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Abstract

We study universal rates for multiclass classification, establishing the optimal rates (up to log fac-
tors) for all hypothesis classes. This generalizes previous results on binary classification (Bousquet,
Hanneke, Moran, van Handel, and Yehudayoff, 2021), and resolves an open question studied by
Kalavasis, Velegkas, and Karbasi (2022) who handled the multiclass setting with a bounded num-
ber of class labels. In contrast, our result applies for any countable label space. Even for finite
label space, our proofs provide a more precise bounds on the learning curves, as they do not de-
pend on the number of labels. Specifically, we show that any class admits exponential rates if and
only if it has no infinite Littlestone tree, and admits (near-)linear rates if and only if it has no in-
finite Daniely-Shalev-Shwartz-Littleston (DSL) tree, and otherwise requires arbitrarily slow rates.
DSL trees are a new structure we define in this work, in which each node of the tree is given by
a pseudo-cube of possible classifications of a given set of points. Pseudo-cubes are a structure,
rooted in the work of Daniely and Shalev-Shwartz (2014) and recently shown by Brukhim, Car-
mon, Dinur, Moran, and Yehudayoff (2022) to characterize PAC learnability (i.e., uniform rates)
for multiclass classification. We also resolve an open question of Kalavasis, Velegkas, and Kar-
basi (2022) regarding the equivalence of classes having infinite Graph-Littlestone (GL) trees versus
infinite Natarajan-Littlestone (NL) trees, showing that they are indeed equivalent.

Keywords: Multiclass learning, Universal rates, Learning curve, Statistical learning, Online learn-
ing

1. Introduction

Multiclass classification, i.e., classifying data into multiple classes in some label (class) space )
is a fundamental task in machine learning with direct application in a wide range of scenarios in-
cluding image recognition (Rawat and Wang, 2017), natural language processing (Young et al.,
2018), protein structure classification (Dietmann and Holm, 2001), etc. In practice, the number of
classes (])/|) could be huge or infinite; e.g., in statistical language models (Song and Croft, 1999),
| V| is the vocabulary size; for count data prediction (Hellerstein and Mendelsohn, 1993), ) is the
set of natural numbers. Thus, the study of multiclass learnability and error rates has been a cru-
cial problem in learning theory. However, even under the renowned PAC (Probably Approximately
Correct) learning framework (Valiant, 1984), until recently solved by Brukhim et al. (2022), the
characterization of multiclass learnability for infinite number of classes (|))| = o) remained to
be a challenging problem for decades after the characterization of PAC learnability of binary clas-
sification (|| = 2) with the finiteness of the Vapnik-Chervonenkis (VC) dimension (Vapnik and
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Chervonenkis, 1971; Blumer et al., 1989). Natarajan and Tadepalli (1988); Natarajan (1989) de-
fined two extentions of the VC dimension in multiclass learning, the Natarajan dimension (dim )
and the Graph dimension (dim¢) which both characterize the multiclass PAC learnability for finite
number of classes (|| < o). Though the Graph dimension was shown to be unable to character-
ize the multiclass PAC learnability when |Y| = oo, it was conjectured if the Natarajan dimension
would do (Natarajan, 1989). Daniely and Shalev-Shwartz (2014) defined a new dimension named
the Daniely-Shalev-Shwartz (DS) dimension (dim) by Brukhim et al. (2022) and showed that finite
DS dimension is a necessary condition for PAC learnability. Recently, Brukhim et al. (2022) proved
that the DS dimension fully characterizes PAC learnability in the multiclass setting by proposing an
algorithm achieving O(w) (see Section 1.1 for details) error rate for any hypothesis
class H under the PAC framework. They also refuted the conjecture that the Natarajan dimen-
sion characterizes multiclass PAC learnability by providing a hypothesis class with the Natarajan
dimension 1 and an infinite DS dimension.

In terms of the learning curve, i.e., the error rate (measured on test data) as a function of the
number of training examples, due to its distribution-free nature, the PAC framework, however,
fails to capture the fine-grained and potentially faster distribution-dependent learning curves of
hypothesis classes. In the realizable setting, PAC learning considers the best worst-case (uniform)
performance of any algorithm on a hypothesis class against any realizable distribution. While in
real-world problems, the distribution for data generation is often fixed in one task and the study
of learning curves under fixed distributions is concerned. These thoughts motivate the proposition
of universal learning in the work of Bousquet et al. (2021), where they consider the distribution-
dependent error rate of a learning algorithm on a hypothesis class, holding universally for all re-
alizable distributions. They showed that for binary classification, the following trichotomy exists
for any hypothesis class H with |#H| > 3: H is either universally learnable with optimal rate e~"
(exponential rate), universally learnable with optimal rate 1/n (linear rate), or requires arbitrarily
slow rates (see Section 1.1 for details), which is fully determined by the combinatorial properties
of H (the nonexistence of certain infinite trees). Compared to the dichotomy in PAC learning: H
is either PAC-learnable with a linear uniform rate (1/n) or is not PAC-learnable at all, universal
learning provides more insights of the learning curve in binary classification.

A natural direction is to extend the framework of universal learning to multiclass classifica-
tion that would bring fine-grained disribution-dependent analysis of learning curves in multiclass
problems. Recently, Kalavasis et al. (2022) proved the same trichotomy for multiclass universal
learining assuming finite label space (|| < 0): a hypothesis class with finite label space is either
universally learnable with optimal rate e~ ", universally learnable with optimal rate 1/n, or requires
arbitrarily slow rates, depending on the nonexistence of an infinite Littlestone tree and an infinite
Natarajan-Littlestone (NL) tree they defined (see Section 1.2 for details). However, their analysis
for the linear universal rate based on NL trees cannot be extended to the setting of countable label
spaces. As is pointed out in Kalavasis et al. (2022), it is an important next step to characterize
multiclass universal learning with infinite label space (|Y| = ).

However, for general uncountable label spaces, the existence of a universally measurable learn-
ing algorithm that is universally consistent (see Section 1.1 for details), i.e., with an error rate
converging to zero for any realizable distributions, remains unsolved to our knowledge, which is an
important problem in itself. Thus, we focus on countable label spaces in this paper and summarize
our contributions below.
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Contributions. In this paper, we study multiclass universal learning for general countable label
spaces (|)| can be infinite). We prove in Theorem 8 that a hypothesis class with a countable label
space is either universally learnable with optimal rate e~ ", universally learnable with optimal rate
in (:j(l /n) (near-linear rate), or requires arbitrarily slow rates, which is fully characterized by the
nonexistence of an infinite Littlestone tree and an infinite Daniely-Shalev-Shwartz-Littleston (DSL)
tree proposed by us (see Section 1.2 for details). In particular, we propose different universally mea-
surable learning algorithms that achieve the exponential and near-linear rates in those corresponding
settings. We also show that the NL tree does not characterize the near-linear rate by proving the ex-
istence of a hypothesis class that has an infinite DSL tree but has no NL tree of depth 2 for countable
label space in Theorem 9. Finally, we solve the first question in Kalavasis et al. (2022, Open ques-
tion 1) by proving in Theorem 10 that a hypothesis class with finite label space (|))| < o) has an
infinite NL tree if and only if it has an infinite Graph-Littlestone (GL) tree defined in Kalavasis et al.
(2022, Definition 8), which implies that the GL tree is equivalent to the NL tree in determining the
universal rate of multiclass learning with finite label space.

Outline. In Section 1.1, we formally define the multiclass learning problem considered in this
paper and the universal error rate which is compared to the uniform error rate in PAC learning. In
Section 1.2, we introduce the definitions of the different tree structures of a hypothesis class and
state the main theoretical results. In Section 1.3, we discuss some future research directions in
multiclass learning. In Section 2, we provide three examples of the multiclass learning problem,
each corresponding to a different universal rate in the trichotomy. In Section 3, we summarize the
key technical details and the proof sketches of the main results. The complete proofs are included
in the appendix.

1.1. The multiclass learning problem and the universal rates

In this section, we introduce the multiclass learning problem considered in this paper and the con-
cept of universal learning. We refer readers to Appendix A.1 for the notation we used throughout the
paper. Let X denote the domain (feature space), ) denote the codomain (label space), and H < yr
denote the hypothesis class. To avoid measurability issues, we assume that X is a Polish space and
Y is countable with || > 2 throughout the paper.

A classifier in multiclass learning is a universally measurable function h : X — ). For any
probability distribution P on X x ), we define the error rate of h under P as

er(h) =erp(h) := P({(z,y) € X x YV : h(x) # y}).

In this paper, we focus on realizable distributions: a distribution P is called (#-)realizable if
infpey erp(h) = 0. We use RE(H) to denote the set of all H-realizable distributions. A multi-
class learning algorithm is a sequence of universally measurable functions'

H,: (X xY)"xX —-)Y, neN

For a sequence of independent P-distributed samples ((X7, Y7))en, the learning algorithm outputs
a data-dependent function for each n € Ny

Bt X > Y, 2 Hy(X1, Y1), ..., (Xp, Vo), 2).

1. For notational convenience, we only defines deterministic algorithms here. However, our results still hold when
randomized algorithms are allowed, as all algorithms we construct to show the upper bounds are deterministic and
all proofs of lower bounds apply to randomized algorithms.
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The objective of multiclass learning is to design a learning algorithm such that the expected error rate
of the output classifier E[er(h,,)] decreases as fast as possible with the size of the input sequence
n. Since X is Polish and ) is countable, for H defined as the set of all measurable functions in
y{ , there exists a universally consistent learning algorithm, i.e., a learning algorithm such that
E[h,] — 0 for all realizable distributions P (Hanneke et al., 2021) 2. Then, it is natural to ask about

the rate of the convergence.
Under PAC learning, the uniform error rate over all realizable distributions is concerned. For
multiclass learning, the following upper and lower bounds of the uniform rate is proved:

: R : 3/2 1002
Q (dlm(H)> <inf sup Elerp(h,)] <O (dlm(H) log (n)> ) (1)
n hn PERE(H) n

where the upper bound can be derived from the proof of Brukhim et al. (2022, Theorem 1) (see
Corollary 64) and the lower bound can be found in Daniely and Shalev-Shwartz (2014). However,
the worst-case analysis of PAC learning is too pessimistic to reflect many practical machine learn-
ing scenarios where the sample distribution keeps unchanged with the increase of the sample size,
resulting in much faster decay in the error rate. Thus, Bousquet et al. (2021) proposed the concept
of universal learning to characterize the distribution-dependent universal error rate of a hypothesis
class. We state the definition of universal rates below.

Definition 1 (Universal rate, Bousquet et al. 2021, Definition 1.4) Let H be a hypothesis class.
Let R : N — [0, 1] with R(n) — 0 be a rate function.

* H is learnable at rate R if there is a learning algorithm /f\zn such that for every realizable

distribution P, there exist C, ¢ > 0 for which E[er(hy,)] < CR(cn) for all n.
* H isnot learnable at rate faster than R if for every learning algorithm, there exists a realizable
distribution P and C,c > 0 for which Eler(h,,)] = CR(cn) for infinitely many n.

* ‘H is learnable with optimal rate R if H is learnable at rate R and H is not learnable at rate
faster than R.

* H is learnable but requires arbitrarily slow rates if there is a learning algorithm }Aln such

that Eler(h,,)] — 0 for every realizable distribution P, and for every R(n) — 0, H is not
learnable faster than R.

Note that in Definition 1, we define “H is learnable but requires arbitrarily rates” instead of defining
“H requires arbitrarily rates” (Bousquet et al., 2021, Definition 1.4) to emphasize the existence of
a universally consistent learning algorithm for X’ being Polish and ) being countable (Hanneke
et al., 2021). Thus, the case that H is not universally learnable does not exist. As is formalized in
the definition, the term “universal” refers to the requirement that the rate function R is universal
for all realizable distributions. The major difference between universal rates and uniform rates is
that the constants ¢ and C' can depend on the distribution P for universal rates, while the constants
must be distribution-independent (i.e., uniform) for uniform rates. As is depicted in Bousquet et al.
(2021, Figure 1), the distinction may results in the collapsing of exponential universal rates to
linear uniform rates; e.g., in Example 1, we provide an example in multiclass learning where an
exponential universal rate is achieved by the proposed algorithm, which is much faster than the

2. Actually, Hanneke et al. (2021) establishes the existence of a universally consistent learning algorithm assuming X’
is essentially separable and ) is countable. Any Polish space, being separably metrizable, is essentially separable.
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linear uniform rate for finite label spaces. Bousquet et al. (2021) successfully characterized the
fined-grained trichotomy in the optimal universal rates of binary classification problems, which
motivates us to study the characterization of universal rates in multiclass learning with potentially
infinite label spaces.

1.2. Main results

In this section, we state the main results together with some key definitions. First, we rule out
some trivial hypothesis classes by considering H that is “nondegenerate” specified in the following
definition.

Definition 2 (Nondegenerate hypothesis class) A hypothesis class H € Y is called nondegener-
ate if there exist h1,hy € H and x,x’ € X such that hy(x) = ha(x) and hi(z') # hao(2'). H is
called degenerate if it is not nondegenerate.

Indeed, for H that is degenerate, if hy, ho € H satisfy hy # ho, then, we have hi(x) # ho(z) for
any = € X. Thus, one sample suffices to reach zero error rate under any realizable distributions.

For the measurability of the learning algorithms we design in this paper, we need the following
definition regarding the measurability of the hypothesis class .

Definition 3 (Measurable hypothesis class, Bousquet et al. 2021, Definition 3.3) A hypothesis class
H of functions h : X — Y on Polish spaces X and ) is said to be measurable if there is a Polish
space © and a Borel-measurable map h : © x X — Y so that H = {h(0,-) : 0 € ©}.

As is discussed in Bousquet et al. (2021), the above definition is standard in the literature and almost
any H considered in practice is measurable. Bousquet et al. (2021) and Kalavasis et al. (2022) also
assume measurable hypothesis classes in their results.

The following theorem depicts the trichotomy in the universal rates of multiclass learning for
general countable label spaces.

Theorem 4 For any nondegenerate measurable hypothesis class H, exactly one of the following
holds:

* ‘H is learnable with optimal rate e™".
« H is learnable with optimal rate in ©(1/n).

* ‘H is learnable but requires arbitrarily slow rates.

Then, we characterize the complexity measures of 7 that determine the universal rates of it: the
nonexistence of certain tree structures of H. We start with the Littlestone tree defined below.

Definition 5 (Littlestone tree) A Littlestone tree for H < Y is a complete binary tree of depth
d < o0 whose internal nodes are labelled by X, and whose two edges connecting a node to its two
children are labelled by two different labels from ), such that every finite path emanating from the
root is consistent with a concept h € H.

Equivalently, a Littlestone tree of depth d < oo for H can also be represented as a collection

{@oshm) e X iue 0} 0<k<df c ¥ {@yy) e X x Wiy £y} @
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such that for any 7 € {0,1}? and 0 < n < d, there exists a concept h € H such that h(y_,) =
y:’,’?kl for each 0 < k < n, where ¢ := (91,...,m). We say that H has an infinite Littlestone
tree if there is a Littlestone tree for H of depth d = 0.

The definition of the Littlestone tree was first proposed by Daniely et al. (2015) to generalize the
Littleston dimension to multiclass hypothesis classes, where they assume that X’ and ) are count-
able. Bousquet et al. (2021) restricted the definition to binary hypothesis classes and emphasized the
difference between having of an infinite Littlestone tree and having an infinite Littlestone dimension
(i.e., having Littlestone trees of arbitrarily large depth), where they prove that the nonexistence of
the former distinguishes the exponential rate and the linear rate. Kalavasis et al. (2022) restricted
the definition to multiclass hypothesis classes with finite label spaces (|| < 00) and proved that the
nonexistence of an infinite Littlestone tree distinguishes the exponential rate and the linear rate for
finite ).

Next, we introduce a new tree structure, the Daniely-Shalev-Shwartz-Littleston (DSL) tree
which builds on the concept of pseudo-cubes in the definition of the DS dimension (Brukhim et al.,
2022). For completeness, we state the definition of pseudo-cubes below.

Definition 6 (Pseudo-cube, Brukhim et al. 2022, Definition 5) For any d € N, a class C < Y% is
called a pseudo-cube of dimension d if it is non-empty, finite, and for every h € C and i € [d], there
is an i-neighbor of g € C of h (i.e., g(i) # h(i) and g(j) = h(j) for all j € [d]\{i}).

For any d € N and hypothesis class H < Y%, let PC(H) denote the collection of all d-dimensional
pseudo-cubes contained in H. Then, we provide the definition of DSL trees below.

Definition 7 (DSL tree) A DSL tree for H = Y of depth d < o is a tree of depth d satisfying the
following properties.

» For each integer k such that 0 < k < d and each node v in level k of the tree (assume that
the level of the root node is 0), node v is labelled with some X € XF+1 Moreover, there exists
some pseudo-cube C' € PC(H|x) such that node v has exactly |C| children and each edge
connecting node v to its children is labelled with a unique element in C.

» For each integer k such that 0 < k < d and each node v in level k, denote the label of v with
x;; € XL Denote the labels of the nodes and the labels of the edges along the path emanat-

ing from the root node to node v withxg € X', ... x;_; € X* andy, € Yoy € Yk
correspondingly. Denote the number of the children of node v with n and the labels of the
edges connecting node v to its children with yy, 1, ...,y , € VE+L Then, for each i € [n],

there exists some h € H such that hly, =y, forall0 <t < k — 1 and hly, = y; ;.

Similarly, we say that H has an infinite DSL tree if there is a DSL tree for H of depth d = c0. The
definition of the DSL tree resembles those of the VCL tree (Bousquet et al., 2021, Definition 1.8),
the NL tree (Kalavasis et al., 2022, Definition 6), and the GL tree (Kalavasis et al., 2022, Definition
8). Each node in level k is labelled with a sequence of & + 1 points in X for k € Ny. However,
for VCL trees and NL trees, the edges connecting a node to its children correspond to a copy of the
Boolean-cube while they correspond to a pseudo-cube for DSL trees. Thus, the structure of a DSL
tree is much more complicated since the sizes of pseudo-cubes of fixed dimension are not fixed, and
it is hard to directly formulate a DSL tree like VCL trees or NL trees. For completeness and future
reference, we state the definitions of the NL tree and the GL tree in Appendix A.2.

Now, we are ready to present the characterization of the multiclass universal rates in terms of
those definitions.
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Theorem 8 For any nondegenerate measurable hypothesis class H, the followings hold:

e If H does not have an infinite Littlestone tree, then H is learnable with optimal rate e~ ".

* If'H has an infinite Littlestone tree but does not have an infinite DSL tree, then H is learnable
log?n

at rate =>— and is not learnable at rate faster than %

» If'H has an infinite DSL tree, then H is learnable but requires arbitrarily slow rates.

Since Theorem 4 follows immediately from Theorem 8, we directly prove Theorem 8 in this paper.
A major difference between Theorem 8 and Kalavasis et al. (2022, Theorem 2) lies in the com-
plexity measure that distinguishes the (near-)linear rate and arbitrarily slow rates: Kalavasis et al.
(2022, Theorem 2) uses the nonexistence of an infinite NL tree. Then, a natural question is whether
having an infinite DSL tree is equivalent to having an infinite NL tree for H < )} with || = oo.
Generalizing Brukhim et al. (2022, Theorem 2), we are able to show that they are not equivalent
even for countably infinite X’ and ) in the following theorem.

Theorem 9 There exist some countable sets X and ), and a hypothesis class H < V¥ such that
‘H has an infinite DSL tree but does not have any NL tree of depth 2.

Thus, the nonexistence of an infinite NL tree does not distinguish the near-linear rate and arbitrarily
slow rates for infinite label space (|[Y| = ).

We briefly comment on the log? n gap between the upper and lower bounds of the optimal
universal rate in the second case (i.e., H has an infinite Littlestone tree but does not have an infinite
DSL tree) of Theorem 8. It is worth pointing out that the % universal rate follows from the %
uniform rate in (1). In fact, we prove in Theorem 66 that roughly speaking, a learning algorithm
achieving some uniform rate for hypothesis classes with finite DS dimensions implies a learning

algorithm achieving the same universal rate for any hypothesis class that does not have an infinite
DSL tree. The @ rate proved in Brukhim et al. (2022) is currently the sharpest uniform rate to
our knowledge, and a sharper uniform rate will narrow the gap between the upper and lower bounds
of the optimal universal rate. Nevertheless, the gap may also be narrowed by improving the lower
bound. We list this problem as a future direction in Section 1.3.

Furthermore, we solve the first question in Kalavasis et al. (2022, Open question 1) which asks
whether the existence of an infinite NL tree is equivalent to the existence of an infinite GL tree for
finite label spaces (|)/| < c0). We prove that it is equivalent in the following theorem.

Theorem 10 Let K € N\{1}, and let H < [K|*. Then, H has an infinite NL tree if and only if it
has an infinite GL tree.

Since it is not hard to see from definitions that a NL tree for H can be converted into a DSL tree for
‘H of the same depth, and a DSL tree for H can be converted into a GL tree for H of the same depth,
we immediately obtain the following corollary for |Y| < .

Corollary 11 If || < o, then for any H < Y, the followings are equivalent:
* ‘H has an infinite NL tree.

* ‘H has an infinite DSL tree.

* ‘H has an infinite GL tree.

Thus, the term “infinite Natarajan-Littlestone tree” in Kalavasis et al. (2022, Theorem 2) can be
replaced with “infinite DSL tree” or “infinite GL tree”.



HANNEKE MORAN ZHANG

1.3. Future direction

There are three immediate future directions following our current results in this paper. The first
direction is to bridge the gap between the near-linear upper bound and linear lower bound of the
optimal universal rate for hypothesis classes that have an infinite Littlestone tree but do not have
an infinite DSL tree. As is already pointed out, tighter analysis of the uniform rate for hypothesis
classes with finite DS dimensions would directly help in solving this problem. The second direction
is to analyze the universal rates for uncountable label spaces. We believe that the major difficulty
lies in proving the universal measurability of the learning algorithm constructed, and establishing
the existence of a universally measurable learning algorithm that is universally consistent for general
uncountable label spaces would shed light on this problem. Finally, it is an important next step to
extend the results to the agnostic setting.

2. Examples

In this section, we present three examples in multiclass learning with different universal rates.

