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Abstract

We prove a convergence theorem for U-statistics of degree two, where the data dimension d is
allowed to scale with sample size n. We find that the limiting distribution of a U-statistic undergoes
a phase transition from the non-degenerate Gaussian limit to the degenerate limit, regardless of
its degeneracy and depending only on a moment ratio. A surprising consequence is that a non-
degenerate U-statistic in high dimensions can have a non-Gaussian limit with a larger variance and
asymmetric distribution. Our bounds are valid for any finite n and d, independent of individual
eigenvalues of the underlying function, and dimension-independent under a mild assumption. As
an application, we apply our theory to two popular kernel-based distribution tests, MMD and KSD,
whose high-dimensional performance has been challenging to study. In a simple empirical setting,
our results correctly predict how the test power at a fixed threshold scales with d and the bandwidth.
Keywords: High-dimensional statistics, U-statistics, distribution testing, kernel method

1. Introduction

We consider a one-dimensional U-statistic of degree two built on 7 i.i.d. data points in R%. Numer-
ous estimators can be formulated as a U-statistic: Modern applications include high-dimensional
change-point detection (Wang et al., 2022), sensitivity analysis of algorithms (Gamboa et al., 2022)
and convergence guarantees for random forests (Peng et al., 2022).

The asymptotic theory of U-statistics is well-established in the classical setting, where d is
fixed and small relative to n (e.g. Chapter 5 of Serfling (1980)). Classical theory shows that the
large-sample asymptotic of a U-statistic depends on its martingale structure and moments: For U-
statistics of degree two, this reduces to the notion of degeneracy, i.e. whether the variance of a
certain conditional mean is zero. Non-degenerate U-statistics are shown to have a Gaussian limit,
whereas degenerate ones converge to an infinite sum of weighted chi-squares.

However, these results fail to apply to the modern context of high-dimensional data, where d is
of a comparable size to n. The key issue is that the moment terms, which determine degeneracy, may
scale with d. Existing efforts on high-dimensional results either focus on U-statistics of a growing
degree (Song et al., 2019; Chen and Kato, 2019) and of growing output dimension (Chen, 2018)
or rely on very specific data structures (Chen and Qin, 2010; Yan and Zhang, 2022). In particular,
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Figure 1: Behaviour of P(X > t) for X = D,,, a non-degenerate U-statistic, versus X being different theoretical limits.
Left. KSD with RBF kernel, n = 50 and d = 2000. Right. MMD with linear kernel, n = 50 and d = 1000. The
left plot shows that P(D,, > t) disagrees with the non-degenerate limit from known classical results but aligns with the
degenerate limit from ours (moment-matched by a Gamma variable — discussed in Section 3.2). The right plot is when the
limit predicted by our result can be computed exactly as a shifted-and-rescaled chi-square and shows asymmetry, which
confirms a departure from Gaussianity. See the last paragraph of Section 4.3 and Appendix A for simulation details.

these articles focus on a comparison to some Gaussian limit in high dimensions, and the effect of
moments on a departure from Gaussianity has largely been ignored.

The practical motivation for our work stems from distribution tests, which typically employ U-
statistics as a test statistic. In the machine learning community, it has been empirically observed
that the power of kernel-based distribution tests can deteriorate in high dimensions, depending on
hyperparameter choices and the class of alternatives (Reddi et al., 2015; Ramdas et al., 2015). A
theoretical analysis in the most general case has not been possible, due to the lack of a general
convergence result for high-dimensional U-statistics. In the statistics community, there are similar
interests in analysing U-statistics used in mean testing of high-dimensional data (e.g. Chen and Qin
(2010); Wang et al. (2015)). All existing results, to our knowledge, are limited by very specific data
assumptions and a focus on obtaining Gaussian limits.

In this paper, we prove a general convergence theorem for U-statistics of degree two, which
holds in the high-dimensional setting and under very mild assumptions on the data. We observe a
high-dimensional analogue of the classical behaviour: Depending on a moment ratio, the limiting
distribution of U-statistics can take either the non-degenerate Gaussian limit, the degenerate limit
or an intermediate distribution. Crucially, this happens regardless of the statistic’s degeneracy, as
defined in the classical sense. We provide error bounds that are finite-sample valid and dimension-
independent under a mild assumption.

In the context of kernel-based distribution tests, we show that our results hold for Maximum
Mean Discrepancy (MMD) and for (Langevin) Kernelized Stein Discrepancy (KSD) under some
natural conditions. We investigate several examples under Gaussian mean-shift — a setting purposely
chosen to be as simple as possible to obtain good intuitions, while already capturing a rich amount
of complex behaviours. Our theory correctly predicts the high-dimensional behaviour of the test
power with a wider variance than classical results and, perhaps surprisingly, potential asymmetry
(see Fig. 1 for one such example). Our results enable us to characterise such behaviours based on
the size of d and hyperparameter choices.

1.1. Overview of results

Given some i.i.d.data {X;}! ; drawn from a distribution R on R¢ and a symmetric measurable
function u : R x R? — R, the goal is to estimate the quantity D := E[u(Xy, X3)]. The U-statistic
provides an unbiased estimator, defined as



A HIGH-DIMENSIONAL CONVERGENCE THEOREM FOR U-STATISTICS

1
Dn = 25— 2icizjen UK %) - M

Our main result is Theorem 2. Loosely speaking, it says that as n,d — oo, the statistic D,
converges in distribution to a quadratic form of Gaussians:

D, L% W+2zZ+D, )

where W is some infinite sum of weighted and centred chi-squares and Z is some Gaussian. Define

pd = Ufull/Ucond , where o = Var[U(Xl,XQ)] and Ocond = \/V&I‘E[U(Xl, X2)|X1] )

and recall that the classical notion of degeneracy is defined by o.ong = 0. We next observe that in
(2), W + D is closely related to the classical degenerate limit, whereas Z + D gives exactly the
classical non-degenerate limit. It turns out that, up to a mild assumption, the type of asymptotic
distribution of D,, is completely determined by the ratio p,;. This is reminiscent of the classical
result, where the notion of degeneracy, i.e. whether o.,ng = 0, determines the limit of D,,. The
difference in high dimensions is that o, and oconq may scale differently with d. Even if ocong # 0,
pq can grow to infinity as d grows, causing a non-degenerate D,, to behave like a degenerate U-
statistic. We show that, depending on pg4, (2) becomes

D, NS + D forpg = w(nl/Q) and D, LNy + D forpg = o(nl/z) .

The second result is the classical Berry-Esséen bound for U-statistics, while the first result is new. It
recovers the classical degenerate limit as a special case but also applies to very general U-statistics
in high dimensions regardless of degeneracy.

The paper is organised as follows. Section 2 provides definitions and a sketch-of-intuition on
the role of moment terms in the limiting behaviour of D,,. Section 3 presents the main results along
with a proof overview in Section 3.3. Section 4.2 shows that these results apply to MMD and KSD
under some natural conditions and Section 4.3 studies the Gaussian mean-shift case in detail.

1.2. Related literature

Convergence results for U-statistics. Existing high-dimensional results focus either on a different
setting or on showing asymptotic normality under very specific assumptions on data; some refer-
ences are provided at the start of this section. The results that resemble our work more closely are
finite-sample bounds for classical degenerate U-statistics. Those works focus on providing bounds
under conditions on specific eigenvalues of a spectral decomposition of D,,, and we defer a list of
references to Remark 1. Among them, Yanushkevichiene (2012) provides a rate O(n~'/12) under
perhaps the least stringent assumption on eigenvalues, but the error is still pre-multiplied by the
inverse square-root of the largest eigenvalue. These eigenvalues are intractable and yet depend on d
through the data distribution, which make them hard to apply to high-dimensional settings. In the
classical setting where d is fixed, a recent work by Bhattacharya et al. (2022) proves a Gaussian-
quadratic-form limit similar to ours for a random quadratic polynomial, which includes a simple
U-statistic as a special case. However, their results are asymptotic and in particular do not identify a
parameter that leads to the phase transition. Our finite-sample results require a very different proof
technique and show how a moment ratio governs the transition.

High-dimensional power analysis for MMD and KSD. Some recent work has investigated the asymp-
totic behaviour of D,, for MMD. Yan and Zhang (2022) prove a convergence result under a specific
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data model and kernel choice, so that u(x,y) = g(||x — y||2) for some function g : R — R and
|| + ||2 being the vector norm. The dimension-independence of g enables a Taylor expansion argu-
ment reminiscent of delta method and therefore gives a Gaussian limit. Such structures are not
assumed in our work. A related work of Gao and Shao (2021) provides a finite-sample bound under
more general conditions. The results show asymptotic normality of a studentised version of D,
rather than D,, itself, and the error bound is only valid if a moment ratio, analogous to excess kurto-
sis, vanishes with d (see their Theorem 13). Interestingly, this effect is obtained as a special case of
our results for much more general settings: In Section 3.2, we point out that the degenerate limit is
Gaussian if and only if the excess kurtosis vanishes. Another recent line of work (Kim and Ramdas,
2020; Shekhar et al., 2022) focuses on a studentised D,, that is modified to exclude half of the terms.
They show dimension-agnostic normality results at the cost of not using the full U-statistic D,,.

2. Setup and motivation

We use the asymptotic notations o, O, ©, w, €1 defined in the usual way (see e.g. Chapter 3 of Cor-
men et al. (2009)) for the limit n — oo, where the dimension is allowed to depend on n; we make
the n-dependence explicit in the dimension d,, whenever such asymptotics are considered.

2.1. Moment terms in high dimensions

Consider a U-statistic D,, as defined in (1) with respect to (R, u) with mean D = E[u(X;, X32)]. For
v > 1, denote the L, norms by || ||, := E[| + |“]'/*. The v-th central moment of D,, are bounded
from above and below in terms of two types of moment terms (see Lemma 30 in the appendix):

Mcond;V = HE[U(Xla X2)’X2} - E[U(Xl’ X2)]HL,,’ Mfull;z/ = HU(XI’ X2) o E[U(Xl’ Xz)]HLu'

In the special case v = 2, the definitions from Section 1.1 implies o¢ong = Meond;2> Otal = Mrpun;2
and pg = ofun / 0cond- The fact that these moments may scale with d has a significant effect on
convergence results: For example, bounds of the form BOment for some increasing function f of n
are no longer guaranteed to be small. This is yet another effect of the “curse of dimensionality”.
For U-statistics, the classical Berry-Esséen result (see e.g. Theorem 10.3 of Chen et al. (2011)) says
that, if ocona > 0, then for a normal random variable Z ~ N'(D,4n"'02 ) and v € (2,3], we
have

SUPyeR ‘P(—Jﬁan < t) _ P(—ﬁ 7 < t)’ < Mgy | (+V2)pa 3)

Ocond n(ui2)/20’cyond Z(n - 1)1/2
Indeed, the error bound in the classical Berry-Esséen result is an increasing function of n=/2pg =
otuil/(n'/20cond ), which is not guaranteed to be small as d grows.

The ratio Mcond./0cond also appears in classical error bounds. However, we do not focus on
how this ratio scales, since it appears in Berry-Esséen bounds even for sample averages. Error
bounds in our main theorem will depend on similar ratios, and for our theorem to imply a conver-
gence theorem, the following assumption is required:

Assumption 1 There exists some v € (2, 3] and some constant C' < oo such that for all n and d,

. Mgy, Meond:
we have the uniform bounds —"%* < C' and —>*** < C'.
Ofull Ocond

4
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2.2. Sketch of intuition

We motivate our results by noting that the variance of D,, defined in (1) satisfies

Var[D,] = O( [(u(X41,X2) — D’I)L(U(thg) — D)l | E[(u(X1, X) ;(i?)ful()xhxz) - D)])

_ O( cond 4 Uf2ull ) .
n(n —1)

To study the asymptotic distribution of D,,, we need to understand how its asymptotic variance
behaves as n and d grow. Suppose we are in the classical non-degenerate setting, where d is fixed
and 0cona > 0. The dominating term in Var[D,,] is O(n"'¢ ;). The contribution of the o2, term
is small, i.e. the effect of the variance of each individual summand u (X, X5) is negligible. In fact,
we can approximate D,, by replacing each argument in the summand by an independent copy X/ of
X; and applying CLT for an empirical average:

1
D, =D+ 7n(n7 ) Zlgiijgn(u(xi,Xj) — D)

~D+ 1 le (ﬁ Eﬁéz( (leX, ) o Z] 1 (n— 1 Zz#] D)>

—D+ 2" (Elu(X,, X)X, - D) ~ N(D, 2%

n

This argument underpins results on CLT for non-degenerate U-statistics. In the classical degenerate
setting, however, d is still fixed but o.,nq = 0, and the above argument fails to apply. Instead, one
considers a spectral decomposition u(x,y) = > r- | Aok (x)Pr(y) for some eigenvalues { A, }32
and eigenfunctions {¢ }72 ;, and compares the distribution of D,, to a weighted sum of chi-squares:

1

Dn = n(n —1) 219’7&]’9 Zzoﬂ Ak®k(Xi) dr (X5)
=Y )\k((% > ¢k(Xi)> (% > m(Xj)) - ¢k(xi)2)
LS e (VVarldn (X)) € + VA Bl (X)) — El(X1)?)) .

where &’s are i.i.d.standard normals. The limiting distributions in both settings enable one to
construct consistent confidence intervals for D,, and study P(D,, > t).

%

The key takeaway is that the asymptotic distribution of D,, depends on the relative sizes of O'C nd
and (n—1)"1 Ufun This comparison reduces to degeneracy when d is fixed, but is no longer so when
d grows. In the high-dimensional setting, o.onq and oy can scale with d at different orders, making
it possible for the ratio pg to vary with d. In particular, a non-degenerate U-statistic with o¢ong > 0
may still satisfy pg = w(n'/?), ie. (n —1)"'o2, /o2 4 — o0 as n and d grow. In this case,
the classical argument for a non-degenerate Gaussian limit would fail and a degenerate limit would
dominate. This is exactly what we observe in the practical applications in Section 4.3, and motivates
the need for results that explicitly addresses the high-dimensional setting.

3. Main results

The main result presented in this section is a finite-sample bound that compares D,, to a quadratic
form of infinitely many Gaussians. The limiting distribution is a sum of the non-degenerate limit
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and a variant of the degenerate limit, and subject to Assumption 1, the error bound is independent
of pg. In the case pg; = o(nl/ 2), the non-degenerate limit dominates and our result agrees with
the Gaussian limit given by a Berry-Esséen theorem for U-statistics. However when dimension
is high such that p; = w(nl/ 2), the degenerate limit dominates and implies a larger asymptotic
variance. We also discuss how to obtain consistent distribution bounds that reflect the effect of a
large dimension d on the original statistic D,,.

Our results rest on a functional decomposition assumption. For a sequence of R — R functions
{¢1}72, and a sequence of real values {\;}?7° |, we define the L, approximation error for v > 1
and a given K € N as

exw = | Zszl M@k (X1)pr(X2) — U(Xth)HLV .

