
Proceedings of Machine Learning Research vol 195:1–32, 2023 36th Annual Conference on Learning Theory

Limits of Model Selection under Transfer Learning

Steve Hanneke STEVE.HANNEKE@GMAIL.COM
Purdue University

Samory Kpotufe SAMORY@COLUMBIA.EDU
Columbia University

Yasaman Mahdaviyeh YM2898@COLUMBIA.EDU

Columbia University

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
Theoretical studies on transfer learning (or domain adaptation) have so far focused on situations
with a known hypothesis class or model; however in practice, some amount of model selection is
usually involved, often appearing under the umbrella term of hyperparameter-tuning: for example,
one may think of the problem of tuning for the right neural network architecture towards a target
task, while leveraging data from a related source task.

In addition to the usual tradeoffs on approximation vs. estimation errors involved in model
selection, this problem brings in a new complexity term, namely, the transfer distance between
source and target distributions, which is known to vary with the choice of hypothesis class.

We present a first study of this problem, focused on classification. Remarkably, the analysis re-
veals that adaptive rates, i.e., those achievable with no distributional information, can be arbitrarily
slower than oracle rates, i.e., when given knowledge on distances.
Keywords: Transfer Learning, Domain adaptation, Model Selection, Lepski’s Method.

1. Introduction

Domain adaptation or Transfer learning concern settings where data from a source distribution P is
to be leveraged to improve learning on a target distribution Q where perhaps less data is available.
While this problem has received much renewed attention of late, theoretical studies have focused
on settings where a suitable hypothesis (or model) class H is already known. However, this is
rarely the case in practice where some amount of model selection is required, as often referred to
as hyperparameter tuning: one wishes, e.g., to tune for the right architecture with neural networks,
a suitable polynomial degree in regression, or an appropriate kernel for kernel machines, all while
leveraging both source and target data. Importantly, as target data is often limited in these settings,
it ideally should not be used alone to drive model selection, even though it is a priori unclear how
to leverage the source data.

We present a first study of this problem, in the context of classification, under a simple formalism
where we assume a hierarchy of models {Hi} ,Hi ⊂ Hi+1, each with known complexity di (here
VC-dimension); the problem is then to try and understand the achievable target Q-risk in modern
transfer settings with access to both source and target data, as opposed to just target data. We note
however that our analysis allows for no target data, as in fact we have no restriction on data sizes
from either source nor target.

To establish a baseline performance, assume the hierarchy {Hi} admits a global Q-risk mini-
mizer h∗Q from an unknown model Hi∗Q

∈ {Hi}. Then it is known that, using nQ data from Q, an
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excess risk EQ(ĥ)
.
= EQ(ĥ;h∗Q) ≲

√
di∗Q/nQ is achievable without prior knowledge of Hi∗Q

, e.g.,

via structural risk minimization (SRM), a.k.a., complexity regularization, which essentially tradeoff
estimation error

√
di/nQ, and approximation error minh∈Hi

E(h, h∗Q) over models {Hi}.
Now, model selection in a transfer scenario, i.e., given related source data from P , involves an

additional tradeoff parameter: the distance or information that P yields on Q, which is now well
understood to be tied to the choice of hypothesis class Hi. Early notions of distance P → Q, e.g.,
from seminal works of Mansour et al. (2009a); Ben-David et al. (2010) already formalize the idea
that the differences between P and Q are only relevant in regions of space in line with H, e.g.,
disagreement regions between given hypotheses in H. In other words, while a model choice H out
of the hierarchy {Hi} may balance estimation and approximation errors, it may fail to maximally
leverage the data from P if it induces a large distance P → Q.

As the distances P → Q induced over models in {Hi} are a priori unknown (however for-
malized), our analysis especially distinguishes betwen adaptive model selection rates—i.e., rates
achievable from P and Q samples alone without distributional information—and usual minimax
oracle rates. Remarkably, unlike in usual model selection, these can be significantly different.

Main Results. For a fixed class H, we adopt a recent notion of distance P → Q from (Hanneke
and Kpotufe, 2019) comprised of two components: (1) the excess risk EQ(h∗P ) of a risk minimizer
h∗P under P , and (2) a transfer-exponent ρ which essentially measures the effective sample size
contributed by P to the target problem Q. Thus suppose access to nP samples from P and nQ

samples from Q, the following upper-bound was shown to be achievable adaptively:

EQ(ĥ) ≲ min
{
(d/nP )

1/2ρ + EQ(h∗P ) ; (d/nQ)
1/2
}
, where d is the VC dimension ofH. (1)

For sanity check, note that (1) is of order (d/(nP +nQ))
1/2 when P = Q, i.e., ρ = 1, EQ(h∗P ) = 0.

Also notice that the rate is faster with smaller ρ and EQ(h∗P ).
Now, if we knew the above rate to be tight in general, we then get a first sense of the best rates

we might expect for any fixed model choiceHi out of the hierarchy.
• Tightness of (1). As a first basic result, we show that the above adaptive rate on a fixed choice
H, admits matching lower-bounds over any parameter value (Theorem 1). This complements a
lower-bound of (Hanneke and Kpotufe, 2019) which only holds for EQ(h∗P ) = 0. This is especially
important in our setting in order to cover a rich variety of situations.
• Adaptive Upper-Bounds and Speedups. Now suppose that eachHi in the hierarchy admits transfer
distance (ρi, EQ(h∗P,i)), a priori unknown. Together with known class complexity di, and sample
sizes np, nQ, these distances induce subtle tradeoffs on model choicesHi for the Q task.

— First, we verify through some technical examples, namely basic neural-networks, that indeed
some rich set of tradeoffs are captured through the above parametrization. That is, rich combinations
of (ρi, EQ(h∗P,i)) emerge from the interaction between (P,Q) and nested network architectures.

— Having established the tightness of the above equation 1, and given the baseline of model
selection under target, we can show (see Lemma 1) that selecting any fixed Hi would yield an
adaptive upper-bound of

EQ(ĥi) ≲ ϕ(i), where ϕ(i) ≈ min

{
(di/nP )

1/2ρi + EQ(h∗P,i) ;
(
di∗Q/nQ

)1/2}
.
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Unfortunately, as we discussed in the next bullet point, no algorithm exist that can minimize ϕ(i)
in general and achieve optimal tradeoff on distance. Instead, we establish the following adaptive
guarantee (see Theorem 2). Suppose that {Hi} admits a global P -risk minimizer h∗P at unknown
level i∗P ; then there exists a procedure ĥ achieving

EQ(ĥ) ≲ ϕ(i∗P ) from samples alone.

In other words, the procedure automatically favors model selection under source P—at least com-
mensurate with the unknown modelHi∗P

—if P is thus informative on Q, and falls back on leverag-
ing target data otherwise, all without prior knowledge of distributional parameters.

We emphasize that in contrast, popular SRM approaches yield no clear such guarantee: sup-
pose nQ = 0, SRM can only guarantee low P -risk, but no specific choice of model class.

• Oracle Rates are Unachievable. With knowledge of distance parameters
{
(ρi, EQ(h∗P,i))

}
(or at

least of the ranking they induce on {ϕ(i)}), an oracle procedure can achieve the rate mini ϕ(i),
which can be arbitrarily faster than ϕ(i∗P ).

Interestingly, as we show in Theorem 4, no adaptive procedure, i.e., without such domain knowl-
edge, can achieve a bound better than ϕ(i∗P ), without further structural conditions on the hierarchy
{Hi}, even in situations where mini ϕ(i) ≪ ϕ(i∗P ). This result holds even when the learner ĥ is
improper, i.e., when ĥ is allowed to return a hypothesis outside of ∪iHi.

Related Work. Transfer Learning has received much attention over the years, with studies, both
in the context of classification and regression, considering various notions of relations between P
and Q. Early works include (Ben-David et al., 2007; Crammer et al., 2008; Cortes et al., 2008;
Ben-David et al., 2010; Gretton et al., 2009; Mansour et al., 2009b) which already recognize the
importance of the choice of hypothesis class in quantifying the information the source P has on
the target Q. These ealrier works have been refined over time, e.g., considering multiple source
distributions rather than just one (Maurer et al., 2013; Pentina and Lampert, 2014; Yang et al., 2013;
Maurer et al., 2016).

More recently, assymetric notions of discrepancy have been proposed, noting that P may have
information on Q but not the other way around (Kpotufe and Martinet, 2018; Hanneke and Kpotufe,
2019; Achille et al., 2019; Mousavi Kalan et al., 2020). We adopt such a notion in this work.

Despite much of the attention on this problem, a single hypothesis classH has been commonly
assumed. However, a separate line of work on meta-learning can be seen as somewhat related,
as they often assume relationship between optimal predictors, often in the form of a shared low-
dimensional substructure; these settings may be recast as learning a target hypothesis class of lower
complexity (Ando and Zhang, 2005; Muandet et al., 2013; McNamara and Balcan, 2017; Arora
et al., 2019; Jalali et al., 2010; Lounici et al., 2011; Negahban and Wainwright, 2011; Du et al.,
2020; Tripuraneni et al., 2020). This however does not embody the full richness of model selection.

Paper Organization. We start in Section 2 with basic definitions and setup. This is followed
by an overview of results in Section 3. Much of the proofs are discussed in Section 4 with more
technical results relegated to the Appendix.
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2. Preliminaries

2.1. Setup

Basic Definitions. Let X,Y be jointly distributed according to some measure µ (later P or Q),
where X is in some domain X and Y ∈ Y .

= {±1}. A hypothesis class or model is a set H
of functions X 7→ Y . All these objects are assumed to be measurable, so that we may consider
classification risks of the form R(h)

.
= E[h(X) ̸= Y ], as measured under µ.

Definition 1 The excess risk of a classifier, w.r.t. H, is defined as E(h) = R(h)− infh′∈HR(h′).
Furthermore we use the notation E(h, h′) .

= R(h)−R(h′) = E(h)− E(h′).

We adopt the following classical noise conditions (see e.g. (Massart and Nédélec, 2006; Koltchin-
skii, 2006; Bartlett et al., 2006)).

Definition 2 Assume R(h) is minimized at h∗ ∈ H. We say that H satisfies a Bernstein Class
Condition (BCC), as measured under µ, with parameters (Cβ, β),Cβ > 0 and β ∈ [0, 1], if ∀h ∈ H

P(h ̸= h∗) ≤ Cβ · E(h)β.

Note that the condition trivially holds for β = 0, Cβ = 1. The condition captures the hardness of
the learning problem: when β = 1, which formalizes low noise regimes, we expect fast rates of the
form n−1, in terms of sample size n, while for β = 0, rates are of the more common form n−1/2.

When h∗ is not unique, BCC remains well defined (i.e., the definition is invariant to the choice of
h∗), as it imposes (when β > 0) that all h∗’s differ on a set of measure 0 under the data distribution.

Transfer Setting. We consider a source and target distributions P and Q on (X,Y ), where we
let EP , EQ denote excess-risks under P and Q. We are interested in excess risk EQ(ĥ) of classifiers
trained jointly on nP i.i.d samples from P , and nQ i.i.d. samples from Q. Achievable such excess
risks necessarily depend on the distance P → Q appropriately formalized.

We adopt some recent notion of distance from (Hanneke and Kpotufe, 2019); for ease of expo-
sition, we make the following simplifying assumptions.

Assumption 1 We assume for any H considered henceforth that EP and EQ are minimized in H.
We let h∗P , h∗Q denote any such respective risk minimizers. Furthermore, if multiple minimizers
{h∗P } exist under P , we assume that one of them achieves sup{h∗P} EQ(h

∗
P ), and denote it h∗P .

