. For any i P rci1,...,iks, let vi1,...,ik,i denote the
i-th child of vi1,...,ik and ci1 ,̈ ¨¨k,i, denote the number of children of vi1,...,ik,i. Then, by induc-
tion, tci1,...,ikui1PrcHs,...,ikPrci1,...,ik´1

s and tvi1,...,ikui1PrcHs,...,ikPrci1,...,ik´1
s are defined for all k ě 0.

Thus, every node in the infinite DSL tree has been denoted and the tree can be denoted with
t :“ tvi1,...,ik : i1 P rcHs, . . . , ik P rci1,...,ik´1

s, k ě 0u. For any k ě 0 and any i1 P rcHs, . . . , ik P

rci1,...,ik´1
s, ik`1 P rci1,...,iks, define xi1,...,ik P X k`1 to be the label of vi1,...,ik and yi1,...,ik,ik`1

to
be the label of the edge connecting vi1,...,ik and vi1,...,ik,ik`1

.
Let I1 be a random variable following the uniform distribution over rcHs (i.e., PpI1 “ iq “ 1

cH

for any i P rcHs). For any k ě 1, suppose that Ij has been defined for all j P rks. Define Ik`1 to
be a random variable such that conditional on I1, . . . , Ik, Ik`1 follows the uniform distribution over
cI1,...,Ik (i.e., PpIk`1 “ i|I1, . . . , Ikq “ 1

cI1,...,Ik
for any i P rcI1,...,Iks). Define I :“ pI1, I2, . . . q.

Then, the support of I is

I :“ tpi1, i2, . . . , ik, . . . q : i1 P rcHs, i2 P rci1s, . . . , ik P rci1,...,ik´1
s, . . . u.
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For any i “ pi1, i2, . . . q P I, define the distribution Pi on X ˆ Y as

Piptpxji1,...,ik´1
, yji1,...,ikquq “

pk
k

for j P rks, k P N,

where xji1,...,ik´1
and yji1,...,ik denote the j-th element in xi1,...,ik´1

and yi1,...,ik respectively. Note
that as in the proof of Theorem 44, the mapping i ÞÑ Pi, i P I is measurable. By the definition of
DSL tree, for any n P N, there exists hn P H such that hnpxi1,...,ik´1

q “ yi1,...,ik for all k P rns.
Hence,

eriphnq :“ Piptpx, yq P X ˆ Y : hnpxq ‰ yuq ď
ÿ

kąn

pk,

which, together with the fact that
ř8

k“1 pk “ 1 and pk ě 0 for all k P N, implies that infhPX eriphq “

0. Thus, Pi is H-realizable for any i P I.
Let pT, Jq, pT1, J1q, pT2, J2q, . . . be a sequence of i.i.d. random variables, independent of I,

with distribution

PpT “ k, J “ jq “
pk
k

for j P rks, k P N.

Define

X “ xJI1,...,IT´1
, Y “ yJI1,...,IT , Xi “ xJiI1,...,ITi´1

, Yi “ yJiI1,...,ITi
for i P N.

Then, we know that conditional on I, pX,Y q, pX1, Y1q, pX2, Y2q, . . . is a sequence of i.i.d. random
variables with distribution PI.

For any k P N and any pi1, i2, . . . , ik´1q P Nk´1 such that i1 P rcHs, i2 P rci1s, . . . , ik´1 P

rci1,...,ik´2
s, we know that Ci1,...,ik´1

:“ tyi1,...,ik´1,i
: i P rci1,...,ik´1

su Ď Y rks is a pseudo-cube of
dimension k by the definition of DSL trees.

For any n P N and j P rks, define the sequence family

Jj,k,n :“ tpj1, . . . , jmq P prksztjuqm : j1 ă j2 ă ¨ ¨ ¨ ă jm,m P rmintk ´ 1, nusu .