Assumption 2 There exists some v € (2, 3] such that, for any fixed n and d, as K — oo, the L,
approximation error €, — 0 for some choice of {¢y}72 | and {\;}72 4.

Remark 1 (i) If Assumption 2 holds for some v > 3, it certainly holds for v = 3. We restrict
our focus to v € (2,3] for simplicity. (ii) Assumption 2 always holds for v = 2 by the spectral
decomposition of an operator on Lg(Rd, R). For degenerate U-statistics with d fixed, the corre-
sopnding orthonormal eigenbasis of functions and eigenvalues are used to prove asymptotic results
(see Section 5.5.2 of Serfling (1980)) and finite-sample bounds (Bentkus and Gotze, 1999; Gotze and
Tikhomirov, 2005; Yanushkevichiene, 2012). In fact, these finite-sample bounds are dependent on
the specific A\ ’s, making the results hard to apply. Instead, we forgo orthonormality at the cost of a
convergence slightly stronger than Lo. This allows for a much more flexible choice of {dw, A\ }72
and is particularly well-suited for a kernel-based setting; see Remark 17 for a discussion.

Before stating the results, we introduce some more notations. For every K € N, we define a
diagonal matrix of the first K “eigenvalues” and a concatenation of the first K “eigenfunctions” by

AK = dlag{)\17>)\K} GRKXK ) ¢K(x) = (¢1($)71¢K(x))—r ERK . (4)
We denote the mean and variance of ¢ (X;) by u == E[¢*(X;)] and X5 := Cov[¢pX (X1)].

3.1. Result for the general case

Let nZK , with i, K € N, be i.i.d. standard Gaussian vectors in R¥. In the general case, the limiting
distribution is given in terms of a quadratic form of Gaussians, defined by

1 2 n
Ut = oy Docinyen (i) (S VPAREI) 2 1 2570 (") TAR(E) Y20 4+ D.

n n(n —1)
We also denote the dominating moment terms by
- 1)1/2 M. — M N2
Omax — HlaX{O'full, (n - ) Jcond} s max;y -— max{ full;v, (’I’L - ) cond;u} .

We are ready to state our main result — a finite-sample error bound that compares D, to the limiting
distribution of U, where the error is given in terms of 7 and the moment terms.
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Theorem 2 There exists a constant C > 0 such that, for all u, R, d and n, if v € (2, 3] satisfies
Assumption 2, then the following holds:

—1
supies [P(YA—D, > t) - lm P(VEE=Dphs )|
1 v
< O (B (oo v Mente LNTF < ger €~ s (Mmmse ) 25T
Umax Umax - UII]&X

Remark 3 If v = 3, the RHS is gzven by 23/7Cn~ 11 (M’I’:"‘ 3)6/7 If Assumption 1 holds for v, the

RHS can be replaced by C'n"~ iie for some constant C' and is dimension-independent.

Remark 4 At first sight, one may be tempted to move limg _, ., inside P such that, instead of the
cumbersome expression of Wf with finite K, one may deal with random quantities in a Hilbert
space. The reason to stick with Wé{ is that in Assumption 2, convergence of the infinite sum is
required only in L,, and not almost surely. This makes verification of the assumption substantially
simpler in practice: In Appendix A, we illustrate how this assumption holds via a simple Taylor-
expansion argument coupled with suitable tail behaviour of the data to control error terms. The
same argument is not applicable if we instead require an almost sure convergence.

Theorem 2 immediately implies a convergence theorem:

Corollary 5 Let the dimension d,, depend on n. Suppose Assumptions I and 2 hold for some v > 2

7“1()(U K _ D) exists. Then

Omax

and the sequential distribution limit U = lim,, o limg_soo

n(n —1)

Omax

(Dn—D)i>U as m— oo .

UK is a quadratic form of Gaussians, which does not admit a closed-form c.d.f. in general and
whose limiting behaviour depends heavily on \; and ¢;. Nevertheless, the presence of Gaussianity
still allows us to obtain crude bounds that reflect how dimension d affects its distribution. By
combining such bounds with Theorem 2, we can bound the c.d.f. of the original U-statistic D,,.

Proposition 6 There exists constants C1,Co,Cs > 0 such that, for all u, R, d, n and K, if
v € (2, 3] satisfies Assumption 2, then for all € > 0,

v

P(|Dn —D| >€) = 1-Cy (M) 1/25 1/2 —C9n~ 4Vu+22 (M)m )

Omax Omax

P(|Dn — D| > ¢) < 0362("““"))2 .

nn—1

Remark 7 The second bound is a concentration inequality directly available via Markov’s inequal-
ity, whereas the first bound is an anti-concentration result. Anti-concentration results are generally
available only for random variables from known distribution families, and we obtain such a result
by comparing D,, to U,f( . The error bounds are free of any dependence on K and specific choices
of ¢, and Ny, The trailing error term involving Mmax.,/Omax IS inherited from Theorem 2 and is
negligible, whereas the other error term is directly related to the inverse of the Markov error term.
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Proposition 6 provide two-sided bounds on how likely it is for D,, to be far from D. The next
corollary provides a more explicit statement.

Corollary 8 Let the dimension d,, depend on n and fix € > 0. Suppose Assumptions 1 and 2 hold
for some v € (2,3]. As n — oo, we have that P(|D,, — D| > €) — 1 if omax = w(n) and
P(|Dy, — D| > €) = 0 if omax = o(n).

Another way of formulating the bounds in Proposition 6 is the following: Similar to the intuition
for a Gaussian, when n is large (with d,, depending on n), the distribution of D,, is not only concen-
trated in an interval around D with width being a multiple of “22x, but also “well spread-out” within
the interval. The probability mass gets concentrated around D when oy,,x = o(n), but spreads out
along the whole real line when oy,,x = w(n); the latter only happens in a high dimensional regime.

To have a more precise understanding of the limiting behaviour of D,,, we need a better knowl-
edge of UK. By a closer examination of U, we see that it is a sum of three terms: A sum of
weighted chi-squares with variance of the order n=!(n — 1)_101?uu, a Gaussian with variance of
the order n_lagond, and a constant D. The first term closely resembles the limit for degenerate U-
statistics when d is fixed, while the second term corresponds exactly to the Gaussian limit for non-
degenerate U-statistics. It turns out that, unless we are at the boundary case where pg; = G(nl/ 2,
we can always approximate U by ignoring either the first or the second term. Ignoring the first
term gives exactly the Gaussian limit, where a well-established result has already been provided
in (3). Ignoring the second term gives an infinite sum of weighted chi-squares, which is discussed

next.

3.2. The case p; = w(n'/?)
Let {£}2° , be a sequence of i.i.d. standard Gaussians in 1d, and for K € N, let {734}/, be the

eigenvalues of (L5)/2AK (2K)1/2, The limiting distribution we consider is given in terms of

1 K
W,{( = \/ﬁ Zk’:l Tkz;d(fl% -

)+D. %)
Note that in this case, omax = 0. The next result adapts Theorem 2 by replacing Uf with WT{( :

Proposition 9 There exists a constant C > 0 such that, for all u, R, d, n and K, if v € (2, 3]
satisfies Assumption 2, then the following holds:

-1 -1
supteR‘]P’<7vn(n)Dn > ) = lim P(L(”)WK > 1))
Ofull K—o0 Otull n
S C( 1 + (vn - 1Uc0nd)2/5 + T'L_:V_JFZQ ((Mfull;u)u + ((n — 1)1/2Mcond;u)y) 21’1+1) .
(n—1)/° Otull T Tt

Remark 10 In the case v = 3, the error term above becomes

1 V1 —10cona 2/5 _ 1/ (Mpan3)? ((n_l)l/QMCOHd;?’)S %
C(( —1)/e * ( Ofull ) tn 14( Ofull + Tfan ) ) '

v—2
In the case when Assumption I holds for v, the error term is @(("p—;l) 1/5 +n” w2 )
d
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Remark 11 Proposition 9 agrees with the classical results for degenerate U-statistics. In those
results, {1 }32, are chosen such that they are orthonormal in Lo(R?, R) and E[¢y(X1)] = 0. This
corresponds to XX being a diagonal matrix and the expression for Tk:d can be simplified.

We seek to obtain a better understanding of the limiting distribution of D,, in the case p; =
w(n/?). Write W,, := limg o, WX as the distributional limit of WX as K’ — oo. Provided that
W, exists, Proposition 9 gives the convergence of D,, to W,, in the Kolmogorov metric. The next
lemma guarantees the existence of W,.

Proposition 12 Fix n, d. If Assumption 2 holds for some v > 2 and | D|, o1 < 00, W), exists.

While W,{f is a sum of chi-squares, the distributional limit W, := lim,, o0 limg 00 W,f{ may
actually be Gaussian. The crucial subtlety lies in the fact that the weights of WX may depend
on K and also on n (through d = d,,). In what is well-known in the probability literature as the
“fourth moment phenomenon” (Nualart and Peccati, 2005), the necessary and sufficient condition
for Gaussianity of W is that the limiting excess kurtosis is zero. In our case, the limiting moments
can be computed easily when Assumption 2 holds for v > 4, as they depend only on moments of
the original function u and not on specific values of the intractable weights 7;.4. Lemma 33 in the

appendix shows that E[W,X] = D forevery K € N, limg_,o, Var[W,E] = ﬁaﬁm and

lim E[(Wf _ D)4] _ 12(4E [u(X1, Xo)u(Xz, X3)u(Xs, Xa)u(Xa, X1)] 4 ofun)

K—o00 n?(n —1)? ’

provided that Assumption 2 holds for v > 1, v > 2 and v > 4 respectively. If the excess kurtosis is
indeed zero, Gaussian is still the correct limiting distribution for D,,, but now with a larger variance
(characterized by og,1) than the one naively predicted by the Gaussian CLT limit for non-degenerate
U-statistics. Meanwhile, when the excess kurtosis is not zero, the limiting distribution is an infinite
sum of weighted chi-squares. A naive example is the following:

Lemma 13 Suppose there exists a finite K, such that \, = 0 for all k > K. Then W,, = WX,
which is a weighted sum of chi-squares.

A weighted sum of chi-squares does not admit a closed-form distribution function. Fortunately
in the case when 7.4 > 0 for all £, many numerical approximation schemes are available and used
widely. These methods generally rely on matching the moments of W,,, which can be computed
easily due to Proposition 12. The simplest example is the Welch-Satterthwaite method, which ap-
proximates the distribution of W,, by a gamma distribution with the same mean and variance. We
refer readers to Bodenham and Adams (2016) and Duchesne and De Micheaux (2010) for a review
of other moment-matching methods.

3.3. Proof overview

The proof for Theorem 2 consists of three main steps:
(i) ““Spectral” approximation. We first use Assumption 2 to replace u(X;, X;) with the trun-
cated sum Zle A0k (X;)or (X)), which gives a truncation error that vanishes as K — oo;
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(i) Gaussian approximation. The truncated sum is a simple quadratic form of i.i.d. vectors
in R?, each of which can be approximated by a Gaussian vector. This is done by following
Chatterjee (2006)’s adaptataion of Lindeberg’s telescoping sum argument. Similar proof ideas
have been used to develop new convergence results in statistics and machine learning; exam-
ples include empirical risk (Montanari and Saeed, 2022) and bootstrap for non-asymptotically
normal estimators (Austern and Syrgkanis, 2020). This step introduces errors in terms of mo-
ment terms of Uf , which are then related to those of D,,;

(iii) Bound the distribution of Uf . Step (ii) introduces errors in terms of the distribution of Uf ,
a quadratic form of Gaussians, over a short interval. These errors are then controlled by the
distribution bounds from Carbery and Wright (2001).

The proof for Proposition 9 is similar, except that we use an additional Markov-type argument to
remove the linear sum from UX and obtain the limit in terms of WX

4. Kernel-based testing in high dimensions

Given two probability measures P and Q on R?, we consider the problem of testing Hy : P = Q
against Hy : P # ( through some measure of discrepancy between P and (). We focus on
Maximum Mean Discrepancy (MMD) and (Langevin) Kernelized Stein Discrepancy (KSD), two
kernel-based methods that use a U-statistic D,, as the test statistic. It is well-known that .onq = 0
under Hy and the limit of D,, is a weighted sum of chi-squares (see Gretton et al. (2012) for MMD
and Liu et al. (2016) for KSD). Instead, we are interested in quantifying the power of D,, given as
P, (Dy, > t). The test threshold ¢ is often chosen adaptively in practice, but we assume ¢ to be
fixed for simplicity of analysis. The results in Section 3 offer two key insights to this problem:

(i) D,, may have different limiting distributions depending on p4. In the non-Gaussian case, the
confidence interval and thereby the distribution curve can be wider than what a Berry-Esséen
bound predicts, and there may be potential asymmetry;

(ii) We can completely characterise the high-dimensional behaviour of the power in terms of pg,
which in turn depends on the hyperparameters and the set of alternatives considered.
In this section, we first show that our results naturally apply to MMD and KSD. We then investi-
gate their high-dimensional behaviours in an example of Gaussian mean-shift under simple kernels.
Throughout, || « ||2 denotes the vector Euclidean norm, which is not to be confused with || « || L, .

4.1. Notations
We follow the kernel definition from Steinwart and Scovel (2012) as below:

Definition 14 A function r : R x R? — R is called a kernel on R? if there exists a Hilbert space
(H, (e, *)3) and a map ¢ : R — H such that k(x,x") = (¢(x), d(x") )3 for all x,x" € H.

We give the minimal definitions of MMD and KSD, and refer interested readers to Gretton et al.
(2012) and Gorham and Mackey (2017) for further reading. Throughout, we let {Yj}?:1 be
i.i.d. samples from P and {X;}?_; be i.i.d. samples from ). We also write Z; := (X;,Y;) and
assume that x is measurable. MMD with respect to « is defined by

DMMP(Q P) == Eyyop[k(Y,Y")] — 2By px~q[r(Y,X)] + Ex x/ng[x(X, X)] .
A popular unbiased estimator for DMMP jg exactly a U-statistic:

MMD ._ 1 MMD 1y 1y
D T on(n-1) Zlﬁ#g‘ﬁn“ (Zi,Z;) .

10
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where the summand is given by u™P ((x,y), (X', y")) = r(x, X )+k(y,¥') —r(x,¥)—£(xX,y).

To define KSD, we assume that « is continuously differentiable with respect to both arguments, and
P admits a continuously differentiable, positive Lebesgue density p. The following formulation of
KSD is due to Theorem 2.1 of Chwialkowski et al. (2016):

D¥SP(Q, P) == Ex xmguf®P (X, X)),

where we assume Ex g [u55P (X, X)] < oo and the function u5°P : R? x R? — R is given by

uIESD(X,x) (Vlogp ) (Vlogp ) (x,x') + (Vlogp(x))TVQ,k;(x,x’)
(Vlogp(x)) Vik(x,x") + Tr(V1Var(x,x')) .

V1 and Vg are the differential operators with respect to the first and second arguments of k respec-
tively. The estimator is again a U-statistic, given by DKSP .= n(n 0 > 1<itj<n uBSP(X;, X).