The distance P → Q is then given by EQ(h∗P ), and the following quantity ρ:

Definition 3 We call 0 < ρ ≤ ∞ transfer exponent from P to Q with respect to H if there exists
Cρ > 0 such that for all h ∈ H,

Cρ · EP (h, h∗P )1/ρ ≥ EQ(h, h∗P ).
We say that ρ is minimal when no 0 < ρ′ < ρ is a transfer exponent from P to Q w.r.t. H.

Notice that the above parametrization holds trivially for ρ = ∞, Cρ = 1. Larger values of
the pair (ρ, EQ(h∗P )) denote higher discrepancy P → Q. For intuition on ρ, consider the case
h∗P = h∗Q = h∗; then ρ simply describes how well P reveals the decision boundary defined by
h∗, i.e., whether hypotheses h with small P -excess risk also have small Q-excess risk. Various
examples of the continuum ρ → ∞ are given in (Hanneke and Kpotufe, 2019, 2022). We build on
the intuition therein to derive Examples 1 and 2 of Section 2.2 below for our specific setting with a
hierarchy of hypothesis classes.
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Model Selection Setting. We consider a situation where the learner has access to a hierarchy
{Hi} ,Hi ⊂ Hi+1 of hypothesis classes, where each Hi has VC dimension di, di ≤ di+1. We let
h∗P,i, h

∗
Q,i denote the P and Q risk minimizers over modelHi (according to Assumption 1).

Assumption 2 We assume {Hi} admits global risk minimizers h∗P and h∗Q w.r.t P and Q; let i∗P ,
i∗Q, unknown to the learner, denote the indices of the smallest classes containing an h∗P , resp. h∗Q.

Definition 4 (Noise and Transfer Parameters) We let (CβP,i
, βP,i) and (CβQ,i

, βQ,i) denote BCC
parameters forHi w.r.t. P and Q. For simplicity, we let βP

.
= βP,i∗P and βQ

.
= βQ,i∗Q

.
Finally, we let (Cρi , ρi) denotes transfer-exponents from P to Q under classHi.

Assumption 3 We assume for simplicity that all CβP,i
, CβQ,i

are upper-bounded by some Cβ .

2.2. Examples and Intuition on Tradeoffs.

We start with the following remark.

Remark 1 (Implicit Structure on
{
(ρi, EQ(h∗P,i))

}
) To get some intuition, let’s consider a sim-

pler situation where h∗P,i is unique for each class Hi. It then follows by definition, and the fact that
the classes are nested, that for i > i∗P , we have that ρi is also a transfer-exponent for i∗P . Also, by
Assumption 1, for i > i∗P , h∗P,i = h∗P so we have EQ(h∗P,i) = EQ(h∗P,i∗P ).

In other words, model selection would not favor Hi over Hi∗P
if i > i∗P . However, for i < i∗P ,

the distance parameters (ρi, EQ(h∗P,i)) are unrestricted—i.e., either term may increase or decrease
as i increases to i∗P—if we impose no further condition on the hierarchy {Hi}, thus inducing subtle
tradeoffs. Such unrestricted increase or dicrease in distance below i∗P is illustrated by the examples
below and further by the lower-bound construction for Theorem 5.

Note that, similarly, for µ denoting either P or Q, the BCC parameters βµ,i’s are nondecreasing
for i ≥ i∗. Thus, following from the remark, suppose for instance that the distances (ρi, EQ(h∗P,i))
were decreasing with i = 1, 2, . . . i∗P , either in the first or second terms. Then, while usual model
selection (as in a non-transfer setting) would favor the smallest class with small error, now it could
be that a larger class transfers better. On the flip side, we could have situations were all ρi’s increase,
while EQ(h∗P,i)’s decrease, leading to similarly complicated tradeoffs.

The examples below illustrate such richness of situations in the case of simple two-layer neural
networks for X ∈ IR, where the nested classes Hi ⊂ Hi+1 correspond to increasing width. We
emphasize that the main point of these examples is to illustrate the basic thesis that distance between
source P and target Q may change with given classes in the hierarchy, in particular for model
classes that speak to contemporary interest. We will revisit some such examples in Section 3.2
when discussing achievable bounds.

Example 1 (Two Layer Neural Nets with Threshold Activation) DefineHi = {hθ : IR 7→ ±1},
indexed over θ .

= (i, a, r, w, b), for a,w, b ∈ IRi and r ∈ IR, and where hθ is of the form

hθ(x)
.
= sign

 i∑
j=1

aj sign (wjx− bj) + r

 . (2)
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Proposition 1 For every finite sequence 1 ≤ ρ1 ≤ · · · ≤ ρL, there exists source and target
distributions P , Q over [0, 1]×{−1,+1} such that ∀1 ≤ i ≤ L, ρi is the minimal transfer exponent
from P to Q w.r.t. Hi, i∗P = i∗Q = L and βP,i = βQ,i = 1. Furthermore, the sequence of values
EQ(h∗P,i), i = 1, 2, . . . , L, is strictly decreasing, depends only on L, but not on {ρi}; finally we have
that Cρis are upper and lower bounded by functions that depend on i and L only, but not on the
choice of {ρi}.

In particular, as we may have ρi’s increasing while E(h∗P,i decrease, we see that nontrivial
tradeoffs may indeed occur in practice.

Example 2 (Two Layer (Residual) Neural Net with Relu Activation) Let H̃i
.
= {hθ : IR→ ±1}

indexed over θ .
= (i, a, r, w, b, α), for a,w, b ∈ IRi and r, α ∈ IR, and where hθ is of the form

hθ(x) = sign

 i∑
j=1

aj [wjx+ bj ]+

+ αx+ r

 , using the notation [·]+
.
= max(0, ·).

Next proposition uses results of Aliprantis et al. (2006) to connect ReLu residual neural nets to
threshold neural nets in one dimension.

Proposition 2 Let H̃i be the class of Relu neural nets of Example 2, and let Hi be the class of
neural nets from Example 1. We have H̃i = Hi+1, and consequently, Proposition 1 still holds.

The proofs of the propositions above are given in Appendix A. In particular, the proof of Propo-
sition 1 illustrates how the behavior of P and Q around decision boundaries (defined by optimal
classifiers at each level Hi) affects model-transferability; as such, even though for simplicity we
focus on X ∈ IR for these examples, the same insights extend to IRd.

3. Overview of results

For intuition behind the analysis, we start with trying to understand adaptive transfer rates at a single
levelHi of the hierarchy. A result of (Hanneke and Kpotufe, 2019) (see Proposition 2 therein) offers
a first glimpse. It states roughly that, for a fixed class H, there exists an adaptive ĥ with access to
nP samples from P and nQ samples from Q, such that, w.h.p.

EQ(ĥ) ≲ min

{(
d

nP

) 1
(2−βP )ρ

+ EQ(h∗P ),
(

d

nQ

) 1
2−βQ

}
, (3)

where βP , βQ denote BCC parameters for P and Q. While they show that this is tight (for all
ρ, βP , βQ), their construction assumes EQ(h∗P ) = 0, which is too restrictive in our setting.

We start our analysis by first showing that (3) is indeed tight in all parameters.

3.1. Lower Bound for a FixedH

We consider the following class of pairs of distributions P,Q w.r.t. a fixedH.
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Definition 5 (Ξ class) Let H denote a hypothesis class, and let βP , βQ ∈ [0, 1), ρ > 0, α < 1.
We then define Ξ = Ξ(H, βP , βQ, ρ, α) as the set of pairs of distributions (P,Q) satisfying the fol-
lowing conditions. (i) Assumption 1 holds, (ii) both P,Q satisfy a BCC with respective parameters
(1, βP ), (1, βQ) (iii) ρ is a transfer exponent P to Q w.r.t. H, with Cρ ≤ 1, and (iv) EQ(h∗P ) ≤ α.

Theorem 1 Fix some hypothesis classH with VC dimension d ≥ 9. Pick any ρ ≥ 1, and βP , βQ ∈
[0, 1) and let Ξ denote the corresponding class. For every nP , nQ where max{nP , nQ} > d, let
ĥ be any classifier that has access to nP and nQ source and target samples. Then, there exists a
universal constant c > 0 s.t.

sup
(P,Q)∈Ξ

P
PnP ×Q

nQ

[
EQ(ĥ) ≥ c ·min

{(
d

nP

) 1
(2−βP )ρ

+ α,

(
d

nQ

) 1
2−βQ

}]
≥ 3− 2

√
2

8
.

The result extends a lower-bound construction of (Hanneke and Kpotufe, 2019) by randomizing
the relation between a fixed h∗P and candidates h∗Q’s. The proof is given in Appendix D.

3.2. Upper Bound

Having established the tightness of (3) over the range of parameters (except for 0 < ρ < 1), we
now have a sense of the rates achievable if we fixed a level Hi. However, as we already know
that, ignoring samples from source P , a baseline rate of (di∗Q/nQ)

(1/2−βQ) is attainable (up to log
factors) by standard model selection techniques (Koltchinskii, 2006, Theorem 7), we will aim for a
transfer rate ϕ♯(i), defined below, that incorporates this term at levelHi.

We fix some δ > 0, and sequence of δi > 0 satisfying
∑

i δi ≤ δ. For instance, δi = 1
i(i+1)δ.

Definition 6 Define the following quantity, for some C0 independent of all model parameters:

ϕ♯(i)
.
= min

EQ(h∗P,i) + C0 · Cρi

(
di log(nP /δi)

nP

) 1
(2−βP,i)ρi

, C0

(
di∗Q log(nQ/δi∗Q)

nQ

) 1
(2−βQ)

 .

Since Cρi , ρi, βP,i are not uniquely defined, without loss of generality we may take them to be
the valid values which minimize ϕ♯(i). We have the following adaptive upper-bound.

Theorem 2 (Adaptive Upper-bound) There exists a proper learner ĥ, with no prior distributional
knowledge beyond {di}, which, with probability at least 1− 3δ, for a suitable value of C0 achieves:

EQ(ĥ) ≤ ϕ♯(i∗P ).

For sanity check, notice that if P were equal to Q, then ρi∗P = 1 is admissible and we recover
the usual model selection bound in terms of max {nP , nQ} ∝ (nP + nQ). The bound is never
worse than model selection under Q alone, and can improve significantly for P ’s close to Q, i.e.,
with small ρi∗P , EQ(h

∗
P ).

As stated in the introduction, while SRM, a.k.a. complexity regularization approaches are preva-
lent in the literature and in practice, it is unclear whether such approaches can adaptively achieve the
above rate of ϕ♯(i∗P ). Instead we employ an approach, similar to so-called Lepski’s method, based
on intersections of empirical confidence balls (see Algorithm 1).
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Figure 1: A simple example, following up on NN Examples 1 and 2, where i♯
.
= argmini ϕ

♯(i) is different from i∗P .
Here, decision boundaries under P are depicted in black, whereby each h∗P,i, i = 1, 2, 3, corresponds to the i boundaries
on the left of it, including those of h∗P,i−1 (level Hi allows up to i boundaries). Now decision boundaries under Q (as
depicted in gray) are shifted to the right of boundaries under P : as a consequence all h∗Pi

’s have similar excess Q-error
EQ, so that i♯ is determined by ρi’s. Now for this hierarchy, ρi may decrease (better transferability) for smaller levels i
simply by virtue of P assigning more mass to corresponding decision boundaries as i decreases, as suggested by the
density dPX/dQX which is depicted in dashed lines.