For any ik P rci1,...,ik´1
s and J “ pj1, . . . , jmq P Jj,k,n with m P rmintk ´ 1, nus, by Lemma 69,

we know that
pCi1,...,ik´1

qyi1,...,ik ,J

is a pseudo-cube of dimension k ´ m following the notation given in Lemma 69. Then, by Lemma
68, for any y P Y , we have

|ppCi1,...,ik´1
qyi1,...,ik ,J

qj
1

y | ď
1

2
|pCi1,...,ik´1

qyi1,...,ik ,J
|, (16)

where j1 :“ j ´ maxtl P rms : jl ă ju with the convention that maxH :“ 0.
By the definition of I, Ik follows the uniform distribution over cI1,...,Ik´1

conditional on I1, . . . , Ik´1.
Note that for any i, i1 P rci1,...,ik´1

s such that i ‰ i1 and yi1,...,ik´1,i
|J “ yi1,...,ik´1,i1 |J, we must have

yi1,...,ik´1,i
|J1 ‰ yi1,...,ik´1,i1 |J1 , (17)
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where J1 :“ pj1
1, . . . , j

1
k´mq with 1 ď j1

1 ă ¨ ¨ ¨ ă j1
k´m ď k and tj1, . . . , jm, j1

1, . . . , j
1
k´mu “ rks.

Therefore, conditional on I1, . . . , Ik´1 and yI1,...,Ik |J, yI1,...,Ik |J1 distributes uniformly over the set
pCI1,...,Ik´1

qyI1,...,Ik ,J
. Then, by (16), we have

P
´

yjI1,...,Ik ‰ y
ˇ

ˇ

ˇ
I1, . . . , Ik´1, pJ, yI1,...,Ik |Jq

¯

ě
1

2
.

By Lemma 68, we also have

|pCi1,...,ik´1
qjy| ď

1

2
|Ci1,...,ik´1

|,

which implies that

P
´

yjI1,...,Ik ‰ y
ˇ

ˇ

ˇ
I1, . . . , Ik´1

¯

ě
1

2
. (18)

Now, define phn :“ ApH, ppX1, Y1q, . . . , pXn, Ynqqq and the random sequence J :“ seqptJi :
Ti “ k, i P rnsuq, where seqpHq :“ H and for a finite set of integers ta1, . . . , aqu with q P N,
seqpta1, . . . , aquq :“ pap1q, . . . , apqqq where apiq denotes the i-th smallest element among pa1, . . . , aqq

for any i P rqs. Then, by (17) and (18), we have

P
´

phnpXq ‰ Y, T “ k
¯

ě

k
ÿ

j“1

P
´

phnpxjI1,...,Ik´1
q ‰ yjI1,...,Ik , T “ k, J “ j, T1, . . . , Tn ď k, pT1, J1q, . . . , pTn, Jnq ‰ pk, jq

¯

“

k
ÿ

j“1

E
”

1tT “ k, J “ j, T1, . . . , Tn ď k, pT1, J1q, . . . , pTn, Jnq ‰ pk, jqu

¨ P
´

phnpxjI1,...,Ik´1
q ‰ yjI1,...,Ik

ˇ

ˇ

ˇ
I1, . . . , Ik´1, T1, . . . , Tn, J1, . . . , Jn, pJ, yI1,...,Ik |Jq

¯ı

ě

k
ÿ

j“1

E
”1

2
1tT “ k, J “ j, T1, . . . , Tn ď k, pT1, J1q, . . . , pTn, Jnq ‰ pk, jqu

ı

“
1

2

k
ÿ

j“1

P pT “ k, J “ j, T1, . . . , Tn ď k, pT1, J1q, . . . , pTn, Jnq ‰ pk, jqq

“
pk
2

˜

1 ´
ÿ

ląk

pl ´
pk
k

¸n

.

Then, for any i ě 3, by Bousquet et al. (2021, Lemma 5.12), we have

P
´

phnipXq ‰ Y, T “ ki

¯

ě
pki
2

˜

1 ´
ÿ

ląki

pl ´
pki
ki

¸ni

ě
pki
2

ˆ

1 ´
2

ni

˙ni

ě
CRpniq

54
.
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Since

1

Rpniq
P
´

phnipXq ‰ Y, T “ ki|I
¯

ď
1

Rpniq
P pT “ ki|Iq “

1

Rpniq
P pT “ kiq “

pki
Rpniq

“ C a.s.,

by Fatou’s lemma, we have

E
„

lim sup
iÑ8

1

Rpniq
P
´

phnipXq ‰ Y, T “ ki|I
¯

ȷ

ě lim sup
iÑ8

1

Rpniq
P
´

phnipXq ‰ Y, T “ ki

¯

ě
C

54
.