4.2. General results

We show that a kernel structure allows Assumption 2 to be fulfilled under some natural conditions.
Let Vi,V 14 R for some probability measure R on R? and x* be a measurable kernel on R®. A
sequence of functions {¢y}$°, in Lo(IR®, R) and a sequence of non-negative values {\}3°, with
limg_,oo A\, = O is called a weak Mercer representation if

| Zszl Aedk(V1)ok(V2) — £5(V1, Va)| — 0 almost surely as K — oo .

Steinwart and Scovel (2012) show that such a representation exists if E[x*(V1, V)] < oo, whose
result is summarised in Lemma 37 in the appendix. To deduce from this the L, convergence of
Assumption 2, we need the following assumptions on the kernel x*:

Assumption 3 Fix v > 2. Assume E[x*(V1, V1)] < oo and let {\,}32, and {¢1}72, be a weak
/i*(Vl,VQ)HLV* < o0

K
and sup>1 || 1 Mdr(V1)or(Va)l|L,. < o0o.
For MMD, we can use the weak Mercer representation of ©MMP to show that our results apply:

Lemma 15 «™MMP defines a kernel on R%¢. Moreover; if Assumption 3 holds for k* = uMMP ynder

P ® Q for some v > 2, then Assumption 2 holds for min{v, 3} with u = v™P and R = P ® Q.

In the case of KSD, we use the representation of x directly. We require some additional as-
sumptions for the score function V log p(x) to be well-behaved and the differential operation on x
to behave well under the representation.

Assumption 4 Fix n, d and v > 2. Assume that Assumption 3 holds with v for K under @, with
{72, and {¢ )32 as the weak Mercer representation of k under Q) and v* being deﬁned as
in Assumption 3. Further assume that (i) |||V log p(X1)|2|| 14, < 00 for v** V(V+V ; (i)
suppen |0k (X1)| 1., < 005 (iii) ¢1’s are differentiable with sup;.cy || HchSk(Xl)H L, < oo (iv)

As K — 0o, we have the convergence ||| Zszl M (Vo (X1))op(Xe) —Vik(Xq, X2) QHLQV —0
as well as the convergence || Zf:l Me(Vor(X1)) T (Vor(Xa)) — Tr(V1Var(X1, X)), — 0.

L,

11
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We can now form a decomposition of u%5°P. Given {\;}5°, and {¢;}%° , from Assumption 4 and
any fixed d € N, define the sequences {oy, }72; and {11 }72, as,for1 <! < dand k' € N,

Q' —1)dtl = Ak and  Y_1)g41(X) = (O log p(x))pr (x) + Oz P (x) . (6)

Lemma 16 [f Assumption 4 holds for some v > 2, then Assumption 2 holds for min{v, 3} with
u—uPSD R=Q, \; = o) and ¢, = )y, .

Remark 17 The benefits of formulating our results in terms of Assumption 2 are now clear: By
forgoing orthonormality, we can choose a functional decomposition e.g. in terms of the Mercer
representation of a kernel, which is already widely considered in this literature. The non-negative
eigenvalues from Lemma 37 also allow moment-matching methods discussed in Section 3.2 to be
considered. In fact, a Mercer representation is not even necessary: In Appendix A.1, we construct
a simple decomposition for the setup in Section 4.3 such that Assumption 2 can be verified easily.

4.3. Gaussian mean-shift examples

We study KSD and MMD under Gaussian mean-shift, where P = A/ (0, %) and Q = N (p, X) with
mean 1 € R? and covariance ¥ € R?*? to be specified. Two simple kernels are considered in this
section, namely the RBF kernel and the linear kernel.

RBF kernel. We consider the RBF kernel x(x,x’) = exp(—||x — x'||3/(27)), where v = ~(d) is
a bandwidth potentially depending on d. A common strategy to choose 7 is the median heuristic:

Ymed = Median {|[V - V'|3: V.V eV, V£V'} |

where the samples V = {X;}7_, for KSD and V = {X;}7_, U{Y;}?_; for MMD. In Appendix A,
we include a further discussion of this setup as well as verification of Assumption 1 and Assump-
tion 2.

We focus on > = I;, where the d-dependence of the moment ratio pg can be explicitly studied
for both KSD and MMD. Importantly, we give bounds in terms of the bandwidth ~ and the scale of
mean shift ||u||3, which reveal their effects on pg and thereby on the behaviour of the test power.
The assumptions on « and ||||3 in both propositions are for simplicity rather than necessity.

Proposition 18 (KSD-RBF moment ratio) Assume v = w(1) and ||u||3 = Q(1). Under the
Gaussian mean-shift setup with 3. = 1, the KSD U-statistic satisfies that

(i) 1]‘7—0(d1/2) thenpd—exp( s —i—o( ))@(7”“”2 + 1721/2 +1) ;

llall2
g —(dl/2 _ of 20+ 2| ulla) ) .
(ii) If v = w(d/%), then pq 9(”“”2 (@) T1)

0 7= = {5+ 1)

Proposition 19 (MMD-RBF moment ratio) Consider the Gaussian mean-shift setup with 3 =

I; and assume v = w(1l) and HMHQ = Q(1). For the MMD U-statistic, if v = o(||u||3) and
v = o(d?), then pg = O(exp ( ol 0(%))). Ifinstead v = w(||p||3), then
(i) For~ = o(dl/z), we have pg = Iull 5 eXp ( 3d 4 0(%))) ;

llell2 + dt/2 ) .
lullz+y—1d/2|pl3 )

dt/2 )
T3
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of DXSP and the theoretical limits. Middle. Distribution curves at y = 4. Right. Distribution curves at y = 16.

The case ||p|lz2 = Q([|2]2) = Q(d/?) is not very interesting, as it means that the signal-to-noise
ratio (SNR) is high and can even increase with d. WLOG we focus on a low SNR setting with
llgell2 = ©(1). In this case, it has been shown that the median-heuristic bandwith scales as Ymed =
O(d) (Reddi et al., 2015; Ramdas et al., 2015; Wynne and Duncan, 2022). While Propositions 18
and 19 do not directly address the case 7 = Ymeq due to its data dependence, they do show that
pa = ©(d/?) for both KSD and MMD with a data-independent bandwidth v = ©(d)’. In this
case, the asymptotic distributions of DXSP and DMMP are (i) the non-degenerate Gaussian limit
predicted by (3) when d = o(n) and (ii) the degenerate limit from Proposition 9 when d = w(n).

Intriguingly, in both results, different regimes arise based on how y compares with the noise
scale ||| = d'/2. In fact, a phase transition as ~ drops from w(d'/?) to o(d'/?) has been reported
in Ramdas et al. (2015) but with no further comments*3. Our results offer one explanation: Such
transitions may happen due to a change in the dependence of pg on 7, ||i||2 and d. Fig. 4 shows a
transition across different limits as y varies, where the transition occurs at around v ~ d'/?

Linear kernel. Section 3.2 discussed that the limit of D,, can be non-Gaussian. This is true for
MMD with a linear kernel s(x,x’) = x ' x': It satisfies Lemma 13 with K, = d and the limit is
a shifted-and-rescaled chi-square. Fig. 1 verifies this for some ¥ # I; by showing an asymmetric
distribution curve close to the chi-square limit. We remark that a linear kernel, while not commonly
used, is a valid choice here since DMMD — () iff P = Q under our setup.

Simulations. We set 1 = (2,0,...,0)" € R%, ¥ = I and v = 4yeq for KSD with RBF and
MMD with RBF. The exact setup for MMD with linear kernel is described in Appendix A.4. The

T. In our experiments, the data-independent choice v = d and the data-dependent v = 7medq yield almost identical
plots.

i. Their bandwidth YRamdas is defined to equal our /2. Phase transition occurs at YRamdas = d*/* in their Figure 1.
While their figure is for MMD with threshold chosen by a permutation test, ours is for KSD with a fixed threshold.

§. This was investigated in Ramdas (2015, Section 10.4) in a special case when v = w(||u||3 + d) (case (ii) of Theo-
rem 19) and n = o(ds/ 2), where the author derived the test power of the RBF-kernel MMD for different SNRs.

13
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limits for comparison are the non-degenerate Gaussian limit in (3) (“Non-degen.”) and Gamma /
shifted-and-rescaled chi-square (“Degen. Gamma” / “Degen. Chi-square”) distributions that match
the degenerate limit in Proposition 9 by mean and variance. Fig. 1 plots the distribution curves for
KSD with RBF and MMD with linear kernel. Fig. 2 plots the same quantity for MMD with RBE.
Fig. 3 and Fig. 4 examine the behaviour of KSD with RBF as d or y varies (as a data-independent
function of d, similar to Ramdas et al. (2015)). Results involving D,, are averaged over 30 random
seeds, and shaded regions are 95% confidence intervals!. Code for reproducing all experiments can
be found at github.com/XingLLiu/u-stat-high-dim.git.
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The appendix is organised as follows. The first few appendices provide additional content:
Appendix A states additional results for Section 4.3 including moment computations and verifica-
tion of assumptions.

Appendix B presents auxiliary tools used in subsequent proofs.

The remaining appendices consist of proofs:

Appendix C proves our main theorem. Appendix C.1 provides a list of intermediate lemmas that
extends the proof overview in Section 3.3.

Appendix D proves the remaining results in Section 3.

Appendix E proves the results in Section 4.

Appendices F and G present proofs for the results in Appendices A and B respectively.

Throughout the appendix, we say that C' is an absolute constant whenever we mean that it is a
number independent of all variables involved, including u, R, d, n and K.

Appendix A. Additional results for Gaussian mean-shift

In this section, we consider the Gaussian mean-shift setup defined in Section 4.3, where () =
N(p,¥) and P = N(0,%) with mean 1 € R and covariance matrix ¥ € R4, We derive
analytical expressions of the moments of U-statistics for (i) KSD with RBF, (ii)) MMD with RBF
and (iii) MMD with linear kernel. We also verify Assumption 2 for the three cases, which confirm
that our error bounds apply.

Remark on verification of Assumption 1. Recall that Assumption 1, which controls the mo-
ment ratios M., /o and Meond,w/0cond for some v € (2, 3], is required for our bounds to
imply a convergence theorem. As discussed in the main text, this issue is not specific to our
theorem and is also relevant to e.g. Berry-Esséen bounds for sample averages of { f(X;)}" , for
f:R? - Rand d large. A detailed verification requires a careful calculation to control the order of
M, otanls Meond;y and ocong. For KSD and MMD with the RBF kernel, a careful control of o,
and o.ongq has already been done in the proof of Proposition 18 and Proposition 19, which involves
examining multiple cases depending on the relative sizes of 7, ||it||2 and d followed by an elaborate
calculation. To perform this verification for all cases in full generality, in principle, one may expand
on those calculations and follow a similar tedious argument. In the sections below, we perform this
verification only for the setup in Fig. 1, i.e. KSD with the RBF kernel in the case ||x1]|2 = ©(1) and
~v = Q(d) and MMD with the linear kernel in the general case. For MMD with the RBF kernel,
we discuss the relevance of this verification to Gao and Shao (2021), who has done a verification
of similar quantities but also in a special case. In Figure 6, we also include simulations verifying
Assumption 1 under the setups considered in Figure 1-3, where we demonstrate that the moment
ratios stay around 1 as the dimension varies from 1 to 2000.

A.1. A decomposition of the RBF kernel

For both MMD and KSD, the key in verifying the assumptions for the RBF kernel is a functional
decomposition. The usual Mercer representation of the RBF kernel is available only with respect
to a univariate zero-mean Gaussian measure and involves some cumbersome Hermite polynomials.
Since we do not actually require orthogonality of the functions in Assumption 2, we opt for a simpler
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functional representation as given below. We also assume WLOG that the bandwidth v > 8, since
we only consider the case v = w(1) in our setup.

Lemma 20 Assume that v > 8. Consider two independent d-dimensional Gaussian vectors U ~
N(p1,1g) and V ~ N (pa, 1) for some mean vectors py, pia € R%. Then, for any v € (2, 4] and
ui, 2 € RY, we have that

Bl exp (- 510 - VIB) - I, (S Mei@astv)[ ] = 0.

where ¢y (x) = aFe=/ ) and A= ﬁfor each k € NU {0}.

To see that Lemma 20 indeed gives the functional decomposition we want in Assumption 2, we
need to rewrite the product of sums into a sum. To this end, let g4 be the d-tuple generalisation of
the Cantor pairing function from N to (N U {0})? and [g4(k)]; be the I-th element of g4(k). Given
{132, and {7 }5°,, from Lemma 20, we define, for every k € Nand x = (21,...,24) € RY,

d . ) d i«
ar = [T, Ngaoon and Ue(x) = T2y D, (20) - ™

With this construction, for each K € N, we can now write
d K
[T, (X Mok )ei(vi))

-----

K
= D k=0 gz ki) Cor rkd) (O) gz rey (V) -

Since the Cantor pairing function is such that min;<4[gq(K)]; — oo as K — oo, Lemma 20 indeed
gives a functional decomposition in terms of {cv; }7° , and {9, }2° as

Ef|exp (- 510 =VIB) = X0, onn(U)un(V)| | 225 0. ®)

We remark that both oy, and ¢, are independent of the mean vectors 7 and o, which makes this
representation useful for a generic mean-shift setting.

A.2. KSD U-statistic with RBF kernel
Under the Gaussian mean-shift setup with an identity covariance matrix, gradient of the log-density
is given by V log p(x) = —x for x € R? and the U-statistic for the RBF-kernel KSD is
T T
upP(x,x') = (Vlogp(x)) (Vlogp(x'))a(x,x') + (Vlogp(x)) Var(x,x')
+ (Viogp(x)) ' Vik(x,x') + Tr(ViVar(x,x'))

_ 2 _ 2
R L I N )

I 2 +1 d
— exp(— lIx 2;( ||2) (XTX/ _ 7,},2 HX_X/H% + ;) ) (9)

We first verify that Assumption 2 holds by adapting {a }7° ; and {¢}7° ; from Appendix A.1I.

19



HUANG L1U DUNCAN GANDY

Lemma 21 Assume that vy > 24. For k' € N, consider

+1
Ak —1)(d+3)+1 = sz Dr—1)(a+3)+1(x) = Y (x)(Ix[3+1),
41
Ak —1)(d+3)+2 %ak/ ; D —1)(a+3)+2(x) = Ve )|Ix]3
d  y+1
A(k'—1)(d+3)+3 = (7 77 )Oék/ Pk —1)(d+3)+3(X) = Vi (%)

and forl =1,...,d, define

¥ 42y +2

AR —1)(d+3) 434+ = oS rr—1)(d+3)+3+1(X) = Y (X))

Then Assumption 2 holds with any v € (2, 3] for u = ulSP, {\(}2° | and {¢1.}32, defined above.

The following result (proved in Appendix F.2) provides analytical forms or upper bounds for
the moments of KSD U-statistic.

