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Abstract
Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-
convex but smooth objective functions f over unrestricted d-dimensional domains is one of the most
fundamental problems in classical non-convex optimization. Nevertheless, the computational and
query complexity of this problem are still not well understood when the dimension d of the problem
is independent of the approximation error. In this paper, we show the following computational and
query complexity results:

1. The problem of finding approximate stationary points over unrestricted domains is PLS-complete.

2. For d = 2, we provide a zero-order algorithm for finding ε-approximate stationary points that
requires at most O(1/ε) value queries to the objective function.

3. We show that any algorithm needs at least Ω(1/ε) queries to the objective function and/or its
gradient to find ε-approximate stationary points when d = 2. Combined with the above, this
characterizes the query complexity of this problem to be Θ(1/ε).

4. For d = 2, we provide a zero-order algorithm for finding ε-KKT points in constrained optimiza-
tion problems that requires at most O(1/

√
ε) value queries to the objective function. This closes

the gap between the works of Bubeck and Mikulincer (2020) and Vavasis (1993) and characterizes
the query complexity of this problem to be Θ(1/

√
ε).

5. Combining our results with the recent result of Fearnley et al. (2021), we show that finding
approximate KKT points in constrained optimization is reducible to finding approximate stationary
points in unconstrained optimization but the converse is impossible.

The full version of the paper appears in arxiv with the same title.
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