Example 1 (Multiclass linear classifier on N%) Forde N, K e N\{1}, X = N, and Y = [K],
consider the following hypothesis class

H = {X — ), X — max(argmax wy - X — by) :
ke[ K]
W1 = 07 (wk)] < (Wk+1)j7 Vke [K]vj € [d]7 (blv .. abK) € (OvOO)K} (3)
Consider any sequence ((X;, yi))ien € (X x V)% that is consistent with H, i.e., for any n € N and

Sn := ((Xi, Yi))ie[n) there exists some hy, € H with hy,(x;) = y; for all i € [n]. For any n € N and
X € X, we define the set

Y, x 1= {k € [K]: 32 € [0,0)% such that x — 2’ € Conv({X; : (x;, k) € S, i € [n]})}

where Conv() := & and for any t € N and set {z,, . ..,2;} € X,

Conv({zy,...,2:}) := {Z aizy s (on, ... 00) €0,1]%, )y = 1}

i=1

denotes the convex hull of the set {z1, ..., z}. Then, we define the data-dependent classifier ’f;n :
X — Y by

- Vs, x ifYs,x# O
(%) = {mm i, )

1, otherwise.
We prove the following proposition in Appendix G.

Proposition 12 (?Ln)neN defined in (4) only makes finitely many mistakes for any consistent se-
quence ((Xn, Yn))nen- Moreover, if hy, (Xp+1) = Yn+1, then we have hy, 1 = hy,.

Thus, by the construction and proofs given in Bousquet et al. (2021, Section 4.1), such an adver-
sarial algorithm implies an online learning algorithm with exponential rate. By Theorem 8, H is
learnable with optimal rate e~ and H does not have an infinite Littlestone tree.
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Example 2 (Multiclass linear classifier on R?Y) For d € N, K € N\{1}, X = R and Y =
K], consider the hypothesis class H defined by (3). Notice that the class of threshold functions
constructed in Bousquet et al. (2021, Example 2.2) can be obtained from H by restricting (wWi)1 = 1,
(Wi); = 0, and by, = bi for all j € [d)\{1} and k € [K|\{1}. Thus, H has an infinite Littlestone
tree. By Daniely and Shalev-Shwartz (2014, Theorem 7), we have that dimy (H) < 0. By Bendavid
et al. (1995); Daniely and Shalev-Shwartz (2014), we have

dim(H) < dimg(H) < 5logy(K) dimy (H) (5)

which actually holds for any hypothesis class. It follows that dim(H) < oo and H does not have an
infinite DSL tree. Then, by Theorem 8, H is learnable with optimal rate in @(%)

Example 3 (A class with an infinite DSL tree but no NL tree of depth 2) Theorem 9 guarantees
the existence of a hypothesis class H that has an infinite DSL tree but does not have any NL tree of
depth 2 (see the proof of Theorem 9 in Appendix E for the construction of H). Then, by Theorem 8,
‘H is learnable but requires arbitrarily slow rates.

3. Technical Overview

In this section, we briefly discuss some key technical points in the proofs of our main results.

3.1. Exponential rates

We sketch the proof of the following theorem in this subsection.

Theorem 13 For any nondegenerate measurable hypothesis class H, if H does not have an infinite
n

Littlestone tree, then H is learnable with optimal rate e™".
The complete proof is provided in Appendix B. Since H is nondegenerate, according to Bousquet
et al. (2021, Lemma 4.2) and its proof, we can show that 7{ is not learnable at rate faster than
the exponential rate e~™. The main point of the proof is to construct a learning algorithm that
achieves the exponential universal rate if 7 does not have an infinite Littlestone tree. We follow the
framework in Bousquet et al. (2021) for the construction. First, we consider an adversarial online
learning game B played in rounds between an adversary P, and a learner P, defined in Appendix
B.1. If we prove that for H that does not have an infinite Littlestone tree, there exists a universally
measurable strategy for the learner P, in B that only makes finitely many mistakes against any
adversary P, and only changes its prediction function when a mistake happens, then by the analysis
in Bousquet et al. (2021, Section 4.1), there is a learning algorithm that achieves the exponential
universal rate.

From (2), we can naturally relate Littlestone trees to the following adversarial game 53 between
two players P4 and Py. In each round 7 € N:

« Player P4 chooses a three-tuple &, = (z,, 32, y1) € X and shows it to Player Py..
* Player P7, chooses a point n, € {0, 1}.

Player P, wins the game in round 7 € N if He (1) ¢, (1 42),...6-(1),6- (o +2) = & (see Appendix
A.1 for explanations of notation). Player P4 wins the game if the game continues indefinitely. We
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prove in Lemma 19 that a winning strategy of P4 is equivalent to an infinite Littlestone tree of
‘H. According to Bousquet et al. (2021, Theorem B.1), P;, has a universally measurable winning
strategy if H has no infinite Littlestone tree. However, this winning strategy cannot be directly
applied for the construction of a strategy for P in B3 as in Bousquet et al. (2021, Section 3.2) because
P4 chooses two labels yg and yi in each round 7 while P, does not provide this information (for
the binary case, {y%, y1} is trivially {0, 1}).

We tackle this problem by first defining the value function on the positions of 3, which extends
the value function defined on the positions of B (see Section B.1 for the terminologies and defini-
tions). Then, by Bousquet et al. (2021, Proposition B.8), for each round in 3, whatever point P,
picks, there is at most one point in ) such that the value function does not decrease. Then, we can
define the function (7) which informally speaking, maps the current position and a point x € X to
the point in ) that does not decrease the value function. For Polish X, countable ), and measur-
able ‘H, we prove that this function is universally measurable. Moreover, when H has no infinite
Littlestone tree, we can prove that there is no infinite value-decreasing sequence of positions by the
well-ordering of the ordinals (Karel and Thomas, 2017). Then, by playing the strategy induced from
that defined function, P, will only make finitely many mistakes because otherwise there will be an
infinite value-decreasing sequence.

3.2. Near-linear rates
In this subsection, we sketch the proof of the following theorem.

Theorem 14 For any nondegenerate measurable hypothesis class ‘H, if H has an infinite Littlestone
log?n

tree but does not have an infinite DSL tree, then H is learnable at rate =>— and is not learnable at

1
rate faster than .

The complete proof is provided in Appendix C. The fact that H is not learnable at rate faster than
% if it has an infinite Littlestone tree can be proved by generalizing the techniques used in the proof
of Bousquet et al. (2021, Theorem 4.6). The key difficulty is to construct a learning algorithm
that achieves @ universal rate when H does not have an infinite DSL tree. As is discussed in
Section 1.2, we show in Theorem 66 that a learning algorithm achieving some uniform rate for
any hypothesis class with a finite DS dimension implies a learning algorithm achieving the same
universal rate for any hypothesis class that does not have an infinite DSL tree. Since a learning
algorithm that achieves O(w) uniform error rate for any hypothesis class H < J* has
been constructed (Brukhim et al., 2022), it suffices to prove Theorem 66. We follow the framework
in Bousquet et al. (2021, Section 5). Similar to the case of exponential rates, we relate that the DSL

tree to the following game ‘B between player P4 and Pr. At each round 7 € N:
* Player P4 chooses a sequence X, = (z2,...,2771) € X" and a set C; € PC(Y7).
* Player Py, chooses a sequence y, = (y¥,...,y7 1) e V7.
Player P;, wins the game in round 7 if
* either C- ¢ PC(H|x, )
cory, € Csforall1 < s<7andHy,y, . x .y =, where

Hyryyoomry, = {heH h(zh) =ylfor0<i<s 1<s<rt}.

10
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Player P4 wins the game if the game continues indefinitely. We emphasize the subtlety in the win-
ning rule of Pr. In this way, we can ensure that B is a Gale-Stewart game and an infinite DSL
tree is equivalent to a winning strategy for P4 (Lemma 49). Similar to the analysis of exponential
rates, there exists a mismatch between a winning strategy of Pr, and a “pattern avoidance function”
required in the template for constructing learning algorithms in the probabilistic setting in Bous-
quet et al. (2021, Section 5.2): in the adversarial learning problem, the adversary does not provide
a pseudo-cube as P4 does. Thus, it is tricky to construct pattern avoidance functions which suc-
cessfully rule out label patterns from their mappings of the feature patterns for any #-consistent
sequence in a finite number of steps, and keeps unchanged after the success. We provide our defi-
nition of pattern avoidance functions in (8). Informally, for a consistent sequence, given the current
position in ‘B as well as the current feature pattern and label pattern from the sequence, we traverse
all pseudo-cubes contained in the projection of H on the feature pattern, where by a feature (label)
pattern we refer to a consecutive subsequence of the feature (label) sequence ending at the current
point. If the value function defined on positions in B deceases after adding the feature pattern, the
current pseudo-cube, and label pattern into the position, we accept this new position, proceed one
round in ®B, and stop the traverse. If the value function never decreases after the traverse, we still use
the original position and does not change the round in 8. Then, the feature pattern and label pattern
are updated accordingly. Now, we define the current pattern avoidance function as the mapping
from the current position and feature pattern to the set of all label patterns for which the position
will be updated after traversing all the pseudo-cubes in the projection of ‘H on the feature pattern.
Then, with the similar idea of showing contradiction with nonexistence of infinite value-decreasing
sequences, we can prove the desired pattern avoidance property of the set functions we defined. The
next step is to show the universal measurability. Unlike the pattern avoidance function in Bousquet
et al. (2021); Kalavasis et al. (2022), our pattern avoidance function maps to a set of patterns. This
increases the difficulty in proving the universal measurability of the pattern avoidance functions we
define since then we need to pay attention to the topology on power sets. One key point to notice is
that since pseudo-cubes are finite by definition, PC())") is countable as the set of finite subsets of a
countable set is also countable. We can use this point to show that certain sets served as the building
blocks in the pull-back set of the pattern avoidance functions are analytic. We also note that the
universal measurability of the winning strategy for P;, or some value-decreasing function defined
in B does not obviously imply the universal measurability of the pattern avoidance functions since
there are repetitions when feeding the data sequence as inputs to the game 8; both Bousquet et al.
(2021) and Kalavasis et al. (2022) does not provide a proof for this step (Bousquet et al., 2021,
Remark 5.4). Thus, we provide an explicit and complete derivation of the universal measurability
of the pattern avoidance functions that covers this step in our even more complicated setting, which
also turns out to be very tricky.

There are still several big technical obstacles in plugging the pattern avoidance functions and a
learning algorithm A with a uniform rate guarantee for hypothesis classes of finite DS dimensions
into the template algorithm in Bousquet et al. (2021, Section 5.2). We first upper bound the DS
dimension of the hypothesis class (11) constructed through a pattern avoidance function with its
length (i.e., the length of the pattern the function seeks to avoid) in Lemma 58, where informally,
(11) consists of projections of hypotheses in 7{ on a given feature sequence such that any ordered
subsequence of the projection is avoided by the pattern avoidance function. Then, we prove in
Lemma 60 that informally, the uniform distribution over an independent and identically distributed
(i.i.d.) data sequence that defines (11) is realizable with the class (11) almost surely if the pattern

11
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avoidance function that defines (11) avoids an i.i.d. data sequence with probability 1. Then, we
would like to apply the the uniform learning algorithm A to (11) with that uniform distribution as
the realizable distribution. However, for the usage of A in the template specified in Theorem 66,
informally, given a sequence (X1, Y1,..., X,,Y,) and a feature X, 41, the training data for A are
drawn from the uniform distribution only over {(1,Y7),...,(n,Y,)} as we do not know Y,, 1, but
the test data is always fixed, i.e., n + 1. In Lemma 65, we upper bound the error rate in this setting
with twice the error rate in the standard setting (i.e., both the training data and the test data are
drawn i.i.d. from the uniform distribution only over {(1,Y1),...,(n + 1,Y,,4+1)} with Y, being
the label of X, 11). Similar to Theorem 66, Lemma 65 is interesting in itself for dealing with partial
training distributions.

3.3. Arbitrarily slow rates

In this subsection, we sketch the proof of the following theorem.
Theorem 15 If H has an infinite DSL tree, then H is learnable but requires arbitrary slow rates.

The complete proof is provided in Appendix D. The proof follows the framework for the construc-
tion of distributions in Bousquet et al. (2021, Theorem 5.11). Since for DSL trees, the numbers of
the children of the nodes are not fixed in each level, to even formulate a uniform distribution over
the paths in the infinite DSL tree is non-trivial. The key for the proof is to show (18), which holds
trivially for both VCL trees (Bousquet et al., 2021) and NL trees (Kalavasis et al., 2022) since the
labels of the edges connecting a node to its children consist a copy of the Boolean cube. However,
such result for pseudo-cubes is novel; it actually implies an elegant proof for the Q(dlmT(H)) lower
bound of the uniform rate in (1). There are two key steps to show (18). We first prove that for
any pseudo-cube, any position, and any label, the proportion of hypotheses in the pseudo-cube that
maps that position to that label is at most half. Then, we prove that when restricting some arbitrary
positions to some arbitrary pattern, a pseudo-cube, projected to the unrestricted positions, is still a
pseudo-cube. Both steps follow from careful examination of the definition of pseudo-cubes.

Now, Theorem 8 directly follows from Theorem 13, Theorem 14, and Theorem 15.

3.4. Proof sketch of Theorem 9

The complete proof of Theorem 9 is provided in Appendix E. We use the disjoint pseudo-cubes
of all dimensions on disjoint finite label spaces constructed in the proof of Brukhim et al. (2022,
Theorem 2) as our starting point. We first build an infinite complete tree using these pseudo-cubes
as blocks and take the disjoint unions to construct a countable label space, a countable feature space,
and a hypothesis class. Then, we add to the label space a unique new element  used for extending
the domain of a hypothesis to the whole feature space. Specifically, in a top-down manner of the
tree constructed, we extend the definition of a hypothesis which corresponds to an edge in the tree
to be consistent with the the hypotheses in the path eliminating from the root to its edge. Then, we
define its value to be * on any other features. The fact that this class has an infinite DSL tree directly
follow from the tree we constructed and the way we extend the definitions of hypotheses. Then, we
prove that the class has a NL dimension 1 by considering the projection of the class on two arbitrary
features, which requires more sophisticated discussion compared with the proof of Brukhim et al.
(2022, Theorem 2).

12
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3.5. Proof sketch of Theorem 10

The complete proof of Theorem 10 is provided in Appendix F. The fact that a GL tree can be
obtained from a NL tree is obvious. The key is to construct an infinite NL tree from an infinite GL
tree. For each node in the infinite GL tree except the root, we can associate it with a hypothesis in H
that witnesses the requirement of the GL tree. Then, the rough idea is to construct for “each” node a
distinct new sequence of labels for which each edge between this node and its children corresponds
to a unique concept in the Boolean cube formed by this new sequence and the sequence provided by
the GL tree, and the associated hypothesis of each descendant of this node along the path starting
with this edge is consistent with the concept of the edge on this node. Here, by “each” we do not
mean to construct for each element in the infinite GL tree, but we actually mean to select a node in
the infinite GL tree for each position in the infinite NL tree to build.

We first deal with the consistency. In an infinite GL tree, for a node and an edge between the
node and one of its children, the associated hypotheses of its descendants along the path starting
with the chosen edge can predict differently on the chosen node, and the prediction can be used
to color each descendant of the chosen node starting with the chosen edge. Then, we obtain an
infinite colored subtree. Since |J| = K < oo, the total number of colorings is finite. Thus, by
the Milliken’s tree theorem (Milliken, 1979), there is a strongly embedded subtree whose edges
have the same color. But we still need to prune this subtree so that it has the same structure as the
original subtree, after which we replace the original subtree with the monochromatic subtree. Now,
the prediction made by the associated hypothesis of each descendant along the path starting with
the chosen edge is the same on the chosen node. This step is formally presented in Lemma 70.

However, we still face the fact that the predictions specified for each edge of a given node in the
previous step do not necessary make a copy of a Boolean cube. For this problem, we observe that all
the predictions make a hypothesis class with its Graph dimension greater than d for d denoting the
length of the feature sequence of the given node. By (5), this class has a Natarajan dimension greater
than d/(5log, (X)), which implies a Boolean cube of dimension greater than d/(5 log,(K)). Thus,
by skipping [5log,(K)] levels in choosing nodes from the infinite GL tree in a top-down manner,
we are able to ensure the existence of a copy of a Boolean cube of required dimension for each level
of the NL tree constructed by some proper pruning. The proof is formalized by induction.
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Appendix A. Preliminaries

In this section, we describe the notation used in this paper and present the definitions of NL trees
and GL trees in the general multiclass setting.

A.1. Notation

We use the following notation throughout the paper. N denotes the set of positive integers. N
denotes the set of non-negative integers. For any n € N, we define [n] := {1,...,n}. For any
a,b € R, we define a A b := min{a, b} and a v b := max{a,b}. For a set A, |A| denotes its
cardinality and 24 denotes its power set. For any sets X,Y and hypothesis class ' < Y, let
dim(F’) denote the Daniely-Shalev-Shwartz (DS) dimension of F', dimy (F’) denote the Natarajan
dimension of F', and dimg denote the Graph dimension of F. For any n € N, any sequence
S = (x1,...,2,) € X", and any function f : X — Y, we define the projection of f to S as
fls == (f(z1),..., f(xzn)) € Y™ and use S(i) to denote the i-th element in S (i.e., S(i) = z;)
for any i € [n]. By convention, f|z = &J. Then, we define the projection of FF < Y to S as
Fls:={f|ls: fe F} € Y" Forany x1,...,2, € X and y1,...,y, €Y, we define

Foiwroanyn ={f€F : f(x1) =y1,..., f(@n) = Yn}.

A.2. NL trees and GL trees

In this section, we define NL trees and GL trees for the general multiclass setting.
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Definition 16 (NL tree) A Natarajan-Littlestone (NL) tree for H < V¥ of depth d < oo is the
following collection

Uosn<d {(Xu,sl(lo),sl(f)) e X" Yyl Yyt iue [ THO, 1}l}
=1

such that for any 0 < n < d and u = (uf, (u9,4d),..., (ud,...,um 1)) € [[7.,{0,1}}, the
followings hold:

. sl(,o)i #* sl(,l)ifor all0 <1< n.

* If n = 1, then there exists some hy € H such that hu(xflsl) = sl(,(gf if uf,; = 0 and

hu(xi_) = s otherwise for all 0 < i < land 0 < | < n, where

Ugy ugy

ug = (u[l), (ug,u%), e (u?, e ,uﬁ_l)), Tug, = (Ty_ys - - - 71'11@)‘

We call

Ulgn<d {hu eH:ue H{O, 1}l}

I=1
the associated hypothesis set of the NL tree. We say that H has an infinite NL tree if it has a NL tree
of depth d = 0.

Definition 17 (GL tree) A Graph-Littlestone (GL) tree for H < V< of depth d < 0 is the follow-
ing collection

n
Uo<n<d {(Xmsu) e X" Yyt ue [ {0, 1}l}

=1

such that for any 0 < n < dand u = (uf, (u,ud), ..., (ud, ..., umY)) € T[7L,{0,1}} the
following holds:
* If n > 1, then there exists some hy € H such that hu($ﬁ<l) = sflgl ifuf+1 = 0 and

hu(zh_,) # su_, otherwise for all 0 < i < land 0 <1 < n, where

Ugy

ug = (u(l), (ug,u%), e (u?, . ,uffl)), Tug, 1= (acgsl, .. ’xug)'

We call

Ul<n<d {hu eEH:ue H{O, 1}l}

=1
the associated hypothesis set of the GL tree. We say that H has an infinite GL tree if it has a GL tree
of depth d = o0.

Appendix B. Exponential Rates

In this section, we prove Theorem 13.
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B.1. Adversarial learning algorithm

We propose and analyze an adversarial learning algorlthm in this section. Define y2 ={(y,vy) €

V2 iy 75 y} and X 1= X x 2. For any £ € X, there exist z € X and y°, y' € Y such that
¢ = (z,9° y"'). Then, we let £(1) denote x and &(i + 2) denote y* for i € {0, 1}. Then, a Littlestone
tree can be equivalently represented as the following collection

{&=@urhm)eXiue 0} 0<k<dfc ¥

such that for any 1 € {0,1}¢ and 0 < n < d, there exists a concept h € H such that h(&nc, (1) =

5"7<k (77k:+1 + 2)
For the multiclass online learning problem, we can define the following onhne learnlng game B
played in rounds between an adversary P, and the learner P,. In each round ¢ >

* The adversary P, chooses a point z; € X
* The learner P, makes a prediction §j; € V.

* The adversary P, reveals the true label y;, = h(z;) for some concept h € H such that h is
consistent with the previous points: y1 = h(z1), ..., yi—1 = h(zi—1).

We would like to prove the following theorem.

Theorem 18 Let X and Y be Polish spaces. For any hypothesis class H < Y, we have the
following dichotomy.

* If H has an infinite Littlestone tree, then there is a strategy for the adversary P, in B such
that y; # y; in each round t > 1 against any learner P,.

o If H does not have an infinite Littlestone tree, then there is a strategy for the learner P, in B
that only makes finitely many mistakes against any adversary P,.

Consider the following game B between two players P4 and Pr. In each round 7 € N:
s Player P4 chooses a three-tuple &, = (z,,y%,yl) € X and shows it to Player Pr..
* Player P;, chooses a point 7, € {0, 1}.

We say that player P, wins the game in round 7 € N if He (1), 42),..60 (D) 6r (e 42) = Do
where Hyy yy oz = {h € H @ h(z1) = y1,...,h(x¢) = ¢} forany z1,...,2, € X and
y1,---,Y € V. We say that player P4 wins the game if the game continues indefinitely. We say a
strategy for P4 is winning if playing that strategy, P4 wins the game no matter what strategy Pr,
plays. We define a winning strategy for P;, analogously. According to the rule of 13, the set of
winning sequence of Pr, is

Since W is finitely decidable (i.e., for any (z1, y1, Ig, yg, ...) € W, there exists n € N such that

(T1, Y1y -y s Yny Ty 15 Ypg1s - - - ) € Worall (27,1, y0 1,20 0, Ynia,---) € (X X Y)P), Bis
a Gale-Stewart game; then, either P4 or P, has a winning strategy (Gale and Stewart, 1953). We
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refer readers to Bousquet et al. (2021, Appendix A.1) for detailed descriptions of the notion we use
above and Gale-Stewart games.

Then, we prove the following lemma that relates a winning strategy of P4 to an infinite Little-
stone tree of .

Lemma 19 Player P4 has a winning strategy in the game B if and only if H has an infinite
Littlestone tree.