Lemma 22 (KSD moments) Let x be a RBF kernel with bandwidth v = w(1), and let X, X'
be independent draws from Q). Under the mean-shift setup with an identity covariance matrix, it
follows that

(i) Foreveryx € R,
gKSD(X) E[ KSD(X X/)]

d/2 1 2\ (247, T
= (520) "o (e #18) (2207 - i) -

/2
(ii) The mean is given by D¥SP(Q, P) = (ﬁ) i3 5

(iii) The variance of the conditional expectation g¥SP (X) is given by

/2 d/2
2 oa 2+y (1+7)B+) 1) .
o = (rgmrn) (il + (1= (S50 ™) )
(iv) The variance of uSP (X, X') is given by

d/2 2d 447)\%4?
I 5 L (- '““2+2||u||§+(1—(?2&33) Il

) < M 2> ) ;

(v) For any v > 2, there exist positive constants C, Co depending only on v such that the v-th
absolute moment of the conditional expectation satisfies

y vd/2 1+ d/2 y y
Elg"* X)) < (25) (k) (Callulls + Callul) -
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Figure 5: Verifying the analytical expressions for the first two moments of KSD and MMD. Top. KSD moments derived
in Lemma 22. Bottom. MMD moments derived in Lemma 24. The ground truth is estimated using n = 4000 samples
for KSD and n = 10000 samples for MMD, respectively, and the reported results are averaged over 5 random seeds.
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Figure 6: Verifying Assumption 1 for v = 3 for KSD and MMD with RBF kernels. All moment ratios appear to be
bounded by a dimension-independent constant. Left and middle-left. KSD moment ratios. Middle-right and right. MMD
moment ratios. The reported results are averaged over 5 random seeds.

(vi) For any v > 2, there exist positive constants Cs, Cy, C5, Cg depending only on v such that
the v-th absolute moment of ul°P (X, X') satisfies

) ar > , y
B[P, X)) < (55=) " (Cod”/?+Ca(5)" + Collulls + Colll

v+
v 2v
+_O<duﬂ2+_§;_+ WHP )>'
Y v

In particular, when ||p|ls = ©(1) and v = Q(d), Assumption 1 holds with any v > 2 for usSP
under Q.

A.3. MMD U-statistic with RBF kernel

Under the Gaussian mean-shift setup with an identity covariance matrix, the MMD U-statistic with
a RBF kernel has the form

uMMP(z,2) = w(x,x') + Ky, ¥) — K(x,y') — 6(xy)

_ |x —x'|3 ly —y'lI3 Ix —y'l3 Ix" - yl3
= exp (— 5 +exp | — > —exp | — o —exp | — o , (10)

for z .= (x,y),2z = (x,y’) € R*., We first verify that Assumption 2 holds again by adapting
{on}32 and {41 }72 | from Appendix A.1.
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Lemma 23 Assume that v > 8. Then Assumption 2 holds with any value v € (2,3] and the
function u((x,y), (x',y")) = «MMP((x,y), (X, y")) for x,y, X',y € R% with the sequences of
values and functions given for each k € N as vy, = oy, and ¢r(X,y) = ¥r(x) — Yi(y).

We next compute the moments. The analytical form of the population MMD (i.e. the expecta-
tion) has been derived in previous works under both the Gaussian mean-shift setup with a general
covariance matrix > (Wynne and Duncan (2022, Proposition 2, Corollary 19); (Ramdas et al., 2015,
Proposition 1)) and an expression up to the learning term was also derived under a more general
mean-shift setup (Reddi et al., 2015, Lemma 1). We only consider the Gaussian mean-shift case
with 3 = I; but provide expressions for the second moments and a generic moment bound, while
making minimal assumptions on the kernel bandwidth compared to Reddi et al. (2015).

Lemma 24 (RBF-MMD moments) Let x be a RBF kernel and let X, X' ~ Q and Y, Y' ~ P
be mutually independent draws. Under the mean-shift setup with an identity covariance matrix, it
follows that

(i) Foreveryz = (x,y) € R,

g™ (z) = E[MMP(z, 7))

d/2 1 1
_ (11 ) / (e—m—iwux—un% L e L1 _e—mny—m@> :
0l

d/2 1
MMD _ _ 2\ .
(ii) The mean is given by D (Q,P) = 2<2+7> (1 exp( 2(2+7)HNH2)) ;
(iii) The variance of the conditional expectation is given by

/2 /2
2 2 v
s = 2(135) " (535)
gl 3+

1 9 3+ d/2(1+~/)d/2 (_ 1 2)

(1o (<giaitd) 2 (32) " (332) " o (— sy Il

7+ 5 3+ /2 1+~ /2
_QGXP<_W” H> (2+7) (2+7>

(5" () e (< 1i3) )

(iv) The variance is given by

Uf2ul] = 2($)d/2 <1—|—exp <_4_|1_»y||/‘”%)> _2<$)d
N 1 V) 2y g2
8<3+7) (H—W) exp( 2(1+7)(3+7)||/L||2>

~2(52) e (5 ulB) +8 (52 ) e (— gy l3)
21 +) FP\ T2 A 2++) P\ T2ty H2)

While we do not verify Assumption 1 here, we remark that Gao and Shao (2021) also encounter
similar moment ratios when deriving finite-sample bounds for MMD with a studentised version of
U-statistic (see e.g. their Theorem 13). They show that those ratios are controlled under an elaborate
list of assumptions; in particular, those assumptions hold for the RBF kernel under a condition that
amounts to choosing v = ©(d) in our Gaussian mean-shift setup. For our case, as discussed, a
rigorous verification of Assumption 1 can be done by following the proofs of Propositions 18 and
19 to control Mcona,, and My, for any v > 2. Fig. 6 also verifies Assumption 1 by simulation.
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A.4. MMD U-statistic with linear kernel

In this section, we consider the mean-shift setup with a general covariance matrix > € Rixd je.,
Q =N (1, %) and P = N(0,%). The MMD with a linear kernel x(x, x’) = x ' x’ has the form

uMMD (Z’ Z/) — XTX/ + y‘I'y/ . XTy, . yTX, 7

/

where z == (x,y),z = (x/,y') € R?% In this case, Assumption 2 holds directly because we can

represent UMMD as

UMMD(

) (x' —y) Zl . x)—y) = Z;l:l Wb (z)hi(z') , (1)
where v; = 1, ¢y(z) = x; — y and Yy (2') = 7 — y;.

z,7z) = (x—y

We next compute the moment terms and verify that Assumption 1 holds. The next result, proved
in Appendix F.4, gives the analytical expressions of the first two moments of the linear-kernel MMD.

Lemma 25 (Linear-MMD moments) Let k be a linear kernel, and let X, X' ~ QandY,Y' ~ P
be mutually independent draws. Write Z = (X,Y) and Z' = (X', Y'). Under the mean-shift setup,
it follows that
(i) Foreveryz = (x,y) € R?L, we have g"™4(z) :== EuMMP (2, Z)| = u'y —p'x;
(ii) The mean is given by DMMP(Q, P) = ||u||3 ;
(iii) The variance of the conditional expectation g™™9(Z) is given by afond =21 S ;
(iv) The variance of u™MMP(Z,Z') is given by oF ;; = 4Tr(22) +4uTSp
(v) The third central moment of g™ (Z) satisfies M Ond 3 < Cp TSu)3/2 for some absolute
constant C ;
(vi) The third central moment of uMMP(Z,Z') satisfies Mf?{lll;s < CO(Tr(3?) + MTEM)3/2 for
some absolute constant C'.
In particular, Assumption 1 holds with v = 3 for u™™P defined in (11) under Q.

In the last example in Section 4.3, we chose 1 = (0,10,...,0) € R and a diagonal ¥ with
Y11 =05(d+1),X; = 0.5fori > 1and X;; = 0 otherwise. Note that by the invariance of
Gaussian distributions under orthogonal transformation, this is equivalent to choosing > as 0.515 +
0.5J 4, where I; € R4*? is the identity matrix, J4 € R*4 ig the all-one matrix and 1 is transformed
by an appropriate orthogonal matrix of eigenvectors. Notably, this choice ensures the limit of MMP
remains non-Gaussian. Indeed, when () and P are Gaussian, the statistic D%MD can be written as a
sum of shifted-and-rescaled chi-squares, where the scaling factors are 0.5(d + 1),0.5,...,0.5, the
eigenvalues of ¥. As d grows, the eigenvalue 0.5(d + 1) dominates, and the limiting distribution
is then dominated by the first summand, thereby yielding a chi-square limit up to shifting and
rescaling. This is numerically demonstrated in the right figure of Fig. 1. As a remark, we do not
expect this exact setting to occur in practice; it should instead be treated as a toy setup to demonstrate
the possibility of non-Gaussianity and convey an intuition of when this may occur.

Appendix B. Auxiliary tools
B.1. Generic moment bounds

We first present two-sided bounds on the moments of a martingale, which are useful in bounding
v-th moment terms of different statistics. The original result is due to Burkholder (1966), and the
constant C,, is provided by von Bahr and Esseen (1965) and Dharmadhikari et al. (1968).

23



HUANG L1U DUNCAN GANDY

Lemma 26 Fix v > 1. For a martingale difference sequence Y1, ..., Y, taking values in R,
i _ n n x _ n
¢ nrn1n{0,l//2 1} ZiZI EHYZV’] < E H Zi:1 }/Vz{l/] < O, e {0,v/2—-1} Zi:l EHYZV/] :

for C,, := max {2, (8(v — 1) max{1,2""3})"} and some absolute constant ¢, > 0 that depends
only on v.

The next moment computation for a quadratic form of Gaussians is used throughout the proof:

Lemma 27 (Lemma 2.3, Magnus (1978)) Given a standard Gaussian vector n in R™ and a sym-
metric m x m matrix A, we have that E[n" An] = Tr(A) and

E[(n" An)?] = Tr(A)? + 2Tr(A%), E[(n' An)®] = Tr(A)3 + 6Tr(A)Tr(A?) 4 8Tr(A?) .
The next two results are used for the moment computation involving an RBF kernel.
Lemma 28 Fixm; € R? and a; > 0 fori = 1,2. Let X ~ N'(my,a?l;), and let f : RY — R be
a deterministic function such that E[| f (X)|] < oo. It follows that
|X—m|2 a? d/2 m; — mol|3
Blreen (- B )] = (F57) " o (- S EAov).

2.2
Az
aj+taj

2 . a%a% 1 1 2
where W ~ N (m, a*1;) with m = . (a—gml + a—ng) and a* =
1 2 1 2

Lemma29 Fix mj,my € R? and a; > 0 fori = 1,2,3. Let X ~ N(my,a?ly) and X' ~
N (my, a3ly), andlet f : RY x R — R be a deterministic function with E[| f (X, X')|] < oc. Then

E[f(x,x/) exp <—”X2‘a§(”§)}

- (et "o (- el (v )]

ai + a3 + a3 (a3 + a3 + a3 a3 + a3

where W ~ N (m, a?1,) and W' ~ N (', (o)1) are independent with

2/ 2 2 2/ 2 2
. ai(az+a3) (1 1 2 . aj(az +a3)
m = = 2 7 | =M1 + — My ), a = - 2 7
a7 +aj; +a3z \ay a; + aj a7 +aj +az
2 2 2
/ asz n2 azas
m = ———In a = .
G t+ai 2 (a) a3 + a3

B.2. Moment bounds for U-statistics

We first present a result that bounds the moments of a U-statistic D,, defined as in (1).

Lemma 30 Fixn > 2 and v > 2. Then, there exist absolute constants c,,, C,, > 0 depending only
on v such that

E[[Dy —EDy"] < Cun”/(n— 1) Mg, + o (n — 1) M,

cond;v

EHDN - E‘Dn|y] > CVn(n - 1)71/ (I:jond;u + CVni(Vil) (n - 1)7(V71)Mfl:111;y :

In other words,

E[|Dn —ED,|"] = O(n™/2 M nq, +n "My, |

cond;v

E[|Dn, — ED,|"] = Qn~“"YMm

—2(v—1 v
cond;v +n ( ) fi ) .

ull;y
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The next two results summarise how the moments of variables under the functional decomposi-
tion in Assumption 2 interact with the moments of the original statistic v under R:

Lemma 31 Let {¢1}72,, {\}72, and €., be defined as in Assumption 2. For X1, Xy Mg

write py, = E[¢r(X1)] and let the moment terms D, Mcond.,, M, be defined as in Section 2.1.
Then we have the following:

(i) | 8 \ed — D < excas
(ii) for any v € [1, 3], we have that

1 v v K v v v
1 Meona)” = i < E[| S0, Ml@n(X) = dit| | < 4((Meonan)” + )

(iii) there exist some absolute constants ¢, C' > 0 such that

E H Zszl )\k((bk(xl) - Mk)(¢k(X2) - ,U/k)‘y} < 4C(Mfull;u)y - %(Mcond;uyj + (40 + 2)€VK;V 5

EH Z,ﬁil M (0r(X1) — pr) (01 (X2) — ) V} > E(Mfull;u)y — 8(Mcondw)” — (c+ 8)elk.y, -

The next result assumes the notations of Lemma 31, and additionally denotes

AR = diag{\1,..., A\g} € REXK " (z) = ($1(2),...,0x(x))" € RE.

Lemma 32 For u* := E[¢" (X1)] and 25 := Cov[¢" (X1)], we have

Oeond — 40conde k2 — A% < () TAKSEAK (1) < (0cond + 26k32)°

cond
(otan — ex2)® < Tr(AREF)?) < (opn +ex2)?

In particular, for v € [1,3] and two i.i.d. zero-mean Gaussian vector Zy and Z in R¥ with variance
YK there exists some absolute constant C' > 0 such that

E[|(u")TARZ "] < T(0%na + 8¢%.2) E[|Z{ AR Zo|"] < 6(ofm + %)
E[| (o™ (X1) — ) TAKZy|"] < 8C(Mranw)” — (Meonay)” + (8C + 4)e%., -

The next lemma gives an equivalent expression for W defined in (5) and also controls the
moments of W

Lemma 33 Let {nZK . be a sequence of i.i.d. standard Gaussian vectors in RX. Then
(i) the distribution of WT{( satisfies

d 1 n
Wi = m(Zm:l(U{()T(ZK)IMAK(EK)U%JK - ”TT(ZKAK)) +D;

(ii) the mean satisfies E[WX] = D for every K € N;
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(iii) the variance is controlled as

2 2
no D) (o — €2)? < Var[WE] < no D) (O + €K:2)7 ;

(iv) the third central moment is controlled as
8(Elu(X1, Xo)u(Xz2, X3)u(Xs, X1)] — Mins + (Mrns + €5;3)°)
n3/2(n — 1)3/2 ’

8(E[u(X1, X2)u(X2, X3)u(Xs, X1)] + Mg — (Muns +ex33)°)
n3/2(n — 1)3/2 )

E[(WK - D)*] <

E[(WK - D)*] >

(v) the fourth central moment is controlled as

12
E(WK-D)Y) < o2 (4E[u(xl,XQ)U(XQ,Xg)u(xg,x4)u(x4,xl)]
- 4Mé111;4 + 4( Mg + £rc,0)* + (opun + €K;2)4) ;
12
E[(WK - D)}] > m(4E[u(xl,XQ)U(XQ,Xg)u(xg,x4)u(x4,xl)]

+ 4M§111;4 — (Mg + erca)* + (o — €K;2)4) ;

(vi) we also have a generic moment bound: For m € N, there exists some absolute constant
Cy, > 0 depending only on m such that

Cm
E[(Wf)Qm] < nm(n — 1)m (Ufull + 5K;2)2m +Cp D™ ;
(vii) if Assumption 2 holds for some v > 2 then lim o, Var[WX] =
holds for some v > 3, then

nin—1) 2 - If Assumption 2

hm E[(Wr{{ o D)g] — 8]E[’LL(X1,X2)’M(X2,X3)U(X3,Xl)}

K—oo n3/2(n —1)3/2 )

and if Assumption 2 holds for some v > 4, then

lim E[(WX - D)Y] = 12(4E [u(X1, X2)u(Xa, Xz)u(Xs, Xa)u(Xa, X1)] + ofun)
K—co " n2(n —1)2 :

B.3. Distribution bounds

The following is a standard approximation of an indicator function for bounding the probability of
a given event; see e.g. the proof of Theorem 3.3, Chen et al. (2011).