Because

ErerIpphnq|Is “ PpphnpXq ‰ Y |Iq ě PpphnpXq ‰ Y, T “ k|Iq a.s.,

we have Erlim supiÑ8
1

Rpniq
ErerIpphniq|Iss ě C

54 ą C
55 , which implies that there exists i P I such

that Ereripphnqs ě C
55Rpnq for infinitely many n. By choosing P “ Pi, we see that H requires

arbitrarily slow rates.
Since X is Polish and Y is countable, there exists a learning algorithm with Ererpphnqs Ñ 0

for all realizable distributions P (Hanneke et al., 2021). It follows that H is learnable but requires
arbitrarily slow rates.

Appendix E. Proof of Theorem 9

In this section, we provide the complete proof of Theorem 9 below.
Proof According to the proof of Brukhim et al. (2022, Theorem 2), for any d P N, there exists a
d-dimensional pseudo-cube Bd Ď Y Xd

d for some spaces Xd and Yd with |Xd| “ d and |Yd| ă 8.
Therefore, for B1 Ď Y X1

1 , we can pick c1 :“ |B1| feature spaces X1,1, . . . , X1,d1 of size 2,
label spaces Y1,1, . . . , Y1,d1 , and pseudo-cubes B1,1 Ď Y

X1,1

1,1 , . . . , B1,c1 Ď Y
X1,c1
1,c1

of dimension 2
such that X1, X1,1, . . . , X1,c1 are pairwise disjoint and Y1, Y1,1, . . . , Y1,c1 are also pairwise disjoint.
Define c1,i :“ |B1,i| for any i P rc1s. Now, suppose that for some d P N, cik , Xik , Yik and

Bik Ď Y
Xik

ik have been defined such that |Xik | “ k and Bik is a pseudo-cube of dimension k for any
k P rds, ik P Ik :“ tpi1, . . . , ikq : i1 P r1s, i2 P rci1s, . . . , ik P rci1,...,ik´1

su, tXi : i P Ik, k P rdsu

are pairwise disjoint, and tYi1,...,ik : i P Ik, k P rdsu are also pairwise disjoint. Then, for any
id P Id, pick cid feature spaces Xid,1, . . . , Xid,cid

of size d ` 1, label spaces Yid,1, . . . , Yid,cid
, and

pseudo-cubes Bid,1 Ď Y
Xid,1

id,1 , . . . , Bid,cid
Ď Y

Xid,cid
id,cid

of dimension d ` 1 such that tXi : i P Ik, k P

rd ` 1su are pairwise disjoint and tYi : i P Ik, k P rd ` 1su are also pairwise disjoint where
Id`1 :“ tpid, iq : i P rcis, id P Idu. Then, we define ci1,...,id,i :“ |Bi1,...,id,i| for any i P rci1,...,ids.

By induction, for any k P N and any ik P Ik, cik , Xik , Yik , and Bik Ď Y
Xik

ik have been defined
such that |Xik | “ k, Bik is a pseudo-cube of dimension k, tXi : i P Ik, k P Nu are pairwise disjoint,
and tYi : i P Ik, k P Nu are also pairwise disjoint.

Now, we define I :“ YkPNIk, X :“ YiPIXi, and Y :“ YiPIYi Y t‹u where ‹ R YiPIYi is a
new label. Note that X and Y are countable. Now, for any d P N and i “ pi1, . . . , idq P Id, since
|Bi| “ ci P N, we use hpiq

i to denote the i-th hypothesis in Bi for any i P rcis and extend the domain

of hpiq
i to X by defining h

piq
i |Xi1,...,ik

:“ h
pik`1q

i1,...,ik
|Xi1,...,ik

for any k P rd ´ 1s and h
piq
i pxq :“ ‹
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for any x P X zpYkPrdsXi1,...,ikq. Letting Hi denote the extended hypotheses in Bi, we define the
following hypothesis class

H :“ YiPIHi.