Proof Suppose that H has an infinite Littlestone tree represented by
{(xu,yﬂ,y&) :0< k< oo,ue {0, 1}’f}.

Define a strategy for P4 by & (n1,- -, %7—1) = Ty nr—1> Y1 e 10 Ynoms ) forany 7 € N
By the definition of Littlestone tree, we have that He, (1) ¢, (51 +2),...6, (1),6, (n-+2) # & forany 7 € N.
Thus, P4 has a winning strategy.

Suppose that P4 has a winning strategy &, (n1,...,n,—1) for any n1,...,n,—1 € {0,1} and
1 < 7 < 0. Define an infinite binary tree represented by {(zu, 43, y8) :u e {0,1}%,0 < k < o0}
with

(xulm-nuk?ygl,...7uk7y1111,...,uk) = £k+l(u17 ce ,Uk).

By the definition of winning strategy of P4 in B, the tree defined above is an infinite Littlestone tree
of H. |

For any n € Ny, define P,, := (2? x {0, 1})n to be the set of positions of length n in the game
B, where a position of a game is a finite sequence of plays made by the two players alternatively
from the start to some round and Py = (& by convention. A position is called active if Py, has not
won yet after this position. Then, the set of active positions of length n in the game B can be written
as

Ay, = )w{v € Py (v,w) e W

Ywe(Xx{0,1}
Then, we define P := Ug<n<osPr to be the set of all positions and A := Uggn<ooAy to be the set

of all active positions in the game B. -
Analogously, for any n € Ny, we define P, := (X x )))" to be the set of all positions of

_ ~ 0
length n in the game B. For notational convenience, we also define Py, := (X x {0, 1}) and

Py = (X x V)™,

As in Bousquet et al. (2021), we need to describe for how many rounds the game can be kept
active starting from an arbitrary position. The following definitions of decision trees and active
decision trees are the direct restriction of Bousquet et al. (2021, Definition B.4) for P in our setting.

Definition 20 (Bousquet et al. 2021, Definition B.4) Given a position v € Py, of length k € Ny:

* A decision tree of depth n with starting position v is a collection of points
t:{gnef:ne{o,1}t,0<t<n}.

By convention, we call t = & a decision tree of depth 0.
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o tiscalled active if (V, g5, k415 Enpprs Mht25 -+ > Emtostveeoiisn—1 Mhan) € Ak for all choices
of Mk+1y- -+ Me+n) € {0, 1}

* We denote by Ty the set of all decision trees with starting position v (and any depth n € Ny),
and by T2 < Ty the set of all active trees.

Note that Ty = Ty for any v, v € P by the above definition.

We use ORD to denote the set of of all ordinals. We use —1 to denote an element that is
smaller than every ordinal and {2 to denote an element that is are larger than every ordinal. Define
ORD* := ORD u {2, —1}. We refer readers to Bousquet et al. (2021, Appendix A) for brief in-
troductions about the concepts of ordinals, well-founded relations, ranks, Polish spaces, universally
measurability, analytic sets, etc.

For any v € A, we define a relation <y on T4 For t,t' € T4, we say that t' <y t if and only if
the tree t is obtained from t’ by removing its leaves. Let p~, : TA — ORD denote the rank function
of the relation <y. Then, we define the following game value of on P as in Bousquet et al. (2021).

Definition 21 (Bousquet et al. 2021, Definition B.5) The game value val : P — ORD* is defined
as follows.

e val(v) = —1ifve¢ A
» val(v) = Qifv e Aand <y is not well-founded.
» val(v) = p—, () if v € A and <y is well-founded.
According to Lemma 19 and Definition 21, we have the following Lemma about val((¥).

Lemma 22 We have val((J) > —1. If H does not have an infinite Littlestone tree, then val(Jf) <
Q.

Proof Obviously, &5 € A. If H does not have an infinite Littlestone tree, by Lemma 19, P4 does
not have a winning strategy. Thus, < is well-defined. By Definition 21, we have val(¢f) < 2. B

In order to define game values on P, we prove the following lemma.

Lemma 23 For any k1,ka € Ny, vo € Py, vy € Py, x € X, and y, v/, v € Y such that

/ " A _ TA _
y #yandy’ #y, we have T(Va7(fv,y7y’)707Vb) o T(Va7(w7y”,y)71,Vb) o T(Vm(%%y

val(va, (SL’, Y, y/)7 O’ Vb) = val(va, (l‘, ylla y), 17 Vb) = val(va, (xa Y, y”)7 07 Vb)'

0w In particular,

A A
Proof It suffices to show that T(Va,(a:,y,y’),O,vb) = T(va,(ac,y”,y),l),Vb

val(vq, (z,y",y),1,vy). Indeed, since y # 1", the above results immediately imply that

and val(v,, (z,9,4'),0,vy) =

A _ TA _ TA
T(VCL7($7y7y//)707Vb) - T(VG7(x7y”7y)717vb) o T(de(x»y:y/)vovvb)
and
Val(Va, (ZE, Y, y”)7 01 Vb) = Val(Va, (33’, y”7 y)a 1a Vb) = Val(Va, (i’, Y, y/)v 07 Vb)'
Let k = ki + ko. Since v, € Py, and v, € Py,, we have v, = (ﬁl,nl,...,fkl,vlkl)
and Vo = (Eky42:M15- -5 Eor1s Mhr1) for some (E1,...,&k,) € XM, (§hyvo, ..o, &pr1) € XF2,

(7717 cee 77’”671) € {07 1}k19 and (nk1+27 cee 777k+1) € yk2- Define 5]214,_1 = (x,y,y'), 7721+1 = 0’
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5]%1.4_1 = (x7y”7y)7 "7]114-1 =1, Yo = (Vaa(x7yvy/)7ovvb)> and Vi = (Vaa(x7y”7y)alavb)' For
any decision tree

t:{fneé‘?:ne{o,l}t,0<t<n}eTvO

of depthn (0 < n < ), we have t € Ty, .
Ifte TVAO, forany n = (Mk+2, .-, Mk+n+1) € {0,1}", we have

VO,t,’I] = (V07 f@a Nk+25 §Uk+27 ey €77k+27---777k+n P 77k+n+1) € Ak+n+1-

By the definition of Ay, 1, there exists

~ o0
W = (Ertnt2 Metnt2> Ehtntds Metnt3,---) € (X x {0, 1})

such that (vo ¢, W) € W

Foreacht € [ki]u{k1 +2,....,k+1} U {k+n+ 2,k +n+3,...}, define z; := &(1)
and y, := &(n + 2). Define xp, 11 = & (1) = zand yg,41 = &) (01 +2) = ¥
Define zj42 := £x(1) and yi12 1= {x(Met2 + 2). Foreacht € {k+ 3,...,k + n + 1}, define
Tt 1= énk+27-~-777t—1(1) and Yt = fnk+2,-v-,77t—1(nt + 2)'

Since (vo ¢, W) € W€, by the definition of W, for any 0 < 7 < 00, there exists h € H such that
h(z;) = y; forany 1 < ¢ < 7. Since 5,1,1“(1) =z = 521“(1) = o, +1 and f,ilﬂ(n,ilﬂ +2) =
Yy = 5,21+1(n,‘31+1 + 2) = Y, +1, we have (Vi ¢, W) € W where

vl,t,’r] = (V17 €®7 k42, é.'mﬁLzﬂ ey gﬂk+2,--~ﬂ7k+n y 77k+n+1)-
Thus, Vi ¢y € Agtn+1 for any 1 € {0,1}". By the definition of Tél, we have t € Tél. Since it holds
forany te Téo, we have Tﬁo c Tél.
M. which implies that T;t = T4 . Since
Ty, = Ty,, we also have val(vy) = val(vy). [

By symmetry, we can also show that Tél c T2

Now, we can define game values on P using game values on P.
Definition 24 The game value val : P — ORD* is defined as follows. For , val(&) is defined by
Definition 21. For anyn € Nandz = (x1,y1,...,%n,Yn) € Ppn, pick a sequence v}, ..., y., such
that yi #* Yyenns and y’:l # Yn. Deﬁne V= (5177717 .. 7§n777n) € Pn with gl = (m’bvyuy;) and
n; := 0 for any i € [n]. Define val(z) := val(v).

By Lemma 23, val is well-defined on P and the following corollary holds.
Corollary 25 Forany 0 <n < o and (§1,M1, -, &ns M) € (le’ x {0, 1}>n we have

Val(§1(1)7§1(n1 + 2)7 v 7571(1)7&1(7771 + 2)) = Val(flﬂ]lv s ns nn)' (6)
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Proof For n = 0, we have val(J) = val(¢¥). For any n > 1, by Definition 24 and Lemma 23, we

have
V&1(§1<1),§1(771 + 2) .. 7571( ) gn(nn + 2))
=val((§&1(1),&1(m +2), 13 = 1), 0, ., (§n (1), &n (0 + 2),€n(3 — 1), 0)
=Val((€1(1)a§1( m + 2)?51(3 771) (gn( ) 5 (2)7€n(3))777n)
=Va1((51(1),51(771 +2),§1( 771), ,---,fn,ﬁn)
=Val(§1, m,... ,fm 77n),
which gives (6). |

According to Bousquet et al. (2021, Lemma B.7), we have the following Lemma.

Lemma 26 [fW is coanalytic, then for any v € P, either val(v) = Q orval(v) < wy. In particular,
it follows that either val(JJ) = Q2 or val(J) < wi.

According to Bousquet et al. (2021, Proposition B.8), we have the following Proposition.

Proposition 27 Fix 0 < n < o0 and v € P, such that 0 < val(v) < Q. For any § = (z,9°,y1) €
X, there exists 1) € {0, 1} such that val(v,§,n) < val(v).

For any 0 < n < o0, define

Dpt1 = {(v,&,n) € Ppy1 : val(v,&,n) < min{val(v), val(&)}}

and

Dyi1 := {(z,2,y) € Ppy1 : val(z, z,y) < min{val(z), val(Z)}} .
The following lemma relates E_)n+1 to Dypt1.

Lemma 28 Forany 0 < n < o, we have
Dns1 = {(&1(1),&(m +2), .., &nr1(1), En1 (M1 +2)) = (E1,m15 -+ &nt 1, Mns1) € Doy} -
Proof For any (£1,71,---,&n+1,Mn+1) € Dny1, we have

Val(gh m,--- 7€n+17 77n+1) < min{val(fl, Ny 75717 nn)a V&l(@)}

By Corollary 25, we have
Val(£1(1)7 51 (771 + 2)a cee a£n+1(1)> §n+1(nn+1 + 2))
:Val(gla m,... 7§n+1a 77n+1)

<min{val(&§1, 71, -+, &ny ), val(F) }.
= min{val(fl(l), 61(7]1 + 2)7 cee ,fn(l)a fn(nn + 2)7 Val(@)}
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which implies that (£1(1),&1(m +2), -+, §nt1(1), §nr1 (M1 +2)) € Dy
On the other hand, for any (z1,y1,...,%n+1,Yn+1) € Dpy1, define & := (x4, y;, y;) for arbi-
trary y, € Y satisfying y; # y; and n; := 0 for each i € [n]. Then, by Corollary 25, we have

val(€1,m1, - -5 &nt 1, 1)
=val(§1(1),§1(m +2), -+, &n+1(1), Ent1 (Mns1 + 2))
=val(T1, Y1, -, Tn+1, Yn+1)
<min{val(z1,y1, ..., ZTn,Yn), min(F)}
=min{val(§1,m1, .. .,&n, Mn), min(H)}

Thus, (§1,71, - -+ &n,Mn) € Dpg1 and &;(1) = x4, &(n; + 2) = y; for all ¢ € [n]. Therefore,

($17y1>"'7xn+1ayn+l)
e{(&(1),&(m +2), . &nr1(1), &1 (M1 +2)) - (&1.m1, -+, &ns1.Mns1) € Drya )

In conclusion, Lemma 28 is proved. |

According to Bousquet et al. (2021, Lemma B.10), we have the following lemma.

Lemma 29 For any 0 < n < o0,v € Py, and r € ORD, we have val(v) > & if and only if there
exists £ € X such that val(v,&,n) = k for all n € {0, 1}.

Then, by Corollary 25 and Lemma 29, the following corollary holds.

Corollary 30 Forany 0 < n < o, z € P,,, and k € ORD, we have val(z) >  if and only if there
exist x € X and (y,y') € Y2 such that val(z, z,y) > k and val(z,z,y) > r and val(z, z,y') > k.

Define
W= {(z1,y1,.-.) € (X x ) : Hay 4r....0r . = & for some 0 < 7 < 00}.
Then, we can show that W is coanalytic under the assumption that 7 is measurable.
Lemma 31 If X and ) are Polish and H is measurable, then W is coanalytic.

Proof According to Definition 3, we have

W ={(z1,y1,...) € (X x W) : Hyy 1 ,zrw, # & forall T < w0}
= miO:1 Yheo mthl {(xlvylv .. ) € (X x y)OO : h(evxt) = yt}

Forany h € Hand 1 <t < o0, define hy : © x (X x ) =Y, (0,21,41,...) — h(0,2,) and
i 1O x (X x V)* - R, (0, 21,y1,...) = Wy # he(0, 21,91, ... )}

Since H is measurable, h € H is Borel-measurable. Thus, h; is also Borel-measurable. Since the
mapping © x (X x )* — Y, (0, 21,y1,...) — y; is Borel-measurable, the mapping © x (X x
V)© - V2, (0,21,u1,...) — (ye, he(6, 21,41, ...)) is also Borel-measurable, which, together
with the fact that the mapping ? — {0, 1}, (y,%') — 1{y = ¢’} is Borel-measurable, implies that
l; is Borel-measurable. Since

{(0,21,y1,...) €O x (X x V)P : h(B,2¢) = v} = ;1 ({1}),
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we have that {(0,21,y1,...) € O x (X x V)* : h(0,x;) = y;} is Borel for any 1 < ¢t < oo and
h € H. Thus, forany 1 < 7 < o0, nj_; {(0,z1,y1,...) €O x (X x V)* : h(8,x¢) = y} is
Borel. Since the union over f € © corresponds to a projection and the intersection over 7 is count-
able, the set W€ is analytic. |

Define

An = Uwe(xxY)® {ZEP ( )EWC}.

Since X and Y are Polish, we have that P,, is Polish for any 0 < n < co. If W is coanalytic, then
A, is an analytic subset of P,, forany 0 < n < oo.
Define A := U0$n<ooA We have the following lemma.

Lemma 32 val(z) > —1 foranyz e A.

Proof Since z € A, there exists 0 < n < oo such that z € A,,. There exist (21, Y1, ..., Zn, Yn) € Pp
and (Zp41, Yn+1, Tnt2, Ynt2, - - - ) € (X x V) such that z = (z1, 41, ..., T, yn) and

,Hxl,yh---,xnyr # @

foralll < 7 < c0.
Forany 1 < i < oo, define n; = 0 and & = (z;,y;,y,) for arbitrary y/ € ) such that y/} # y;. It
follows that He, (1) ¢, (1 +2),...6- (1), (n,+2) = & forall 1 < 7 < oo, Thus,

vi= (&M 6ns ) € Ag
and by Definition 21 and Definition 24, val(z) = val(v) > —1. [
Now, the corollary below holds.
Corollary 33 IfW is coanalytic, then the set

A= {ze A, :val(z) > K}

is analytic for every 0 < n < wand —1 < Kk < wy.

Proof Since W is coanalytic, we have that A,, is analytic. For x = —1, since val(z) > —1 for any
ze A, by Lemma 32, we have that A1 = A,, is analytic for any 0 < n < co. For & > —1, suppose
that for all —1 < A < &, A} is analytic for every 0 < n < c0. According to Corollary 30, for any

0<n< oo,wehave
Af = Y e x I {ze A, :val(z,z,y) > k and val(z, z,y') > K}
= Ulayyexxy? ({2 €A, i val(z, z,y) > rand val(z,z,y/) > kand y # y'})

Consider the function f : P, x X x Y2 — P, x X xgﬂ, (z,2,9°,y") — (z,7,y',9°). fisa
continuous function. Since by the induction hypothesis, Aﬁ 41 1s analytic for any —1 < A < K, we
have that f(A}. ) is also analytic. Thus,

{(z.2,y,9) € Ay x X x Y? : val(z,2,y) > kand val(z,2,y') > kand y # y'}
= N-1<A<k (A;\Lﬂﬁf( n+1)>ﬁAn><X><y2
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is also analytic. Since X and ) are Polish spaces, we have that A% is analytic. By induction, A% for
any0 <n<owand -1 <K < wy. |

For any 0 < n < o0, define

Dyt1 := {(z,2,y) € Ppy1 : val(z, z,y) < min{val(z), val(Z)}} .
Then, we can show the following corollary.

Corollary 34 If val(¥) < wy and W is coanalytic, then D,, 11 is universally measurable for any
0<n<ow.

Proof By the definition of Dn+1, we have

Dpt1 = U_1<neval(g) { (2,2, y) € Pni1:val(z,z,y) <  and val(z) > r}
= U_i<n<val(@) {(#: 2, y) € Ppy1: (z,2,9) € (A1) and z € Art
= U_1<k<val(Q) ((A2+1)C A x X x y)
with A% defined in Corollary 33. According to Corollary 33, (A%, ;)¢ N A% x X x ) is universally
measurable for any —1 < k < wi. Since val((J) < wi, the union over —1 < £ < val(J) is
countable. Thus, D, 1 is universally measurable. |

However, for the universal measurability of the learning strategy we defined, the above corollary
does not directly apply. We need more refined analysis of the projection set of D,,. For any 0 <
n < oo and y € Y, define

e _{ )e P, x X :val(z,x,y) < min{val(z), Val(@)}}
={(z,2) ePp x X : (z,2,y) € Dps1}.

Then, we can proceed to show the following corollary.

Corollary 35 Ifval() < wy and W is coanalytic, then [_)ZT/L 41 s universally measurable for any
0<n<owandye).

Proof By the definition of DY, ;, we have

DY, | = U_1<n<val(g) {(2,T) € Pn x X :val(z,z,y) < x and val(z) > k}

= U_1<k<val(Q) {(va) € Pn XX (vaay) (A ) and z € AH}
= U t<neval(g) ({(z,2) € P x X 2 (z,2,y) € (A1)} n AL x X)

with A% defined in Corollary 33. Note that

{(Z7 J}) € ﬁ77, x X (Zax7y) € (7Z+1)C}
={(z,2) ePp x X : (z,2,y) € Al |}
= (Uyey {(z,2) € Py x X : (z,2,y) e Al ;1 NPy x X x {y}})C
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According to Corollary 33, A% x X is an analytic subset of P, x X and A% ., n P, x X x {y} is
an analytic subset of P, 41 for any —1 < k < wy. Thus, {(2z,2) € P, x X : (z,2,y) € (A%, )}
is coanalytic for any —1 < k < wj. Since val(() < wji, the union over —1 < k < val() is
countable. Thus, D% 41 1s universally measurable. |

Forany0 <n <,z € Isn, and y € )/, define

D%Y | :={x € X : val(z,x,y) < min{val(z), val(&)}}
= {:U eX:(z,x,y) € Dn+1}.

Then, we can show the following corollary.

Corollary 36 If_val(@ ) < wy and W is coanalytic, then Dfﬂl is universally measurable for any
0<n<wzePy andye).

Proof By the definition of D*¥ ,, we have

n+1°

f)fﬁl = U_i<r<val(g) 17 € X 1 val(z,2,y) < k and val(z) > x}
= U_i<n<val(g) {Z € X : (z,2,y) € (Af, ) and z € A} }

= Yki—1<k<val(Q), zeAs {$ €A (Z,.I‘, y) € (_2-{-1)0}

with A% defined in Corollary 33. Note that

{reX:(z,z,y) e (AL )}
= {x eX:(z,x,y) € AZH}C

~ (Cwa1epomy {7 € X5 (W, y) € Ay 0 {2} x X x {y}})

According to Corollary 33, Ajﬂ n{z} x X x {y} is an analytic subset of P,, , | forany —1 < x < wy.

Thus, {z € X : (z,2,y) € (A’;H)_C} is coanalytic for any —1 < k < wj. Since val(J) < wy, the
union over « is countable. Thus, D%, is universally measurable. |

Now, we are ready to define a value-decreasing function. Forany 1 < ¢ < o0, z € Pi1,
and z € X, define the set Gz, = {y eY:(z,z,y)¢ Dt}. When Y is uncountable, define the
mapping g; : P.—1 x X — YV by

arbitrary y € Gy, if Giag # O,

Z,1) = 7
9:(2, ) { arbitrary y € ), if Gy, = . @
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When ) is countable, we can enumerate ) as {y',42,%>, ..., }. Then, the mapping g; : P;_1 x X —
Y is defined as

(2,2) y', ifGiay # Pandy’ ¢ Gigyforalll <j<i—1, y' € Giga,
gt\Z,x) = .
yl’ if Gt,z,x = @

oy if(z,x)e[_)i/j foralll1 <j <i—1and (z,a:)gé[_)tyi,
yl, if Gt,z,x = .

y', if (z,7) € <m;;11[_)i/j) A ([_)fi>c,

Yt if (z,2) € N2, DY

Corollary 37 If )Y is countable, val() < wy, and W is coanalytic, then g; is universally measur-
able forany 1 <t < 0.

Proof For any 2 < ¢ < 00, we have
_ . o _ i\ C
g7 (") = (niziDY) n (DY)
which is universally measurable by Corollary 35. For 7 = 1, we have
_ =yl Sy1\ ¢
97" = (n7DY) u (DY)
which is also universally measurable by Corollary 35. |
Forany 1 <t < o0,z € P;_1, and « € X, define the mapping Gtz : X = YV, — g(z,x).

Then, we have the following corollary.

Corollary 38 If') is countable, va_l( &) < w1, and W is coanalytic, then gtz is universally mea-
surable forany 1 <t < wandz € Py_1.

Proof By the definition of g; ,, we have

y', ifxe <mi._1 Dz’yj> N <Dz’yi>c
) j=1"t t ’

gt’z('r) = 1 . 0 ~Z yj
y, ifxeni Dy

Thus, for 2 < ¢ < o0, we have
A6 = (nDE7) (007
which is universally measurable by Corollary 36. For ¢ = 1, we have
g ") = (nzaD) v (D)
which is also universally measurable by Corollary 36. |
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For any 1 < t < o0, define the mapping g; : X' — ),

(1,22, ..., %) = ge(x1, 91(z1), T2, g2(x1, g1 (21), 22), - - ., Te—1, Ge—1 (21, 91(X1), - - ., Te—1), Tt)
We can show the following lemma.