Lemma 34 Fixany m € NU{0} and 7,0 € R. Then there exists an m-times differentiable R — R
function ;s such that bz ys.5(7) < Ligsry < hypiris(z). For 0 < v < m, the r-th derivative

h(’“)

mir-s 18 continuous and bounded above by 6~". Moreover, for every € € [0, 1], h(™) satisfies that

BT (@) = b ()] < Cone 67 |z —y|e

m;T;0 m;T;0

with respect to the constant Cy, . = (Lmnb J) (m 4+ 1)m*e,
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The next bound is useful for approximating the distribution of a sum of two (possibly correlated)
random variables X and Y by the distribution of X alone, provided that the influence of Y is small.

Lemma 35 For two real-valued random variables X and Y, any a,b € R and € > 0, we have

Pla<X+Y <))
Pa< X +Y <b)

Pla—e< X <b+e)+P(Y]|>¢),

<
> Plate<X <b—e)—P(Y|>0).

Theorem 8 of Carbery and Wright (2001) gives a general anti-concentration result for a polyno-
mial of random variables drawn from a log-concave density. The next lemma restates the result in
the case of a quadratic form of a K-dimensional standard Gaussian vector 7.

Lemma 36 Let p(x) be a degree-two polynomial of x € RY taking values in R. Then there exists
an absolute constant C' independent of p and 1 such that, for every t € R,

P(lp(n)| <t) < CEPE[pm)) ™" < CH2(Varlp(n)]) ™"

B.4. Weak Mercer representation

In Section 4.2, we have used the weak Mercer representation from Steinwart and Scovel (2012). We
summarise their result below, which combines their Lemma 2.3, Lemma 2.12 and Corollary 3.2:

Lemma 37 Consider a probability measure R on R?, V1, Vy " R and a measurable kernel k*
on R IfE[k*(V1,V1)] < oo, there exists a sequence of functions {¢y}3¢, in Lo(R®, R) and a
bounded sequence of non-negative values {)\k}zozl with limy_, o A\, = 0, such that as K grows,
{ Zle Me®r(V1)or(Va) — k*(V7, V2)| — 0. The series converges R ® R almost surely.

Appendix C. Proof of the main result

In this section, we prove Theorem 2. The proof is necessarily tedious as we seek to control “spec-
tral” approximation errors (i.e. the error from a truncated functional decomposition) and multiple
stochastic approximation errors at the same time. The section is organised as follows:

* In Appendix C.1, we list notations and key lemmas that formalise the steps in the proof outline
in Section 3.3;

* In Appendix C.2, we present the proof body of Theorem 2, which directly combines results from
the different lemmas;

* In Appendix C.3, C.4, Appendix C.5 and C.6, we present the proof of the key lemmas. Each
section starts with an informal sketch of proof ideas followed by the actual proof of the result.

C.1. Auxiliary lemmas
Recall that our goal is to study the distribution of

1
Dn = 25— 2 icizien U0 %) -
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The three results in this section form the key steps of the proof. We fix ¢ > 0 to be some normali-
sation constant to be chosen later.

1. “Spectral” approximation. For K € N, we define the truncated version of D,, by

DE = s Y e S MOk(X) (X))
1

= D) Dorciggen (8" (X)) AN (X))

We also denote the rescaled statistics for convenience as

Dn — n(n —1) D, . L n(n —1)

o n o

DX

The first lemma allows us to study the distribution of DX in lieu of that of D,, up to some approxi-
mation error that vanishes as K grows.

Lemma 38 Fixd,0 >0, K € Nandt € R. Then

_ 3nt/4(n — 1)1/4511,{/;21

P(DE >t 46) — ey <P(D, >t) <P(DEX >t —08)+¢&h, &= s

2. Gaussian approximation via Lindeberg’s technique. The distribution of DX is easier to
handle, as it is a double sum of a simple quadratic form of K -dimensional random vectors. Let
Z1,...,7Z, be ii.d.Gaussian random vectors in R with mean and variance matching those of
% (X1), and denote Z;, as the k-th coordinate of Z;. The goal is to replace DX by the random
variable

K . 1 TAKrg _ 1 K 7
bz = n(n—1) Zlﬁ#a‘gn Z; \"Z; = n(n—1) Zlgi;ﬁjgnzk:1 AeZikZjk -

Notice that ~D§ takes the same form as DS except that each ¢ (X;) is replaced by Z;. Analogous
to D, and DX, we also define a rescaled version as

~k _ \/nn—-1)Dj
DZ f-

The second lemma replaces the distribution fo by that of f)g , up to some approximation error that
vanishes as n grows:

Lemma 39 Fixd,0 >0, K € N, t € Rand any v € (2,3]. Then
P(DE >t—6) < P(D§ >t—26) + Es.x, P(DE >t46) > P(DE >t+20) — Es.pe

where the approximation error is defined as, for some absolute constant C' > (),

. C (Mfull;u)y + EVK;V (Mcond;l/)y + EVK;,/
E65K = 5 v/2—1 v _1\—v/2 v
on o (n—1) o
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3. Replace DX by UX. As in the statement of Theorem 2, let {n}" | be the i.i.d. standard
normal vectors in R”, and recall the notations x* = E[¢® (X)] and X = Cov[¢p® (X)]. We
can then express D? as

1 T
Dé{ - n(n —1) Zlﬁi#ign ((EK)I/QTIZK + 'UK) AK((EK)I/2 ¥ + 'uK)

1
= D) Dringen ) () EAT () 4+ 25T () TAK () 2K

+ ( ’uK )T AK MK ]
This is similar to the desired variable U except for the third term:

n

1
Uy = n(n—1) Zlgz‘#jgn(m ) H(SEV2AK (SF) 2K 4 2 Z KYTAK (Y 2K 4 D

n(n—1)UK

As before, we denote Uff = = . The next lemma shows that the distribution of D? can

be approximated by that of [7,{( , up to some approximation error that vanishes as K — oc.

Lemma 40 Forany a,b € R and € > 0, we have that

EK;1

P(a < D

I/\
IN

b)

IN

P(a—e

IN
IN

b+e) + VT

K K
A n n—1)"%/2g"
NHK TK E€K;1
IP)( < DZ < b) = ]P)(a +es Uy < b— 6) - en—1/2(n—1)"12¢

4. Bound the distribution of 175( over a short interval. If we are to use Lemma 38 and Lemma
39 directly, we would end up comparing P(D,, > t) against the probabilities (U > ¢ + 26) and
P(UK > t — 26) for some small § > 0. It turns out these are not too different from P(UX > t): As
Uf is a quadratic form of Gaussians, we can ensure it is “well spread-out” such that the probability
mass of UX within a small interval (¢t — 28, + 2J) is not too large. This is ascertained by the
following lemma:

Lemma 41 Fora < b € R, there exists some absolute constant C such that

~ 1 —1/4

Pa < UK <b) < Cb—a)'2( S (onn — ex)? + " (0

(Jcond - 2acond5K;2 — 45}(;2))

C.2. Proof body of Theorem 2
Fix §,0 > 0, K € Nand ¢t € R. By Lemma 38, we have that

3n1/4(n - 1)1/4511,(/;21
o1/251/2

P(DX > t+06) —clx <P(Dp >t) <P(DX >t -08)+ef, ex=
By Lemma 39, we have

P(DE >t—6) < P(D§ >t—28) + Es.x, P(DE >t46) > P(DE >t+20) - Es.pe
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where the error term is defined as, for some absolute constant C’ > 0,

. Cl (Mfull;u)y + 5?{;1/ (Mcond;u)y + El}’(;y
E(S;K = v/2—1 v _ —v/2 5V
ovn o (n—1) o

To combine the two bounds, we consider the following decomposition:

P(DE >t —26) = P(DE >t)+P(t—26 < D§ <1),
P(DS >t425) = P(DE >t)—P(t < D§ <t +2). (12)

This allows us to combine the earlier two bounds as
|P(D,, >t) —P(DF >t)| < max{P(t—20 <D} <t),P(t<Df <t+28)}+ Es;x +¢k ,

which gives the error of approximating the c.d.f. of D,, by that of Dg . Now fix some € > 0. By
applying Lemma 40 and taking appropriate limits of the endpoints to change < to <, > to > and
taking the right endpoint to positive infinity, we can now approximate the c.d.f. of D? by that of
UK.

P(t—20 < Df <t) < P(t =25 —e <UN <t+6) + i “gymmy
Pt <DE <t4+25) < Plt—e<UK <t+20+¢) + m,l/g(i’{jl),ma 7
P(D7 >t) < P(Uy >t—¢) + 6n—1/2(ZK_;11)—1/20 ’
P(DE >t) > P(UK >t+¢) — mflm(jfjl),u% .

Substituting the bounds into the earlier bound and using a similar decomposition to (12), we get that
the error of approximating the c.d.f. of D,, by that of UK is

|P(D,, > 1) —P(UF > t)| < max{P(t —e <UF <t) ,Pt<UF <t+e)}
+max{P(t —26 —e < UK <t+e) Pt —e<UE <t+26+¢)}
4e k.
+ Es.xc + €l + 2

en~12(n—1)"120

To bound the maxima, we recall that by Lemma 41, there exists some absolute constant C” such
that for any a < b € R,

1

N _ ~1/4
Pla<UF <b) <C"(b- )1/2< 5 (ohn — ex2)” + %(Ufond — 20cond€K;2 — 45)) -

Substituting this into the above bound while noting (28 + 2¢)'/2 < 261/2 + 2¢1/2, we get that

|P(D,, > t) —P(UF > 1)

-1 —1/4
< C//(6€1/2 —1—451/2)< _(0fa — €K 2)2 + %
4EK;1
en~12(n—1)"12¢ "

2
(Ucond - QJCOHdEK;Q - 45[(;2))

+ Es.i + e +
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We now take K — oo. By Assumption 2, e .o — 0 in the first term and the two trailing error terms
vanish. The second error term becomes
c’ ((Mfull;u)y

EévK - ovnvy/2-1

MCO]’]'UV
I ( av) )

ov (n—1)—v/20v

By additionally taking ¢ — 0 in the first term and taking a supremum over ¢ on both sides, we then
obtain
g,

M : 7 0-211 zon 71/4
super |[P(Dy > t) — Klgnoo P(UK > t)‘ < 40”51/2( ;2“ + m)

c’ (Mranw)” (Mcona;)”
+ 51/”1//2—1 ( oV + (n—l)_”/20V> .
Finally, we choose
2
—v=2 (M) (Meconaw)” )m
= 2v+1 5
5 n < ov + (’I’L*l)_'//20'u

2 2 —1/4 .
and 0 = Opax = max{og, (n—l)l/Qacond}. Then (Ué‘é“ +(nfi@%) / < 1, and by redefining
constants, we get that there exists some absolute constant C' > 0 such that

supeg [P(Y YD, > ¢) — tim p(YEE—DpK sy
teR Omax K—oo Omax n

y v _1
< cpis (Bl (o) 20 -

Uﬁ]ax ('I’L - 1)_D/2 o—Klax

IN

v
_1 _v=2 /M . 201
max;v
22+1(C'n~ w2 (7> ,

Omax

where we have recalled that My, = max{ M., (n — 1)1/2Mopq., }. This finishes the proof.

C.3. Proof of Lemma 38

Proof overview. The proof idea is reminiscent of the standard technique for proving that convergence
in probability implies weak convergence. We first approximate each probability by the expectation
of a 6! Lipschitz function h that is uniformly bounded by 1. This introduces an approximation
error of &, while replaces the difference in probability by the difference E[h(D,,) — h(DX)]. The
expectation can be further split by the events {|D,, — DX| < ¢} and {|D,, — DX| > €}. In the first
case, the expectation can be bounded by a Lipschitz argument; in the second case, we can use the
boundedness of h to bound the expectation by 2P(|D,, — DX| > ¢), which is in turn bounded by
a Markov argument to give the “spectral” approximation error. Choosing e appropriately gives the
above error term.

Proof of Lemma 38 For any 7 € R and 6 > 0, let h,.5 be the function defined in Lemma 34 with
m = 0, which satisfies

h~,-+5;5(23) < H{3&>'r} < h7’§5(x)'

By applying the above bounds with 7 set to ¢ and ¢ — &, we get that

P(Dn > t) - P(ﬁé{ >1— 5) - E[H{Dn>t} - I[{D£<>1t—5}] < E[ht;é(bn) - ht;é(Dg)] )
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and similarly
P(DX > t+08) —P(Dy, > t) < Elhyy55(DE) — hyys,5(Dy)] -

Therefore, defining &, := [E[h,.5(Dy) — hr.s(DE)]

, we get that
P(DE >t4+06) —&ys < P(Dp>1) < P(DE >1-0) +¢& .
To bound quantities of the form &, fix any € > 0 and write §; = &1 + &+ 2 where
b1 = [B[(hrs(Da) = hes (DI Ty 5, picia] |
§ra = ‘E{(hm(f)n) - hT;é(Df))H{\ﬁFD,§|>e}” :
The first term can be bounded by recalling from Lemma 34 that h.s is 6 ~L_Lipschitz:
&1 <0 'E[|D, - bﬂﬂ{mn_ﬁﬁgg}} < 6 'eP(|D, - DE| <€) < 57te.

The second term can be bounded by noting that /.5 is uniformly bounded above by 1 and applying
Markov’s inequality:

r2 < 2Bl 5 prisgl = 2P(1Dn — Dif| > €) < 27 'E[|Dn — D] .