By setting tXi : i P Iu to be the set of nodes and tHi : i P Iu to be the set of edges, we obtain
an infinite DSL tree of H. To prove that H has no NL tree of depth 2, it suffices to show that the
Natarajan dimension of H is 1. For any k1, k2 P N with k1 ď k2, i1 P Ik1 , i2 P Ik2 , and x1 P Xi1
and x2 P Xi2 with x1 ‰ x2, if i2|1:k1 ‰ i1, then, ‹ P thpx1q, hpx2qu for any h P H, which implies
that tx1, x2u is not N-shattered (see Brukhim et al. 2022, Definition 4 for the definition of “N-
shattered”) by H. If k1 ă k2 and i2|1:k1 “ i1, then, for any h1, h2 P H, in order to have h1px1q ‰

h2px1q and h1px2q ‰ h2px2q, we must have either th1px1q, h2px1quˆth1px2q, h2px2qu “ t‹, y1uˆ

t‹, y2u or th1px1q, h2px1qu ˆ th1px2q, h2px2qu “ ty1
1, y

2
1u ˆ t‹, y1

2u for some y1, y
1
1, y

2
1 , y2, y

1
2 P

Hzt‹u with y1
1 ‰ y2

1 . For th1px1q, h2px1quˆth1px2q, h2px2qu “ t‹, y1uˆt‹, y2u, there is no h P H
such that phpx1q, hpx2qq “ p‹, y2q by our construction. For th1px1q, h2px1quˆth1px2q, h2px2qu “

ty1
1, y

2
1u ˆ t‹, y1

2u, WOLG, we may assume that ph1px1q, h1px2qq “ py1
1, y

1
2q. Then, there is no

h P H such that phpx1q, hpx2qq “ py2
1 , y

1
2q because any h such that hpx2q “ h1px2q ‰ ‹ must have

hpx1q “ h1px1q “ y1
1. Thus, tx1, x2u is not N-shattered by H. Finally, if i1 “ i2 “ i, for any

h1 P Hz sHi where sHi :“ th P Hi1 : i1 P Ik, i1|1:k1 “ i, k ě k1u, we have h1px1q “ h1px2q “ ‹.
However, there is no h P H such that phpx1q, hpx2qq “ p‹, y2q for y2 ‰ ‹. On ther other hand,
for any h1, h2 P sHi, we have sHi|px1,x2q “ Bi|px1,x2q. Since the Natarajan dimension of Bi is 1,
px1, x2q is also not N-shattered by sHi1 . Thus, px1, x2q is also not N-shattered by H. In conclusion,
any px1, x2q P X 2 is not N-shattered by H, the Natarajan dimension of H is 1, and H has no NL
tree of depth 2.

Appendix F. Proof of Theorem 10

In this section, we prove Theorem 10. We first prove the following general lemma.

Lemma 70 Suppose that H Ď YX with Y :“ rKs for some K P Nzt1u has an infinite GL
tree T “ Y8

n“0tpxu, suq P X n`1 ˆ Yn`1 : u P
śn

l“1t0, 1ulu with its associated hypothesis set
thu P H : u P

śn
l“1t0, 1ul, n P Nu. For any d P N0, η P

śd
l“1t0, 1ul, and w P t0, 1ud`1zt0ud`1,

there exist a sequence yη,w P Yd`1 and an infinite GL tree Y8
n“0tprxu,rsuq P X n`1 ˆ Yn`1 :

u P
śn

l“1t0, 1ulu with its associated hypothesis set trhu P H : u P
śn

l“1t0, 1ul, n P Nu such
that prxH, rsHq “ pxH, sHq, prxu,rsu,rhuq “ pxu, su, huq for all u P

`

YnPN
śn

l“1t0, 1ul
˘

z
`

Y8
n“d`1

ptη,wu ˆ
śn

l“d`2t0, 1ulq
˘

, trhu : u P tη,wu ˆ
śn

l“d`2t0, 1ul, n ě d ` 1u Ď thu : u P tη,wu ˆ
śn

l“d`2t0, 1ul, n ě d ` 1u, and for all 0 ď i ď d and u P Y8
n“d`1

`

tη,wu ˆ
śn

l“d`2t0, 1ul
˘

, we
have rhuprxiηq “ yiη,w “ siη if wi “ 0 and rhuprxiηq “ yiη,w ‰ siη if wi “ 1.

Proof For any u P Y8
n“d`1ptη,wu ˆ

śn
l“d`2t0, 1ulq, we color vu :“ pxu, su, huq with

phupx0ηq, . . . , hupxdηqq P Yd`1.