Lemma 39 Forany 1 <t < oo, if g; is universally measurable for all i € [t], then g, is also
universally measurable.

Proof For each i € [t — 1], define the mapping §; : P;_1 x X7 — P, x X1,
(T Yo i1, Yie 1> Ty Tig 1y - - -5 L)
H(xhylv s ;33%9@'(5”1,2/1» cee 7:Ci—17yi—17$i>7xi+1>xi+27 cee ,.I‘t).

Then, we have g, = g0 g;—10---0g1. Since g, is universally measurable, it suffices to show that g;
is universally measurable for each i € [¢ — 1]. For any Polish space £; and &, let F(&;) denote the
Borel o-field of £; and F(&;) x F(&;) denote the product o-field of F(&;) and F (&) on & x Es.
Since X and ) are Polish spaces, we have F(P; x %) = (F(X) x F(¥))? x F(X)* for any
0 < j, k < oo. Thus, it suffices to show that §;1((H§:1 Aj x Bj) x (ITj_is1 Ar)) is universally
measurable in P;_; x X'~ for any A; € F(X) with j € [t], any B; € F(Y) with j € [i], and
any ¢ € [t — 1]. By the definition of g;, we have

(11 m) < (11 )

i-1 ¢
={($1,y1,---,wi—hyz‘—l,%,ﬂfiﬂwu733t) € <HAj X Bj) x <HAk> :

j=1 k=i

gi(mlayla .- '7xi—1)yi—luxi) € B’L}

(i) 1)1

Since g; is universally measurable we have that g, 1(B;) is a universally measurable subset of
Pi—1 x X. It follows that g; ' (B;) x ([]j_;,, Ak) is universally measurable in P;_; x X*~+L,

Thus, g, ((Hj:1 Aj x Bj> (]_[k:i+1 Ak)) is universally measurable in P;,_; x X'~ H
The following corollary immediately follows from Corollary 37 and Lemma 39.

Corollary 40 IfY is countable, val(&) < wy, and W is coanalytic, then Gy is universally measur-
able forany 1 < t < oo.

We have the following lemma.

Lemma4l Foranyl <t < o0,z = (x1,y1,...,2Y:) € Ps, we have

val(z) = -1 <= H, = .
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Proof Define & := (z;,y;,y,) for arbitrary y; € V\{y;} and 7; := 0 for each i € [t]. Define

Vi= (§1a7717~~7ft,77t)- -
Assume that H, = . Then, for any w € (X x {0,1})®, we have

Hei(1),61(m+2),8(1),&+2) = Ho = I

which implies that (v, w) € W. Thus, we have v ¢ A. By Definition 21, we have val(v) = —1. By
Corollary 25, we have val(z) = val(v) = —1.

For the other direction, assume that val(z) = —1. By Corollary 25, we have val(v) = val(z) =
—1. By Definition 21, we have (v,w) € W for any w € (X x {0,1})®. Suppose that H, # .
Choose arbitrary h € H,. Since h € Y, there exists x € X and y € Y such that h(z) = y.
Choose arbitrary y' € V\{y}. Define &.; = (z,y,vy') and m4; := 0 forany 1 < i < oo,
and W = (&1, Met1, 642, Me42, -+ ) € (/\N,’ x {0,1})®. Then, for any 0 < 7 < oo, we have
b€ He (1),61(m+1),65(1),65 (0o +1)- Then, we have (v, w) ¢ W. A contradiction. Thus, H, = . B

Then, we can prove the following guarantee for g;.

Proposition 42  For any (z1,22,...) € X%, any y1 € Y\{91(x1)}, and any y. € Y such that
Yyt # ge(T1,Y1, -« oy Teo1, Yr—1, @) With 2 < t < oo, if val(J) < €, then there exists some positive
integer 7 (1 < 7 < o0) such that Hy, y, ,...xr yr = .

Proof By Lemma 22, we have val((f) = 0. Define & := (z¢, yt, ge(z1, - .-, x¢)), v¢ = (£1,0,...,&,0),
and z; := (x1,yt,..., 2, y) forany 0 < t < oo (when t = 0, we have vo = & and zg = ).

We claim that for any 1 < ¢ < o0, if 0 < val(z;—1) < val(&J), we have val(z;) < val(z;—1).
Indeed, by the definition of g;, we have either val(z;_1, z¢, g1(Zi—1, x¢)) = min{val(z;—1), val(&)}
or val(z;—1,x¢,y) < min{val(z;—1), val(J)} forall y € V.

If val(z;—1, 2, y) < min{val(z;_1),val(¢F)} for all y € ), it obviously follows that val(z;) <
min{val(z;_1), val(@)}. If val(z;—1, z¢, g(2¢—1, 2¢)) = min{val(z;_1), val(J)}, since val(z;—1) <
val((ZJ) by our assumption, we have val(z;—1, x¢, g(2;—1,2¢)) = val(z;—1). By Corollary 25, we
have

val(vi—1,&, 1) = val(ve_1).
Then, by Proposition 27 and Corollary 25, we must have
val(z;) = val(vy) = val(vi—1,&,0) < val(vi—1) = val(z;_1).

Thus, the above claim holds.

Now we claim that val(z;) < val(¢J) for t = 0 and val(z;) < val() forany 1 < ¢t < 0.
Indeed, when ¢ = 0, we have val(zg) = val(J). Suppose val(z:—1) < val() forsome 1 < ¢ < o0.
If val(v;—1) = —1, by Lemma 41, we have val(z;) = val(z;_1) = —1 < val(&¥). If val(z;,_1) > 0,
we have val(z;) < val(z;—1) < val() by the first claim. Thus, by induction, the claim holds.

By the two claims, we can conclude that val(¢¥) > val(z;) > val(zg) > --- > val(z;) as long
as val(z;) > —1. If val(¥) < €, by the well-ordering of ORD, there exists some finite positive
integer 7 such that val(z,) = —1. Thus, by Lemma 41, we have H,, = . [ |
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Now, we can present the proof of Theorem 18.
Proof of Theorem 18 Assume that 7{ has an infinite Littlestone tree {{, : 0 < k < oo,u €
{0,1}*}. Define the following strategy for the adversary P,: in each round ¢t > 1, P, chooses
vy = &y (1) € & withn; € {0,1} (1 <4 < t — 1) defined later (when t = 1, we have

Enyeme_r) = S)- After the learner P, makes the prediction 7j;, define

N = 0, if£(7717~~~:77t—1)(2) #* @t,
1, otherwise.

Then, P, reveals the true label v; := Enymen) (e +2).

Since §(5,,..5,-1)(2) # &(g1,...5.1)(3), we have y; # 7, for each ¢ > 1. Besides, by the defini-
tion of Littlestone tree (Definition 5), (z1, y1, - - . , ¢, Y¢) is consistent with H for any (41, ...,7;) €
Yiandt > 1.

Assume that H does not have an infinite Littlestone tree. Consider the following strategy for the
learner P;.

* Initialize 7 < 1 and f(z) < g1(x).
e Fort «— 1,2,3,---:

— Predict y; = f(xy).
- Ifg?t # Y -
set Tr = x4, Ur = Yt, f(2) <~ gr41(Z1,01, .-, Tr,Yryx),and 7 — 7 + 1.

Suppose that there exists some adversary P, such that P, makes infinitely many mistakes at 1, to, . . .
adopting the above strategy. Then according to Proposition 42, there exists some 1 < k < oo such
that Ha, ;... 5, = &- However, this contradicts the rule of the online learning game B be-
cause Hxl,yh..-,xtk,ytk = . [ |

Also, the universal measurability of the learning strategy can be proved.

Corollary 43 If X is a Polish space, )Y is countable, H is measurable as defined in Definition 3,
and H does not have an infinite Littlestone tree, then the learning strategy of P, specified in Theorem
18 is universally measurable.

Proof Since H does not have an infinite Littlestone tree, according to Lemma 22, we have val(&J) <
Q. Then, by Lemma 26, we have val(¢¥) < wj. Since H is measurable, by Lemma 31, W is coana-
lytic. Then, according to Corollary 37, g; is universally measurable for any 1 < ¢ < co. According
to Corollary 38, f(x) is also universally measurable for any 1 < ¢ < oo. Thus, the learning strategy
for P, specified in Theorem 18 is universally measurable. |

B.2. Concluding proof

Proof of Theorem 13 First, according to Bousquet et al. (2021, Lemma 4.2), 7 is not learnable at
rate faster than the exponential rate e~ ". Thus, the proof is completed once we construct a learning
algorithm which, for H without an infinite Littlestone tree, achieves exponential rate for any real-
izable distribution P. We use the learning algorithm constructed in Bousquet et al. (2021, Section
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4.1). According to Bousquet et al. (2021, Lemma 4.3, Lemma 4.4., and Corollary 4.5) and their
proofs, for the learning algorithm to achieve exponential rate, it suffices to have an adversarial on-
line learning algorithm with the properties that it only makes finitely many mistakes against any
adversary and it only changes when a mistake is made. According to Theorem 18 and its proof,
for H without an infinite Littlestone tree, the winning strategy constructed in the proof only makes
finitely many mistakes against any adversary and changes only when a mistake happens. Then, the
same proofs of Bousquet et al. (2021, Lemma 4.3, Lemma 4.4., and Corollary 4.5) can be applied
to show that the constructed online learning algorithm achieves exponential rate. In conclusion, if
‘H does not have an infinite Littlestone tree, then H is learnable with optimal rate e™". |

Appendix C. Near-Linear Rates

In this section, we prove Theorem 14.

C.1. Slower than exponential is not faster than linear

In this subsection, we prove the following theorem.

Theorem 44 [f H has an infinite Littlestone tree, then for any learning algorlthm A, there exists a
‘H-realizable distribution P such that for infinitely many n, E[er(h )] = 5+ where hy = = A(H,S)

with Sy, ~ P™. Thus, H is not learnable at rate faster than %

Proof Suppose that H has an infinite Littlestone tree
{gu = (Zu, 99, v8) :0< k< d,ue {0,1}’“}.

Fix an arbitrary learning algorithm A. Let u = {uy, uy,...} be a sequence of i.i.d. Bernoulli(3)
random variables. Conditional on u, define the distribution F, on X x ) by

({$u<k7yuk+l}) Qikil, V k = 0
Note that the mapping u — P, is measurable.

By the definition of Littlestone tree, for any n > 0, there exists a hypothesis h,, € H such that
hn(2u_,) = yuet' for any 0 < k < n. Thus, we have

ery(hy) := Py({z,y) € X x YV : hp(x) #y}) < Z g7kl — g—n—1,

k=n+1
Then, infpey ery(h) = 0 and P, is H-realizable.
Let T, 11,T5,... be ii.d. random variables with distribution Geometrlc( ) (starting from 0).
Define X := zy_,, Y = YT X; = = Tucr,, andY; := =Y, 1+ for any ¢ > 1. Then, conditional
= <T <T

on u, by the definition of /%, we know that (X,Y), (X1, Y1), (Xg, Ys),... is a sequence of i.i.d.
random variables with distribution P,. Now, define h,, = A(H, ((X1,Y1),...,(Xn,Ys))). For any
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k > 1, since uy,us,... areii.d. Bemoulli(%) random variables, we have

(hn(X) # Y, T = k,max{Ty,...,T,} < k)
h

)
(hn(X) # yaet', T = k,max{Th, ..., T,} < k)

~

E[P(h,(X) # yuti | X, T, T, ..., T) L{T = k,max{T\,...,T,} < k}]

P
P

E [;I{T by max{Ty, ..., Th} < k}]

1
=§P(T = k,max{T,...,T,} < k})

=27F2(1 —27M)n.

Define ky, := [1+logy(n)] forn > 1. Then, we have 27%»~2 > -Land (1-27F)" > (1—5-)" >
%, which, together with the above result, implies that

P(En(X) #Y,T = kn) >P(’ﬁn(X) #Y,T = knamaX{Tla B 7Tn} < kn)

22,]{”,2(1 _ kan)n

1
>—.
32n
Since
~ 1
nP(ho(X) # Y, T = kplu) < nP(T = ky|u) = nP(T = k) = n2 "1 < 1 s
by Fatou’s lemma, we have
~ ~ 1
E[limsup nP(h,(X) # Y, T = ky|u)] = limsupnP(h,(X) #Y, T = k,) > —.

Since
P(h(X) # Y, T = kplu) < P(hy(X) # Y|u) = E[ery(hy)|u] as.,

we have E[limsup,,_, ., nE[eru(?Ln)\u]] > & > . Thus, there exists u’ € {0,1} such that

Elery (h,)] = ﬁ infinitely often. The proof is completed by setting P = Py. |

~

C.2. Pattern avoidance functions

In this subsection, we design pattern avoidance functions in the adversarial setting and analyze their
properties. For any n € N and hypothesis class H < V", denote the collection of all n-dimensional
pseudo-cubes of H with PC(?). For any m € N, denote the collection of all n-dimensional pseudo-
cubes of H of size m with PC,,,(#). Then, we have PC(H) = u_,PC,,(#). For any hypothesis
class F' < V", let Q(F') denote the union of all the pseudo-cubes of dimension n that are subsets of
F.

Consider the following game B between player P4 and Pr. At each round 7 > 1:
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* Player P4 chooses a sequence X, = (z2,...,2771) € X" and a set C; € PC(Y7).
* Player Py, chooses a sequencey. = (y2,...,y7 1) e ).
* Player P, wins the game in round 7 if

— either C; ¢ PC(Hx, ),
—ory,eCsforalll < s <7andHy,y, . x.y =& where
HXI7Y17"'7XT7y7‘ = {h € H : h (xé) = y.’; fOI'O < /L < 87 1 < § < T} ’

The set of winning sequences of Py, in ®B is

o0
Weg 1= {(xl,Cl,yl,...) e [ [(x" x PC(Y") x ¥) : 37 € N such that
t=1

either Cr & PC(H|x, ), ory, € Cyforallt € [7] and Hy, y, .x,y. = @}

Obviously, Wiy is finitely decidable, which implies that B is a Gale-Stewart game and according to
Gale and Stewart (1953), either P4 or P;, has a winning strategy.

With regard to the universal measurability of the winning strategy, we assume that X is a Polish
space, ) is countable, and H is measurable in the sense of Definition 3. We first prove the following
lemma.

Lemma 45 Foranyt e Nand x; € Xt, PC(V?) and PC(H|x,) are countable sets.

Proof Since ) is countable, V! and H|x, are also countable. By the definition of pseudo-cube, any
pseudo-cube is a finite subset of the hypothesis class. Since the set of all finite subsets of a countable
set is countable, PC(H|y,) and PC()") are countable sets. [ |

For any ¢ € N, define the set
XPC; := Ug,ext{xt} x PC(H|y,) € X" x PC()
Then, we can prove the following property of XPC;.
Lemma 46 For any t € N, XPC, is an analytic subset of the Polish space X' x PC(J?).

Proof According to Lemma 45, PC())) is countable. Thus, X* x PC()") is a Polish space. For
any t € N, we have

XPC, = uz;l((;ct x PCn(yt)>m
U(0y,....00)cOn {(x,yl, LYY e X x Y h(6;,x) =y forallie [n]})

where by h(0, (z1,...,2¢)) = (y1,...,Y), we mean that h(0, z.) = y, for all 7 € [¢]. Indeed, for
any (x,C) € XPC;, we have x € X' and C € PC(H|x). Then, by the definition of pseudo-cubes,
there exists a finite n € N such that C' € PC,,(H|x). Since H|x = V!, we have C € PC,()") and
(x,C) € Xt x PC,, (). Moreover, since C < H|x with |C] = n, we can write C' = {y',...,y"}
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such that there exist (h1, ..., hy,) € H" satisfying h;(x) = y* for any i € [n]. By Definition 3, there
exist (01, ...,0,) € O™ such that h(¢;,x) = y* for all i € [n].

On the other hand, if (x, {y',...,y"}) € X*xPC, (") is such that there exist (1, ..., 0,) € O"
satisfying h(6;,x) = y' for all i € [n], we have C := {y!,...,y"} < H|x and C is a pseudo-cube
of dimension . Thus, C' € PC(H|x) and (x, {y*,...,y"}) € XPC,.

We claim that the set

Stn = {(01,...,00,%,y",...,y") €O™ x X' x Y™ : h(6;,x) =y forallie [n]}

is a Borel set. The reason is as follows. For any i € [n], define the function

n t
1:0" x X x Y™ - {0,1,...,nt}, (01,...,9n,x,y1,...,y")»—>ZZ 1{h(0;, z,) # y'}.

Since h is Borel-measurable, we can conclude that [ is also Borel-measurable with the argument
analogous to that in the proof of Lemma 31. Thus, S, = [~*({0}) is a Borel set. Then, the set

U(0y,....00 )0 {(x,yl7 LY e X x Y h(6;,x) = y' forall i [n]}
Y(8,...,0n)e0n {(Xaylv o ’yn) € Xt X ytn : (915 s aenaxvylv v ’yn) € St,n}
is an analytic set for any ¢, € N. Since PC())!) is countable, we know that PC,,())!) is countable.

Since X is a Polish space, we have that X'* x PCn(yt) is an analytic set. In conclusion, XPC; is an
analytic set for any ¢ € N. n

Now, for any 0 < n < o0, define Py, := [ [} (X" x PC(Y") x V') which is the set of positions
of length n of the game 9B and F’n = [T, (XPC; x V') < Py,. Define P := U®_ P, (with
Py := &) to be the set of all positions of the Gale-Stewart game 8. We can show the following
results according to Lemma 46

Corollary 47 Forany 0 < n < o0, ﬁn is an analytic subset of the Polish space P,,.

Proof Since )' and PC()*) are countable and X is a Polish space, P,, = [ |7 (X" x PC(Y') x V')
is also a Polish space for any 0 < n < 00. By Lemma 46, we know that XPC; x V! is an analytic
subset of X' x PC(Y*!) x V! forany 0 < t < co. Then, we have that P, is an analytic subset of P,,
forany 0 < n < o. For n = o0, we have that

e¢]
P =2, (ﬁn x [T (x' x PC(Y") x yt)> .
t=n+1
Since P,, x ]2 1 (XF X PC(yt) x V') is an analytic subset of P, = [ ;2 (X" x PC(Y*) x YY)
for any 1 < n < oo, we have that P is also an analytic subset of P. |

Then, we can proceed to show that

Lemma 48 P.,\Wy is an analytic set.
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Proof We have
e}
P oo\ Weg :{(xl,Cl,yl, ) e [JXPCy x V) : forall 7 € N, either Hy,y,,..x,y, # &
=1
orise|r]sty,¢ C’S}

=n®, (( Ugeo r\g:l{(x, C1,¥1s- - -5 eﬁ (XPC; x V') 1 h(0,xs) = y8}>

v (ugzl {(X,Cl,yl,...,) € ﬁ(XPCt x Yy, ¢ Cs}>>.

t=1
By Lemma 45, Lemma 46, and Definition 3, for any s € N,

0

{(97){7017}’17'-") €0 x H(cht X yt) : h(@,XS) = ys}
t=1
( ﬁ XPC; x yt ) a {(G’X’ C1,y15---,) €O X ﬁ(/’){'t X PC(yt) x yt) +h(0,x.) = ys}
t=1 t=1

is an analytic set and

{(XaclaY17"'>) € H(XPCt X yt) tYs ¢ Cs}

t=1

e¢] 0
(H (XPC, x V') ) A {(X,Cl,yl,..., e[ J(x! x PCY) x V') :y, ¢Cs}
t=1 t=1
is also an analytic set. Thus, we have P, \Wsy is an analytic set. |

We have the following lemma relating a winning strategy of P4 in ‘B to an infinite DSL tree of
H.

Lemma 49 P, has a winning strategy in *5 if and only if H has an infinite DSL tree.

Proof Suppose that P4 has a winning strategy &, : ,:11 Yt — X7 x PC(Y7) forall 7 € N in
8. Specifically, for any (yy,--- ,¥,_1) € [ 1=} V', we have &-(y1,- -+ ,¥,_1) = (x,, C) for some
x. € X7 and C' € PC(H|x, ). For notational convenience, let {-(y;,- -+ ,¥,_;)(1) denote x, and let
&(¥q1, + ,¥,_1)(2) denote C. Now, define the following infinite tree by induction.

* Let the root node of the tree be labelled with & (¥)(1) € X and have |£;(F)(2)| children
such that each edge between the root node and its children is labelled with a unique element

in &1 () (2).

* Suppose that for some 7 € N, all the nodes inlevel 0, 1, . .., 7 have been defined, all the nodes
inlevel 0,1, ..., 7 — 1 have been labelled, and the edges between each node in level k and its
children have been labelled for all k € {0,1,--- ,7 — 1}.
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Then, for each node v in level 7, denote the labels of the edges along the path eliminating from

the root node to node v with y; € Vi, Yo € V2% ..., and y, € V7. Now, let node v be labelled
with & 41(y1, -+ ,¥,)(1) and have |&-41(yy,---,¥,)(1)| children such that each edge be-
tween node v to one of its children is labelled with a unique element in &1 (yy, -+ ,¥,)(2).

By the definition of the winning strategy of P4 in ‘B, the infinite tree defined above is an infinite
DSL tree for H.

For the other direction, suppose that / has an infinite DSL tree. For any k € Ny, denote the set
of nodes in the level k of the infinite DSL tree with V}.. Note that if there exists some 7 € N such
that Cy < Hly, forallt € [7], Hlx, y,,...xr—1,y,_, # &, andy, ¢ C-, then P4 wins in round 7 of B.
Define the following strategy &; : ;—11 V! — X7 for P4 in B and a corresponding node mapping
Uy Z;ll V! — V,_1 by induction for all 7 € N.

» For 7 = 1, let v1 () denote the root node, £ () (1) denote the label of the root node of the
DSL tree, and £1(F)(2) denote the pseudo-cube in H|¢, (g)(1) consisting of the labels of all
the edges between the root node and its children.

* Suppose that for some 7 € {2,3,...}, n and v; has been defined for all ¢ € [T — 1]. For any
y €V ...y, 1 € Y7L, there are two cases.