We now turn to whether the rate ϕ♯(i∗P ) is the best achievable. First, recalling the simple neural-
nets Examples 1 and 2, we remark that there exists situations, i.e., pairs of distributions (P,Q) for
which i♯

.
= argmini ϕ

♯(i) is smaller than i⋆P . The simplest way to see this is to notice in these
examples that we may have all EQ(h∗P,i) equal (or nearly equal) across levels, while at the same
time ρi’s are non-decreasing in these examples, forcing a choice of i♯ anywhere below i∗P . This is
illustrated in Section 3.2, and formalized in Proposition 4 of Appendix B.

The next result, relying on a second Algorithm 2, states that the better rate mini ϕ
♯(i) is indeed

achievable given some distributional knowledge.

Theorem 3 (Oracle Upper-bound) There exists a proper learner ĥ which, given knowledge of
argmini ϕ

♯(i), guarantees with probability of at least 1− 3δ,

EQ(ĥ) ≤ min
i

ϕ♯(i).

Unfortunately, as we discuss in the next section, this oracle bound is not achievable adaptively.

3.3. Adaptivity Gap

The following quantity ϕ♭(i) is of similar order as ϕ♯(i) up to log terms, provided log(1/δi) ∝ di.

Definition 7 Define the following quantity:

ϕ♭(i) = min

Cρi

(
di
nP

)1/(2−βP,i)ρi

+ EQ(h∗P,i),

(
di∗Q
nQ

)1/(2−βQ)
 .

Our aim is to not only establish the un-achievability of the above oracle rate mini ϕ(i) by adap-
tive procedures, but also to try and pinpoint the sources of such hardness, i.e., decouple the effect
of ρi’s and EQ(h

∗
P,i)’s. To this end, since these terms only pertain to transfer from P , we need only

consider situations where the terms in ϕ(i) involving i, achieves the min in the definition of ϕ(i).

8
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Our first result below holds every parameter other than ρi’s fixed, and show that even then
mini ϕ(i) cannot be achieved adaptively. In particular the construction sets EQ(h∗P,i) = 0 for all i
in the hierarchy, but confuses the learner by randomizing which level below i∗P admits larger ρi’s.
Proofs of the next theorem is in Section 4.2.

For simplicity, the construction in the next theorem sets all β’s to 1. We give a similar result to
the next theorem for a richer model class in Appendix E.

Theorem 4 (Oracle Rate is Not Achievable) There exists a hierarchy H1 ⊂ H2, with d1, d2 = 1

satisfying the following. Pick any ρa > ρb ≥ 1, and any nP and nQ, where
(

1
32nP

)1/ρa
≤ 1

32nQ
.

Then there is a family of distributions {(Pσ, Qσ)} , indexed by some σ, such that the following hold.

(i) ∀σ, transfer exponents from Pσ to Qσ are the set {ρ1, ρ2} = {ρa, ρb} , with Cρ1 = Cρ2 = 1.

(ii) ∀σ, we have mini ϕ♭(i) =
(

1
nP

)1/ρb
, strictly less than maxi ϕ♭(i) =

(
1
nP

)1/ρa
.

We have that, ∀ĥ, sup
σ

P
P

nP
σ ×Q

nQ
σ

[
EQσ(ĥ) ≥

1

256
·max

i
ϕ♭(i)

]
≥ 1/8.

The construction fixes i∗P = 2, and randomizes which of ρ1 ̸= ρ2 takes the largest value in
{ρa, ρb}. We note that our adaptive upper-bound maxσ ϕ

♯(i∗P ) matches the lower bound maxi ϕ♭(i)
up to log terms. Also notice that, as ρa, ρb are arbitrary, the lower bound can be arbitrarily worse
than the Oracle upper-bound, i.e., we can construct any gap in [0, 1].

The next class of distributions instead fixes ρi’s and allows EQ(h∗P,i) to vary. It builds on a
similar intuition as for the proof of Theorem 1, and is included for completeness.

Theorem 5 LetH1 ⊂ H2 be a model class hierarchy such that there exists a set of two points that
H2 shatters but H1 does not, and assume that H1 is non empty. Then for any 1 ≥ α ≥ 0, nP , and
nQ such that 1

2nQ
≥ α, there exists a class of distribution {(Pσ, Qσ)} parameterized by σ ∈ {1, 2},

with βP,σ = βQ,σ = 1, where, for every σ, α = max
{
EQσ(h

∗
P,1), EQσ(h

∗
P,2)
}

, satisfying the

following. For any classifier ĥ that has access to nP source and nQ target samples,

sup
σ∈{1,2}

P
P

nP
σ ×Q

nQ
σ

[
EQσ(ĥ) ≥ α

]
≥ 1

4
.

The proof of this theorem is given in Appendix D.

4. Analysis

4.1. Proofs for Upper-bounds

Definition 8 (Empirical Minimal Sets) Let A(nµ, δ, C(Hi))
.
=

di log(nµ/di)+log 1/δ
nµ

. Given nµ

samples from distribution µ, define the empirical minimal set for hypothesis classHi to be

Ĥµ
i

.
=

{
h ∈ Hi | R̂µ(h)− R̂µ(ĥµ,i) ≤ C

(
Pnµ [h ̸= ĥµ,i] ·A(nµ, δi, C(Hi))

)1/2
+ cA(nµ, δi, C(Hi))

}
,

where ĥµ,i denotes an ERM overHi computed using samples from distribution µ.

9
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We assume that in addition to the source and target training sets, we are also given a hold-out
target sample set S′

Q of size nQ. Let R̂′
Q(·) denote the empirical risk and P′

nQ
denote the empirical

distribution on these held out samples.
The main algorithm is presented next, and relies on Algorithm 2.

Algorithm 1 Adaptive Trade-off

Input: SP , SQ, S′
Q

Compute îP = min i s.t.
⋂∞

j≥i ĤP
j ̸= ∅.

Compute H̃P =
⋂∞

j≥îP
ĤP

j .

Return output of Algorithm 2 with SP , SQ, S
′
Q and the set H̃P

Algorithm 2 Tradeoff on Q, at levelHi

Require: Any subset H̃P ⊆ ĤP
i

Input: SQ, S
′
Q, H̃P

Compute îQ = min i s.t.
⋂∞

j≥i Ĥ
Q
j ̸= ∅.

Pick ĥQ ∈
⋂∞

j≥îQ
ĤQ

j and pick ĥP,i ∈ H̃P .

If R̂′
Q(ĥP,i)− R̂′

Q(ĥQ) ≤
(
P′
nQ

[ĥP,i ̸= ĥQ] ·A(nQ, δ, 1)
)1/2

+ cA(nQ, δ, 1):

then ĥi ← ĥP,i else: ĥi ← ĥQ

The next lemma gives guarantees for Algorithm 2, and is essential to our main upper-bounds.
.

Lemma 1 Let ĥi be the output of Algorithm 2. With probability of at least 1− 3δ over the samples
SQ, S

′
Q and SP (which is used to construct ˜̂HP )

EQ(ĥ) ≤ ϕ♯(i).

The proof is given in Appendix C. The proofs of main upper-bound results are given next.
Proof of Theorem 2 Let ĥ be the output of Algorithm 1. Note that under the same events where
the bound in Lemma 1 holds, using the same arguments as in Claim 8 we can conclude that with
probability of at least 1 − δ, îP ≤ i∗P . Consequently H̃P ⊆ ĤP

i∗P
. Since Algorithm 1 returns

the output of Algorithm 2 on a subset of H̃P , it enjoys the guarantees as Algorithm 2 for level i∗P .
Therefore, the bound in Lemma 1 applies to the output of Algorithm 1 at i = i∗P . ■

The proof of the oracle upper is also a simple application of Lemma 1.
Proof of Theorem 3 Let i♯ .

= argmini ϕ
♯(i). Given i♯, oracle would then run Algorithm 2 with

given samples and ĤP
i♯

as input. Applying Lemma 1 to the output would prove the statement of the
theorem. ■
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4.2. Proofs for Lower-bounds

4.2.1. PROOF OF THEOREM 4

We start with a construction, defining a suitable hierarchy and distributions.

Construction. Let X = [0, 1]. We letH1 contain only two one sided threshold classifiers, andH2

containsH1 plus two one sided interval classifiers. Let r = 1/9. The one sided threshold classifiers
inH1 are h1(x) = sign (x− 2/3) and h′1(x) = sign (x− 2/3 + r). The one sided intervals h2 and
h′2 only positively label the set of points in [1/9, 1/3] and [1/9, 1/3 + r] respectively.

We construct a family of four distributions {(Pσ, Qσ)}σ∈{±1}2 , where each Pσ and Qσ is sup-
ported over [1/9, 1]×{±1}. Throughout this section we drop the subscript σ when a quantity is the
same for all distributions in the family. We refer to the intervals [1/9, 1/3], [1/3, 1/3 + r], [2/3 −
r, 2/3] and [2/3, 1] as Lout, Lin, Rin and Rout respectively.

For the marginals, we assume that within each interval the mass is uniformly distributed. Let PX

and QX,σ, be the marginal distributions under source and target respectively. All the distributions in
the family have the same source marginal distribution PX , which has PX(Lout) = 1/3, PX(Lin) =
PX(Rin) = 1

c1nP
, PX([1/3 + r, 2/3 − r]) = 5

12 −
2

c1nP
, and PX(Rout) = 1

4 . The constant
c1 is set to 32, the reason for which becomes clear in Claim 3 . The labels for the source are
YP (Lout) = YP (Rout) = +1, and for the rest of intervals the labels are the same as Q for σ.

The target marginal distribution QX,σ(Lin) and QX,σ(Rin) depends on σ2. If σ2 = +1,

set QX,(σ1,+1)(Lin) =
(

1
c1nP

)1/ρa
and QX,(σ1,+1)(Rin) =

(
1

c1nP

)1/ρb
, while if σ2 = −1,

QX,(σ1,−1)(Lin) =
(

1
c1nP

)1/ρb
and QX,(σ1,−1)(Rin) =

(
1

c1nP

)1/ρa
.

Let ∆ .
=
(

1
c1nP

)1/ρa
−
(

1
c1nP

)1/ρb
, for the rest of the intervals, QX(Lout) = QX(Rout) =

1
2∆,

and finally QX([1/3 + r, 2/3− r]) = 1− 2
(

1
c1nP

)1/ρa
.

For all σ, labels are noiseless. Let Yσ(A) denote the label of the set A under σ. We set
YQ,σ(Lout) = −σ1σ2, YQ,σ(Rout) = σ2, Yσ(Lin) = Yσ(Rin) = σ1 and Y ([1/3 + r, 2/3 − r]) =
−1.

We make the following two claims, which imply statements (i) and (ii) of the theorem. Addi-
tionally, βP,σ = βQ,σ = 1, since the labels are noiseless.

Claim 1 For every σ and i ∈ {1, 2}, EQσ(h
∗
Pσ ,i

) = 0.

Proof For every σ under Qσ there are two risk minimizers, one in H1 and another in H2 \ H1.

Specifically, when σ1 = +1, both h′2 and h′1 are risk minimizers, with risk
(

1
c1nP

)1/ρa
, since the

one that mislabels the inner interval with mass
(

1
c1nP

)1/ρb
will also mislabel Lout ∪Rout.

On the other hand, when σ1 = −1, since the regions Lout and Rout have the same sign, each of
h1 and h2 will mislabel exactly one of them, which results in the minimum risk of ∆

2 . It is easy to
see that both of h′1 and h′2 have a strictly larger risk.