By the definition of D,, and Eff , a triangle inequality and noting that X, ..., X,, are i.i.d., the
absolute moment term can be bounded as

—-DK|] = ﬁE“Dn — DX

N wﬁ” lez‘#an (u(Xi,X5) = Zszl )‘mk(xi)%(xj)))
V(5 Xa) — SR Mo (K1) (X)
=0 '/n(n—Dexa -

Combining the bounds on &, 1, &, 9 and E[| D,, — D] and choosing ¢ = (vn(n— Do 'ex)'?,
we get that

Ly

IN

L1

_ L 3n1/4(n — 1)1/451/.2
& <o let2y/n(n—1)elo ek = 1725172 o= ek,
which yields the desired bound

P(DE > t+6) —e < P(D,>t) < P(DE >t —8)+e .
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C.4. Proof of Lemma 39

For convenience, we denote V; := ¢ (X;) throughout this section.

Proof overview. The key idea in the proof rests on Lindeberg’s telescoping sum argument for
central limit theorem. We follow Chatterjee (2006)’s adaptataion of the Lindeberg idea for statistics
that are not asymptotically normal. As before, the difference in probability is first approximated by
a difference in expectation E[h(DX) — h(D¥)] with respect to some function h, which introduces
a further approximation error §. The next step is to note that both fo and D? can be expressed in
terms of some common function f , such that

= f(Vi,...,Vy), DY = f(Z.,....2,) .

Denoting g = h o f , we can then write the difference in expectation in terms of Lindeberg’s tele-
scoping sum as

Zf L (B[ Vl,...,Vi_l,Vi,zM,...,zn)
—g(Vl,...,Vl;l, Zi, Zi+1,...,zn)]) .

Since each summand differs only in the ¢-th argument, we can perform a second-order Taylor ex-
pansion about the i-th argument provided that the function & such that A is twice-differentiable. The
second-order remainder term is further “Taylor-expanded” to an additional e-order for any € € [0, 1]
by choosing h” to be e-Holder. Write D; as the differential operator with respect to the i-th ar-
gument and denote fi(x) == f(V1,...,Vi_1,X,Ziy1,...,Zy). Then informally speaking, the
Taylor expansion argument amounts to bounding each summand as

1

[(summand);| < E[D;(h o f})(0)(Vi — Z))] + ;E[D?(h o F)(0)(V? - Z2)]

+ = (Holder constant of ") x E[|D; f;(0)V; }2+6 + | Difi(0 z‘2+6] ,

where we have used the fact that fz is a linear function in expressing the last quantity. The first two
terms vanish because h o ﬁ is independent of (Vi, Zi) and the first two moments of V; and Z;
match. The third term is bounded carefully by noting the moment structure of V; and Z; to give the
error term %E& - Summing the errors over 1 < ¢ < n then gives the Gaussian approximation error
bound in Lemma 39.

Proof of Lemma 39 For any 7 € R and § > 0, let .5 be the twice-differentiable function defined
in Lemma 34 (i.e. m = 2), which satisfies

hetos(®) < Tgsry < hrg(a)
By applying the above bounds with 7 set to t — § and ¢t — 29, we get that

< Elht- 66( 5) = hee 56(Dz)}
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and similarly

P(Dy >1t+25) —P(DY >t+6) = Bl prcsirosy = Lpresies)]
< Ellus25:6(D% ) — husass(DE)] -

Therefore, we obtain that

P(DX >t—06) < P(Df >t—20)+ Ejp, P(DX >t+6) > P(Df >t+20) — Ejp
(14)

where F ;o = sup,cp [E[hrs(DE) — h,.5(DX)]|. The next step is to bound E}. ., to which we
apply Lindeberg’s technique for proving central limit theorem. We denote the scaled mean as

E[Vi] E[Z,]

fo= o 2(n(n—1)/4 — ol/2(n(n— 1))1/4

and define the centred and scaled versions of V; and Z; respectively as

- Vi - 5 . Z; -

Vi'= -y R 4= oy
We also define the function f : (R¥)" — R by
fvi, oo vp) = Z1gi;ﬁjgn<vi + ) "AR (v + 1), where we recall A := diag{\,..., \g} .
This allows us to express the random quantities in (14) as

DE = f(Vy,..., V), DY = f(Zi,...,Zy,).

By defining the random function

FZ(V) = f({fl,...,vi,l,v,ziﬂ,...,Zn) for v GRK and1 <i<n,

we can write E(’;; i into Lindeberg’s telescoping sum as

E(/S;K :SupT€R|E[ T5Of(V1""’Vn)_ T(Fof(z )”
= subyen | S0 Elhra(Fi(Vi) = hrs(Fi(Z)
< supren X, [Elhrg 0 Fi(Vi) = hrg o F(Z)]]

Since h;.5 o f is twice-differentiable, by a second-order Taylor expansion around 0 € RX, there
exists random values 6y, 0z € (0, 1) almost surely such that

- Ohyis 0 Fy(x) - 19%hrs 0 Fi(x) @2

hT;5OFi(Vi) = T‘X:OV iT‘x:OVV'Vi ’
~ Ohr5 0 Fy(x 7 10%hris o Fi(x 7

hT;(; o FZ(Zz) = 567)(() <0 Z; + 7#() x=0,7; i
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Substituting this into the sum above gives

Oh+s o F; ~ ~
Fige < swbren (2] \E[*z‘; 2| (vi- 2]
0%hr.5 0 Fi( 0*hrs 0 Fi(x) ~®2_32h7;5oFi(x) ~®2”>

The first sum vanishes because the only randomness of the derivative comes from F;, who is inde-
pendent of (\71-, Zi), and the mean of \Nfi and Zi match. To handle the second sum, we make use of
independence again and the fact that the second moment of V; and Z; also match: By subtracting
and adding the term

8?hyr.5 0 Fy(x) 9 ?hris 0 Fi(x) N
E{ ox? xzo(vl)® } N E{ ox2 x:o(zi)® } ’
we can apply a triangle inequality to get that
/ 1 n 82h7—;5 [¢] FZ(X) thT;g [¢] FZ(X) C ®2
Brae < goupren (X B[ (50 e, = 50 o) V|

P B[P, - L) 2)) - 09

The final step is to bound the two sums by exploiting the derivative structure of /.5 and ;. Note
that Fj is a linear function: its first derivative is given by

‘Xiezzi

OF;(x) = 237 .. ARV +230 ABZ; +2(n — )AKR € RE

which is independent of x, while its higher derivatives vanish. By a second-order chain rule, this
implies that almost surely

‘ (aZhT;é o Fi(x)
ox2

&hry5 0 Fi(x) ‘
x=0yV; o0x? x=0

) Ve
= (@ (Fi(0v V1)) — 021 (Fi0))) (0F(0) Vi)
< |0Phes (F5(0vV5)) — 0hrs (F3(0)) | |OF;(0) TV¢|2
For v € (2, 3], by the Holder property of 82/17;5 from Lemma 34, we get that almost surely,
|02hr5(Fi(0y V;)) — 02he s (F3(0))| <18 x 3V7257|F;(0v V;) — F;(0)[" 2
=18 x 3V 7257V |0F;(0) T (6, V)|V 2
< 54077|0F;(0) TV, v 2

In the last inequality, we have used that 6y takes value in [0, 1]. Combining the results, we get that
each summand in the first sum in (15) can be bounded as

32h7;5 o F3(x)
Bl (Fe

. 82h-r;5 o F;(x)
x=0yV; 0x?

) V| <saE[oR(0) V]

The exact same argument applies to the summands of the second sum to give

th‘r;(S [e] FZ(X)
E(F

o thT;g [e] FZ(X)
x:QZZ,- 8X2

) 77| <55 EoR(0) i)
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so a substitution back into (15) gives
By <2167 50 (B[0F(0)TVi"] + E[[0F(0) Vil']) .

We defer to Lemma 42 to show that there exists an absolute constant C’ > 0 such that the moment
terms can be bounded as

(16)

E[|0F;(0)TV,[] + E[|0Fi(0)TZ;"] <

— nv/2

Cl ((Mfull;u)u + El}’(;y (Mcond;l/)y + E;{;]/)
oV (n—1)—v/20v

Combining with (14) and defining Es. i to be the upper bound for E. -, we get that
P(DX >t—6) < P(Df >t—28)+ Es.i, P(DE >t+6) > P(Df >t+26) — Ese

where we have made the K -dependence explicit and define, for C' := 27C",

. C (Mfull;y)y + EDK;V (Mcond;u)y + 5?{;1/
E61K = 5 v/2—1 v _1)—v/2 gv
on o (n—1) o

Lemma 42 (16) holds.
Proof of Lemma 42 We seek to bound E[|0F;(0) V|| + E[|0F;(0) T Z;|*] for v € (2,3] and
OF;(0) = 237 ARV 4237 ARZ;+2(n - 1A € RE.

We first focus on bounding the first expectation. By convexity of the function x — |z|”, we can
apply Jensen’s inequality to bound

E[[&E( )TV| sz VIAKV 423 2NV 4 2(n - D
[}62 VIR + EH6Z]>Z Z] ARV, "] + SE[|6(n — 1),JAK\71\”]
2 (B[22, VIASVTTHE[| 30, 2/ AV + E[|(n = D" AR VA["])

IN
\]

where we have noted that v < 3. Since Vi’s are i.i.d., Zi’s are 1.1.d. and all variables involved
are zero-mean, (V;—AK Vi);;ll forms a martingale difference sequence with respect to the filtra-
tiorl 0(}/}, Vi),..., CI(Vf’ Vi,... ,~Vi,1), and so is (ZJ-TAKVZ-)?:iH with respect to the filtration
o(Vi,Zit1),...,0(Vi,Zit1,...,2Z,). This allows the above two moments of sums to be bounded
via the martigale moment inequality from Lemma 26: There exists an absolute constant Cy > 0
such that

E[|0F;(0)"Vi|"]
< C()((Z _ V/2 121 1 |VTAKV | ] o V/2 12] Z+1 ZTAKV | ]
+ (n = 1) E[aT ARV, )

< Coln — 1) (E[[V] AXV,[") + E[|Z] AX V1) + (n = 1) 2E[|T ARV ]
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By the exact same argument, the other expectation we want to bound can also be controlled as
E[|0F;(0)" Z4|"]

< Con— 1) (BIZ] A Zo]") + BIZ] AKVA] + (0 — 1) ?E[|iTAKZ4 "))
Finally, we relate these moments terms to moments of u(X;, Xz2), up to error terms that vanish as
K — oo: Denoting py, == E[¢r(X1)], we have that by Lemma 31,

~ 7 |V 1 K v 4((Mcond;l’)u + €% ;V)
IEH,U«TAKVVH ] = mEHZkzl Ak (or(X1) _:uk)/‘k) } < o-unu/Q(n_l)V}72 ’

and for some absolute constant C; > 0,

EVIA Vo] = o | S M6n(X0) = i) (6x(Xe) = )| |

401 (Mfull;u)y - %(Mcond;u)y + (401 + 2)EVK;U 4CI(Mfull;V)y + (401 + 2)5?{;1/
< <
— O-Vnu/2(n_ 1)1//2 — o-unu/Q(n_ 1)1//2

For the moment terms involving the Gaussians Z1 and Zo, we apply Lemma 32 to show that

EU[LTAKZ ’I/] — EH(E[VI])TAKZ1|V] 7(0:0nd + 851}/(:,2) 7((MCODd§V)V + SEVK;V)
1 O'V’I’LU/Q(’I’Lf 1)1//2 — O'U’I’L”/z('ﬂf 1)u/2 — O'VTLV/Q(nf 1)1//2 ’
EHZTAKZ |u] — E[|Z1TAKZ2|V] 6(”&11 + 5?(;2) 6((Mfu11;l/)u + 5?(;1/)
1 2 o2 (n— 12 = o= 1)72 = gvpr/2(n — 1)v/2

In the last inequalities for both bounds, we have noted that Lo norm is dominated by L, norm since
v > 2. Meanwhile by Lemma 32 again, there exists some absolute constant C'y > 0 such that

ST Ak v El(Vi—E[Vi])TARZ, ") 8C2 (Mruny)” + (8C2 + 4)ek,,
E[|Z, A" V4]"] = ovn/2(n — 1)v/2 < ovnr/2(n — 1)v/2

Substituting the five moment bounds into the earlier bounds on E[|0F;(0) T V;|*] and E[|0F;(0) " Z;|"]
and combining the constant terms, we get that there exists an absolute constant C' > 0 such that

BOF(0)TVil] +E[0R(0)T21"] < 7 (et ¢ St o)

— nv/2 oV (TL— 1)71//2 oV

C.5. Proof of Lemma 40

Proof overview. For convenience, we write

1 2 n
Uo = ooy Dorcimjen ) (SEVPAREI) 20 4 2570 | () TAR (S5) 2
so that
D? _ n(n UU()-I- n(n U(MK)TAKMK, Urll( _ \/n(nfl)Uo_i_ \/n(nfl)D'
o o o o
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To approximate the distribution of D? by that of (7,5 , the proof boils down to replacing (1) T AK 15
by D. We use a Markov-type argument so that we obtain an error term that is separate from the dis-
tribution terms.

Proof of Lemma 40 Recall that Lemma 35 allows us to approximate the distribution of a sum of
two random variables by a single one provided that the other is negligible. Writing

DE = U + (D ~UF) = 03 + 02 () AR — )
we can apply Lemma 35 to obtain that for any a,b € R and € > 0,
Pla < DE <b) <Pla—e< UK <b+e) +P<7W}(MK)TAKMK -2,
Pla<DE <b) >Plate< UK <b—e —P<7W\(NK)TAKMK -D|>¢).

Note that | (") T A% & — D| is deterministic. By a Markov inequality and the bound from Lemma
31, we get that

Vvn(n—1) n(n —1)
P(fl(uK)TAK/,LK _D’ > e) < TE“(NK)TAK,UK _D‘:|
_ |Zk1-(:l AK i, _D| EK;1
T en 2(n—-1)"Y20 = en~V2(n-1)"120 "
Combining the two results gives the desired bounds. |

C.6. Proof of Lemma 41

Proof overview. The key ingredient of the proof is Theorem 8 of Carbery and Wright (2001), which
gives an anti-concentration bound for the distribution of a polynomial of Gaussians in terms of its
variance. In Lemma 36, we have rewritten the result in the special case of a degree-two polynomial,
which allows us to control the distribution of f]f in terms of its variance.

We introduce some matrix shorthands: For any m € N, denote O,, as the zero matrix in R™*",
Jm as the all-one matrix in R™*™ and I,,, as the identity matrix in R™*™. Define the nK x nK
matrix M as

Ok AKX ... AK
Mo AK OK . _ AK®(Jn—In),
D AK
AK L AK O
as well as
pe= (7L @) eRE D 2 =K 01, e REK A= AKX @ 1, € R

We also consider the concatenated n /K -dimensional standard Gaussian vector

no= ()7, T
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Proof of Lemma 41 The goal is to bound the distribution function between a < b € R of

“k  nln—=1) 1 KN\T (s KN\1/2 A K (y2K\1/2, K
Uy = ——U, _ﬁZg#jsn(m) ()20 (s )/771‘

2\/n— Zz ) W)V TAK (5K 2K n(z_l)D

1 2v/n—1 —1
= 777T21/2M21/2n + U”’iﬁ,ﬁzle/% + % D.

oy/n(n—1)

For convenience, define

= p 22 pr5l/2 — ,TARL/2 S S 2v/n—1
Ql' 772 MZ 777 QZ' ILLAZ 777 UO' U\/m@l—i_ O'\/ﬁ QQ'

Denote o := b*T“ and 3 = %H’. Rewriting the probability in terms of Uy, o and /3, we get that
Pa< UK <b) =P((5-0) <O+ "=V D < (5+0a))

:]}D(‘f](ﬂrivn(z_l)D—ﬁ‘ <a).