- If P4 has not won in round 7 — 1, define v-(yy,...,y,_;) to be the node in V,_;
which is the ending node of the path in the DSL tree eliminating from the root along
the edges labelled with y,,...,y,_;. Define &-(y;,...,¥,_1)(1) to be the label of
Ur (Y15, ¥r—1)- Define &-(yy, - .., ¥,_1)(2) to be the pseudo-cube in Hle (v, .y (1)
consisting of the labels of all the edges between v, (yy,...,y,_;) and its children.

— If P4 has already won, define v-(y;, ...,y,_) to be the first child node of v, _1(y;,...,¥,_2).
Define £+ (yy,...,¥,_1)(1) tobe thelabel of v, (yq,...,y,_;). Define & (yq, ..., ¥,_1)(2)
to be the pseudo-cube in | & (yy,....y,_,)(1) consisting of the labels of all the edges be-
tween v (yy,...,y,_,) and its children.

According to the definition of DSL trees and the rules of B, {&;} ey is a winning strategy of Py4 in
B. |

Moreover, we can ensure that there is a universally measurable winning strategy for P, in ‘B
when H does not have an infinite DSL tree.

Proposition 50 [f H does not have an infinite DSL tree, then there is a universally measurable
winning strategy for Py, in *B.

Proof Since ‘B is a Gale-Stewart game, according to Lemma 49 and Bousquet et al. (2021, Theorem
A.1), we have that if H does not have an infinite DSL tree, then there is a winning strategy for P,
in ‘B.

According to Lemma 45, Corollary 47, and Lemma 48, we know that 8 is a Gale-Stewart
game such that the action sets of P4 (Xt x PC()?), t € N) are Polish spaces, the action sets of
P (Y, t € N) are countable, and the set of winning sequences Wy for Py, is coanalytic. Then,
according to Bousquet et al. (2021, Theorem B.1), Pr, has a universally measurable winning strategy
(gt : Pio1 x Xt x PC(YY) — Vi, t € N) for P, in B if H does not have an infinite DSL tree. For
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completeness, we provide the explicit definition of g, below for ¢ € N according to the proof of
Bousquet et al. (2021, Theorem B.1). Forany ve P;_1,x € Xt and C e PC(yt), enumerate V' as
{y()};cn and define

y&) if val(v,x, C,y®7)) = min{val(v), val(&)} forall 1 < j <
gt(v,x,C) := and val(v, x, C,y*?)) < min{val(v), val(&)},
y& if val(v,x, €, y*9)) > min{val(v),val(&)} forall j € N.
|

From now on we assume that A does not have an infinite DSL tree. Analogous to Definition 21,
we define the game value val : P — ORD* according to Bousquet et al. (2021, Definition B.5). For
any 7 € N, define the mapping 7, : [[;_; (XPC; x V') — {0, 1} by

1 ifval(v,x,C,y) < min{val(v), val(&)},

0 otherwise,

777’("7 X, Ca y) = {

forany v e Hth_ll (XPC; x V'), (x,C) € XPC,, and y € V7. Define the following online algorithm
which given a sequence of feature-label pairs (1, y1, 2, y2,...) € (X x V)* chooses a sequence
of elements in UX_; [ T;_; (XPC; x V') (“patterns™):

e Initialize 79 « 1.
* Atevery time step t € N:

- Letmp «— 7_1.
— For each C' e PC(H/
w If

wt—q,ﬁ—lw:xt))'

Nre—q (5_‘17 Cii¥15 5 X -1, Cr -1, yftflfl’

N e ) B

- Let Xr , < (xt—’rt,1+17 . ,xt), Cthl — C, yTt—l «— (yt—Tt,H—lv .. ,yt),
and Ty <— Tg—1 + 1.

- Break.

We use y, to denote the “ pattern avoidance mapping” defined after time step ¢ of the above
algorithm; specifically, we define

~ / / R
Yt(xlw"?xrt)' YCePC(H|,. . 7 )
(zl ,,,,, th)

{y, eC: 777}()_(176’17?17 s 7)_(7}—1767}—175773—1) (l‘/lu s 7x2—t))c7 yl) = 1}

forany ¢t > 0 and (27,...,27,) € X™. From the above algorithm, we can also define the following
functions for any ¢ > 0,

T (X x ) —{1,...,t+1}, (z1,91,...,26,9) — T,
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and

Y, : (X x y)t X uéill.)(s — u?;lles, (T1, YLy ey Tt Yty Ty ooy ) > Yo(2, . 2l ). (8)

Tt
We have the following proposition.

Proposition 51 For any sequence x1,Yy1,T2,Y2, . .. that is consistence with H, we have

(ythtflJrl? SRR yt) ¢ ?t—1($t77t71+1a s ,.%'t), Tt—1 = Tt < 0O, and y\t—l = y\t
for all sufficiently large t.

Proof Suppose that there is an infinite sequence of times 1 < ¢; < {2 < --- such that

(yti*Tti71+17 st >yti) € ?ti—l(xtifnif1+17 LR xti)

for any 7 € N. Define x; := (a:ti_TtFlJrl, e X)), Y = (yti_nrlﬂ, o), G = CTtrl, and
v = (x1,C1,yq,-..,%,Cy,y;) for i € N. Since H does not have an infinite DSL tree and Wy
is coanalytic, we have val((J) < wy. Thus, there is no infinite value-decreasing sequence, which,
together with the definition of y,, implies that val(vy) = —1 for some k € N; i.e., Py, wins at round
k of B under the sequence of positions vi. Since we have ensured that C; < PC(H|y,) for all
7 € N, we must have Hxy yy,.xiy, = & by the winning rule of P, in $B. However, this contracts
the assumption that the sequence (x1,y1, 2, y2, ... ) is consistent with {. Thus, there exists some
to € N such that
(Ytriat15-- 5 Y1) & ?t_1($t77t_1+1, )

for all ¢ > to. Then, according to the definition of 7; and y,, we have 7,1 = 7+ < tp < o0 and
Y, =y, forall t > tg. [ |

C.3. Universal measurability

In this section, we prove the following proposition about the universal measurability of the functions
Ti and Y defined in the previous section.

Proposition 52 For anyt > 0, T} and ?t are universally measurable.

We start with some definitions of the building blocks for analyzing the universal measurability. For
any t € N and any s € [t], fix an arbitrary sequence 1 < j; < jo < -+ < js <t — s+ 1. Define
Jjo :=0and Jy := 0. For any i € [s], define

—1+Z (g1 +k—2—Jr+1) v0)]

i

z—i—l .
— > (k-1 + k= 1—j) v 0)
k=2

and

Lii=Jia+1=((ici+i—2-5i+ 1) vO0)=Ji1+ ((Ji —ji-1 —i+2) A 1).
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In this section, for any k € N, i,j € [k], and k-tuple z = (2%, 22,..., 2%), let 2%/ denote the
subtuple (2, 2t 27) if i < j and denote 7 if i > j. We assume the convention that (J = .
For any 0 < i < s, define

Fj1,...,ji = {(X17017y1 s 7Xivci7Yi) € H(Xk X Pc(yk) X yk) :
k=1

1:(p_ 1 +k—1—j i —in_1+1):(k—1
" (Jr—1+ Jr) _x(Jk Jr—1+1):( )and

k - k-1
yly(jk—lJrk*l*jk) _ y]gjic;jk—ﬁrl):(k*l) forall 2 < k < Z}

Then, F;, __j, is a closed subset of [ [5_, (X* x PC(J¥) x Y*) and is also analytic. Define

0

it = Fiogo ¥ [ ] (X% x PCF) x Y.
k=i+1

Then, F;, .._j, is an analytic subset of [[{_, (X% x PC(Y*) x V¥).
For any C; € PC()'),...,C; € PC()?), define Define

Zcy,..c; = (ﬁ(?\fk x {Cy} x yk)>

k=1
and

20001 (ﬁ(%’“ < {Cr) % m) x ( T (F x PCO) yk)) |
k=1 k=i+1

Since PC(yt) is countable by Lemma 45, we have that Z¢, .. ¢, is an analytic subset of HZ:I (X ko
PC(Y*) x Y*). Thus, Z¢, ... ¢, is an analytic subset of [ [;, (X% x PC(V¥) x k).
Define

XYj17---,ji,C'17---7Ci = {(331,211, <o 7wayJi) € (X X y)JZ :
(21, C1, Y15 T 1or(1o41)5 O2, Uboi(Ia41) s - - 5 Ths(Litvi—1)» Cis YIs(Lii—1)) € Pi}-
Then, we have

XYj1,~~,ji,Cl,~~~,Ci

-y

(CLonsCPEl Timy PC(VF)

ey Ly Y

(s T2V LG 0) | TG i)V LG VO sy G o100 v0)

{($17y17'~733JiayJi) € (X X y)JZ :

1:((j1+1—72)vO 1:((j1+1—72)vO
(3311 Ci? Y1, (;UQ (Gr+1=d2) )7x(J1+1):J2)7 Cév (y2 (1 +1-72) )7 y(J1+1):J2)7 T
(xgz(uz-_lﬂ‘—l—ji)vo), TR ol (yilz((ji_wz‘—l—ji)vt)),y(JFﬁl):Ji))

€ Pi M Fjl,-nJi N ZCL...,CZ}-
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Since P;, Fj, ., and Z¢, . ¢, are analytic sets, we can conclude that XY, ;. o ¢, is an
analytic subset of (X x )7

Define the set

Aji . jirC1ynnCi

= U {(wlaylv"'awayJi)e(Xxy)Ji

wel [ 41 (XPCox ")

(l‘l,Cl,Z/laxIQ:(Izﬂ),C%3/12:(12+1), e 7'75]1-:(11--&-1‘—1)7Ciayll-:(ll--&-i—l)aw) € Poo\W%}

- U U

wel [i25 11 (XPCoxY7) (4 ,...,.Cl)el Timy PC(IF)

(ac {((G1+1-342)v0) 1:((3'1+1*J2)VO)7._.7x;1(<ji—1+i*1*ji)Vo)vyili((ji—fri*l*ji)VO)>€H2:1(Xxy)li((jk—ﬁrk*l*jk)vo)

{xlaylw' xjvyj)e(Xxy>Ji
<CE Cla yl, 1 (r1=gz)v 0) L(J1+1):J: ) 02’ ( Rl )7 y(J1+1):J2)7 R
(.Z‘ ((Ji—1+i—1 jl)\/o)"ru 1) ) C/ ( 1:((ji—1+i—1-34;)v0)

7y(Ji,1+l):Ji)7w>
€ (POO\W%) M ’[Ejl,...,ji N zcl,,C,}

By Lemma 48 and the analysis above, Py, \Wg, le, .ji» and ch _c; are analytic subsets of P.
Moreover, ]_[k 1(/'1,’ X y) (Gr—1+k=1=7k)v0) i5 a Polish space. Thus, Aj, ...ji.Cu,....C; 1s an analytic
subsets of (X x Y)”i

For any x € ORD U {—1}, any i € {2,3,...,s}, and any C; € PC(Y1),...,C; € PC()"),
define the sets

A= U (veP;: (v,w)ePy\Wg},
we[72, 11 (XPCix YY)
Af :={veA,; :val(v) > k},
and

K
A]la Ji,C1,-.,C

:{(xl, Yiy---5,T gy, yJi) € Ajl:--~7ji,Cl,~~~,C¢ :

Val(fxlaCl7y17m[2:(12+1)7C2ay12:(12+1)7 S 7$Ii:(1i+i—1)aCi7yli:(li+i—1)) > /‘f}-
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When k = —1, we have A ! CroiCi = Ajr,ginCh,enc; and A_1 = A,;. According to Bousquet
17 7]7«7 17 Al e "
et al. (2021, Corollary B.11), Af is an analytic subset of P; for any —1 < x < wy. Then, since

K
AJ1, J1,C15--,C4

-y

(€11 CEl T=y PCVF)

(1 +1- Jz)vO) 1((J1+1 Jg)vO) 1((J1 1+i—1—7;)v0) yl ((44—1+i=1=3;)v0)

T ’1/ 9

( ) szl(Xxy)lt((jk_1+k*1ﬁ'k)VO)
{ T1,Y1y--- leale)e(XXy)Ji
($15C17y17 ((j1+1ij2)\/0) L(J141):J. ) 027 ( ((j1+1ij2)\/0)7y(‘71+1): 2)7

J:
((Js—1+i—1— .71)\’0) (Jz L+1):, ) Cl ( ((jiilJriiliji)VO)ay(Jifl-i-l):Ji))

€ A,’f M ij---,ji M ZC1,...,C~;}7

we can conclude that A% . - . is analytic subset of (X' x V)i forany —1 < K < wy.

According to Lemma 49 and the definition of the game value (Bousquet et al., 2021, Definition
B.5), we have val((J) < € under the assumption that # does not have an infinite DSL tree. Then,
by Bousquet et al. (2021, Lemma B.7), we immediately have the following lemma.

Lemma 53 val() < wi when H does not have an infinite DSL tree.

Now, for any m € N with j; < m < jiy1, any (C1,...,Ci41) € ]_[Hl PC()Y*), and any y/ =
(yia s ’yém—ji-‘rl)/\(i-‘rl)) € y(m7]¢+1)/\(z+1)’ define the set

Dj1»~~~7ji7m7017~--7Ciyci+17y/
Ji —Ji+1)A(i+1) |
:{(mlaylv'"7xJi7yJi7x/1:((m—ji+1) (z’+1))) € (‘X X y) X X(m Jit)A (D) .

m—7;+1)A(i+1
(Il) Yi,---5TJ5,,Y7;, (xkn yk;);(— In ))) € XYj1,...,ji,m,Cl,...,Ci,CiHa

V&1($1, 017 Yty -5 X1 (1;4+i—1) Ci7 Yr;:(1;4i-1)»
(x(Ji+1f((ji+ifm)v0)):Ji7 xll;((mfjiJrl)/\(iJrl)))? Cit1, (y(Ji+1*((ji+i*m)V0))5Ji7 yllz((mfjiJrl)/\(iJrl))))

< min {Val(®)7 Val(xla 017 Yty -5 Tr(I;4+i—1) Cia yli:(1i+i—1)) }}

We prove the following result about the above set.

Lemma 54 For any m € N with j; < m < jiy1, any (C1,...,Ciy1) € Hzﬂ PC(Y*), and
any y' = (yi"”’yszjHl)A(Hl)) e Ylmmget DA, Dji,.oojism,Ci s Ci gy 15 umiversally
measurable.
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Proof We can write

Djl,...,ji,’”’l,Cl,...,Ci,Ci+1,yl

= U {(.ﬂvl,yl,...,SUJi,yJi,fE,L((m_ji_,'_l)/\(i_,'_l)))E(XXy)Ji x X
—1<k<val()

(m—7i+1)A(i+1) :

1o r\(m—=ji+1)A(i+1)
(xla Y, o527, Y7;5 (J:ka yk)kzl ) € Xle7~-~7ji,m701,-~~7cz‘7ci+17

Val(wh Cr,y1,- -, LI:(I;+i—1)» Ci, Y1:(Li+i-1)> (x(Ji+17((j¢+i7m)vO)):Jp xll;((m,jﬁl)A(iH)))v
C’i-‘rla (y(]i+17((ji+i7m)\/0)):]1'7yi;((mfji+l)A(’i+1)))) < K,

val(z1, Cr, Y1 - @1 4i-1)> Cis Uls(liio1)) > /‘f}

= U {(:Cl, Yty - ,xji,yji,$/1:((m7ji+1)/\(i+1))) S (X X y)Jz X X(m*jiJrl)/\(iJrl) :

—1<k<val()

(m—ji-‘rl)/\(i-'rl))

/ / K
(xl, Yty s Tg Y, (g yk>k:1 € Xth---,ji7m7017---,Ci,C¢+1\Aj1,---,j¢,m,01,---7Ci,C’i+1’

('1:17 Yty -y X gy, le) € A_?l,...,ji,c1,...,ci}

= U <{($1, Y1y -y xJi’yJi7x/1:((mfji+l)A(i+1))) € (X X y)Jz X X(m_ji'f‘l)/\(i-‘rl) .
—1<k<val()

11\ (m=gi+1) A(i+1) K
(-Tla Yy« T, Yy (T yk>k:1 ) € Xth---,ji,m,Cl,---7Ci,Ci+1\Aj1,.-.,ji,m,017--.,C'i,C'i+1

ﬂ (Afl,“.,ji,cl,...,ci X X(mfjiﬂ)A(”l)) )

K

By Lemma 53 and the previous results, forany —1 < x < val(J) < w;, we have that AJ1 jinCr O %
X (m=7i+1)A(+1) s an analytic subset of (X x V)7 x x(m=7i+1)AG+1) Moreover, for any —1 <
k < val() < wy, we have

Ji o p(m=ji+)a(i+1) .

{(xl’ Yis-- 52 JYd,;s xllz((m—ji+1)/\(i+1))) € (X X y)

(@115 Y (2 yfc);(cTZIjiJrl)A(iJrl)) € Xle,...,ji,m,Cl,...,Ci,Cm\AZ,.,.,ji,m,cl,...,Ci,cm}
=3 (1,1, -- 7$Ji,yJi,l'/l:((m_ji+1)/\(i+1))) € (X x V)T x xm=git)at+1)
(1,915 g, Y, (3, yk)gifjiﬂh(”l)) € Xle,...,ji,m,cl,...,CZ-,CM}
\{($1,y1, o ?xJHyJi"rllz((m—ji+1)/\(i+1))) € (X x Y)7i x x(m=iita(i+1)
(331, Y1y Ty Ydss (:L'%, y;c)z(;z;jiﬂh(iﬂ)) € AZ,...,ji,m,cl,...,ci,CHl}
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with
Ji —Ji i .
{(xhyl, o vwaywallz((m—jiH)A(iH))) e (X x V)T x x(m=jit 1) a(i+1)
+1 1
(1'17311, e g Y (:L'k, yk)£m1j A )) € XYj1,---7ji,m701,---70i,0i+1}

_ U {(fEla T xJi7yJi7xll:((m—ji-i-l)/\(i-i-l))) c (X % y)Jz « X(m*]'i+1)/\(i+1) .

ylley(m—ji-%—l) A(i+1)

(9517?/1, s g Yd;s (xk;a yk;);- 1ji+1)/\(i+1)) € Xle,...,ji,m,C1,...,C»L‘,Ci+1
(m—ji+1)Ai
N(xxyy < [ @xmh)}
k=1

and

{(xl, Y1, - - 7‘TJ'L7yJi7$/1:((mfji+1)/\(i+1))) (S (X X y)J’L X X(m*ji‘f’l)/\(ﬁl*l) :

(m—ji+1)A(i+1) P
(xhyl"' xJ’yJ’(xk’yk)k 1 ) Ajl, +31,m,C1,..,Ci,Clin

— U {(ml,yl,...,le.,yJi,xll:((mfjiH)A(Hl))) € (X x y)Jz' « xm=jit1)A(i+1) .
ylley(mfji+1)A(i+1)

my (m—=ji+1) A (i+1) K
(%'1791’ s T Ydis (xk;yk)k 1 ) A]ly 25Jim,C14.,C5,Cign

(m—ji+1) At

N(@ x> ] @ i) |

k=1

Since we have proved that XY, j.m.ci,...C;,Cipq @A A o ¢, 04, A€ analytic subsets
of (X x Y)”it((m=ji+1)A(i+1)) "wwe can conclude that the set

{(.’L’l,y17 e 7'%.Ji7 yJi’ xll:((mfji+l)/\(’i+1))) € (X X y)Jz X X(m_ji+1)A(i+1) :

(m—ji+1)A (Hl))

(5517 Y1, T Js YJ;s (l‘kv yk)k 1 € XYj1,~--,j¢,m,Cl,--~,Ci,Ci+1}

and the set

J; —iA D) A+1) .

{(x17y1>"'7:CJ¢'7ywa&;((m—ji-}-l)/\(iﬁ-l))) € (X x V)% x X m=git )a(i+1) .
i+ 1) A (i1

(xh Y1, - xJZ) YJ;» (xka yk)](gmlj ) (Z )) € Ajl, ,jz,m,cl,..A,Ci,C¢+1}

are both analytic subsets of (X x V)7 x X(m=5i+1D)A(+1) Therefore, the set

{(fEh Yiy .., yJivxllz((m—ji+1)/\(i+1))) c (X % y)Jz > X(m—ji+1)A(i+1) .

(m—ji+1)A (2+1))

K
(1'17 Y15+ T Y, ($ka yk)k 1 € Xle7---7jium1017---7civci+1\Ajl,---7ji7m7017---,ci70i+1}

is universally measurable. It follows from the fact that val(J) < wy that Dj, . m ¢y, .CiCivy
is universally measurable. |
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Next, we define the set

Dji,..jism,Ci, i Cia
:={(w1, Y1ty @ gl Y € XY GG
val(z1, C1 Y1, -+ 1u(14ie1)s Cis YL (L+ie1).
($((Ji+1—((ji+i—m)VO)):Ji)7x/l:((mfjiJrl)/\(iJrl)))’Ci‘H’ (y((Ji+1—((ji+i—m)vO)):Ji)7yi:((mfjﬁl)A(iH))))

< min {val(@), Val(mla Cry1,- -, Lr:(I;+i—1)s Ci, yli:(Ii—i-i—l)) }}
and prove the following lemma.

Lemma 55 For any m € N with j; < m < ji11 and any (C1,...,Ci11) € ]—H;ll PC(Y*),
Dji.....jim,Ch,....Ci,Civ 1S universally measurable.

Proof We have

Dii,.dimsCr,enCiCig

= U {(xl, Y1y X5 Ydys (s y;c)l(c(;nl_ji+1)A(i+l))) € XY eejim,CiresCi,Clg1
—1<k<val(®)
Val(xl, Croyty - Trunivi-1)s Cis Yu(fivi-1) (x((JiJrlf((jiJrifm)vO)):Ji)7xllz((m—ji—&—l)/\(z’—&—l)))’
Citts (Yt 1= (i +i-m) v 0):di)s Y1 ((m—ii 1) a(i41))) ) S B
Val(xl, Ci,y1y---, TI,(1+i-1)s Ci,y_[i:(_[i_;'_i_l)) > K,}

—ji+ D) A(i+1
- U {(xhyl""’xJi7yJi7(x;my;€)l(<:7ZIJ+ It )) €
—1<k<val()

K . K
XYj17~~-,ji7m7017~-~7Cz‘,C¢+1\Aj1,...,ji,m,Cl,...,Ci,CHl : (xh Y1y ey Ty sz') € Ajl,...,ji,Cl,...,Ci}

j— . . K
- U ((XY.]I7~“’.]’L"m7cl7"'7Ciyci+1\Aj1,...7ji,m701,...,ci,ci+1)

—1<kr<val()
ﬂ (A?h---yji,Ch--wCi X X(m_ji+1)A(i+1))>.
and A o, are

. ) . K

Since we have prOVed that XY]I1"'7]’i7m7017"'7ciuci+1’ Aj1,...,ji,m,Cl,.,.,Ci,CiH’ G15ee03075Clyeens
analytic and val(() < w; (Lemma 53), we can conclude that Dji,....ji,m,Ch,....Cs,Civs 18 universally
measurable. u

Then, the following set

Dji,....iim,C1 ..., = U Dji,....jism,Ci..0,C1,Ciin
Ci+1€PC(yi+1)

is also universally measurable because PC()**!) is countable.