Claim 2 The following holds for every value of σ1. If σ2 = 1, we have ρ1 = ρb and ρ2 = ρa.
Otherwise, for σ = −1, we have ρ1 = ρa and ρ2 = ρb. Furthermore, for all σ, Cρ1 = Cρ2 = 1.

11
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Proof First consider H1. Suppose that σ2 = 1, since QX,σ(Rin) =
(

1
c1nP

)1/ρb
, whichever of

h1 or h′1 that is not a risk minimizer under source and target, will have excess risk of 1
c1nP

under

source and
(

1
c1nP

)1/ρb
under target, which means that ρb is a transfer exponent with coefficient

one. When σ2 = −1, since the region where h1 and h′1 differ has mass 1
c1nP

under source and(
1

c1nP

)1/ρa
under target, ρa is a transfer exponent with respect toH1 with coefficient one.

ForH2, note that every h ∈ H1 has an excess risk of at least 1/3−1/4 = 1/12 > 1
c1nP

= 1
32nP

under source and excess risk of at most
(

1
c1nP

)1/ρa
under target, so the transfer exponent condition

with ρb or ρa and coefficient one holds trivially. For hypotheses that are in H2 \ H1, since one

of them is a risk minimizer, and the region they differ has mass
(

1
c1nP

)1/ρa
or
(

1
c1nP

)1/ρb
under

target and 1
c1nP

under source, then depending on σ2, either ρb or ρa would be a transfer exponent
with coefficient one.

The next proposition shows that for every possibly improper learner, there is a distribution in
the family under which the learner has high excess risk. The proof is given in the appendix.

Proposition 3 Let c1 = 32 in the construction. For any classifier h̃, possibly improper, there exists

σ ∈ {±1}2 such that EQσ(h̃) ≥ 1
256 ·

(
1
nP

)1/ρa
.

Let Πσ
.
= PnP ×QnQ and Sσ ∼ Πσ be the source and target samples. The next claim defines

the event B and lower bounds its probability.

Claim 3 Let B be the event that of all nP source and nQ target samples fall in the intervals
Lout ∪ [1/3 + r, 2/3 − r] ∪ Rout under source and [1/3 + r, 2/3 − r] under target. Then we may
choose c1 (from the definition of marginal distributions) such that for all σ ∈ {±1}2, Πσ[B] ≥ 7/8.

Proof For any σ,

Πσ[B] =

(
1− 2

c1nP

)nP
(
1− 2

(
1

c1nP

)1/ρa
)nQ

≥
(
1− 2nP

c1nP

)(
1− 2nQ(

1

c1nP
)1/ρa

)
,

where the inequality follows by Bernoulli’s inequality. By the assumption that ( 1
c1nP

)1/ρa ≤ 1
32nQ

and picking c1 = 32, we can ensure Πσ[B] ≥ 7/8.

Proof of Theorem 4
Let ĥ be a classifier that is output by a learning algorithm that has access to samples Sσ. The

lower bound follows by randomizing the choice of σ. Suppose that σ̂ is sampled uniformly at
random from {±1}2, then
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sup
σ

P
Πσ

[
EQσ(ĥ) ≥

1

256
·
(

1

nP

)1/ρa
]
≥Eσ̂ ESσ̂

[
1

(
EQσ(ĥ) ≥

1

256
·
(

1

nP

)1/ρa
)]

=ESσ̂
Eσ̂|Sσ̂

[
1

(
EQσ(ĥ) ≥

1

256
·
(

1

nP

)1/ρa
)]

≥ESσ̂
Eσ̂|Sσ̂

[
1

(
EQσ(ĥ) ≥

1

256
·
(

1

nP

)1/ρa
)
· 1 (B)

]
.

By construction, Pσ̂|Sσ̂ ,B(σ) = Pσ̂(σ) = 1/4. Let σ̃ index the distribution that results in high ĥ
excess risk as in Proposition 3. We have

ESσ̂
Eσ̂|Sσ̂

[
1

(
EQσ(ĥ) ≥

1

256
·
(

1

nP

)1/ρa
)
· 1 (B)

]
≥ ESσ̂

Eσ̂|Sσ̂
[1 (σ̂ = σ̃) · 1 (B)]

= ESσ̂
Eσ̂|Sσ̂

[1 (σ̂ = σ̃) · 1 (B)]

=
1

4
· P
Πσ̂

[B] ≥ 7

32
.

■

Conclusion

We have shown that source data can help significantly improve target risk under model selection;
however, adaptive rates do not always match oracle rates in the model selection setting, as we exhibit
situations where no procedure can attain oracle rates without distributional knowledge. Even more
striking is that the gap between optimal adaptive rates and oracle minimax rates can be arbitrary,
which is not often the case in minimax theory. However this leaves open the possibility of smaller
or more controlled gaps under, e.g., further structural assumptions on the model hierarchy.
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Appendix A. Proofs of Propositions for Examples

A.1. Proof of Proposition 1

Proof of Proposition 1
We construct P and Q such that marginal distributions QX and PX are supported on [0, 1]. Let

QX be the uniform distribution over [0, 1]. To define the source marginal distribution, we pick L
points V = {vk}Lk=1 on the unit interval so that each vk = k

L+1 . Then define

fP (x) ∝ ρm · 2−2m·ρm |x− vm|ρm−1 , (4)

15
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where vm ∈ V is the closest point to x, and ties are broken by picking the smaller one, except
when x is in the first interval, in which case we set m = 1. This leads to L partitions R1, . . . RL

of the interval [0, 1] such that for every x ∈ Ri, fP (x) = ρi·2−(2i·ρi+i)

Z |x− vi|ρi−1, where Z is a
normalizing constant. See Figure 2 for an example with L = 3.

fP

+ +− −

R1

Figure 2: Construction of the marginal density of P for the threshold neural neural net example,
with L = 3.

The labels for both source and target are given by fθ∗ , where θ∗ = (L, a∗, r∗, w∗, b∗) is a set
of parameters for a risk minimizer. We pick these parameters such that i∗P = i∗Q = L as follows.
First, set w∗ to the all ones vector and b∗i = vi for all i ≤ L. The boundaries b∗i divide [0, 1] into
L + 1 intervals, distinct from the L regions R1, · · ·RL. Next claim shows that we can pick a∗, r∗

such that the label for these intervals are alternating, so that every point b∗i = vi is indeed a decision
boundary. Note that this leads to βP,i = βQ,i = 1. Proofs for all the claims in this proof appear at
the end of this section.

Claim 4 Let 0 < b′1 < · · · < b′i < 1 be an increasing sequence of points in [0, 1] that partition
the unit interval into i+ 1 intervals I1 = [0, b′1], I2 = (b′1, b

′
2], . . . , and Ii+1 = (b′i, 1]. For any sign

pattern σ ∈ {±1}i+1, there exists a set of parameters θ, such that fθ maps any x ∈ Ij to σj for all
j ∈ [i+ 1]. Furthermore, any two layer threshold neural net of the form eq. (2), that is, any θ, with
i hidden units can lead to at most i decision boundaries.

Next claim shows that there is risk minimizer inHi that has the same decision boundaries as the
smallest i decision boundaries in θ∗ and correctly labels the first i + 1 intervals, by matching their
signs with the signs of the first i+ 1 intervals generated by θ∗.

Claim 5 For any i ≤ L, let θ∗i = (i, a∗,i, r∗,i, w∗,i, b∗,i), where for every j ∈ [i], b∗,ij = b∗j , and
w∗,i is the all ones vector. The first i intervals generated by b∗,i are the same as those of θ∗, and by
Claim 4 we can pick a∗,i and r∗,i such that θ∗i makes no error in the first i + 1 intervals generated
by θ∗. Then fθ∗i is a unique risk minimizer over the classHi under P .

In the next proposition we show that for any i ≤ L, ρi is a transfer exponent from P to Q with
respect to Hi. Intuitively, we show that whenever there is error, it is dominated by the error in the
regions determined by the first i thresholds.
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Claim 6 For every 1 ≤ i ≤ L, there exists a constant 0 < Cρi < ∞ such that ρi is a transfer
exponent from P to Q with respect toHi with coefficient Cρi ≤ (L+ 1)23i+1.

Next, we show that for every 1 ≤ i ≤ L a transfer exponent from P to Q with respect to
Hi is lower bounded by ρi. Fix a level 1 ≤ i ≤ L, and consider a sequence of classifiers fθ(t)
constructed so that θ(t) matches θ∗i everywhere except for the last decision boundary b∗,ii . That is,
θ(t) = (i, a∗i , r

∗,i, w∗,i, bt), where btj = b∗,ij for all j < i, and for t < 1
2(L+1) ,

bti = b∗,ii + t.

It is easy to see that the interval [b∗,ii , bti] is the only disagreement region between θ∗i and θ(t)
and has length t. By the construction of PX given in eq. (4), and integrating over this region, the
excess risk is

EP (fθ(t), fθ∗i ) = Ctρi ,

for some constant C. Since QX is the uniform distribution,

EQ(fθ(t), fθ∗i ) = t.

Now we argue that the minimal transfer exponent for this level is at least ρi. Suppose for
contradiction, that there exists a transfer exponent ρ̃i < ρi. That would imply that there exists a
constant Cρ̃i such that for every fθ ∈ Hi,

EQ(fθ, fθ∗i )
EP (fθ, fθ∗i )

1/ρ̃i
≤ Cρ̃i .

However, for the sequence of fθt constructed above

lim
t→0

EQ(fθt , fθ∗i )
EP (fθt , fθ∗i )

1/ρ̃i
=

t

(Ctρi)1/ρ̃i
= C ′t

1− ρi
ρ̃i =∞.

Now that we have shown that ρi are indeed minimal transfer exponents, we will show that
for these minimal transfer exponents, Cρi is lower bounded by a function that depends only on
L + 1. Fix some t0 < 1

2(L+1) and consider fθt0 . By the same calculations as in eq. (5) we have

EP (fθt , fθ∗i ) =
2−(2i·ρi+i)

Z tρi and

EQ(fθ, fθ∗i )
EP (fθ, fθ∗i )

1/ρi
=

tZ1/ρi

2−(2i+i/ρi)t
=

Z1/ρi

2−(2i+i/ρi)
.

Since 2−(2i+i/ρi) ≤ 2−2i, it suffices to lower bound Z1/ρi , note that Z ≥ 2−(2i·ρi+i)
(

1
L+1

)ρi
and plugging this into the expression above we get

EQ(fθ, fθ∗i )
EP (fθ, fθ∗i )

1/ρi
≥ 1

L+ 1
.

Finally, to see that i∗P = i∗Q = L, note that for every 1 ≤ i < L, fθ∗i labels the interval Ii+2,
which starts at vi+1, incorrectly, so it cannot achieve zero excess risk. ■
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Proof of claim 4
We will argue that there exists aσ ∈ IRi and rσ ∈ IR such functions of the

haσ ,rσ(x) = sign

 i∑
j=1

ασ,j sign
(
x− b′j

)
+ rσ

 ,

can produce the sign pattern σ. Since these functions are a restricted form of the two layer neural
nets introduced in eq. (2), this would prove the first part of the claim.

Define the function g : [0, 1] 7→ {±1}i+1 where

g(x)j = sign
(
x− b′j

)
.

The function g maps the i+1 intervals to i+1 points on the unit cube. Let x1, . . . , xi+1 be a set of
arbitrary points from each interval I1, . . . , Ii+1, then we have

g(x1) = [−1,−1,−1, . . . ,−1],
g(x2) = [+1,−1,−1, . . . ,−1],
. . .

g(xi+1) = [+1,+1,+1, . . . ,+1].