Since Uj + 7”1(:_1) D — (3 is a degree-two polynomial of 7, we can apply Lemma 36 to bound the
above probability: For an absolute constant C’, we have

Pa < UX <b) < C'a?(Varlly]) ™*, a17)
where the variance term can be expanded as
-~ 1 4(n—1 4
Var[Up] = T Var[Q1] + (202 )Var[Qg] + —5 Cov[Q1, Q2] -

We now provide bound the individual terms in the variance. By noting that each summand in ()
is zero-mean when ¢ # j and that each summand in ()2 is zero-mean, the covariance term can be
computed as

Cov[Q1,Q2] = ZK#JQ El . [ zK)1/2AK(zK)1/2n§< X () TAK (552K
= 3E|(0ff) T (55) AR (BF) 2] () TAK (25) 2l
Denote &}, as the k-th coordinate of 7{<. Then the above expectation is taken over a linear combi-
nation of terms of the form &, &k, &,. If any of k1, ko, k3 is distinct from the other two indices,

the expectation is zero; if k; = ko = k3, the expectation is again zero by property of a standard
Gauassian. Therefore, we have

Cov[Q1,Q2] = 0
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On the other hand, the first variance can be computed by using the moment formula for a quadratic
form of Gaussian from Lemma 27 and the cyclic property of trace:

Var[Qi] = 2Tr((SY2MEY2)?) = 2Tr((SM)?)

Tr(SFAR)? @ (I, — 1,,)?)

Tr((SFAF)? ® J2) —ATr (AT ® J,) + 2T (SFAF)? ® 1,)
= (2n* — 4n + 2n) Tr((ZFAF)?)

= 2n(n — )Tr((AFEF)?)

> 2n(n — 1)(ofn — EK;2)

=2
=2

In the last inequality, we have used the bound from Lemma 32 on Tr((AK »k )2) The second
variance is on a Gaussian random variable and can be bounded by Lemma 32 again as

Var[Qs] = NTAEAN = n(uK)TAKEKAK,uK > n(02 — 20cond€K;2 _45K;2) .

cond
This implies that

2, 4n-1), o
(Ufuu - €K;2) + e (Ucond — 20cond€K;2 — 45K;2) .

-~ 2
Var[Up] > =
Substituting this into (17) and redefining the constants, we get that there exists an absolute constant
C such that

1 ~1/4

Pa <UK <b) <Cb- )1/( (Ufull_5K2)2+nT; 2

(Jcond — 20cond€K;2 — 45}(;2))

Appendix D. Proofs for the remaining results in Section 3
D.1. Proofs for variants and corollaries of the main result

The upper bound in Proposition 6 is a concentration inequality and is obtained by a standard argu-
ment via Chebyshev’s inequality. The lower bound is a combination of the anti-concentration bound
for a Gaussian quadratic form from Lemma 41 and Theorem 2.

Proof of Proposition 6 Denote U K= M In Lemma 41, we have shown that for any
a,b € R with a < b, there exists some absolute constant C" such that

n—1 9 —1/4
(oran — €x2)* + 5 (Oond — 20condf k2 — 4€K;2) .
max

IN

Pla < UK <b) <C'b-a)*(5

nl ax

Take K — oo and using Assumption 2 for v > 2, we get that e, — 0. For a fixed € > 0, set

a=Y"""Dp andp = YO 1D—i—e we get that

Omax Omax

/n _ —-1/4
hm IP)( ‘UK D’ < 6) < \/>0/ 1/2<Ufu11 + (TL 1) cond) / S \/iCIEI/Z .

2
K—o0o Omax Utr)ax Omax
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Now by Theorem 2, there exists an absolute constant C”’ such that

SUPter ’P<MDTZ > t) — lim P(EUK > t)) <" n"iis (M)T“ _

Omax K—o00 Omax Omax

By a triangle inequality, we get that

(\/—’D -DI>¢) >P(\/—\UK D!>6>—20”n‘ﬁ<m>ﬁ

Omax Omax Omax

> 1 VBN s (M) T
JH]&X
By replacing e with Y——— — )¢ and redefining constants, we get the desired lower bound that there
exists absolute constants C1, C5 > 0 such that

1y 1/2 . -
P(|Dy—D| > ¢) > 1—0&%) 12 — Gyt (Mmsn ) 2

For the upper bound, we apply a Chebyshev inequality directly to D,, and bound the variance by
Lemma 30: There exists some absolute constant C3 > 0 such that

0—3011 0—211
P(Dn =Dl > €) < e *VarlDy] < Che ?(m7omis; o+ o)
2 2
< !/ —2 < Omax ) < —2 ( Omax ) )
C n—1 < Ce Vn(n—1)
In the last inequality, we have noted that .~ < % for n > 2 and defined C'3 = 26’;’)’. This finishes
the proof. |

Theorem 2 provides an approximation of the distribution of D,, by that of a Gaussian quadratic
form. Proposition 9 combines Theorem 2 with a Markov argument, which makes a further approx-
imation of the Gaussian quadratic form by a weighted sum of chi-squares UX. The approximation
error introduced vanishes as n, d grow provided that pg; = w(nl/ ), ie. n Y200 = W(Tcond)-

Proof of Proposition 9 We first seek to compare WX to the distribution of

K _ 1 K\T (yZK\1/2) K K12K K\T AK (5K 1/2pK
U" - n(n —1) Zlgi;ﬁjgn(ni ) (Z )/A (Z / + = Zz 1 A (Z )/ —|-D
where {nK }, are i.i.d. standard Gaussian vectors in R’ . The first step is to write

-1 -1
UK = S Wo+ D+ (1= YD ) Wo + W+ W
where we have defined the zero-mean random variables
1 n
Wo i= ot (0 ()T (SR VAR (SR 2 — nTr (29 AK))
1
Wi i s (0, ()T (S5 V2R (S5) 2 — T (29 AK) )
2
W2 — Ezl . TAK(EK)l/Q K
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Fix €g, €1, € > 0. We first use the bound from Lemma 35: For any a,b € R, we have
P(a < V”(”_1)<V”*1W +D) < b)
- Ofull vn 0 -
g]P(a—eo—el —e < 7‘71(5?11_1)&{( < b+60+€1+62>

+P(LD (1 DY g > o) + (LD 2 )

Ofull Ofull

—i—IP’(i"n(n_l)!Wz\ > 62)

Ofull

and

Ba< S (R W+ 0) <)

n(n—1) Vn—1 Jan=1)
—]P’( Ofull (1 B NG )’W0| > 60) _P<T’W1| > 61)

Vnln—1
Pl 2 ).
We now bound the error terms. By the Chebyshev’s inequality, the variance formula of a quadratic
form of Gaussians from Lemma 27 and the bound from Lemma 32, we get that
/ —1 \/ -1
P(MWVH > 61) < 61_2Var[MW1} — %TI‘((AKZK)Q)
Otull Ofull ef(n—1L)ogy
2(0sun + £x,2)°
= €(n—1ogy
Similarly, by the Chebyshev’s inequality, the variance formula of a Gaussian and the bound from
Lemma 32, we get that
PV Diwy) > 6) < e 2var[ YU | = 20 D) TAK S AR K]

3 2
Ofull €20 tun

4(n — 1)(0cona + 26k ;2)*
€0t )

<
By Lemma 33, we can replace W by using the following equality in distribution:

n—1W0 _ 1 (Zn (mK)T(EK)l/QAK(EK)l/QnJK —nTr(EKAK))

n372(n — 1)1/2 \ Leij=1

LwkK_p.

Finally, using a Chebyshev’s inequality together with the moment bound in Lemma 33, we get that

e TN RO S D
= g (1= ) V)

2n(own + €x;2)° (1 _vn— 1)2
€(n— 1)‘7f2u11
2(O'fu.ll + EK;Z)Q

— en—1)0ai,
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In the last inequality, we have noted that \/n — /n — 1 < 1. Combining the above bounds, we get
that

P(aﬁMW5<b) SP(G—Eo—El—EQ<7M_1)U5§b+60+61—|—62)

- Ofull
4(” - 1)(Jcond + 25K;2)2
eggfzull

2(otan + €xi2)?
(n— 1)‘7f2u11

+ (g +€72)+ ,

n(n —1)

Ofull

P(aﬁMWK§b> ZP<a+eo+€1+62§ Ufgb—eo—el—g)

4(n — 1)(0cona + 2ek;2)*
ESa—fzull

2(otan +€x2)% ;9 _92
- (g e 7) -

(n—1Dogy

Taking b — oo and a — ¢ from the right, we get that

(5wl = 1) - P(Y > )
- Vnln—1

< max{P(t—co—e1 — e < VUK <) (1< VDGR < h et ) )

2(0fan + €r2)? ;o _9 4(n — 1)(0cond + 26K:2)2
“—neg, @ T T

_l’_

2 2
€20 fun

This allows us to follow a similar argument to the proof of Theorem 2 to approximate W5 by UK.
To bound the maxima, we apply Lemma 41 with o = og,;: There exists some absolute constant C”
such that forany a < b € R,

P(a < MUf < b)
Ofull
1 n—1 —1/4
<C'(b—a)/? <U?un (oran — €x:2) + I (020nd — 20cond€K;2 — 481(;2)) :

By additionally noting that (g + €1 + €2)'/2 < \/eg + /&1 + \/e2, we get that

p(Fm > 1) P > )

1 » —1/4
< C'(Veo + Ve +ve) (z(onm — ex2)* + "5 (020na — 20conas k2 — 4€kc;2)
ot Otull

11

4(77, - 1)(Ocond + 2€K;2)2

)
€201

2(otan + £x12)°
(n— 1)Uf2u11

+ (e +€?) +

Taking K — oo on both sides, the inequality becomes

lim P(YE=DwE s ) gim p(YEDpE s )|

K—o0 Ofull K—oo Ofull

_ 2 —1/4 _ 2
S Cr/(\/%_i_\/a_*_\/a) <1 + (n 12)Ucond> + 2 (662 +€1_2) + 4(7’L l)acorxd

2 2
Ofunl n—1 €20 full

2 _ _
< C'(Veo+ Ve +ve) + — (g +a7%) +

2
4(”’ — 1)Ucond
2 .2 .
€201
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Choosing g = ¢; = (n—1)"2/% and e; = (n— l)agond/aguu)z/g), redefining constants and taking

a supremum over ¢ € R, we get that there exists some absolute constant C” > 0 such that

7V”(”_1)W7{( > t) _ lim P<7vn(n_1)Uf > t)‘
Ofull K—o0o Ofull

el (r—— (m"w“d)w) .

(n—1)1/5 Otull

s o

The final step is to relate this bound to D,,. Consider the last step (13) of the proof of Theorem 2 in
Appendix C.2. If we set ¢ = oy, instead of op,.x, We get that there exists some absolute constant
C"" > 0 such that

/ —1 . v/ -1
SUpP;cr ’P(MD,Z > t) — lim P(MU,? > t)‘
Otull K—o0o Ofull
1
—v=2 Mu '1/)” (Mcond:l/)u 241
< " 4U+2<( full; : ) .
B UfVull (TL - 1)711/2 Uéjull

Setting C' = max{C”,C""} and using a triangle inequality, we get the desired bound that

supreg[P(YU D, > 1) — lim B(VEZUos o)
Ofull K—oo Otull "
1 vn — 1 Ocond 2/5 —v=2 (Mfull;u)y (Mcond;u)u ﬁ
= C(( —1)vs + ( Ofull ) Tt +2< Tt * (n—1)=v/2 Ufu11> ) )

D.2. Proofs for results on W,

Proof of Proposition 12 To prove the existence of distribution, we seek to apply Lévy’s continuity
theorem. We first verify that there exists a sufficiently large K* such that the sequence (W,X) K>K*
is tight. Since Assumption 2 holds for some v > 2, we get that as K — oo,

EK;2 = EH Zle )\k(ﬁk(Xl)(bk(Xg) - U(Xl,Xgﬂz} 1/2 —0.

In particular, there exists some sufficiently large K* such thatex.o < 1 forall K > K*. By Lemma
33, we have that for all K > K™,
Var[WE] <

(Ofan + £K2)° < (oan +1)% .

2
n(n—1) n(n—1)

Note that by assumption, we have |D|, o < oo. This implies that the sequence (W) g g« is
tight by a Markov inequality:

lim <supK2K*JP’(|Wf‘ > 1:)) < lim <$_2 SUP K> ko E[(Wr{()Qm

T—r00 T—r00
.20 = 1) "Yowpm + 1) + D?
< lim & (n=1) (gfll+)+ = 0.
Tr—r 00 T

We defer to Lemma 43 to show that the characteristic function of (WX — D) converges pointwise
as K — oo. This allows us to apply Lévy’s continuity theorem and obtain that W, exists. |
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Proof of Lemma 13 The result holds by noting that for all & > K*, WX = WK™ almost surely,
and the latter random variable does not depend on K. |

Lemma 43 The characteristic function of (Wr]f — D) converges pointwise as K — oc.

Proof of Lemma 43 Define a; :== Th:q and Ty, := ak(fi — 1), which allows us to write

1
n(n—1)

WK

1 K K
P T V) ke G D+ D = 3 Tk D

Denote © = v/—1 as the imaginary unit and Y as a chi-squared random variable with degree 1. Since
each T}, is a scaled and shifted chi-squared random variable with degree 1, it has the characteristic
function

Y1, (t) = Elexp(it Ti,)] = Elexp(iapYt)] exp(—iagt) = (1 — 2iagt) /% exp(—iaxt) .

Since T}’s are independent, by the convolution theorem, the characteristic function of WX — D is
given by

Ywr_p(t) = exp ( - izlle akt) Hszl(l — iayt) "2 .

We want to prove that for every ¢t € R, {yyx_ p(t) converges to some function as limit KX — oo.
By taking the principal-valued complex logarithm (i.e. discontinuity along negative real axis), we
get that

log Yy _p(t) = Zszl ( —dagt — %log(l - 2iakt)> +2imgm = Sk + 2imgm, (18)

for some my € N for each K that adjusts for values at discontinuity. Now consider the real part of
the logarithm:

1 K .
Re(logww7{<_D(t)) = Re(Sk) = —3 Zk:l log |1 — 2iayt|
1 K 1 K
= —3 Zkz:l log+/1+ 4azt2 = -7 Zk:l log(1 + 4a%t2) .
Recall by Lemma 32 that
K 1 K K—
Zk:l a; = n(n —1) Zk:l Tlg;d = Tr((SFA%)?) === ofy - (19)

Fix € > 0. The above implies that there exists a sufficiently large K™ such that for all Ky, Ko > K*,
Sr2, a? < e Then forall K1, K3 > K*, we have

K2 2,2 a K2 9 9
0 < 7, 7k log(l+4dajt?) < 4377 af < dt’e.