Before proceeding to the next step, we will need the following lemmas regarding universal
measurability. For any measure spaces (A, .«/) and (B, %), let &/* and #* denote the universal
completion of &7 and %, respetively. Let o/ x % denote the product o-algebra of <7 and % on
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(A x B). Note that when A and B are Polish spaces, &7 x 43 is also the Borel o-algebra of A x B.
A function f : A — B is called ./ /%-measurable if f~1(F) € < for any E € 9. We prove the
following lemmas.

Lemma 56 For any two measurable space (A, /) and (B, %), any function f : A — B is
o * | B*-measurable if and only if f is o/ * | B-measurable.

Proof Suppose that f is .&7*/Z%-measurable. For any probability measure 4 on (A,.o/), let
(A, =, , %) denote the completion of (A, o7, j14). Then, (A, &/*, u%) is also a probability space
because &/* < &/f . Since f is o/*/%-measurable, we can define up : 4 — [0,1], E —
wh (f~L(E)) which is the pushforward of u* by f.

For any S € 2*, there exist U,V € A suchthat U < S < V and pup(V\U) = 0. Then,
we have f~1(U) < f~4S) < f~Y(V) and f~1(U), f~1(V) € &/* which implies that there
exist Uy, Uy, Vi, Vi € o such that Uy < f~Y(U) < Uy, V; € f7YV) € V, and pa(U\U;) =
1a(Vi\V;) = 0. Moreover, it follows from the definition of pp that

pAGFHVINTHU)) = pa(FH (VD)) = up(VAU) = 0.

Since ¥ is the completion of /14, there exists K € o with K 2 f~(V)\f~}(U) and pa(K) = 0.
Therefore, we have U; < f~H(U) < f~4(S) < f~4(V) € V,, and

Vu\Ul = (Vu\‘/l) Y (Uu\Ul) v K.

Since 14 (Vo \Vi) = pa(U,\U;) = pa(K) = 0, we have 14 (V,,\U;) = 0. Thus, by the arbitrariness
of 1, we can conclude that f~1(S) € o/*, which implies that f is .o7* /%*.

The other direction is trivial. |
Lemma 57 Consider any n € N Polish space A1, ..., A, with their Borel o-algebras denoted as
A, ..., 9y, respectively. For any m € [n], any sequence 1 < i1 < ig < -+ < iy, < n, and any

set E € ([ 4o, ,)*, then we have
n n *
E = {(:cl,...,xn) € HA] : (.%'il,...,l'im> GE} € (H%) .
j=1

7=1

Proof Consider the following collections of subsets of H?:l A;

n
(’5:={{(ml,...,xn)eHAj:xileBl,...,ximeBm}:Bleﬂfil,...,Bmesz/im}.

j=1

It is easy to see that & is a m-system on ]—[?:1 A;. Define G := o (®) to be the o-algebra generated
by & and define following the collection of subsets of H;‘:l A;

C:= {{(xl,...,xn)eHAj : (mil,...,xim)eS} :Sen%}.
j=1

j=1
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It is obvious that C is a o-algebra on H?Zl Aj. Since ® < C, by Dynkin’s 7-A theorem, we have
G=o(®)cC.
Next, define the following collection of subsets of [ [}, A;,

§:={Clipp 4, 1 G g}
where for any G < ]_[?:1 Aj, we define
G|H2":1Aik = A{(@iys -y miy,) 3@, ah) e Gty = xy,, Ve [n]} )
We now show that § is a o-algebra on 1_[27’:1 A,
* Since [[j_; Aj € &, we have [ [}, 4;, € §.

* For any G, G5 € § with G| < GY, there exists G; € G such that G = Gl|HZ’:1Aik for
[ = 1,2. By (9) and the facts that G| < G/ and G < C, we must have G; < Gs. Since G is
a o-algebra, we have G2\G1 € G. By G < C again, we have (GQ\GI)‘HL’;I A = AYeR
which implies that G2\G1 € §.

* For any G/, G5, -+ € §, there exists G1,Ga,--- € G such that G} = G1|H?:1Aik for all
I € N. Then, we have U2, Gy € G. Since G = C, we have U2, G} = (U2, Gl 4, €.

Thus, § is a o-algebraon [ [}~ A,
By the definition of product o-algebras, we have [ [, %, = o(€) where

€:—{HBk:Blegfil,...,Bmemm}
k=1

is a m-system on [[;_, A;,. Obviously, € < §F. Then, by Dynkin’s 7-A theorem, we have
[Tiey <%, = o(€) < §. By the definition of § and C as well as the fact that G < C, we have
C < G. It follows that C = G. Since & is a subset of the collection of all rectangles on H?Zl Aj,
we have G € [[7_; <. Thus, C < [[}_; ;.

For any probability measure p on ]_[;7:1 «/;, consider its projection fi;, . ;. = u|1—[;€n:1 A;, on
[ Ti, A;, defined by

n m
/j,i17,__7im(S) ::u<{(x1,...,xn)eHAj : (.%'Z'l,...,l‘im)GS}> VS e H%k (10)
j=1 k=1
Since we have proved C < H?Zl <7}, the above definition makes sense and
m m
(H A, H JZ/ik;,Uz‘l,.‘.,im>
k=1 k=1

is indeed a probability space.
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Since E € ([ [, <%, )* and p;, . ;,, is a probability measure on ([ [;~; A;,, [ [1=, 4%, ), there
existsets U,V € [ [, <%, suchthat U € E < V and p;, 4, (V\U) = 0. We define

ﬁ:z {(wl,...,xn)eHAj:(xil,...,xim)eU}

j=1
and
-~ n
V.= {(xl,...,a:n) € HA] : (a:il,...,ycim) € V} .
j=1
By definition, we have U , EeCc 1_[?:1 «/; with UcEcV. Moreover, by (10), we have
pND) = tiy,in (VAU) = 0.

~ %
Thus, we can conclude that E' € (1—[?:1 42/]) . |

Now, we define the sets

+
t)(jlr“:ji)ymz(cl7"'7Ci)7ci+1

::{(xl’yl"“"’“’t’y” € (X X )"+ (@505 Yjus B +1)vg):Ga+1)r V(G4 D v 1) -
((jaor i)V 3):Gibim1) s Y((Goma i) v 322Gk 1) s B(Girri) v m): (i) Y(Geti) vm):(m) ) €
Dj1,...,ji,m,Cl,...,Ci,CHl}a

Dt (1) (€.

={ @1y m ) € (XX D) (50, U1 (G 1)1 G 1) w32 1)
T (o +i= DG i-1) Y(Gima +i-1) V321 DGty vm)e(me+)s Y(Girti) vm)e(me+)) €
(XYt % (X X DY TIEDAEDNND, oo

and

\Y
Dt»j1,-~~7ji,01,m,Ci,Y'

. U {($1,y1,---axt,yt,X’) € (X x V)t x XL,
Ci41€PC(Yi+1)

(xjuyjl’x((j1+1)vj2)5(j2+1)’ Y((Gr+1)vie):(Ga+1)r - s

Since we have proved that the sets Djl7~~~,j¢,m,C’1,~‘~7Ci,Ci+1> XYj1,~~~7ji7C1,~-~,C'¢> Djlymji,m,clw,cw and
Dji.....jist+1,Ch,....Ci,Cipa y' are universally measurable, by Lemma 57, we know that

+ - v

Dt,(jl,...,ji),m,(cl,...,Ci),C¢+1’ Dt,(j1,...,ji),m,(Cl,...,Ci)’ and Dtvjlv---vjiacl7---7Ci7yl
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are also universally measurable.

Foranyt > 1,0<i<t1<j <---<ji<t—i, (C1,...,Ci) € [[._ PC()"), and
y' € Yt define the set

Define the following sets

Vtmjlr“:jS’Cl:"'vCS ::((DI@71,®)‘71_1 X DI®,17@701 X (X x y)t_]l)
s—1 Jit1—1 n— +
ﬂ [ mZ:l (( mmzjl Dt’(j17"'7ji)7m7(017"'7Ci)) 2 Dt:(jlv"'vji)vji‘Fl?(Cl7"'7Ci)7ci+1)]

() (A Dy sy (@)

and

Vtajl?"'ajs = U Vt7j17"'7j57clv“'7cs‘
(Clv'“ch)EHZ:l Pc(yk)

By the results above, we can conclude that V;;, . ; c . c, is universally measurable. Thus,
Vi ji,....js 18 also universally measurable.

Finally, we can complete the proof.
Proof of Proposition 52 First note that the function 7y : & — {1} is obviously universally
measurable.

Foranyt > landany 1 < s <t + 1, we have

—1 — ) ) ) .
1—;‘/ (S) - UISJI<~~~<]3_1<t—s+2vt,]17.-~,js_1

which is a universally measurable set according to the results proved above. Thus, 7; is universally
measurable.

Foranyt > l,any 1 < s <t,anyy* = (yf,...,ys) € V°, define Sy = {S = V* : y* € S}.
Then, we have

V1 (Sye) = | U

IS SPs—1st=s+1(0y,..,Co_1)e[ [;2] PC(VF)
S \
[(Vt_17j17-"7js—1ycla-~-7cs—1 X X ) M Dt—l,jl,...,js_l,Cl,...,Cs_l,y*]

which is a universally measurable set according to the results proved above. Then, by Lemma 56,
Y;:_; is universally measurable. |

C.4. Uniform rate implies universal rate

Now, we apply the pattern avoidance functions defined in the previous section into a template for
building learning algorithms in the probabilistic setting. Any learning algorithm with some guaran-
teed uniform rate for finite DS dimensional hypothesis classes can be plugged into this template to
construct a learning algorithm that achieves the same universal rate for classes without an infinite
DSL tree.

For any k > 1, any n > k, any function g : X* — 2V and any sequence S = (x1,...,%,) €
X", define the concept set

H(S,g) :=={heH|s: (h(i1),...,h(ik)) ¢ g(zi,...,z;,) forall distinct 1 < iy,...,3; < n}.
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For any ¢t > 0, n > 74, and any sequence S = (z1,...,z,) € X", define the concept set

H(S,Y,) == {heH|s: (h(i1),...,h(ir)) & Yi(wiy, ..., 2, ) forall distinct 1 < iy, ..., in, < n}.

(11)

We have the following lemma.
Lemma 58 For any t > 0 and any sequence (x1,y1,...,x4,y) € (X x V) (where we say
(T1,Y1, .-, @4, y) = D ift = 0) that is consistent with H, anyn = 7, and any S := (zy,...,x}) €

X", we have dim(H(S,¥,)) < 7, where dim(H(S,y,)) denotes the DS dimension of H(S,¥,).

Proof Define k := 7. If dim(#(S,¥,)) = k, then there exists a sequence (i1, . . ., ix) and pseudo-
cube C € PC(H(S,¥4)¢y,....ix))- Define Xj, = (x4, ..., x;,). Then, by the definition of y,, for any
y’ € C, we have that

Val(;(l) 617 y17 .. 7)_(147*17 C_kala ykfla ik? 07 yl>
>lrdn{vaKi1,Ch,y1,...,ik,l,ChFJ,ykgl),vaKQZ)}. (12)

Since ‘H does not have an infinite DSL tree; i.e., P4 does not have a winning strategy, we have that
val((J) < €2 and further by Bousquet et al. (2021, Lemma B.7), val((J) < w;. Here, we claim that
val() = 0. Consider the sequence w = (x1,C1,yq,...) € Py constructed as follows. First, fix
a hypothesis h € H. For each s > 1, pick arbitrary (x5,Cs) € XPCg, sety, = h(xs). Then, it is
obvious that w ¢ Wy Thus, we have val(&¥) = 0.

Suppose that for some j € {0, 1,...,k — 2}, we have that y, € Cs and

0 < val(X1,C1, ¥y, -, Xs, Cs,¥,) < val(Q)
forall s € {1,...,7}. Then, by the definition of y,, we have
val(x1,C1, ¥y, -, %11, Cj41,¥;11) < val(X1,C1, ¥y, -, X}, 0}, ;) < val(Q).
Ify; ;1 ¢ Cj+1, then, for any w' € Hf:jJrQ (XPCs x %), we claim that
wi= (X1, C1, ¥ %51, 041, Y01, W) ¢ Was.

This is because for any 7 € [j], we musthave H|s, y, .. %y, # & since val(X1, ¥y, Chy.oy X, Cryy, ) =
0 and y, € C; for any s € [j] by the induction hypothesis. Then, if y; ; ¢ Cj;1, we must have
“7¢ VVB. B B

Since (X1, C1, ¥y, - -, Xj4+1, Cjr1, Y11, W) ¢ Wy for any w' e 1= (XPCs x YV#), there is

- s=j+2
an infinite active tree starting from X1, C1,yq, ..., Xj41,Cj11, Yit1 which implies that
Val(il) 017 y17 o 7)_(j+17 Cj+17ij+1) = Q.
However, this cannot happen because we have shown that val(Xj, Ci, Yis- - Xj41, C'j+1, ijﬂ) <

val((J) < wy. Thus, it must hold thaty; , € Cj+1 by contradiction.
Then, we claim that

Val()_(ly Clvyh s 7)_(j+17 Cj+17yj+1) = 0.
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If on the contrary val(x1,C1,¥q, - . . Xj+1, Cj+1,¥;41) = —1, we will have Hs, 3, %1 5,,, =
J because we have shown thaty, € C for any s € [j + 1] and ”H\il,yl,..,,gj,ij # (J. However, since
(x1,y1,-..,Tt, ye) is a consistent sequence with #, we must have H XLY1sXja1y,,1 7 (- Thus,
there is a contradiction and we must have val(x, C1, Yis- - Xj41, C'jH, Yj1) = 0.

Now, by induction, we can conclude that that y, € C and

0 < val(X1,C1, ¥y, .-, Xs, Cs,¥,) < val() < wi
forall s € {1,...,k — 1}. For any y” € Y*\C, we must have

val(X1,C1, Y1 - -« X1, Ck—1, Vo1, X, C, ¥') = Q
according to the same arguments we used for the proof thaty; ; € @H in the induction step.
Then, by (12), we have that

val(X1,C1,¥1s - -+ Xk—1, Ck—1, Y1, Xk, C, ¥)

> min{val(X1,C1,¥1, -, Xe—1, Ch_1,¥r_1), val(&)}
for any y € J*. However, this contradicts Bousquet et al. (2021, Propostion B.8) since
0 < val(X1,C1, V1, -+ s Xp1, Ch1, Y1) < Wi

Thus, we have dim(#(S5,y,)) < k. [ |

Let us fix a #H-realizable distribution P on X x ). Let (p, Fp,P) denote the underlying
probability space. Let (Xi,Y7),(X2,Y2),... be i.i.d. random variables on (Q2p, Fp,P) with
(X1,Y1) ~ P. We have the following result regarding the consistency of the random sequence
((Xt, Y;ﬁ))t}l with H.

Lemma 59 If P is H-realizable and (X1,Y1), (X2,Y2),... are i.i.d. random variables with dis-
tribution P, then, with probability one, for any t > 1, there exists some h € H such that h(X;) = Y
forall s € [t].

The proof of Lemma 59 can be found in the proof of Bousquet et al. (2021, Lemma 4.3.).
For any & € N and function g : X% — 2V * where 25 denotes the power set of the set S, we
define

per(g) = P[(Y1,....Yy) € g(Xu,..., Xp)].
Now, let
=Ty X1, Y1,..., X4, Ye),
Vi (21, ..., 2g) = f(t(Xl,Yl, e X Yo xr, ).
We first prove the following result when per(g) = 0.

Lemma 60 For any k,n € N with n > k, any function g : X* — 2V " and any sequence
S = (X4, Y3), ~ P" ifper(g) = O, then ((i,Y;))l, is consistent with H(S|x, g) and D is
H(S|x, g)-realizable a.s., where S|x := (X1, X2 ..., X,) and D denotes the uniform distribution
over {(i, Yi)}y, ie, D({(i,Yi)}) = L foranyi e [n].

T n
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Proof Since S ~ P", according to Lemma 59, there exists a random variable H : {2 — H such that
for P-a.e. w € Q, h = H(w) € H satisfies that h( i(w)) = Y;(w) forany i € [n]. Since per(g) = 0,
we have that for P-ae. w € Q, (¥}, (w),...,Y;, (w)) ¢ 9(X;, (w),..., X, (w)) for all distinct
1<ty,...,ty <n. Thus, forP-ae weQ h = H( ) satisfies that (h(Xi, (W), ..., h(Xi, (w))) ¢
9(Xi, (w), ..., Xj, (w)) for all distinct 1 < tl, ot < n.

Define the random variable H :  — by H(w)(i) := H(w)(X;(w)) = h(Xi(w)) where
h = H(w). Then, bythedeﬁn1t10nof7—[(5|x, )a d h, we have that for P-a.e. w € Q, h = H(w) €
H(S(w)|x,g) and h(i) = Y;(w) for any i € [n]. Thus,

PIA(1) # ¥i[S] = PIA(X,) % Yi|S] = L1(h(x) # i) = 0

where [ is a random variable uniformly distributed over [n] and is independent of S. Then, we
know that (I, Y7) follows distribution D conditional on S. Therefore,

er(h) = P[h(I) # Y;|S] = 0, P-a.s.

Thus, infjepy(s|y,9) €r(R') = 0 a.s., which implies that D is H(S|x, g)-realizable a.s. [

Similar to Bousquet et al. (2021, Lemma 5.7), we have the following lemma.
Lemma 61 P[per(y,) > 0] —» O0ast — .

Proof According to Lemma 59, we have that ((Xj, Y;))sen is consistent with 7 a.s.. Then, by
Proposition 51, we have that

T:= sup {8 =1: (YS—7371+17 s 7YS) € Sl\sfl(XS—Tsfl-‘rl? s 7XS)}

is finite a.s.. Since ((Xj,Y;))ien is an i.i.d. sequence of random variables, we have that for any
t > 1,y,_; is independent of ((X;,Y;))i>:. Then, by the strong laws of large number, we have that
with probability one,

m

1 ~
dim o kZl (Ve kyrs -+ Yerkr 1-1) € Vet (KXo (oeyryro -+ » Xethr_1—1) }
=E []l {(Y%a s 7th+7't,1—l) € ?t—l(Xh s 7Xt+7't,1—1)}:|
= per(y;_1)-

Since T' < oo implies that 751 = 731 < o0 andy,_; =¥, ; forany T' < s,t < o0, it follows that
forany ¢t € Nsuchthat T' < ¢ < o0,

(Y’tJr(kfl)Tt_la BRI 7)/;‘/+th_171) ¢ Sl\tfl(XtJr(kfl)Tt_lv R 7Xt+k7't_171)7 VkeN

and thus,

m

| ~
lim — Z ]]‘{(YIH’(kfl)thl’ o Ytk 1) € thl(Xt+(k71)7—t,1a cee 7Xt+k7't—1—1)} =0.
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Therefore, we can conclude that for any ¢ € N,

m

1 ~
{T < t} = {Wlllinoo — Z ]1{<Y;‘/+(k71)7t_1’ T Yt+k7't—1*1) € ytfl(Xt+(k71)Tt_17 R Xt+k'7—t71*1)} = 0}’

me3
Given the above results, we have

Plper(y;) = 0]

R ~
=P 'nlLl—I)noo E ,;1 :H-{(Y;—i-(k—l)’rt,p s 7Y;f+k7't71—1) € yt—l(Xt+(k—1)Tt,17 v 7Xt+k7't71—1)} = 0]
>P [T <t].
and

Plper(y,) > 0] = 1 —P[per(y;) = 0] < [T' > ].
Since we have proved T' < o0 a.s., we have

lim sup P[per(y,) > 0] < tlim P[T>t]=0
—m

t—00

Therefore, lim;_, o, P[per(y,) > 0] = 0. [ |

Analogous to Bousquet et al. (2021, Lemma 5.10), we have

Lemma 62 Given any t* € N such that P[per(y,+) > 0] < &, if n > max{4(t* + 1), N} for
some N = 1 dependent on the adversarial algorithm defined in Section C.2, P, and t*, then there
exists a universally measurable function t, = t,(X1,Y1, ... s Xns2)s Yins2)) € [In/4] — 1] whose
definition does not depend on the data distribution P and some constants C and c independent of n
(but dependent on the algorithm, P, and t*) such that

Pt € Tgood] = 1 — Ce™",
st
|n/(4t)], define

where Tgood := {1 <t <t*:Plper(y,) > 0] <
Proof Foreachl <t < |n/4]—1land1<i<

7= T X— 1)1, Yoty 1 - - Xae, Yar) <t + 1< [n/4],

Ye(zr, .o 2p) o= Ye(X(nyerns Yionyerts - - Xt Y, 71,0, )

for V(xy,... ,thi) € X™, and
| Injan) | |
e 1= 14 (Y, . vi(X, ) f 4l < s < 2| — 7t
€t ln/(4t)J Z_Zl {( +1,--.,Ys+7_;) € Yt( +1""’X8+7'§) or some [n/ J $ [TL/ J Tt}
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Since per(%) = 0 implies that (Ys1, v ) ¢ S"\i(XS_A,_l 77777 X,, .) forall [n/4] < s < |n/2| — 7}
S Tt

s+‘r§
a.s., we have that

[n/(41)]

 n/(4¢)] Z; 1{per(y;) > 0} as.