Note that g(x1) = −g(x2), but the set of vectors g(x1), . . . , g(xi) are linearly independent. The
functions

ha,r(x) = sign
(
a⊤g(x) + r

)
are affine halfspaces parameterized by a and r, so they can shatter any set of i + 1 points where
there is at most two colinear points. We take aσ and rσ to be coefficients of the affine halfspace that
produces the labels σ.

To see that two layer neural nets of the form eq. (2) parameterized by θ = (i, a, r, w, b) can have
at most i decision boundaries, note that adding a hidden unit can add at most one decision boundary,
and when i = 0, there are no decision boundaries. ■

Proof of claim 5 Recall the regions R1, . . . , Ri. We first argue that if a classifier does not place
a decision boundary in some region i′ ∈ [i], then its’ error is larger than θ∗i , and then argue that
among all the classifiers that place exactly one decision boundary in each of those regions, only the
ones that have exactly the same decision boundaries as θ∗,i can be risk minimizers. Suppose θi is
some classifier that doesn’t place any decision boundaries in Ri′ , then it must mislabel one of the
intervals to the left or right of b∗i′ , that is either the interval Ii′+1 ∩Ri′ or Ii′ ∩Ri′ . Then the risk can
be lower bounded by

RP (hθi) ≥ PX(Ii′+1 ∩Ri′) (5)

=

∫ vi′+vi′+1
2

b∗
i′

ρi′ · 2−(2i′·ρi′+i′)

Z
· |x− b∗i′ |

ρi′−1 dx =
ρi′ · 2−(2i′·ρi′+i′)

Zρi′

(
|Ii′+1|

2

)ρi′

=
2−(2i′·ρi′+i′)

Z

(
1

2(L+ 1)

)ρi′

≥ 2−(2i·ρi+i)

Z

(
1

2(L+ 1)

)ρi

.

18



TRANSFER LEARNING

On the other hand, θ∗i labels the first i+ 1 intervals correctly, so

RP (hθ∗i ) ≤
L+1∑
j=i+2

PX(Ij). (6)

Note that when i = L, by construction RP (hθ∗i ) = 0.
For every i + 2 ≤ j ≤ L, we can write PX(Ij) = PX(Ij ∩ Rj) + PX(Ij ∩ Rj−1) =

2−(2j·ρj+j)

Z

(
1

2(L+1)

)ρj
+ 2−(2(j−1)·ρj−1+j−1)

Z

(
1

2(L+1)

)ρj−1

. Since for all j, ρj ≥ 1, and ρj−1 ≤ ρj ,
we get that

PX(Ij) ≤
2−2((j−1)·ρj−1+j−1)

Z

(
1

L+ 1

)ρj−1

. (7)

Going back to eq. (6), for i < L we get

RP (hθ∗i ) ≤
L+1∑
j=i+2

2−(2(j−1)·ρj−1+j−1)

Z

(
1

L+ 1

)ρj−1

≤ 2−2(i+1)·ρi+1

Z

L+1∑
j=i+2

2−j+1 ·
(

1

L+ 1

)ρi+1

≤ 2−(2(i+1)·ρi+1+i)

Z

(
1

L+ 1

)ρi+1

<
2−(2i·ρi+i)

Z

(
1

2(L+ 1)

)ρi

≤ RP (hθi),

so the excess risk can be lower bounded by

RP (hθi)−RP (hθ∗i ) ≥
2−((2i+1)·ρi+i)

Z

(
1

L+ 1

)ρi (
1− 2−ρi+1

)
≥ 2−((2i+1)·ρi+i)

2Z

(
1

L+ 1

)ρi

and consequently for some C1 =
2−((2i+1)·ρi+i)

2Z ,

EP (hθi , h
∗
θi
) ≥ C1

(
1

L+ 1

)ρi

. (8)

Therefore, we have shown that any classifier fθi that doesn’t place a decision boundary in any
of the first i regions has a strictly larger excess risk than excess risk of fθ∗i . Then it would suffice to
show that among the classifiers that place exactly one decision boundary in each of R1, . . . , Ri, fθ∗i
is a risk minimizer.

Let θ′i be a function that places one decision boundary in each of the regions R1, . . . , Ri. Let
v′ ∈ [0, 1]i denote the location of its’ decision boundaries, and let Rk be some region where v′k ̸= b∗k,
that is a region where the decision boundary is different from that of θ∗. Now we will argue that θ′i
cannot be a risk minimizer, since it can be modified to another classifier that has a strictly smaller
risk. Without loss of generality assume that v′k < b∗k, the other direction follows by the same
argument. It must be that either fθ′i labels all the points in the interval (v′k, b

∗
k) incorrectly and is

correct on the rest of Rk, or it mislabels at least all the points in Rk ∩ Ik+1. In the latter case, as we
have seen before in eq. (5), since k ∈ i, excess risk of fθ′i would be strictly larger than excess risk
of fθ∗i . If the only set of points that are mislabelled in Rk are in the interval (v′k, b

∗
k), then moving

v′k right by increasing it to b∗k would eliminate error in this interval without affecting other intervals,
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thus strictly decreasing the excess risk. Therefore, any classifier that places decision boundaries not
on b∗1, . . . , b

∗
i cannot be a risk minimizer.

Note that in terms of parameters, the risk minimizer is not unique, since there can be a family
of parameters that give the same decision boundaries and signs. ■

Proof of Claim 6 Recall that he boundaries v1, . . . , vL partitioned the unit interval into L + 1
intervals I1, . . . , IL+1, where I1 = [0, v1], I2 = (v2, v3] and so on. Recall that θ∗i is the parameters
of a risk minimizer in Hi, as described in claim 5. Based on the points in V , we also defined the
regions R1, . . . , RL, where all the points in each region shared the same density function under P .
Let fθi be an arbitrary element of Hi, by Claim 4, fθi can have at most i decision boundaries. We
can break down the excess risk into the contributions from each region,

EQ(fθi , fθ∗i ) =
L∑

j=1

QX(fθi(X) ̸= fθ∗i (X) ∧X ∈ Rj) =
L∑

j=1

QX(Ej),

where Ej is the set of points in Rj that θi labels differently from θ∗i . Consider the first i regions,
since θi has at most i decision boundaries and the regions are disjoint, it must be the case that either

1. θi does not place a decision boundary in at least one of the regions R1, . . . , Ri, or

2. θi places exactly one decision boundary in every region R1, . . . , Ri.

We break down the proof into the two cases above, and start with the simpler case 1. In this case,
there exists at least one region Ri′ , for some i′ ≤ i, such that θi has placed no decision boundary
there and consequently the whole interval Ri′ has the same label, while under θ∗i , there would be a
boundary at vi′ ∈ Ri′ , which implies that θi must have mislabelled an interval on at least one side
of vi′ . Then under source PX(Ei′) ≥ PX(Ii′+1 ∩Ri′) and by eq. (5) and eq. (8) the excess risk

EP (fθi , fθ∗i ) =
i∑

j=1

PX(Ej) ≥ PX(Ii′+1 ∩Ri′) ≥ C1

(
1

L+ 1

)ρi

, (9)

where C1 is some positive constant that could depend on i and ρi. On the other hand,

EQ(fθi , fθ∗i ) ≤ 1.

Now by eq. (9)

EP (fθi , fθ∗i )
1/ρi ≥ C

1/ρi
1

L+ 1
=

2−(2i+1)−i/ρi

(2Z)1/ρi · (L+ 1)
.

Using eq. (7), we have that Z ≤ (L+1)2−4
(

1
L+1

)ρL
≤ 2−4, and consequently for any ρi ≥ 1

and fixed L, and EP (fθi , fθ∗i )
1/ρi ≥ 2−3i−1

L+1 setting C
(1)
ρi = L+1

2−3i−1 , we can conclude that in case 1

EQ(fθi , fθ∗i ) ≤ C(1)
ρi EP (fθi , fθ∗i )

1/ρi . (10)

In case 2, when i < L, θi has no decision boundaries in regions Ri+1, . . . , RL, so they will all
have the same label, since they also have the same label under θ∗i . it must be that either all their
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labels agree with those of θ∗i , or their label disagrees with the label θ∗i assigns to those regions. If
they are all labelled incorrectly, we will argue that,

PX(Ei) ≥ C1

(
1

L+ 1

)ρi

.

To see this, note that θi places its’ decision boundary in region Ri either to left of b∗i or to the right.
In the former case, then the interval Ii+1∩Ri is also labelled incorrectly, while in the latter case the
interval Ii ∩Ri would have incorrect labels, so in either case by eq. (5) eq. (8) holds. Consequently,
we can make the same arguments as in case 1 to get eq. (10).

Going back to case 2, suppose that the regions Ri+1, . . . , RL are labelled according to θ∗i , or i =
L (they don’t exist), so that they don’t contribute to the excess risk. Let m ∈ argmaxj∈[i]QX(Ej),
so that Rm is a region that has large contribution to the excess risk. Then

EQ(fθi , fθ∗i ) =
i∑

j=1

QX(Ej) ≤ i QX(Em), (11)

while for the source, we can lower bound

EP (fθi , fθ∗i ) ≥ PX(Em).

Let bm be the point that is a decision boundary in Rm under θi. Then Em is either the interval
that has b∗m, bm as its’ end points or it is a union of two intervals, one of which has size at least
|Im+1|/2. If it is a union of two intervals, since source excess risk will be bounded away from
zero by a constant, then we can use the same arguments as in item 1. If Em is an interval that
has b∗m and bm as its’ end points, then PX(Em) = C3QX(Em)ρm , where by similar calculations
as those in eq. (5), C3 = 2−(2m·ρm+m)

Z . Since Z ≤ 2−4 for any value of ρis and L, we have

C
1/ρm
3 ≥ 2−2m−m/ρm+4/ρm ≥ 2−3m. Then

EP (fθi , fθ∗i )
1/ρm ≥ PX(Em)1/ρm = C

1/ρm
3 QX(Em),

and by eq. (11)

i23i · EP (fθi , fθ∗i )
1/ρi ≥ i

C
1/ρm
3

EP (fθi , fθ∗i )
1/ρm ≥ EQ(fθi , fθ∗i ).

Finally, setting Cρi = max
{
C

(1)
ρ , i23i

}
= max

{
(L+ 1) · 23i+1, i23i

}
, we have shown that Cρi ≤

(L+ 1)23i+1 is a transfer exponent with respect toHi . ■

A.2. Proof of Proposition 2

Proof of Proposition 2
First we define a convenient parameterization of the set of all classifiers over the real line.

Definition 9 (Class of k decision boundaries) Let HB
k

.
=
{
hBb1,...,bk,σ1

}
be the set of classifiers

over IR that have at most k decision boundaries, given by points b1 < b2 < · · · < bk ∈ IR, and
σ1 ∈ {±1}, which is the sign of the first interval (−∞, b1].

21



HANNEKE KPOTUFE MAHDAVIYEH

Any two layer threshold neural net with i activation units can have at most i decision boundaries,
so it belongs to HB

i . Claim 4, shows that that the class of threshold neural nets with i hidden units
can generate i boundaries, and all possible labellings of the corresponding intervals, so we can
conclude thatHi = HB

i .
Let FCPWL

k be the class of continuous piecewise linear (CPWL) functions with at most k linear
pieces and consequently at most k − 1 knots.

Claim 7 We have that sign ◦ FCPWL
i = HB

i .