Since |Y| “ K ă 8, by the Milliken’s tree theorem (Milliken, 1979), for the colored infinite tree
Tη,w :“ tvu : u P tη,wu ˆ

śn
l“d`2t0, 1ul, n ě d ` 1u, there exists some color yη,w P Yd`1
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and a strongly embedded infinite subtree T̆η,w of Tη,w such that all the nodes in T̆η,w have the
same color yη,w. Since T̆η,w is a strongly embedded subtree of Tη,w, there exists some sequence
pnlqlPN0 P NN0 such that nl`1 ą nl ě d ` 1 for any l P N0,

T̆η,w “ Y8
τ“0

!

px̆b, s̆b, h̆bq P X nτ`1 ˆ Ynτ`1 ˆ H : b P

τ´1
ź

l“0

t0, 1unl`1
)

,

and px̆b, s̆b, h̆bq is a node in level nτ of T for all b P
śτ´1

l“0 t0, 1unl`1 and τ P N0. For any t P N
with t ě d ` 1 and u “ pu01, pu02, u

1
2q, . . . , pu0t , . . . , u

t´1
t qq P tη,wu ˆ

śt
l“d`2t0, 1ul, define

βpuq :“ppβpuq01, . . . , βpuq
n0
1 q, pβpuq02, . . . , βpuq

n1
2 q, . . . , pβpuq0t´d´1, . . . , βpuq

nt´d´2

t´d´1 qq

P

t´d´2
ź

l“0

t0, 1unl`1

by

βpuqil :“

#

uil`d`1, if 0 ď i ď l ` d,

0, if l ` d ` 1 ď i ď nl´1

for all 0 ď i ď nl´1 and 1 ď l ď t ´ d ´ 1 and

rvu :“ prxu,rsu,rhuq

with

rxu :“ px̆0βpuq, . . . , s̆nβpuqq P X n`1, rsu :“ px̆0βpuq, . . . , s̆nβpuqq P Yn`1, and rhu :“ h̆βpuq P H.

Define rxH :“ xH, rsH :“ sH, and rxu :“ xu,rsu :“ su,rhu :“ hu for any

u P

´

YnPN

n
ź

l“1

t0, 1ul
¯

z

´

Y8
n“d`1

´

tη,wu ˆ

n
ź

l“d`2

t0, 1ul
¯¯

.

Then, we obtain the following infinite tree

rT :“ Y8
n“0

!

prxu,rsuq : u P

n
ź

l“1

t0, 1ul
)

.

Since T is an infinite GL tree and T̆η,w is a strongly embedded infinite subtree of Tη,w, we have
that rT is an infinite GL tree with the associated hypothesis set thu P H : u P

śn
l“1t0, 1ul, n P N0u.

Since all the nodes in T̆η,w have the smae color yη,w, by the construction of coloring and rT, for
all 0 ď i ď d and u P Y8

n“d`1

`

tη,wu ˆ
śn

l“d`2t0, 1ul
˘

, we have rhuprxiηq “ yiη,w “ siη if
wi “ 0 and rhuprxiηq “ yiη,w ‰ siη if wi “ 1. Finally, we have prxH, rsHq “ pxH, sHq and
pxu, su, huq “ prxu,rsu,rhuq for all u P

`

YnPN
śn

l“1t0, 1ul
˘

z
`

Y8
n“d`1 ptη,wu ˆ

śn
l“d`2t0, 1ulq

˘

by our definition.
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Now, we are ready to carry out the proof of Theorem 10.
Proof of Theorem 10 For any NL tree Y

d´1
n“0tpxu, sp0q

u , sp1q
u q P X n`1 ˆ Yn`1 ˆ Yn`1 : u P

śn
l“1t0, 1ulu of H of depth 1 ď d ď 8, Y

d´1
n“0tpxu, sp0q

u q P X n`1 ˆ Yn`1 : u P
śn

l“1t0, 1ulu is a
GL tree of H of the same depth d. Thus, an infinite NL tree of H implies an infinite GL tree of H.