Define
by = min {inf {1 < ¢ < [n/4] —1:8 < 1/4}, [n/4] — 1}

with the convention that inf ¢ = +o00. Since t* < |n/4] — 1, we can conclude that e+ < 1/4
implies t,, < t*. Then, by Hoeffding’s inequality, we have

P[t, > t*] < P[ép > 1/4] < Pleg — E[eg] = 1/4] < e W(A1/32,
For any ¢ € N such that ¢ < t* and P[per(y,) > 0] > 3/8, since

lim P[per(§,) > =] = Plper(5;) > 0] > 3/8

by the continuity of probability measures, there exists some ¢; > 0 such that P[per(y,) > &] >
1/4 + 1/16. Because t* < oo, there exists £ > 0 such that P[per(y,) > £] > 1/4 + 1/16 for all
1 <t < t* such that P[per(y,) > 0] > 3/8.
Fixing an arbitrary 1 < ¢ < ¢* such that P[per(y,) > 0] > 3/8, by Hoeffding’s inequality, we
have
I 1 In/(4t%)] /128
P[i 1{per(§)>5}<f]<e_" ¢ .
] & f i
Forany 2 < 7 < |n/4] and any g : X™ — {0, 1}” with per(g) > ¢, we have that

P[(Yos1,...,Yesr) ¢ g( 5415+ r Xopr) forall [n/4] < s < [n/2] — 7]
P[ |n/4]+(k—1)7+15 - - - Y ) ¢ g( |n/4)+(k—1)7+15 - - - 7X[n/4j+k;7')
forall1 <k < [n/(4T)J]

(1 = per(g))"/(47)
<(1-— E)Ln/(4T)J_

N

Thus, by union bound and the fact that 7} < ¢ + 1 < t* + 1, we have

P|1{per(y;) > ¢} > ]l{(Y5+17..,7ys+Ti) €V (Xot1... x,, ;) for some |n/4] < s < |n/2| - 7}
L t t

for some 1 < i < [n/(4t)J]

<P|H{(Yor1,.v,, ;) € Vi(Xost,x,, ) forsome [n/d] < s < |n/2] —7f} =0

s+7y

for some 1 < i < [n/(4t)J]

v )¢ Sl\i(Xs+1,...,Xs+Tg) forall |n/4] < s < |n/2] — TZ]

-----
s+7’t

—P|31 <i < |n/(41)] st. (Your
<[n/(48))(1 — e)ln/ @)
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Then, we can conclude that

P[t, = t]
1 /(D) ~ 1
<P[m ; 1{per(y,) > e} < Z]

+ P[]l{per(ﬂ) >ep > 1{(Yesr v, )€ §7t;(X5+11---7X5+7.i) for some |n/4] < s < |n/2| — 7}
t

[RRRE 7
T

for some 1 < i < [n/(4t)]]
e IMUEAZS 415 /(48)] (1 — )l GEFD)]

and

Pt ¢ Teood] <P[tn > t*] + P[t, < t* and per(§;, ) > 3/8]

=P[t, > t*] + P[t,, = t for some ¢ s.t. 1 <t < t* and per(y,) > 3/8]
< In/AI/32 | e —ln/ OIS |l 1)1 — )/ ()]

Note that e~ 1"/(4%)1/32 < ¢35 o~ 1aseF | o1/ (44¥)1/32 < 4* o Tom ¢~ 573% , and

log (1=%)

t*
)+ Sy

1—¢

1 1
—log (t*|n/4](1 — 5)ln/(4(lt*+1))J) > Mn —log (

o
Since log(n/4) < 4/n for all n > 4, we have that %n > log(n/4) and

1
A(t¥ 41 t* log (=)
/)1 = ) < e (- =)
for all n > max{4, (lf;;ti))Q}.
Thus, for any n > max {4(t* + 1), (155(125))2}’ we have P[t,, ¢ Tgood] < Ce™ for ¢ :=

. log (-1 1 1 . . .
min {ﬁ, it(*:zf)} and C' := €32 + t*eTs + f—jg Since ¢ depends on t*, the data distribution

P, and the algorithm, but does not depend on n, the lemma is proved. |

According to Brukhim et al. (2022, Theorem 1) and its proof in Brukhim et al. (2022, Section
4.5), we have the following theorem.

Theorem 63 Let H < V¥ be an hypothesis class with DS dimension d < . There is a learning
algorithm A : U°_ (X x V)™ — H with the following guarantee. For any H-realizable distribution
D, any 6 € (0,1), any integer n > 1, any sample (S, (X,Y)) ~ D" where S € (X x V)" and
(X,Y) € X x Y, the output hypothesis A(H, S) satisfies that

ﬂmﬂﬁmm¢ym<0(fm%%wﬂ%@m).

n

with probability at least 1 — 0.
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We immediately have the following corollary from Theorem 63.

Corollary 64 For the hypothesis class ‘H, learning algorithm A, distribution D, and any integer
n = 1 described in Theorem 63, we have

Cd3?1og?(n)

n

PLA(H, S)(X) # Y] <

for some constant C' > 0.

Proof Define R = P[A(S)(X) # Y|S]. Then, by Theorem 63, there exists some constant C; > 0
such that

PR

S C1d*?log?(n) + C, 1082(1/5)] <5

n

C1d%/2 log?(n)+C1 log(1/5) c (Cld3/2 log?(n) o)
n Y

Define t =

- . Then, we have § = exp(d*?log?(n) —
nt/C1). It follows that

P[A(S)(X) # Y] =E[R]

3/2 1902 3/2 1902
| r1{R < Cldogw}] V| i {n Cwlog(n)}]
n n
C1d*?log?(n)  (*
S fcldw ooy PLR > t]dt

n

3/2 12 ©
Gd log™(n) | j exp(d*?log?(n) — nt/Ch)dt

n Cq d3/2 log2(n)
n

_ C1d3?log?(n) + Cy

n

Thus, there exists some constant C' > 0 such that P[A(S)(X) # Y] < Cd*2 log?(n) [ |

n

The following lemma is very important in upper bounding the error probability for learning
algorithms with access to leave-one-out samples using their guarantees on all samples.

Lemma 65 Suppose that A is an algorithm that for any positive integer n, any feature space Z,
and any label space W, given a hypothesis class H < W? and a sequence of samples ((z;, W),
consistent with H, outputs a hypothesis h € W=,

Let X and ) denote the feature space and label space of the samples. Suppose that H :
Up X — uff:lZy[n] is a function that for any positive integer n, given a sequence (1, . ..,Ty) €
X™, constructs a hypothesis class H((x1, ..., x,)) € Y™ such that (1,z1), ..., (n,z,)) is con-
sistent with H((z1, ..., xy)).

For any positive integer n and any sequence S = ((x1,y1), -+, (Tnt1,Yn+1)) € (X x Y)
define S'|x = (w1, 29, ...,Tn+1). Let D' denote the uniform distribution over {(i,y;)}!} and D
denote the uniform distribution over {(i,v;)}"_, (i.e., D'({(4,y:)}) = n%rlfor any i € [n + 1] and

D({(i,y:)}) = 5, for any i € [n]).

n+1
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Then, for any T ~ DI"?l and (T',(I,yr)) ~ (D)2 with T' € {(i,y;) : 1 < i <
n+ 1}1"2 I € [n+ 1], and [z] :== min{n € Z : n > z} for any = € R, we have

PIA(H (S |x), T)(n + 1) # yns1] < 2P[A(H(S'|x), T")(I) # yi].
Proof Since (77, (I,yr)) ~ (D')I"/21+1 we have that
1 [n/2] 1

P 1 eT'| < |T’ = <

By the assumption on H, we know that 7" is consistent with H (S’|x). Thus, by the assumption on
A, we have that A(H (S'|x),T")(i) = y; for any (4, ;) € T". It follows that

PA(H(S'|x), T')(I) # 1]
=E[P[A(H(S'|x), T')(I) # y1|T"]]
1 n+1

7 2 PAUHS 10,760 # vl
n+1
LSRG, ) ¢ TVUAH(S ), T) () # )]
=1
E[1{(n + 1,ynt1) ¢ T’}]l{A(H(S’|X),T’)(n + 1) # Ynt1}]

|
Pl(n+ 1,yn+1) ¢ T'IE[L{A(H (S| 2), T')(n+1) # Yns1}(n + 1, yns1) ¢ T
PIACH(S |2), T")(n + 1) # ynr1l(n + 1 yns1) ¢ T']

V

n+1

Vool

N — DN~

P[A(H(S/‘X>7T)(n + 1) # ynJrl]a

where the last inequality follows from the fact that P[T" € B|z,4+1 ¢ T'] = P[T € B] for any
B c {((il,yi1)7 R (Z[n/2]7 yi[n/g])) 1<, .. 7i[n/2] sn+ 1} u

Now, we are ready to prove the main theorem that relates guarantees of learning algorithms on
uniform rates to universal rates.

Theorem 66 Suppose that A is a learning algorithm which for any hypothesis class H with DS
dimension at most d < oo, any H-realizable distribution D, any number n € N, and any sample
S ~ D", outputs a hypothesis A(H,S) with Eler(A(H, S))] < r(n,d), wherer : N x N — [0, 1]
is some rate function non-increasing for any d € N. Then, there is an algorithm A’ satisfying that
for any hypothesis class H that does not have an infinite DSL tree and any H-realizable distribution
P, there exist some constants C, ¢ > 0 and dy € N such that for all n € N and S ~ P", A’ outputs
a hypothesis A'(H, S) € H with

Eler(A' (1, 8))] < Ce™ + 32r([n/4], do).

Proof According to Lemma 61, there exists t* € N such that P[per(¥,+) > 0] < i. Then, for any
n = max{4(t* + 1), N} with N specified in Lemma 62, let £,, € [|n/4] — 1] be the random time
constructed in Lemma 62. For any ¢ € [|n/4] — 1] and any i € [n/(4t,)], define

71 o= To(X =1y 1, Yim)is1s - - - Xit, Yie) <t + 1< [n/4],
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and

~

o6, T 7k
Y- ATt — y ‘, <$1, s 7'%7-;') — Yt(X(ifl)t+17}/(i71)t+17 s 7Xit7)/;t7x17 s 7thi)

as in the proof of Lemma 62.
For any t € Tgo0d, since P[per(y,) > 0] < %, by a Chernoff bound, we have

LA 7 n/(4t)] /128 n/(4t*)]/128
N 1fper§ | s s '
[n/(4t)J ; {per(yt) > O} > 6 e e

Using union bound, we have

n/(42n)]

1 " 7 ~
Pl ——= IL{per(YZA ) > 0} > —,ln€ Eood
[n/(4tn)] ; b 16

TLEASR] 7

< 1per(§)) > 0} > —

te;g n/(4t)] Z; ¢ 16
gt*efln/(ﬁlt*”/l?g. (13)
Define the sequence S := ((1, Y]y /2+1) (2, Yjnj2j42),---» (n — [n/2],Y5)). Let D denote
the uniform distribution over the elements in S (i.e., D({(i, Y}n/2/+i)}) = m for any i €
[n — |n/2]]). Let T%,...,TI"/@&)] denote an iid. sequence of random variables with T ~

DI=1n/2D/21 - For any i € [|n/(4%,)]] and any = € X, define the hypothesis class Hi(z) :=
H(Xnj2)415 - -+ Xy T), ?%n) Then, for any i € [|n/(4¢y)]], we can define the following predic-
tion function

7 X 5 Y,z AH (x), T (n — |n/2] +1).

Let h,, be the majority vote of § for i € [[n/(4t0)]]. B will be the final output of our learning
algorithm. Now, we need to upper bound the error rate E[er(h,,)].

Recall that P denotes the underlying data distribution that is {-realizable. Suppose that (X,Y") ~
P and is independent of {(X;,Y;)}"_;. Then, we have

Eler (T, >]
Ph, (X
n/ (4 1
]l ;é Yi> -
n/ At,) ZZ; w } 2
L/ (4n)] , .
<P[t good Z ]l{Per(% ) > 0} > 77tn € ’Tgood
4tn = n 16
|n/(48,)] . 9 1 ln/(4tn)]
+P |ty € Tooods —— I{per(y; ) =0} > —, ———=— H7'(X)#Y} >
. tn/<4tn>J 21 fn 16" |n/(41,)] =
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Define the sequence S := ((1,Y},/2)41), - - -, (n — [7/2], Yp), (n — [n/2] + 1,Y")) and condi-
tional on S’, let D’ denote the uniform distributlon over the elements in S’ (i.e., D'({(7, Y} /2)44)}) =

m for any i € [n — |n/2|] and D'({(n — |n/2| + 1,Y)}) = m) Let 7" ~

(D)HI(n=17/2D)/21 and (I,Y") ~ D’ be two independent samples from S’ conditional on S’

For any i € [|n/(4%,)], by Lemma 59, (X—1)tnt1 Y1)ttt - - Xit, 7th ) is consistent

with A a.s. Then, by Lemma 58, we have that with probability 1, dim(H*(X)) < TtA and therefore,
1{t,, € Taooa} dim(H' (X)) < t*.

Moreover, if per@%ﬂ) = 0, by Lemma 60, we have that S’ is consistent with H*(X) and D’ is
‘H'(X)-realizable a.s. Then, it follows from Lemma 65 and the property of A that
L{tn € Taooa} L{per(§;, ) = O}P[F'(X) # Y|((X}, Y)))j_1, X, Y]
=1{fn € Taooa} L{per(¥; ) = O}PLA(H'(X), T')(n — [n/2] + 1) # Y[((X;,Yj))j—1, X, Y]
<21{t € Taooa} Lper(§7,) = OYPLAH'(X), T') (1) # Y'|((X;,Y)))j=1, X, Y]
<2r([(n — |n/2])/2], ).

By the properties of conditional expectation, we have that

j=01

1{tn € Tgooa} L{per(y7 ) = O}P [gi( £ Y|((X;, ]))WzJ]
~E [Wn € Tgooa} L{per(¥} ) = O}P[F(X) # Y|((X;,¥))))—y, X, Y]|((Xj’yj))y%=/12J]
<2r([(n — |n/2])/2],t%).

Since 196 + % =1+ 1—16, by Markov’s inequality and the above inequality, we have

R 1 ln/(4%n)) , 9 1 L/ (4tn)) . 1
P € Toooas e 2 Lper(§,) = 0} > g o, 2 1{@1<X>¢Y}>2]
~ ) , , 1
<P | 1ff € Toooa} e, 2 n{per@%n)0}1{@Z<X>¢Y}>16}
~ L i) , A
<I6E. | 147 € Taa} sy 2 1{per<§§n>oma@<x>w}}
68| — L l"/(f"” Ui & Toooa} Lper(35,) = 0P [7(X) = Y|((X;, YmWEJ]]
_ln/(4tn)J " !
<32E ] 4tn ; [(n—|n/2])/2], t*)]
<32r([(n — [n/2])/2].£%)
<32r([n/4],t%). (15)
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By (14), (13), Lemma 62, and (15), we have

Eler(h)] < Cre~" + ¢*e~1n/AMN128 | 300 ([ /4], ).

Then, we immediately have the following result.

Theorem 67 If H does not have an infinite DSL tree, then H is learnable at rate logz#.

Proof According to Corollary 64 and Theorem 66, we know that there exists an algorithm A
satisfies that for any #-realizable distribution P, there exists some constants Cy, C1,co > 0 and
dp € N such that for all n € N large enough and S ~ P", the output hypothesis A(#, S) of A has
the error rate

3/21 9
1
E[A(H, 5)] < Coe™ ™" + Clw.

Thus, there exists some constants C' > 0 such that

1 2
E[A(H, $)) < 0125 ()
n
which implies that H is learnable at rate bg%' |
C.5. Concluding proof
We conclude with the proof of Theorem 14.
Proof of Theorem 14 Theorem 14 follows directly from Theorem 44 and Theorem 67. |

Appendix D. Arbitrary Slow Rates

In this section, we provide the complete proof of Theorem 15. First, we show two lemmas regarding
the properties of pseudo-cubes.

Lemma 68 For any positive integer d, any label class ), any pseudo-cube H < V? of dimension
d, any j € [d], and any label y € Y, define N := |H| and Hj, := {h € H : h(j) = y}. Then, we
have

|HJ| < =N.

N

Proof We prove by contradiction. Suppose on the contrary that there exist some j € [d] and y € Y
such that |Hj| > in. The definition of pseudo-cube implies that |H| > 2. Then, there exist

h,h' € Hy with h # h'. Let f and f’ denote the j-neighbors of h and A’ in H; i.e., there exists
[, " € H such that f(j) # h(j) =y, f'(j) # W (j) =y, f(i) = h(i), and f'(i) = I'(i) for
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any i € [d]\{j}. Since h # h' and h(j) = y = h'(j), there exists some j' € [d]\{j} such that
h(y") # h'(j'). It follows that f(j") = h(j ) h'(j") = f'(j') and f" # f. Then, we have

. 1
[{he H: () # g}l = |HY| > 5n

and
n={heH:h(j)+#y}+|H]| >n,

which is a contradiction. Thus, we must have |Hj)| < in. [ |

Lemma 69 For any integer d > 2, n € [d— 1], and 1 < j; < -+ < j,, < d, any label class ),
any pseudo-cube H < Y of dimension d, and any hypothesis g € H, define J := (J1y---,Jn) and

= (kl,---7kd—n) suchthat 1 < k1 < -+ < ky_gq < d and {jl,...,jn,kl,...,kn,d} = [d]
Then, Hy j := {h|k : h € H,h(j;) = g(js), Vi € [n]} is a pseudo-cube of dimension n — d.

Proof Forany f € H, j, there exists some f’ € H such that f = f’|x. Then, for any i € [n — d],
there exists some h' € H such that b/ (k;) # f'(k;) and h/(1) = f'(I) for all [ € [d]\{k;}. Since
ki ¢ {ji,...,jn}, wehave W'y = f'|; = g|y and h := h'|x € Hy ;. Then, we have h(i) = I/(k;) #
(ki) = f(i) and h(m) = W (k) = f'(km) = f(m) for any m € [n — d]\{i}, which implies that
H, y is a pseudo-cube.

|

Now, we present the proof of Theorem 15
Proof of Theorem 15 Suppose that H has an infinite DSL tree. Fix an arbitrary rate R with
lim,, ., R(n) = 0 and an arbitrary learning algorithm A. According to Bousquet et al. (2021,
Lemma 5.12), there exist a sequence of non-negative numbers (p;);en for which 3,22 p; = 1, two
strictly increasing sequences of positive integers (n;);en and (k;)ien, and a constant % <C<«l1
such that for all i € N, we have >}, ;. pr < n%, nipk, < ki, and py, = CR(n;).

For the infinite DSL tree, let vy € X denote the root node and cy € N denote the num-
ber of children of vg. For any i € [cy], let v; denote the i-th child of vy and ¢; denote the
number of the children of v;. Suppose that for some k£ € N, v;, _; and ¢;,, . ; has been de-
fined for any i1 € [cy],...,ix € [ciy,. . i) Forany i € [c; . 4], let v; . ; ; denote the
t-th child of v;, . ; and ¢, ..., ; denote the number of children of v;,, _; ;. Then, by induc-
tion, {c;, .. i, }i16[0g],...,ike[cz'1 ,,,, o] and {v;, i, }ile[Cg],-..,ikE[C¢l ] are defined for all £ > 0
Thus, every node in the infinite DSL tree has been denoted and the tree can be denoted with
t:={vi,, i 01 €[cgl,... ik € [Ci, . ir_, ],k = 0}. Forany k > 0 and any i1 € [cg], ..., €
[Ciyir_ )s k1 € [y, ], define x;, i, € X**L to be the label of v, ;, and Yis o insipss O
be the label of the edge connecting v;, ..., and vi; i ips -

1

Let I; be a random variable following the uniform distribution over [cy] (i.e., P(Iy = i) = —

kol

,,,,,,,,

for any i € [cg]). For any k > 1, suppose that I; has been defined for all j € [k]. Define I;;; to
be a random variable such that conditional on Ii,..., I, I+ 1 follows the uniform distribution over
CIy,...Iy (i.e., P(Ik+1 = i|[1,...,[k) = I fOI‘ anyz € [C[1 [k]) Define I := (Il,fg,...).

,,,,,

Then, the support of I is

7 := {(il,ig, .. ,ik, .. ) : il € [C@],ig € [Ci1]7 e ,ik € [Cil,---,ik_l]a .. }
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For any i = (i1, 42, ...) € Z, define the distribution P, on X’ x ) as

j j Pk
Pi({(xgh-.-,ik_ﬁyi 77777 W3 = = for j € [k], k e N,
where x‘gly--nik—l and yfllk denote the j-th element in x;, 4, _, andy,; , respectively. Note

that as in the proof of Theorem 44, the mapping i — P, i € Z is measurable. By the definition of
DSL tree, for any n € N, there exists h,, € H such that hy,(Xi,,._i,_,) = i, forall k € [n].
Hence,

erj(hn) := B({(z,y) € X x Y : hy(x) # y}) < Z Pk

k>n

which, together with the fact that >}~ ; py, = 1 and p, > Oforall k € N, implies that inf ¢ v eri(h) =
0. Thus, P, is H-realizable for any i € Z.

Let (T,J),(T1,J1), (T2, J2),... be a sequence of i.i.d. random variables, independent of I,
with distribution

P(T:k,J:j):% for j e [k], ke N.
Define

X=af, g Y =4l ap Xi= 5 g Vi = Ui gy, forie N,
Then, we know that conditional on I, (X,Y"), (X1, Y1), (X2, Y2),... is a sequence of i.i.d. random
variables with distribution Py.

For any k € N and any (i1,49,...,ik—1) € N*~! such that iy € [c],i2 € [eiy],. .. iK1 €
[Cir,...in_n])> We know that Cyy i = {¥, 28 € [Ciy iy ]} S YVI*] is a pseudo-cube of
dimension £ by the definition of DSL trees.

For any n € N and j € [k], define the sequence family

Tikn =01, Jm) € [KNGH™ 51 <J2 < -+ < jm,m € [min{k —1,n}]}.

For any iy, € [¢;y,..i,_ ] and J = (j1,...,m) € Tjkn Withm € [min{k — 1,n}], by Lemma 69,
we know that

(C’Lh lk— 1)y21 J

is a pseudo-cube of dimension & — m following the notation given in Lemma 69. Then, by Lemma
68, for any y € ), we have

1
|((CZ1,---7% 1))’11 ; J)gj; | < §|(Ci1,---,ik_1)yil ; J|7 (16)
where j' := j — max{l € [m] : j; < j} with the convention that max ¢ := 0.
By the definition of I, I;; follows the uniform distribution over ¢y, .y, , conditionalon Iy, ..., Ix_1.
Note that for any 4,4’ € [c;, . ;,_,]suchthati # ¢ andy; .  ly=1y; ;| ls, we musthave

(7 11‘-1 7éyz1 ..... T—1,1 |J (17)

-----
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where J' := (51,...,j;_, ) with1 < ji <---<g;_ <kand {ji,...,0m, 51+ Jr_m} = [E].
Therefore, conditional on Iy, ..., Iy and y;, 1 |1, ¥, 5, |y distributes uniformly over the set

,,,,,

—_

P (y%h_._Jk 7 y‘llv ooy Ik, (J7YI17_,_7I,€|J)) = .