Proof It is easy to see that once we fix sign (0), thresholding each linear piece can result in at
most one decision boundary, so a CPWL function with i pieces can generate at most i decision
boundaries.

We argue that any set of i decision boundaries b1 < · · · < bi and label assignment on the line
can be generated by taking the sign of some CPWL function with at most i pieces. To see this,
consider the i intervals I1, . . . Ii−1 whose end points are the boundaries. Let m1, . . . ,mi−1 be the
mid points of these intervals, and consider points (m1, sign (I1)), . . . , (mi−1, sign (Ii−1)) on the
xy-plane. The CPWL function can be constructed by passing the first line through the pair of points
((b1, 0), (m1, sign (I1))), the second line through ((b2, 0), (m2, sign (I2))) and so on. The last line
interpolates the points (mi−1, sign (Ii−1)) and (0, bi).

Following Lemma, which is adapted from Aliprantis et al. (2006) (Corollary 3.5), states that
any CPWL function with at most k + 1 linear pieces can be written as a two layer ReLu Residual
neural network with at most k hidden units.

This implies that sign ◦ FCPWL
i+1 = H̃i, since it is easy to see that any function of the form

fθ(x) =
(∑i

i=1 ai[wix+ bi]+

)
+ αx + r can have at most i knots and consequently i + 1 linear

pieces.

Lemma 2 (Aliprantis et al. (2006), Corollary 3.5) Any CPWL function of the form

f(x) =


m0x+ c0 if x ≤ b0

mix+ ci if bi−1 ≤ x ≤ bi for 1 ≤ i ≤ k

mk+1x+ ck if x ≥ bk,

where −∞ < b0 < b1 < · · · < bk <∞ and (mi, ci), 0 ≤ i ≤ k + 1 are real numbers, can also be
written in the form

f(x) = c0 +m0x+

k∑
i=0

(mi−1 −mi)[t− bi]+.

■
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Appendix B. Example for i♯
.
= argmini ϕ

♯(i) Below i∗P

Proposition 4 Following up on Examples 1 and 2 with L = 3, for every 1 ≤ ρ1 ≤ ρ2 ≤ ρ3, there
exists P and Q over [0, 1]×{±1} such that the following holds. i) i∗P = 3, ii) ρ1, ρ2, ρ3 are minimal
transfer exponents from P to Q, where Cρi’s are uniformly upper and lower bounded independently
of ρi’s, and iii) EQ(h∗P,1) = EQ(h∗P,2) = EQ(h∗P,3). Consequently, while i∗P = 3, we may choose
ρi’s so that i♯ .

= argmini ϕ
♯(i) could be below any of the levels 1, 2, 3, for nP sufficiently large.

Proof We use the same construction as in Proposition 1, with the exception that target does not
share the same decision boundaries. Specifically, set L = 3 and let v1, v2, v3 be the decision
boundaries under source. Under target, set v′1 = v1+v2

2 , v′2 = v2+v3
2 , and v′3 = v3+1

2 to be the
decision boundaries. Let I1, . . . , I4, as defined in the proof of Proposition 1, be the intervals defined
by decision boundaries under source, and I ′1, . . . , I

′
4 be the intervals [0, v′1], [v

′
1, v

′
2], [v

′
2, v

′
3], [v

′
3, 1].

For any sequence of labels assigned to I1, . . . , I4, assign the same sequence of labels to I ′1, . . . , I
′
4.

Since the marginal densities of P , Q and h∗P,i have not changed, the conditions on transfer
exponent and coefficient are satisfied. Since I1 ⊂ I ′1 and the sign patterns under source and target
match, h∗P,i don’t make any errors under target in the interval I1. Exactly half of each of the intervals
I2, I3 and I4 is labelled +1 under target, and h∗P,i give a single label to each of these intervals, so
each h∗P,i labels half of each of the intervals I2, I3 and I4 incorrectly under target.

For the last part of the proposition, pick any value i ∈ {2, 3}, and to ensure that argmini ϕ
♯(i) <

i, for all j ≤ i set ρj = ρ and for all j > i, set ρj > ρ.

Appendix C. Remaining Upper-bound Proofs

Our analysis relies on the following lemma.

Lemma 3 (Vapnik and Chervonenkis (1971)) Recall A(nµ, δ, C(Hi))
.
=

di log(nµ/di)+log 1/δ
nµ

. For
any δ > 0, with probability of at least 1− δ, for all h, h′ ∈ Hi

Rµ(h)−Rµ(h
′) ≤ R̂µ(h)− R̂µ(h

′) +
√

min{Pµ[h ̸= h′],Pnµ [h ̸= h′]} ·A(nµ, δ, C(Hi))

+ cA(nµ, δ, C(Hi)), and
1

2
Pµ[h ̸= h′]− cA(nµ, δ, C(Hi)) ≤ Pnµ [h ̸= h′] ≤ 2Pµ[h ̸= h′] + cA(nµ, δ, C(Hi)). (12)

Proof of Lemma 1 Let ĥ be the output of Algorithm 2, with H̃P ⊆ ĤP
i . First we state a few

useful claims. Proofs of these claims appear in Appendix C

Claim 8 Let îQ = min i s.t.
⋂∞

j≥i Ĥ
Q
j ̸= ∅, then with probability of at least 1− δ, îQ ≤ i∗Q.

Next claim can be used to bound the excess risk of ĥP,i with respect to h∗P,i. Since a similar
statement would also hold for Q under the same high probability event as in claim 8, and îQ ≤ i∗Q,
we could conclude that with probability of at least 1− δ,

EQ(ĥQ) ≤ cA(nQ, δi∗Q , C(Hi∗Q
))

1
2−βQ . (13)
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Claim 9 For any level i, and any ĥi ∈ ĤP
i , with probability of at least 1− δi,

EP (ĥi, h∗P,i) ≤ cA(nP , δi, C(Hi))
1

2−βP,i .

Let EQ and EP be the events where the bounds in Claims 8 and 9 hold. Let EH be the event
that the bounds given in Lemma 3 hold over the hypothesis class {ĥP,i, ĥQ} and held out samples
from Q. Note that complexity of the class {ĥP,i, ĥQ} is one. We first claim that under EH and EQ,

if ĥ = ĥP,i, then EQ(ĥP,i) ≤ 25cA(nQ, δ, C(Hi∗Q
))

1
2−βQ . Suppose that ĥ = ĥP,i, which means that

the if-statement condition in Algorithm 2 must have been satisfied. Under EH ,

EQ(ĥP,i)− EQ(ĥQ) =RQ(ĥP,i)−RQ(ĥQ) ≤ R̂′
Q(ĥP,i)− R̂′

Q(ĥQ)

+
(
P′
nQ

[ĥP,i ̸= ĥQ] ·A(nQ, δ, 1)
)1/2

+ cA(nQ, δ, 1)

≤2
(
P′
nQ

[ĥP,i ̸= ĥQ] ·A(nQ, δ, 1)
)1/2

+ 2cA(nQ, δ, 1)

≤2
(
P′
nQ

[ĥP,i ̸= h∗Q] ·A(nQ, δ, 1)
)1/2

+ 2
(
P′
nQ

[ĥQ ̸= h∗Q] ·A(nQ, δ, 1)
)1/2

+ 2cA(nQ, δ, 1).

By the second part of Lemma 3 and BCC,

EQ(ĥP,i)− EQ(ĥQ) ≤2
(
2PQ[ĥP,i ̸= h∗Q] ·A(nQ, δ, 1)

)1/2
(14)

+ 2
(
2PQ[ĥQ ̸= h∗Q] ·A(nQ, δ, 1)

)1/2
+ 4c ·A(nQ, δ, 1)

≤2
(
2CβQ

EQ(ĥP,i)βQ ·A(nQ, δ, 1)
)1/2

+ 2
(
2CβQ

EQ(ĥQ)βQ ·A(nQ, δ, 1)
)1/2

+ 4c ·A(nQ, δ, 1).

Assuming that 1 ≤ C(Hi∗Q
), so that A(nQ, δ, 1) ≤ A(nQ, δ, C(Hi∗Q

)) and plugging in the bound
in eq. (13), we can upper bound

2
(
2CβQ

EQ(ĥQ)βQ ·A(nQ, δ, 1)
)1/2

≤ 8cA(nQ, δi∗Q , C(Hi∗Q
))

1
2−βQ .

Now if 2
(
2CβQ

EQ(ĥP,i)βQ ·A(nQ, δ, 1)
)1/2

> 8cA(nQ, δi∗Q , C(Hi∗Q
))

1
2−βQ ≥ EQ(ĥQ), then

going back to eq. (14), we can upper bound

EQ(ĥP,i) ≤ 8
(
2CβQ

EQ(ĥP,i)βQ ·A(nQ, δ, 1)
)1/2

.

Solving for EQ(ĥP,i) gives the bound

EQ(ĥP,i) ≤ CA(nQ, δ, 1)
1

2−βQ .
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On the other hand, if 2
(
2CβQ

EQ(ĥP,i)βQ ·A(nQ, δ, 1)
)1/2

≤ 8cA(nQ, δi∗Q , C(Hi∗Q
))

1
2−βQ ,

then the term 8cA(nQ, δi∗Q , C(Hi∗Q
))

1
2−βQ dominates the r.h.s. of in eq. (14) and we get

EQ(ĥP,i) ≤ 24cA(nQ, δi∗Q , C(Hi∗Q
))

1
2−βQ + EQ(ĥQ) ≤ 25cA(nQ, δi∗Q , C(Hi∗Q

))
1

2−βQ .

In either case, if ĥ = ĥP,i then EQ(ĥP,i) ≤ 25cA(nQ, δi∗Q , C(Hi∗Q
))

1
2−βQ , or equivalently, if

EQ(ĥP,i) > 25cA(nQ, δi∗Q , C(Hi∗Q
))

1
2−βQ , then ĥ = ĥQ. We can also argue that if EQ(ĥP,i) ≤

EQ(ĥQ), then ĥ = ĥP,i. Suppose that EQ(ĥP,i) ≤ EQ(ĥQ), then under the event EH ,

R̂′
Q(ĥP,i)− R̂′

Q(ĥQ) ≤RQ(ĥP,i)−RQ(ĥQ) +
(
P′
nQ

[ĥP,i ̸= ĥQ] ·A(nQ, δ, 1)
)1/2

+ cA(nQ, δ, 1)

≤
(
P′
nQ

[ĥP,i ̸= ĥQ] ·A(nQ, δ, 1)
)1/2

+ cA(nQ, δ, 1),

which means that the if-statement condition in Algorithm 1 will be satisfied and ĥ = ĥP,i.
We can then conclude that under the events EH and EQ,

EQ(ĥ) ≤ min

{
EQ(ĥP,i), 25cA(nQ, δi∗Q , C(Hi∗Q

))
1

2−βQ

}
.

Using the transfer exponent condition described in Definition 3 we would get

EQ(ĥP,i) ≤ EQ(h∗P,i) + EQ(ĥP,i, h∗P,i) ≤ EQ(h∗P,i) + Cρi∗
P
EP (ĥP,i, h∗P,i)

1
ρi∗

P . (15)

Applying Claim 9, under the event EP

EP (ĥP,i) ≤ CA(nP , δi, C(Hi))
1

2−βP,i .

Plugging this back into eq. (15), we get

EQ(ĥP,i) ≤ EQ(h∗P,i) + C · CρiA(nP , δi, C(Hi))
1

(2−βP )ρi

Finally, we can conclude that under events EH , EQ, and EP , which hold simultaneously with
probability of at least 1− 3δ,

EQ(ĥ) ≤ min

{
EQ(h∗P,i) + C · CρiA(nP , δi, C(Hi))

1
(2−βP )ρi , cA(nQ, δi∗Q , C(Hi∗Q

))
1

2−βQ

}
.