Now, suppose that Y8
n“0tpxu, suq P X n`1 ˆ Yn`1 : u P

śn
l“1t0, 1ulu is an infinite GL tree of

H. For any n P N and u “ pu01, pu02, u
1
2q, . . . , pu0n, . . . , u

n´1
n qq P

śn
l“1t0, 1ul, there exists some

hu P H such that hupxiuďl
q “ siuďl

if uil`1 “ 0 and hupxiuďl
q ‰ siuďl

otherwise for all 0 ď i ď l and
0 ď l ă n, where

uďl :“ pu01, pu02, u
1
2q, . . . , pu0l , . . . , u

l´1
l qq, xuďl

:“ px0uď1
, . . . , xluď1

q.

Then, we define TG “ tvH “ pxH, sHqu Y tvu “ pxu, su, huq : u P
śn

l“1t0, 1ul, 1 ď n ă 8u

which is the infinite GL tree with the associated hypotheses. Next, we use induction to show that H
has an infinite NL tree.

Applying Lemma 70 to TG for d “ 0, η “ H, and w “ 1, we obtain a label ss0H P Yzts0Hu

and an infinite GL tree with the associated hypotheses T̆G “ tv̆H “ px̆H, s̆Hqu Y
`

Y8
n“1 tv̆u “

px̆u, s̆u, h̆uq : u P
śn

l“1t0, 1ulu
˘

such that for all u P Y8
n“1

`

t1uˆ
śn

l“2t0, 1ul
˘

, we have h̆upx̆Hq “

ss0H. Then, we replace TG with T̆G. With abuse of notation, we still use TG to denote T̆G, use
vH “ pxH, sHq to denote v̆H “ px̆H, s̆Hq, and use vu “ pxu, su, huq to denote v̆u “ px̆u, s̆u, h̆uq

for all u P Y8
n“1p

śn
l“1t0, 1ulq.

Suppose that for some d P N, there exists a set Y
d´1
n“0tssu P Yn`1 : u P

śn
l“1t0, 1ulu and

an infinite GL tree with the associated hypotheses TG “ tvH “ pxH, sHqu Y
`

Y8
n“1 tvu “

pxu, su, huq : u P
śn

l“1t0, 1ulu
˘

of H such that Y
d´1
n“0tpxu, su,ssuq : u P

śn
l“1t0, 1ulu is a NL of

H of depth d and for any u P Y8
n“dp

śn
l“1t0, 1ulq, we have hupxiuďl

q “ siuďl
if uil`1 “ 0 and

hupxiuďl
q “ ssiuďl

otherwise for all 0 ď i ď l and 0 ď l ă d. Define r :“ r5 log2Ks P N.

For any κ P
śd

l“1t0, 1ul, consider η P tκu ˆ
śrpd`1q´1

l“d`1 t0ul. Applying Lemma 70 for η and
each w P t0, 1urpd`1qzt0urpd`1q iteratively and defining yη,w :“ sη for w P t0urpd`1q, we obtain
a class Hη “ tyη,w P Yrpd`1q : w P t0, 1urpd`1qu and an infinite GL tree with the associated
hypotheses rTG,η “ trvH “ pxH, sHqu Y

`

Y8
n“1 trvu “ prxu,rsu,rhuq : u P

śn
l“1t0, 1ulu

˘

such that
rTG,η satisfies the induction hypothesis for d and Y

d´1
n“0tssu P Yn`1 : u P

śn
l“1t0, 1ulu and for all

w P t0, 1urpd`1qzt0urpd`1q, 0 ď i ď rpd`1q´1, and u P Y8
n“rpd`1q

`

tη,wuˆ
śn

l“rpd`1q`1t0, 1ul
˘

,

we have rhuprxiηq “ yiη,w “ siη if wi “ 0 and rhuprxiηq “ yiη,w ‰ siη if wi “ 1. Then, we replace
TG with rTG,η. With abuse of notation, we still use TG to denote rTG,η, use vH “ pxH, sHq

to denote rvH “ prxH, rsHq, and use vu “ pxu, su, huq to denote rvu “ prxu,rsu,rhuq for all u P

Y8
n“1p

śn
l“1t0, 1ulq.