\V)

By Lemma 68, we also have

. 1
’(Cilwwikfl)g/’ < §’Ci1,~~~7ik71 )

which implies that

; 1
Py, o # 9|l D) . (18)
Now, define h,, := A(H, (X1, Y1),...,(X,,Ys))) and the random sequence J := seq({J; :
T; = k,i € [n]}), where seq() := J and for a finite set of integers {a1,...,aqs} with ¢ € N,
seq({a1, .-, aq}) := (aqy, - - -, a()) where a(;) denotes the i-th smallest element among (a1, . . . , ag)
for any ¢ € [g]. Then, by (17) and (18), we have

P (ﬁn(X) £Y,T = k:)

v
ko

<
Il
Jut

p <hn(x]11,...,lk,1) # ?J%L,,,,[kaT = k7 J = j7T17 oo 7T’Vl < kv (Tla Jl)v ) (TTL7 Jn) #* (k')]))

I

<
Il
Jut

E[H{T ko J =, Ty T < ks (T1y 1), (Ts J) # (kv )}

'P(hn(xjh,...,lk,l) # y}'l,...,lk P ST T A PRI 0 S PR A (373’11,...,1k|3))]

1 , .
E[g]l{T ke J = Ty T < by (T1, Ty s (Ty J) # (kj,j)}]

Y
D=

<
Il
_

l\'.>|\|>i
i

P(T:kaJ:jaTla"')Tn < k;,(Tlvjl))"'a(TnaJn) #* (kaj))

<
—_

Pk

I
| B
—
—
|
]
S
|

=|
~
3

1>k

Then, for any ¢ > 3, by Bousquet et al. (2021, Lemma 5.12), we have

PG\LM(X) #Y,T=ki) > Py (1— Zpl_%> Z

2 I>k; ki
S Phi (1 _ 2> ’
2 n;
54
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Since
! P(ﬁ (X) #YT:M) < PT k)= —P(T— k)= D _Cas
R(n;) \'™ ’ )7 R(ng) ' R(ni) " R(ny) o

by Fatou’s lemma, we have

1 ~ 1 ~ C

E |l S (hn, X)£ Y. T = k; I) > i P(hn, X Y,T:ki) > =

i sup P (7 () # 1) | > s P (1,00 # °
Because

Eery(7n)|T] = P(hn(X) # Y|I) = P(hn(X) # Y, T = k|I) ass.,

we have E[lim sup,_, R(L_)E[erl(i}ni)ﬂ]] > 5% > %, which implies that there exists i € Z such

that E[eri(ﬁn)] > %R(n) for infinitely many n. By choosing P = B, we see that H requires
arbitrarily slow rates.

Since X is Polish and ) is countable, there exists a learning algorithm with E[er(ﬁn)] — 0
for all realizable distributions P (Hanneke et al., 2021). It follows that H is learnable but requires
arbitrarily slow rates. n

Appendix E. Proof of Theorem 9

In this section, we provide the complete proof of Theorem 9 below.
Proof According to the proof of Brukhim et al. (2022, Theorem 2), for any d € N, there exists a
d-dimensional pseudo-cube By < YdXd for some spaces Xy and Yy with | X4| = d and |Yy| < 0.

Therefore, for B; < Y1X1, we can pick ¢; := |By| feature spaces X 1, ... , X1,4, of size 2,
label spaces Y1 1,...,Y] 4,, and pseudo-cubes By < Yl)fl“, ...,Bie S Yl)fcll’gl of dimension 2
such that X1, X4 1,..., Xy ¢, are pairwise disjointand Y7, Y7 1,...,Y] ., are also pairwise disjoint.
Define ¢;; := |Bj;| for any ¢ € [c1]. Now, suppose that for some d € N, ¢,, Xj,, Yj, and

Xi . . .
B;, < Ylk * have been defined such that | X, | = k and B, is a pseudo-cube of dimension k for any
ke [d], ik € Ik = {(il, .. .,ik) 111 € [1],i2 € [Cil], A ,’ik € [Cil,m,ik71]}’ {Xi ‘i€ Ik, ke [d]}
are pairwise disjoint, and {Y;, : i€ I,k € [d]} are also pairwise disjoint. Then, for any

k°

iq € 14, pick ¢, feature spaces Xj, 1, ... 7Xid70id of size d + 1, label spaces Yj, 1, ... ind,Cid’ and
X; Xig.q . . .
pseudo-cubes B, 1 € V] '1d’1, -+ Bige, €Y, C‘,i ‘4 of dimension d + 1 such that {Xj : i€ Zy, k €
bl b lli

[d + 1]} are pairwise disjoint and {Y; : i € Zy,k € [d + 1]} are also pairwise disjoint where
Zas1 := {(ig, %) : ¢ € [ci],ig € Z4}. Then, we define ¢;, . i, i := |Bi,,...i,i| forany i € [¢;,,  ,].
By induction, for any k£ € N and any i, € 7, ¢, Xj,, Yj,, and B;, < YlkX"“ have been defined
such that | X, | = k, B, is a pseudo-cube of dimension k, {Xj : i € 7, k € N} are pairwise disjoint,
and {Yj : i € Zy, k € N} are also pairwise disjoint.
Now, we define Z := UgenZy, X = Ujer Xj, and YV = UjezYj U {*} where » ¢ UjcrYjis a
new label. Note that X’ and ) are countable. Now, for any d € Nand i = (i1,...,iq) € Zg, since

|Bi| = ¢i € N, we use hi(i) to denote the i-th hypothesis in B; for any ¢ € [¢;] and extend the domain

of hi(i) to X by defining hi(i)|Xi1 = ple) o , forany k € [d — 1] and hi(i) (z) == *

..... ig il,...,ik‘ Q15
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for any x € X\(Upe(q)Xiy,....i;, )- Letting Hj denote the extended hypotheses in Bj, we define the
following hypothesis class

H = Uier H;.

By setting {Xj : i € Z} to be the set of nodes and {Hj : i € Z} to be the set of edges, we obtain
an infinite DSL tree of H. To prove that H has no NL tree of depth 2, it suffices to show that the
Natarajan dimension of H is 1. For any k1, k2 € N with k1 < ko, Iy € Zg,,i2 € Ti,, and 1 € Xj,
and zg € X, with 21 # x9, if ia|1.5, # i1, then, » € {h(x1), h(z2)} for any h € H, which implies
that {x1,z2} is not N-shattered (see Brukhim et al. 2022, Definition 4 for the definition of “N-
shattered”) by H. If k1 < ko and ia|1.5, = i1, then, for any hq, hy € H, in order to have hq(x1) #
ho(x1) and hy(z2) # ho(x2), we must have either {h1(x1), ho(x1)} x {h1(z2), ho(x2)} = {*,y1} %
{*,y2} or {h1(z1), ha(z1)} x {ha(x2), ha(z2)} = {y1, ¥} x {*,y5} for some y1, 44,41, y2, 15 €
7‘[\{*} with yi #* ylll For {hl (1}1), hQ(IEl)} X {hl (Ig), hQ(.TQ)} = {*, yl} X {*, yQ}, thereisnoh € H
such that (h(z1), h(z2)) = (*,y2) by our construction. For {hi(x1), ho(x1)} x {h1(z2), ha(z2)} =
{v],y7} x {*,v5}, WOLG, we may assume that (hq(z1),h1(z2)) = (v}, y5). Then, there is no
h € H such that (h(z1), h(z2)) = (v}, y5) because any h such that h(x2) = hy(z2) # * must have
h(z1) = hi(x1) = y|. Thus, {z1,x2} is not N-shattered by /. Finally, if ij = iz = i, for any
hy € H\ﬁl where Ei = {h e Hy : ie Ik:ai/|1:k:1 =ik > ]{71}, we have hl(l‘l) = hl(l‘g) = *.
However, there is no h € H such that (h(x1), h(z2)) = (*,y2) for yo # *. On ther other hand,
for any hi, he € Hj, we have ﬁi|(;,;_1,;,;2) = Bi|(az1,x2)* Since the Natarajan dimension of B is 1,
(x1,x2) is also not N-shattered by Hy. Thus, (21, x2) is also not N-shattered by H. In conclusion,
any (r1,x2) € X? is not N-shattered by #, the Natarajan dimension of 7 is 1, and A has no NL
tree of depth 2.

|

Appendix F. Proof of Theorem 10

In this section, we prove Theorem 10. We first prove the following general lemma.

Lemma 70 Suppose that H < Y with Y := [K] for some K € N\{1} has an infinite GL
tree T = UP_o{(Xu,su) € X" x YL 2w e []1L,{0, 1}} with its associated hypothesis set
{(hwe H :ue [ ,{0,1}},n € N}. Forany d € No, g € [[{_,{0,1}}, and w € {0,1}9+1\{0}9+1,
there exist a sequence Y, , € V™' and an infinite GL tree U)_o{(Xy,84) € X" x Yt .
u € [[2,{0,1}'} with its associated hypothesis set (ha € H :u e [T72,{0,1},n € N} such
that (T,55) = (T, Sg), (XusSu, hu) = (Xu, Su, hu) for all u € ( Unen [ [;2110, 1}l)\( Un g1

({"%W} X H?:d—i—Q{Oa 1}l))’ {}Nlu B S {777W} X H?=d+2{07 1}lan = d+ 1} = {h’ll B S {nuw} X
[T gi2{0,1},n>d+1}, and forall 0 < i < dandu e U2, ({n,w} x []|_4.2{0,1}'), we

have 7@“(%27) = yihw = si, ifw' = 0 and 71,“(537) = yf%w # si] ifw' = 1.
Proof Foranyue u®_,  ({n,w} x [/, {0,1}), we color vy := (Xu,Su, hy) With
(hu(zy), .. hu(ah)) € YL
Since |Y| = K < o0, by the Milliken’s tree theorem (Milliken, 1979), for the colored infinite tree

Tow = {va s we {n,w} x [TL;,,{0,1}',n > d + 1}, there exists some color y, ,, € Y
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and a strongly embedded infinite subtree 'T',,,w of Ty w such that all the nodes in 'T',,,w have the
same color y,, ,,. Since Ty is a strongly embedded subtree of Ty, v, there exists some sequence
(11)1en, € NNo such that nyy1 > ng = d + 1 forany I € N,

T—1
T = ufzo{(ﬁb,gb, ) € X7+ Y i b e o, 1}m+1},
=0

and (Xp, 8, ) is a node in level n, of T for all b € leol{(), 1}+! and 7 € Ny. Forany t € N
witht > d + Landu = (uf, (uS,ud), ..., (uf,...,ui™ ")) € {n,w} x [[}_y, {0, 1}!, define

Bu) :=((Bw), ..., B@)7°), (Bw3, ..., Bw)3"),..., (Bw)_g_y- ., Bw) 1))
et _2{07 1}nl+1

QL

~
Il
=]

with

~ ~ o

Xy = (i%(u), -1 8B)) € Xt g, = (X3(u): - - +8B(w)) € V"1 and hy 1= FL,@(H) eH.

~

Define T := 2, Sy := Sy, and Xy := Xy, Su := Su, fy := hy for any

we (G [0V ( 0z (691 [T 0.11)).
=1

l=d+2

Then, we obtain the following infinite tree

T.= U;go{(szu,gu) ‘ue ﬁ{o, 1}1}.

=1

Since T is an infinite GL tree and 'T',%w is a strongly embedded infinite subtree of T, w, we have
that T is an infinite GL tree with the associated hypothesis set {hy € H : u € [];-,{0, 1}},n € No}.
Since all the nodes in 'T'mw have the smae color y,, ,,, by the construction of coloring and T, for
al1 0<is<d anq ue 9%0=d+1 ({n,w} x [T yi2{0,1}"), we have %u(«%%) = Ypw = Sy if
w' = 0 and hy(7;) = Ynw # Spif w' = 1. Finally, we have (Ty,5y) = (zg,sy) and

(Xu, Su, hu) = (Xu, Su, hy) for all u € ( Unen [ [12110, 1}l)\( Un_ g1 ({m,w) x H;‘:dH{O, 1}l))
by our definition.
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Now, we are ready to carry out the proof of Theorem 10.
Proof of Theorem 10 For any NL tree ud_% (Xu,s.(J ),s,(ll)) e Antl x yntl o yntl + gy e
[T7-,{0,1}'} of H of depth 1 < d < o0, U] (xu,sl(, )) At yntl iae [T ,{0, 1} is a
GL tree of H of the same depth d. Thus, an infinite NL tree of H implies an infinite GL tree of H.
Now, suppose that U {(Xy,su) € X" x YL s we []7L,{0,1}!} is an infinite GL tree of

H. Foranyn € Nandu = (u(l), (ug,u%) LUl ,uﬁ_l)) e [1/2,{0, 1}, there exists some
hu € H such that hy(zy_,) = fkl ifuf | = () and hy(zy_,) # Sy _, otherwise forall 0 < <l and
0 <! < n, where

ug = (U, (ud,ud),. .., (... ,ug_l)), Tug, = <x8<17 . ,$fl<l).

Then, we define Tg = {vy = (vg,55)} U {tu = (Xu,Su, hu) 1w € [[[21{0,1}1,1 < n < 0}
which is the infinite GL tree with the associated hypotheses. Next, we use induction to show that
has an infinite NL tree.

Applying Lemma 70 to T ford = 0, n = ¢J, and w = 1, we obtain a label §0® € y\{s%}
and an infinite GL tree with the associated hypotheses T = {Ug = (g, 8z)} U (UL {Uy =
(Xu, Su, hu) s u € [T;-1{0,1}'}) such that for allw € U, ({1} x []}"5{0, 1}'), we have hu(Zg) =

% Then, we replace Tg with Tg. With abuse of notation, we still use T to denote Tg, use

vy = (zg, sy) to denote Uy = (T, Sg), and use vy = (Xu, Su, hu) to denote v, = (iu,éu,ﬁu)
forallu e U%_, (T, {0, 1}H).

Suppose that for some d € N, there exists a set US_{ {5y € Y"*! : u € 1_[?:1{0, 1}'} and
an infinite GL tree with the associated hypotheses Ter = {vg = (zg,sg)} U (Ui {va =
(Xus Su, Pu) = w € []72,{0,1}'}) of H such that U_{{(Xy,Su,5u) : U € ]_[l {0, 1} } is a NL of
H of depth d and for any u € U_,(TT/L,{0,1}), we have hu(z_,) = sy_, if uj,, = 0 and

hu(xflsl) = 5,_, otherwise for all 0 < i < land 0 < | < d. Define r := [5logy K] € N.

For any k € Hle{O, 1}, consider n € {k} x }"(Uf;;ll {0} Applying Lemma 70 for 1 and

each w € {0, 1}"@+D\{0}"(@*1) jteratively and defining y,) ,, := sy for w € {0}"(@"1), we obtain
aclass Hy = {y,, € Y+l - w e {0,1}7@+1} and an infinite GL tree with the associated
hypotheses T, = {ig = (2g5, sg)} U (UL, {au = (Xu,Su; hw) s w € [T1,{0,1}%}) such that
'T'G satisfies the induction hypothesis for d and Ul su € Y s e []7,{0,1}'} and for all
we {o 1@+ (0} (@D 0 <3 < r(d+1)—1, andu € U d+1)({n,w} [T (i1 {0,13),
we have hj(xn) = Yhw = Sy if w' = 0and P (3 n) = Unw # St 1f~w = 1. Then, we replace
Tq with T, With abuse of notation, we still use T¢ to denote Tg 5, use vy = (T, 5%)
to denote Uy = (Ty,5g), and use vy = (Xyu,Su, hu) to denote Ty = (iu,§u,ﬁu) for all u €
Uns (T2 {0, 13).

Since we have shown that yihw # 527 ifw’ = 1and yihw = s% if w* = 0 for any w € {0, 1}7(@+1)
and 0 < ¢ < r(d + 1) — 1, we have dimg(Hy,) = r(d + 1) and by Bendavid et al. (1995),

dimy (Hy) > %(QHIQ) > d + 1. Thus, there exists a subset {ig,...,iq} < [r(d + 1)] and two
sequences fo = (f,...,fd), 1 = (f2,..., f1) € Y such that f§ # fiforall0 < i < d
and Hpl(o, i) 2 {(FO 03 x -+ x {fd, fi}. Then, we must have either fy = Snl(io,....ia) OF

f1 = Sn|(io,...,id)- If fo = Sn‘(io,.-.,id)’ we define §,{ = f1 and S = fo. If f1 = Sn‘(io,-~~7id)’ we
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define §,, := fy and s,, := f1. Then, we have 5, # s, forall 0 < i < dand Hylg, ;) 2
{Sga grog} X X {Sza Ei}

Define the set W,, := {w e {0, 1}7(4+1) . y,Z{w — 54 for allj € [d+ 1] s.t. w = 1} and
H =AYy wltio,...iq) - W€ Wy} We have Hy = {s%,50} x -+ x {si,5¢} and |H,| = 29+, For
any g = (g1,...,9a+1) € {0,1}91, define the set

Wig i= Wy 0 {we {0,1}7@D s ol = g forall j € [d + 1]}.

Since Hpl(i,,..ig) 2 {59,501 x ... x {s%,5%}, we have Wne # . Then, we pick a sequence
wg € Wy for any g € {0,1}9%1. Forany n € Nwithn > d + 1 and any u = (ug1,...,u,) €

[T g1{0, 1}, we define

r(d+1
a(u) = ((Wud+l, (a(u)g(dﬂ)ﬂ, R a(u)TEdL;H), ol
n+(r—1)(d+1)—1
(a(“)2+(r—1)(d+1)v c oW ) )

n+(r—1)(d+1)

€ [T {01y

I=r(d+1)
with

0, ifl—(r—1d+1)<i<l

foranyr(d+1)+1<i<n+(r—1)(d+1)and0<i<!—1.
Next, for any n € N with n > d and any u € []}" ;. {0, 1}, define

— {((Xf?,...,Xi;l),(sf;’,...,sﬁ;i),hn) ifn =d,
[ ) B

(<X97,a(u)’ . ,xzﬂ(u))7 (Sgl,a(u)’ . ?Sz,a(u))’ hnpaq), ifn=d+1.

Then, we obtain the following tree

Tam = Uit a{en ue ﬁ (0,11 = {5 we Uiy () » ﬁ 0.134) }.

l=d+1 l=d+1

We replace T¢ , with 'T'G’R in T¢ by replacing vy = (Xy, Su, hu) With ¥, and still use v, =
(Xu, Su, hu) to denote ¥y in T after the replacement for all w € U®_,({x} x T ;,1{0,1}).
Now, we have hy(z},) = sp if uy ; = 0and hy(zy,) = 55 if ug,, = 1forall 0 <4 < dand
ue U” ({r} x [T 4s1{0,1}") and T is still an infinite GL tree with the associated hypotheses
after the replacement.

After the above procedure for all kK € Hle{o, 1}, we obtain a set Ul_ {5, € Y :
u € [];-;{0,1}'} and an infinite GL tree with the associated hypotheses {(zg,sg)} U (UL,
{(Xu, Su, hu) s we [} 1{0,1}"}) of H such that U?_ {(Xu,Su,Su) :we [ ,{0,1}'} isaNL of H
of depth d + 1 and for any u € UX_, ;(TT}~;{0,1}!), we have hu(l‘flsl) = sflgl if uj,; = 0and
hu(wy_,) = 5,_, otherwise for all 0 < i < land 0 < I < d. Thus, the induction hypothesis has
been shown for d + 1.
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By induction, there exists an infinite set UZ_;{Sy € Y"™! : w € [[/_,{0,1}'} and an infinite
GL tree U%_o{(Xu,Su) : W € [[71{0, 1}'} of H such that U®_,{(Xu, Su,Su) : W € [[11{0, 1}} is
an infinite NL of . It follows that an infinite GL tree of 7{ implies an infinite NL tree of H.

Finally, we can conclude that H has an infinite NL tree if and only if it has an infinite GL tree.

|

Appendix G. Proof of Proposition 12

Proof Foranyn € Nandx € X, ifﬁn(x) = kfor some k € [K]\{1}, there exists some z’ € [0, 0)<,
1<ip<---<ig<nand (a,...ap) €[0,1]° suchthatZtT:lozT =1 and

t
x=17 + Z X,

T=1
Then, for any k' < k, we have

t t
Wi - X — by = Wy -2 + Z o (Wy - Xi, — b)) < wp -7 + Z ar (Wi - X, — b)),
T=1

=1

which implies that h,1(x) > k = ﬁn(x) Then, for any n € N such that fzn(xnﬂ) # Ynil =
hn+1(Xp+1), we must have B (Xp+1) < Yn+1- It follows from the definition of h., that for every
i < n such that y; > yy,41, there exists some j € [d] such that (x;); > (Xp41);.

Suppose on the contrary that there exists a strictly increasing infinite sequence (7 )y such that
’f;nt (Xnys1) # Ynyy, forall t € N. Now, define an infinite complete graph with vertex set {X, }+en
and color each edge {X,,,X,,} with ¢ <t to be min{j € [d] : (Xp,); > (Xn,);} € [d]. Then, by
the infinite Ramsey theory, there exist some j € [d] a strictly increasing infinite sequence (¢;);en
such that the edge {Xy, ,Xn, ,} is colored with j for all i # i'. Thus, by the rule of coloring, (X, );
is a strictly decreasing infinite sequence in i, which contradicts the fact that (xy, ); € Nforalli € N.

~

Therefore, (hy,)neny only makes finitely many mistakes for any consistent sequence ((Xn, ¥;,))nen-
Moreover, if hy, (Xp41) = Yn+1, We claim that hy, 1 = hy,. Indeed, foranyx € X,if Yg, x # O,

aix = Y8, x. Thus, by 1(X) = hy(x). If Yg, x = J, we must have h,(x) = 1, which

implies that we have k ¢ Yg, , « forany k > 1. Thus, hy,41(X) = 1 = hy(X). [ |

we have Yg
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