■

Proof of Claim 8 Since the hypothesis classes are nested, h∗Q ∈ Hj for every j ≥ i∗Q. First, we
argue that with probability of at least 1− δ, for every j ≥ i∗Q,

h∗Q ∈ Ĥ
Q
j ,
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which would then imply that
⋂∞

j≥i∗Q
ĤQ

j ̸= ∅, and consequently îQ ≤ i∗Q. Let ĥQ,j be an empirical
risk minimizer for level j. Let EQ be the event where the bounds in Lemma 3 hold for every
level of the hierarchy with δi = δwi for each level, so that EQ occurs with probability of at least
1−

∑∞
j=1 δj = 1− δ. Under EQ, for every j ≥ i∗Q

RQ(ĥQ,j)−RQ(h
∗
Q) ≤R̂Q(ĥQ,j)− R̂Q(h

∗
Q) +

√
PnQ [ĥQ,j ̸= h∗Q] ·A(nQ, δj , C(Hj))

+A(nQ, δj , C(Hj)),

since h∗Q is a risk minimizer, moving the risk difference to the right hand side of the inequality and
the empirical risk difference to the left hand side gives

R̂Q(h
∗
Q)− R̂Q(ĥQ,j) ≤ C

√
PnQ [ĥQ,j ̸= h∗Q] ·A(nQ, δj , C(Hj)) + cA(nQ, δj , C(Hj)).

Therefore, by Definition 8, under EQ, h∗Q ∈ Ĥ
Q
j for every j ≥ i∗Q, implying that îQ ≤ i∗Q. ■

Proof of Claim 9 Let EP be the event that the bound in Lemma 3 holds over P samples.

EP (ĥi, h∗P,i) =RP (ĥi)−RP (h
∗
P,i) ≤ R̂P (ĥi)− R̂P (ĥP,i) (16)

+
(
PnP [ĥi ̸= h∗P,i] ·A(nP , δi, C(Hi))

)1/2
+ cA(nP , δi, C(Hi)). (17)

Since ĥi ∈ ĤP
i , the expression in 16 can be upper bounded by

(
PnP [ĥi ̸= ĥP,i] ·A(nP , δi, C(Hi))

)1/2
+ cA(nQ, δi, C(Hi)).

Furthermore, under EP we can upper bound

PnP [ĥi ̸= ĥP,i] ≤ PnP [ĥi ̸= h∗P,i] + PnP [h
∗
P,i ̸= ĥP,i]

≤ 2PP [ĥi ̸= h∗P,i] + 2PP [h
∗
P,i ̸= ĥP,i] + cA(nP , δi, C(Hi)),

where the second inequality followed by applying the second part of Lemma 3, which is stated
in equation 12.

By Bernstein class noise condition (Definition 2), the first two terms above can be upper bounded
by

CEP (ĥi, h∗P,i)βP,i + CEP (ĥP,i, h∗P,i)βP,i ,

then going back to equation 16, we get

R̂P (ĥi)− R̂P (ĥP,i) ≤C
(
EP (ĥi, h∗P,i)βP,i ·A(nP , δi, C(Hi))

)1/2
(18)

+ C
(
EP (ĥP,i, h∗P,i)βP,i ·A(nP , δi, C(Hi))

)1/2
+ cA(nP , δi, C(Hi)).
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Again , using Definition 2 and under EP , we can also upper bound the first term in equation 17,(
PnP [ĥi ̸= h∗P,i] ·A(nP , δi, C(Hi))

)1/2
≤
(
PP [ĥi ̸= h∗P,i] ·A(nP , δi, C(Hi))

)1/2
+ cA(nP , δi, C(Hi))

≤C
(
EP (ĥi, h∗P,i)βP,i ·A(nP , δi, C(Hi))

)1/2
+ CA(nP , δi, C(Hi)).

Note that this upper bound can be absorbed into the bound given in 18 by adjusting the constants.
In total, we get

EP (ĥi, h∗P,i) ≤C
(
EP (ĥi, h∗P,i)βP,i ·A(nP , δi, C(Hi))

)1/2
+ C

(
EP (ĥP,i, h∗P,i)βP,i ·A(nP , δi, C(Hi))

)1/2
+ cA(nP , δi, C(Hi)).

Now since ĥP,i is an ERM over the class Hi under P , under Definition 2 and event EP , using
lemma 3 we can upper bound its’ excess risk by

C (A(nP , δi, C(Hi)))
1

2−βP,i ,

which leads to the upper bound

EP (ĥi, h∗P,i) ≤C
(
EP (ĥi, h∗P,i)βP,i ·A(nP , δi, C(Hi))

)1/2
+ C (A(nP , δi, C(Hi)))

1
2−βP,i .

Consider the inequality above without the term on the second line, we can then solve for EQ(ĥQ)
and get the bound in the statement of this claim, since the solution will in the same order as the
second line. ■

Appendix D. Remaining Lower Bound Proofs

D.1. Proof of Theorem 1

The proof builds on Theorem 1 in Hanneke and Kpotufe (2019), simply by enriching the family of

distributions used therein. Let εQ
.
=
(

d
nQ

) 1
2−βQ and εP

.
=
(

d
nP

) 1
(2−βP )ρ , note that

min {εP + α, εQ} ≥ min {max {εP , α} , εQ} = max {min {εP , εQ} ,min {α, εQ}} ,

where the equality follows by distributing the min. Let c1, c2 ≤ 2 be constants that will be deter-
mined later; define

ϵ1
.
= c1min {εP , εQ} ,

and
ϵ2

.
= c2min {α, εQ} .
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Theorem 1 of Hanneke and Kpotufe (2019) gives a lower bound of order cϵ1 which holds with
probability of at least 3−2

√
2

8 , for some universal constant c. Here, we will construct another family
of distributions that would lead to a lower bound of order c̃ϵ2 for a universal constant c̃. In fact,
the only difference is that the source distribution is the same for all the members of hard family of
distributions.

Source and target marginal distributions are supported on a set of points x0, x1, . . . , xd−1 in the
domain X that is shattered by H. Only the target distribution in the family of hard distributions
{PnP × Q

nQ
σ } depends on σ ∈ {±1}d−1. Source marginal distribution PX is the uniform distri-

bution on x0, x1, . . . xd−1, and PY |X=xi
(Y = 1) = 1. For the target, let QX,σ(x0) = 1 − ϵ

βQ

2

and QX,σ(xi) =
ϵ
βQ
2
d−1 for i ≥ 1. The target labels for i ≥ 1 are given by Qσ,Y |X=xi

(Y = 1) =
1
2 + σi

4 · ϵ
1−βQ

2 , and Qσ,Y |X=x0
(Y = 1) = 1.

Now we can verify the Bernstein class noise condition. Let hσ ∈ H be the Bayes classifier under
Qσ and let δ(., .) denote number of coordinates σ, σ′ differ, or equivalently Hamming distance of
σ+1d−1

2 and σ′+1d−1

2 Note that for any distinct pair σ, σ′ ∈ {±1}d−1,

EQσ′ (hσ) = δ(σ′, σ) · ϵ
βQ

2

2(d− 1)
· ϵ1−βQ

2 =
δ(σ′, σ)

2(d− 1)
· ϵ2, (19)

while

PQσ′ (hσ ̸= hσ′) = δ(σ′, σ) · ϵ
βQ

2

d− 1
.

Additionally, for every σ′, EQσ′ (h
∗
P ) ≤ ϵ2/2 ≤ c2/2 · α.

By Proposition 5 of Hanneke and Kpotufe (2019), there exists a (d−1)/8 packingN of the d−1
dimensional hypercube such that the all ones vector 1d−1 ∈ N and |N | ≥ 2

d−1
8 , where the metric

used for the packing is Hamming distance. Suppose that N ′ is such a packing over the {±1}d−1

hypercube. Now consider the restriction of the family of distributions to σ ∈ N ′, by eq. (19), for
every distinct σ, σ′ ∈ N ′, EQσ(hσ′) ≥ ϵ2

16 .
Next, we show that the KL divergence between distributions parameterized by any two distinct

σ, σ′ is small. First, write

Dkl
(
PnP ×Q

nQ
σ |PnP ×Q

nQ

σ′
)
= nQDkl(Qσ|Qσ′) = nQ

d−1∑
i=1

ϵ
βQ

2

d− 1
· Dkl

(
Qσ,Y |X=xi

|Qσ′,Y |X=xi

)
.

(20)

Now we use Lemma 2 in Hanneke and Kpotufe (2019), which gives an upper bound on KL di-
vergence of two Bernoulli distributions with small bias, to get that Dkl

(
Qσ,Y |X=xi

|Qσ′,Y |X=xi

)
≤

c0ϵ
2−2βQ

2 , as long as ϵ1−βQ

2 < 1/2. Going back to eq. (20), we get

Dkl
(
PnP ×Q

nQ
σ |PnP ×Q

nQ

σ′
)
≤ nQ · ϵ

βQ

2 · c0/4 · ϵ
2−2βQ

2 ≤ c0/4 · nQ · ϵ
2−βQ

2 ≤ c0/4 · c
2−βQ

2 · d.

Now pick c2 such that c0/4 · c
2−βQ

2 · d < 1/8 log(d−1
8 ), so that we can apply Proposition 4 of

Hanneke and Kpotufe (2019) (which is Theorem 2.5 of Tsybakov (2009)) to get that

sup
σ∈N

P
PnP ×Q

nQ
σ

[
EQσ(ĥ) ≥ 1/32 · ϵ2

]
≥ 3− 2

√
2

8
.
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D.2. Proof of Theorem 5

Let x0, x1 be the set of points that are exclusively shattered by H2, then it is possible to pick
h1 ∈ H1 and h2 ∈ H2 \ H1 such that h1 and h2 disagree on exactly one of x0, x1. Without loss of
generality assume that h1(x0) = h2(x0) = y0 and h2(x1) ̸= h1(x1). Since there is no label noise,
βP,i = βQ,i = 1, for i ∈ {1, 2}.

Source distribution does not depend on b, so we have PX,σ(x0) = PX,σ(x1) = 1/2, and the
labels are given by h2, Target marginal distribution also does not depend on b, and is given by
QX,σ(x0) = 1 − α, and QX,σ(x1) = α. The labels for target are set so that when σ = 1, h1 is a
risk minimizer, and when σ = 2, h2 is a risk minimizer. That is, QY |X=x,σ(1) = hσ(x). Note that
for every σ, i ∈ {1, 2}

EQσ(h
∗
P,i) =

{
0 σ = i

α b ̸= i.

For any classifier ĥ, define

σ̂
.
=

{
1 ĥ(x1) = h1(x1)

2 ĥ(x1) = h2(x1).

Let Eσ be the event where under target all the samples are (x0, y0), then for any σ

P
P

nP
σ ×Q

nQ
σ

[EB] = (1− α)nQ ≥
(
1− 1

c1nQ

)nQ

≥ 1− 1/c1.

Under the event EB , ĥ cannot distinguish between Q1 and Q2. So under the event EB , no
classifier can output the correct answer more than half the times, so with probability of at least
1
2 · (1− 1/c1)

EQσ(ĥ) ≥ EQσ(hσ̂) = EQσ(hP,σ̂) = max
i

{
EQσ(h

∗
P,i)
}
.

Setting c1 = 2 proves the statement.