Since we have shown that yiη,w ‰ siη if wi “ 1 and yiη,w “ siη if wi “ 0 for any w P t0, 1urpd`1q

and 0 ď i ď rpd ` 1q ´ 1, we have dimGpHηq “ rpd ` 1q and by Bendavid et al. (1995),
dimN pHηq ą

dimGpHηq

5 log2 K
ě d ` 1. Thus, there exists a subset ti0, . . . , idu Ď rrpd ` 1qs and two

sequences f0 “ pf0
0 , . . . , f

d
0 q, f1 “ pf0

1 , . . . , f
d
1 q P Yd`1 such that f i

0 ‰ f i
1 for all 0 ď i ď d

and Hη|pi0,...,idq Ě tf0
0 , f

0
1 u ˆ ¨ ¨ ¨ ˆ tfd

0 , f
d
1 u. Then, we must have either f0 “ sη|pi0,...,idq or

f1 “ sη|pi0,...,idq. If f0 “ sη|pi0,...,idq, we define ssκ :“ f1 and sκ :“ f0. If f1 “ sη|pi0,...,idq, we
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define ssκ :“ f0 and sκ :“ f1. Then, we have ssiκ ‰ siκ for all 0 ď i ď d and Hη|pi0,...,idq Ě

ts0κ, ss
0
κu ˆ ¨ ¨ ¨ ˆ tsdκ, ss

d
κu.

Define the set Wη :“ tw P t0, 1urpd`1q : y
ij
η,w “ ss

ij
κ for all j P rd ` 1s s.t. wij “ 1u and

H 1
η :“ tyη,w|pi0,...,idq : w P Wηu. We have H 1

η “ ts0κ, ss
0
κu ˆ ¨ ¨ ¨ ˆ tsdκ, ss

d
κu and |H 1

η| “ 2d`1. For
any g “ pg1, . . . , gd`1q P t0, 1ud`1, define the set

Wη,g :“ Wη X tw P t0, 1urpd`1q : wij “ gj for all j P rd ` 1su.

Since Hη|pi1,...,idq Ě ts0κ, ss
0
κu ˆ ¨ ¨ ¨ ˆ tsdκ, ss

d
κu, we have Wη,g ‰ H. Then, we pick a sequence

wg P Wη,g for any g P t0, 1ud`1. For any n P N with n ě d ` 1 and any u “ pud`1, . . . ,unq P
śn

l“d`1t0, 1ul, we define

αpuq :“
`

pwud`1
, pαpuq0rpd`1q`1, . . . , αpuq

rpd`1q

rpd`1q`1q, . . . ,

pαpuq0n`pr´1qpd`1q, . . . , αpuq
n`pr´1qpd`1q´1
n`pr´1qpd`1q

q
˘

P

n`pr´1qpd`1q
ź

l“rpd`1q

t0, 1ul

with

αpuqil :“

#

uil´pr´1qpd`1q
, if 0 ď i ď l ´ pr ´ 1qpd ` 1q ´ 1,

0, if l ´ pr ´ 1qpd ` 1q ď i ď l

for any rpd ` 1q ` 1 ď l ď n ` pr ´ 1qpd ` 1q and 0 ď i ď l ´ 1.
Next, for any n P N with n ě d and any u P

śn
l“d`1t0, 1ul, define

rvκ,u :“

#

ppxi0η , . . . , xidη q, psi0η , . . . , sidη q, hηq if n “ d,

ppx0η,αpuq
, . . . , xnη,αpuq

q, ps0η,αpuq
, . . . , snη,αpuq

q, hη,αpuqq, if n ě d ` 1.

Then, we obtain the following tree

rTG,κ :“ Y8
n“d

!

rvκ,u : u P

n
ź

l“d`1

t0, 1ud
)

“

!

rvu : u P Y8
n“d

´

tκu ˆ

n
ź

l“d`1

t0, 1ud
¯)

.

We replace TG,κ with rTG,κ in TG by replacing vu “ pxu, su, huq with rvu and still use vu “

pxu, su, huq to denote rvu in TG after the replacement for all u P Y8
n“dptκu ˆ

śn
l“d`1t0, 1ulq.

Now, we have hupxiκq “ siκ if uid`1 “ 0 and hupxiκq “ ssiκ if uid`1 “ 1 for all 0 ď i ď d and
u P Y8

n“dptκu ˆ
śn

l“d`1t0, 1ulq and TG is still an infinite GL tree with the associated hypotheses
after the replacement.

After the above procedure for all κ P
śd

l“1t0, 1ul, we obtain a set Yd
n“0tssu P Yn`1 :

u P
śn

l“1t0, 1ulu and an infinite GL tree with the associated hypotheses tpxH, sHqu Y
`

Y8
n“1

tpxu, su, huq : u P
śn

l“1t0, 1ulu
˘

of H such that Yd
n“0tpxu, su,ssuq : u P

śn
l“1t0, 1ulu is a NL of H

of depth d ` 1 and for any u P Y8
n“d`1p

śn
l“1t0, 1ulq, we have hupxiuďl

q “ siuďl
if uil`1 “ 0 and

hupxiuďl
q “ ssiuďl

otherwise for all 0 ď i ď l and 0 ď l ď d. Thus, the induction hypothesis has
been shown for d ` 1.
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By induction, there exists an infinite set Y8
n“0tssu P Yn`1 : u P

śn
l“1t0, 1ulu and an infinite

GL tree Y8
n“0tpxu, suq : u P

śn
l“1t0, 1ulu of H such that Y8

n“0tpxu, su,ssuq : u P
śn

l“1t0, 1ulu is
an infinite NL of H. It follows that an infinite GL tree of H implies an infinite NL tree of H.

Finally, we can conclude that H has an infinite NL tree if and only if it has an infinite GL tree.

Appendix G. Proof of Proposition 12

Proof For any n P N and x P X , if phnpxq “ k for some k P rKszt1u, there exists some z1 P r0,8qd,
1 ď i1 ă ¨ ¨ ¨ ă it ď n and pα1, . . . αtq P r0, 1st such that

řt
τ“1 ατ “ 1 and

x “ z1 `

t
ÿ

τ“1

ατxiτ .

Then, for any k1 ă k, we have

wk1 ¨ x ´ bk1 “ wk1 ¨ z1 `

t
ÿ

τ“1

ατ pwk1 ¨ xiτ ´ bk1q ď wk ¨ z1 `

t
ÿ

τ“1

ατ pwk ¨ xiτ ´ bkq,

which implies that hn`1pxq ě k “ phnpxq. Then, for any n P N such that phnpxn`1q ‰ yn`1 “

hn`1pxn`1q, we must have phnpxn`1q ă yn`1. It follows from the definition of phn that for every
i ď n such that yi ě yn`1, there exists some j P rds such that pxiqj ą pxn`1qj .

Suppose on the contrary that there exists a strictly increasing infinite sequence pntqtPN such that
phntpxnt`1q ‰ ynt`1 for all t P N. Now, define an infinite complete graph with vertex set txntutPN
and color each edge txnt , xnt1 u with t ă t1 to be mintj P rds : pxntqj ą pxnt1 qju P rds. Then, by
the infinite Ramsey theory, there exist some j P rds a strictly increasing infinite sequence ptiqiPN
such that the edge txnti

, xnt
i1

u is colored with j for all i ‰ i1. Thus, by the rule of coloring, pxnti
qj

is a strictly decreasing infinite sequence in i, which contradicts the fact that pxnti
qj P N for all i P N.

Therefore, pphnqnPN only makes finitely many mistakes for any consistent sequence ppxn, ynqqnPN.
Moreover, if phnpxn`1q “ yn`1, we claim that phn`1 “ phn. Indeed, for any x P X , if YSn,x ‰ H,

we have YSn`1,x “ YSn,x. Thus, phn`1pxq “ phnpxq. If YSn,x “ H, we must have phnpxq “ 1, which
implies that we have k R YSn`1,x for any k ą 1. Thus, phn`1pxq “ 1 “ phnpxq.

67


	Introduction
	The multiclass learning problem and the universal rates
	Main results
	Future direction

	Examples
	Technical Overview
	Exponential rates
	Near-linear rates
	Arbitrarily slow rates
	Proof sketch of Theorem 9
	Proof sketch of Theorem 10

	Preliminaries
	Notation
	NL trees and GL trees

	Exponential Rates
	Adversarial learning algorithm
	Concluding proof

	Near-Linear Rates
	Slower than exponential is not faster than linear
	Pattern avoidance functions
	Universal measurability
	Uniform rate implies universal rate
	Concluding proof

	Arbitrary Slow Rates
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Proposition 12