D.3. Proof of Proposition 3

Proper estimators. Let ĥ ∈ H be some proper estimator. If ĥ ∈ {h1, h2}, set σ1 = +1 and σ2
arbitrary. If ĥ ∈ {h′1, h′2}, then set σ1 = −1, and σ2 such that the region that has mass ( 1

c1nP
)1/ρa

is labelled incorrectly. That is, if ĥ = h′1, σ2 = +1. It is easy to see that with this choice of σ,
EQσ(ĥ, h

∗
Qσ

) ≥ ( 1
32nP

)1/ρa .

Improper estimators. Let ĥ be an improper estimator. For −1/2 ≤ ϵ ≤ 1/2, we say that ĥ
has bias ϵ on an interval I if it classifies 1/2 + ϵ fraction of the interval under uniform measure
as positive. That is, EU(I)

[
ĥ(X)

]
= 2ϵ. Note that if a classifier has bias ϵ on an interval I , and

sign (ϵ) ̸= sign (I), then the error of the classier on that interval is 1/2 + |ϵ|. Even if sign (ϵ) =
sign (I), as long all of the interval has the same label, the error will be at least 1/2− |ϵ|.

For simplicity let a .
= ( 1

c1nP
)1/ρa , b .

= ( 1
c1nP

)1/ρb , and recall that ∆ = a − b. Also note
that in our construction, the risk minimizer has risk equal to a under σ = (+1, σ2), while the risk
minimizer under σ = (−1, σ2) has risk equal to ∆/2.
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Now fix some improper estimator ĥ, and let ϵL, ϵLin , ϵRin , ϵR be biases of ĥ on Lout, Lin, Rin

and Rout respectively. We break down the proof to three cases.
Case 1: ϵLin , ϵRin ≤ −1/4.
Let σ1 = +1 so that the intervals Lin, Rin have positive labels and ĥ has risk of at least 3/4(a+

b) on the intervals Rin, Lin. We can pick σ2 such that the error on the region Lout ∪Rout is at least(
(
1

2
+ max(|ϵL| , |ϵR|)) + (

1

2
−min(|ϵL| , |ϵR|))

)
· ∆
2
≥ ∆

2
,

by making sure that ĥ makes more error on the Lout or Rout interval that has the maximum absolute
bias. Then for this σ, Rσ(ĥ) ≥ a−b

2 + 3(a+b)
4 ≥ 5a

4 , while the risk minimizer has error of a, so
EQσ(ĥ) ≥ a

4 .
Case 2:|ϵL + ϵR| ≥ 1/4, and Case 1 condition does not hold.
Set σ1 = −1, and pick σ2 such that σ2 = −sign (ϵL + ϵR). Note that total bias over the region

Lout ∪ Rout would be ϵR+ϵL
2 , since (1/2 + ϵL) · ∆2 + (1/2 + ϵR) · ∆2 =

(
1
2 + ϵR+ϵL

2

)
·∆. On the

other hand, since we are in case 2, it must be that either ϵLin > −1/4 or ϵRin > −1/4, which would
mean that the error over the intervals Lin and Rin is at least 1/4b

Then we can ensure that

EQσ(ĥ) ≥
(
1

2
+
|ϵR + ϵL|

2

)
· (a− b) +

b

4
− a− b

2
≥ a− b

8
+

b

4
≥ a

8
.

Case 3:|ϵR + ϵL| < 1/4 and the condition in Case 1 does not hold.
Set σ1 = −1, and pick σ2 such that whichever of Rin or Lin that has more positive bias is

assigned mass a. Since we are not in Case 1, max(ϵRin , ϵLin) > −1/4, leading to error of at least
a
4 over Rin ∪ Lin. On the other hand, since the bias in the regions Rout and Lout is ϵR+ϵL

2 , we have

EQσ(ĥ) ≥
(
1

2
− |ϵR + ϵL|

2

)
· (a− b) +

a

4
− a− b

2
≥ a

8
.

The statement of the proposition follows by lower bounding
(

1
32

)1/ρa ≥ 1
32 .

Appendix E. Adaptivity Lower Bounds for a Larger Class

In this section, restricting to proper learners, we show similar adaptivity lower bounds as in The-
orem 4 for a larger model class. Let H̄1 = {ht} be the class of one sided thresholds, where
ht(x) = sign (x− t). Let H̄2 additionally include one sided intervals, where only the points inside
a closed interval are labelled positive.

Theorem 6 Let H̄1 and H̄2 be the class of one sided thresholds and intervals as described above.

Pick any ρa > ρb ≥ 1, and any nP and nQ, where
(

1
32nP

)1/ρa
≤ min

{
1
24 ,

1
32nQ

}
. There exists a

family of distributions {(Pσ, Qσ)}, indexed by some σ, such that the following hold.

(i) For all σ, minimal transfer exponents from Pσ to Qσ are the set {ρ1, ρ2} = {ρa, ρb}.

(ii) For all σ, we have mini ϕ♭(i) =
(

1
nP

)1/ρb
, strictly less than maxi ϕ♭(i) =

(
1
nP

)1/ρa
.
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We have that, ∀ĥ, sup
σ

P
P

nP
σ ×Q

nQ
σ

[
EQσ(ĥ) ≥

1

64
·max

i
ϕ♭(i)

]
≥ 1/8.

Proof of Theorem 6
In this proof, since the construction is very similar to the one in Theorem 4, we will use the

same notation and refer to the objects defined there.
The family of distributions. We divide the unit interval as in the proof of Theorem 4 and let

σ ∈ {±1} . Recall ∆ .
=
(

1
c1nP

)1/ρa
−
(

1
c1nP

)1/ρb
, where c1 is constant that will be picked later .

Source distributions Pσ are the same as in the construction in Theorem 4. The target marginals are
as follows.

• QX,(1,1)(Lout) = 0, and QX,(1,1)(Rout) = ∆.

• QX,(1,−1)(Lout) = ∆, and QX,(1,1)(Rout) = 0.

• QX,(−1,·)(Lout) = QX,(−1,·)(Rout) = ∆/2.

• QX,(·,+1)(Lin) =
(

1
c1nP

)1/ρa
and QX,(·,+1)(Rin) =

(
1

c1nP

)1/ρb
.

• QX,(·,−1)(Lin) =
(

1
c1nP

)1/ρb
and QX,(·,−1)(Rin) =

(
1

c1nP

)1/ρa
.

• The remaining mass is in the middle interval, so QX([1/3 + r, 2/3− r]) = 1− 2
(

1
c1nP

)1/ρa
.

The masses in all intervals except for Rin and Lin are distributed uniformly within that interval.
For intervals Lin and Rin, the densities are

• fL(x) ∝ |x− (1/3 + r/2)|
1
ρa

−1 and fR(x) ∝ |x− (2/3− r/2)|
1
ρb

−1 when σ2 = +1, and

• fL(x) ∝ |x− (1/3 + r/2)|
1
ρb

−1 and fR(x) ∝ |x− (2/3− r/2)|
1
ρa

−1 if σ2 = −1.

In this construction, only the labels of the intervals Rin and Lin depend on σ, and are given by
YQ,σ(Lin) = YQ,σ(Rin) = σ1. If the intervals Lout and Rout have non zero mass under σ, then
they are labelled +1. The middle interval [1/3 + r, 2/3− r] is labelled −1 for every σ.

Claim 10 Recall H1 ⊂ H2 from Theorem 4. For every σ and i ∈ {1, 2}, we have EQσ(h
∗
Pσ ,i

) = 0
and the risk minimizers over the classes H1 and H2 under both source and target are the same as
the risk minimizers over classes H̄1, H̄2.

Proof Since the middle interval has a large negative mass and H̄1 is the class of one sided thresh-
olds, any one sided threshold that positively labels the middle interval cannot be a risk minimizer.
Since the threshold is in the intervals Lin ∪ Lout, we can see that the risk minimizers are either h1
or h′1 and are shared between source and target, implying that EQσ(h

∗
Pσ ,1

) = 0.
Under source a one sided interval that is a risk minimizer would choose to label intervals

Lout, Lin accurately, since there is large negative mass in the middle interval, and the mass in
Rout is small than the mass in Lout by a constant factor. Under target, there are multiple one sided
intervals that are risk minimizers, but since the total positive mass in the left side ( Lout ∪ Lin) is
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equal to the total positive mass in the right side Rout ∪ Rin, and the negative mass in the center
interval is very large, one of h2 or h′2 would also be a risk minimizer under target depending on σ1,
and it would be shared with source, so EQσ(h

∗
Pσ ,2

) = 0.

Claim 11 For every σ = (σ1, σ2) ∈ {±1}2, if σ2 = 1, then ρb and ρa are transfer exponents from
Pσ to Qσ with respect to H̄1 and H̄2 respectively. If σ2 = −1, then they are transfer exponents with
respect to H̄2 and H̄1 instead.

Proof To see that ρa and ρb are transfer exponents, note that the labels are always the same under
source and target, and the only intervals where ratio of densities of source and target is not a constant
are Lin and Rin. In the case of one sided thresholds, if some ht ∈ H̄1 has source excess risk that
is ϵ < 1

c1nP
, it must be that t ∈ Rin. Which then implies that its’ target excess risk is going

to be of order c
(

ϵ
c1nP

)1/ρb
or c

(
ϵ

c1nP

)1/ρa
depending on σ2. Similarly, any h ∈ H̄2 that has

source excess risk ϵ < 1
c1nP

must be a once sided interval with both of its’ end points in the region
Lout ∪ Lin. If the region that it makes error on is not in Lin, then the ratio of source and target
excess risks is bounded by a constant, while if the error region is in Lin, h will have excess risk of

order
(

ϵ
c1nP

)1/ρb
or c

(
ϵ

c1nP

)1/ρa
depending on σ2.

To argue that ρa and ρb are minimal transfer exponents, fix σ2 = −1 and consider a sequence
of one sided thresholds h2/3−r+t as t→ 0. Target excess risk for this sequence decreases at the rate(

t
c1nP

)1/ρa
, while under source it would be t

c1nP
. If ρ′ < ρa is a transfer exponent, the ratio of the

excess risks t1/ρa

t1/ρ
′ would not be bounded by a constant as t→ 0. A similar argument works for H̄2

and σ2 = +1, since h∗P,2 ∈ H2.

Next, we show that for every proper learner ĥ ∈ H̄2, there is a distribution in the family where
ĥ incurs large excess risk.

Proposition 5 Let c1 = 32. For any proper learner ĥ, there exists σ ∈ {±1}2 such that EQσ(ĥ) ≥

1/2 ·
(

1
c1nP

)1/ρa
Proof By construction, for every proper learner h̃ ∈ H2, there exists σ such that EQσ(h̃) ≥(

1
c1nP

)1/ρa
. We project every proper learner ĥ ∈ H̄2 by picking h ∈ H2 whose labeling on

the regions Rin and Lin agrees the most with h, under the uniform measure over Lin and Rout. In
the case that ĥ has positive labels in both of the regions, its’ excess risk will be a large constant. So
ĥ agrees with its’ projection h on at least one of the intervals Rin or Lout plus at least half of the

other interval. Thus, if σ is such that EQσ(h) ≥
(

1
c1nP

)1/ρa
, then EQσ(ĥ) ≥ 1/2 ·

(
1

c1nP

)1/ρa
.

We define the event B and randomize the choice of σ as in the proof of Theorem 4. The
constructions are such that the event B has exactly the same probability as in the proof of Theorem 4,
and the rest of the proof follows by exactly the same argument. ■
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