This implies that (Re(Sk))ken is a Cauchy sequence and therefore converges. Now we handle the
imaginary part. First let m/, € Z be such that

Im(ZkK:1 log(1 — 2iakt)> = Zszl arctan(—2axt) + 2m/pm .
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Then we have
Im(Sk) Zk . ( —axt + %arctan(?aﬂ)) —mhem = I —mlm. (20)

To show that Ix converges we first note that by a third-order Taylor expansion, we have that

6(xx)%—
6(z 2+1)
[x,0] for z < 0, with an abuse of notation). This implies that for all K3, Ko > K*, where K* is

defined as before,

arctan(z) = x + 23 for some z, € [0, z] (we use this to denote [0, ] for z > 0 as well as

K.
‘ Zk;{l ( - akt+ arctan(2agt ) ’ ’ Z < —agt + % arctan(2akt)> ‘
Ky 1 24b2t2 -2 3,3
S Zk:K Supbke[o ag) 2W8akt ‘
_ 443 K2 24bjt> +6 — 8
=4t \ak\ (supbke[o ax] m )
1 4

=443 ZkiKl |ag|? (SuPbke[O,ak] )

3/2
<208 37 Janf® < 20t3( o (ak)2> < 20t363/2

(4b2t2 +1)2 3(4b212 4+ 1)2

where, in the last line, we have used the relative sizes of [, norms. This implies that I converges.
To show that Eq. (20) converges, we need to show that my in Eq. (20) is eventually constant. By
using Eq. (20) and a triangle inequality, we have that

mlmip o —mi| < k1 —Ik| + ’Im(SKH) - Im(SK)‘

1 .
= [Ir+1 — Ix| + |agi1t + 5 log(1 — 2iax41t)| -

The first term converges to zero, since we have shown that I converges. Since ax — 0 by Eq. (19)
and the complex logarithm we use is continuous outside {z : Re(z) > 0}, the second term above
also converges to zero. Therefore [m/ | — m/| — 0, and since () ke is an integer sequence,
(m/y ) ken converges. By Eq. (20), this implies that Im (S ) converges, and since we have shown
Re(Sk) converges, we get that Sk converges. Finally, to show that ¢y x _p(t) converges, since
Re(Sk) = Re (Q/JWT{(,D(t)), we only need to show that Im (@ZJWéK,D(t)) converges. By Eq. (18),
this again reduces to showing that m g is eventually constant. As before, by a triangle inequality,

ot — micl < Jm(Sacs1) — Im(S0)| + [Im(log e (6)) — Im(log Yyys_p ()]

1 . K
= [Im(Sx+1) — Im(Sk)| + |agt1t + 5 log(1 — 2iax41t)] ~—7=0,

where the convergence of both terms has been shown earlier. This proves that the characteristic
function vy _p(t) converges for every ¢ € R. [ |

Appendix E. Proofs for Section 4
E.1. Proofs for the general results

Proof of Lemma 15 To prove the first result, note that since x is a kernel, there exists a RKHS ‘H
and a map @ : R? — 7{ such that we can write

MM ((x,y), (%, 57) = (2(x), (y))u + (2(y), 2(y)n — (2(x), R(y") 2 — (@(x'), 2(¥))n
= (2(x) — 2(y), 2(x) — (y))n
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Defining @, ((x,y)) = ®(x) — ®(y) proves that u™P is a kernel. To prove the second result,
note that by the definition of a weak Mercer representation, we have that almost surely

K—oo

| Mebr(Z) () — uMMP(Zy, )| K2 0,

which in particular implies convergence in probability. The argument uses the Vitali convergence
theorem. By Assumption 3, there exists some v* > v such that sup s~ Ef| S bk (Z) b (Za)
oo and E[[uMMP(Z, Z5)|""] < co. By a triangle inequality and a Jensen’s inequality, we have

7
|

< SUPK21EU !Zle Aotk (Z1) b1 (Z2)| + [uMMP(Z4, Zo)|
< o'l supKZlEU S Akqﬁk(zl)(ﬁk(zz)\”*} +2V*—1E[|uMMD(Zl,Zg)\”*] < .

1/*] <

supg>1 E U Zle Motk (Z1) ¢ (Z2) — u™MP(Zy, Zo)

This implies for any v € (2, v*), the sequence (( Zszl Mook (Z1) br(Zg) —uMMP (Zy ZQ))V)KGN
is uniformly integrable, and therefore converges to zero in L1 (R??, P® Q) by the Vitali convergence

theorem. Since convergence in L, implies convergence in Ly, (., 3}, We get that Assumption 2 holds
for min{v, 3}. [ |

Before we prove the next result, recall that {\;;}7° ; and { ¢}, }7° ; are defined as the weak Mercer
representation for the kernel « under (), and we have assumed that ¢;’s are differentiable. We have
also defined the sequence of values {cy,} 2 ; and the sequence of functions {1} }32; in (6) as

QR —1)dtl = A and Vi —1)d+1(X) = (Oz, log p(x))drr (x) + O, P1r (%)

for 1 <1 < dand k' € N. For convenience, we denote 9y, := (3 _1)44. in the proof below.

Proof of Lemma 16 Recall that 1y (x) == (9y, log p(x))dpr (X) + Oz, pr (X). Write 1y (x) =
(Yrr1(X), -« ., Yprn(x)) 7. We first consider the error term with d/’ summands for some K’ € N:

S5 e - P05,

E[
EH Zz 121« R (X1)wa(X2) _UKSD(X“XQ)’ }
-5
=E[

‘Zk, Y (wk’(Xﬂ) (b (X2)) — U§SD(X1,X2)‘ }
Ty + To + T + Ty — up™P(Xq, X2)["]

. . j.i.d.
where the random quantities are defined in terms of X, Xy "< Q:

T = (Viogp(X1)) " (V log p( X2))Z;§/:1 Ak o (X1) o (X2)
Ty = (Vlegp(X1)) (Zk’:l )\k/(V¢k’(X2))¢k’(X1))a

Ty = (Vlog p(Xg))T<Z§/:1 A (v¢k/(X1))¢k/(Xz)) :

Ty = 3, A (Vo (X)) (Vow(Xa)) -
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Recall that by Assumption 3, there exists some v* > v such that we have ||x*(Z1,Z2)||1,. < o0

and supg>1 || K Me®k(Z1)dr(Z2)|| 1, < oo. By using the proof of the second part of Lemma

_ v+v*
-2

15 above, for v € (v,v*), we have

EU Zg;l A P (X1)ow (X2) — U(X1,X2)‘VA] Koo

(Xl)quLw* < oo, where

w _ vv+v) (1 2 7' /1 1\t
v —ﬁ—(;—yw«) —(;—;) - v
By a Cauchy-Schwarz inequality and a Holder’s inequality, we have that

[(Vlogp(X1)) " (Vlog p(Xa) Mp,.. <I[IViegpXy)ll2|[,, . <oo.

Now by a Holder’s inequality and noting that (v**)~! + (v¥*)~! = v~!, we can now bound the
error of using 7T} to approximate the first term of uKSD

E[|E\|"] = E[|T1 — (Vlogp(xl)) (Vlog p(Xa2)) u(Xy,X2)|"]
= |71 — (Viogp(X1)) ' (Viogp(Xa)) u(Xy, Xa)|)
< H(Vlogp(xl)) (Vg p(X2))||; Zk, L Ak Orr (X)) (X2) — (X, Xo) HL

K'—oo

0.
For T5, we consider a similar approximation error quantity and apply a Cauchy-Schwarz inequality:
E[|Eol"] =E[|T> — (Vlogp(X1)) ' Var(X1,X2)|"]

= E[|(Vlogp(X1) " (X, M (Ve (X2) e (X1) = Var(X1, X)) ”}

< [[[[VIogp(X1)ll2[I7,, ‘Zk/ A (Vo (X2)) o (X1) — Var(Xy, Xa)

K'—o00
e

L2V
0,

where we have noted that the first term is bounded since 2v < 2v** and used Assumption 4(iv). By
symmetry of x and the fact that X; and X5 are exchangeable, we have the same result for 75:

T v K’
E[|Esl"] =E[|Ts - (Vlogp(X2)) Vik(X1,X2)|"] = 0.
Meanwhile, the second condition of Assumption 4(iv) directly says that
Kl
E[|E4|"] =E[|Ty — Tr(V1Var(X1, X2))|] —> 0.
Combining the results and applying a Jensen’s inequality to the convex function z — |z|”, we have
H Zk L Oékwk (X1)Yr(X2)— KSD(XhXQ)‘ } = E[|E1+ B> + E3 + E4|”]
1 1
< EHZ(4E1) + 1(4E2) + 1 (4Es) + J(4E4)|”]

K'—o00

< (BB + B[ Ba)] + El|Esl) + B[ Eal]) === 0.
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Now consider K € N that is not necessarily divisible by d, and let K’ be the greatest integer such
that K > dK'. Then by a triangle inequality and a similar Jensen’s inequality as above, we get

[ RO () = uf (X4, X)| |
< 2V~ 1EH Z OékT/Jk (X1)YE(Xa) — uKSD(Xl,Xg)‘ }

+ 2| S0 etk (Xn)un(Xa)| | @1

The first term is o(1) as K — oo by the previous argument, so we only need to focus on the second
term. The expectation can be bounded by noting that oy = Agry; > OforalldK' +1 < k < K
and using a triangle inequality followed by a Jensen’s inequality:

B[| S0 ey et (X un(Xa)| |
< Ouers) B[ (i S (K — A1) (Xs)]) |

v v— K v

(K —dK")" ™ 30 e Bloe(Xa)ve(X2) 1]
Yd” SUPkefarr 1, ai+dy BlVE(X1)Yr(X2)[Y]
Yd¥ sup<j< g El|vaxc+1(X1)[")

AK’—&—I

>
3
+
—

In the last equality, we have noted that X; and X5 are identically distributed. Now by the definition
of 1y, another Jensen’s inequality on x — |z|” and a Cauchy-Schwarz inequality, we have

E[[tar11(X1 ’V] = E[|(0x, log p(X1)) b 11(X1) + Oy Pxcr11(X1) "]

"E[|(82, log p(X1))dxcr1(X1)[] + 27 B[O, b1 (X1)|”]

"E[|0a; Jog p(X1)[*] P El| ¢ rer1 (X0) ]V + 27 E| 0, p1c 41 (X1) ]
YE[|V log p(X1) 15712 Bl @ g1 (X1) ]V + 277 B[ Vg1 (X0)I5]

"IV log p(X1)l2ll7,, léxre1 (XD, + 2" IVeR 1 (X)ll2]Z, -

By Assumption 4(i), (ii) and (iii), all three norms are bounded, so E[|1gx/1;(X1)["] < oo. By
the definition of )\ from the weak Mercer representation, as K — oo and therefore K — oo,
Arr4+1 — 0, which implies

K v
E H D h—diit1 akd)k(Xl)W(Xz)‘ } = o(1).
This means that both terms in (21) converge to 0 as K — oo. In other words,

B[| S0 ot (X0)n(Xe) — (X1, Xo)| | £ 0.

Since L, -convergence implies L, (,,3)-convergence and we have assumed that v > 2, we get that

Assumption 2 holds for min{v, 3} with respect to the u35P, oy, and 1. [
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E.2. Proof of Proposition 18

From Lemma 22, we can write the variance ratio as

R _ ( y )d/2<(1+v)(3+7))d/23 _ oy B
02 4 4+ 2 A A7

where

2+ L+7EB+7)\¥?
A= e+ (1= (SR ) el

:<1+d>ﬂmm+( — (1= o)) Il

2d 44+ 4)\? d
=t G 2B o (1= (D))l + o @+ A y3)

2d d
= G P g (1- (- 02 )l o(d 4 4 I 3)

O O e (R

4+ v (4 +7)
: A4+71)B+y) _ : 1 yéd+y) _
and we have written BT = 1 — o with a := T2 and @t = 1 -9 withd = (2+,Y) .

To simplify A and B, we first rewrite

1—(1—()z)d/2 = 1—exp(—glog(1—a)) (—)1—exp( d<(2+7) —i—O( )))

=1—exp (—ﬁ+0<?)> . (22)

In (a), we have used a Taylor expansion by noting that -y is small by the stated assumption v = w(1).
Similarly we can obtain

1= (1-8)%2 = 1—exp (L1og(l—6)) = 1-exp (¥ (- ; a1 0(5H)))

2+1)?
= exp( e to() . @
C = eXp<g10g<1+7(4iw)>> ( ( (4+7) <’714>>)

““P(%aiﬁ?*o(%>>~ 24)

Therefore, the terms (1 — a)%2, (1 — )%? and C can be small, large or close to a constant,
depending on whether 72 grows faster than, lower than, or at the same rate as d. We now consider
the three cases individually.

Case 1: v = o(d'/?). In this case, ﬁ = w(1), so we have (1—a)¥? = o(1) and (1 —§)¥/? =
o(1). Therefore

24y
A = L+ o)lull3 + (L +o@)lulz = O3+ llulz) = elul2) .

and

2d|\u|lz

dllu
B=dt? -+MMb+HMb+oQﬁ% T ”b+wu@)

:@<d+ -+WM2+WMQ.
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Combining with the previous expressions for A, B and C yields

Tl VB 3d d? d
= = VO x —= = (7 O \/ 1
Pd = Vi~ P \mary T < A T A P >

% oxp (24 (g)>@ ¢ @ .
P\ gz TO\52 T
d d dl/?
¢ ® 1
eXp( +0(7 )) (vlul|2+ E PP >

where in (a) we have used the fact that v = o(d'/?), and in (b) we have noted that for a, b, ¢ > 0,

Va+b+c < +a+ Vb+ /cand by a Jensen’s inequality, va + b+ ¢ > - (f—i-\/—i-f)

—~
S

—~
=
=

Case 2: v = w(d'/?). Since in this case %

the exponential term in (22) to get

1—<P—®W2=:1—@m(—mszz+0(jﬂ)::1—<1‘2miw2+0($))

- 2(2%)2 +0(%) '

is small, we can use Taylor expansion to approximate

Using a similar argument applied to (23), we have

00 1o 0 () 2 olE)

and (24) yields

C = exp(#iv)—i—O(%)) = 1+27L—|—0<d—z) = 1+4+0(1).

We therefore conclude that
d d d
A =+ o)l + (g +o(2) )l = © (Il + lul3) |

A similar argument shows that

2d|| 1 2d d dl|p
Bodrhs “‘b+2mm§+uwé(@:;p+0($)) o(w+ o+ v )

dl|pll3 d|pl|3

where in the last line we noted that v = w(d'/?) implies % = 0(d). Combining the results gives

_ Ofun @
pd o Ocond _\/EX \/Z

d/2 —1/241/2 —141/2 2
_ 1+0(1)@< 9 il + il + "2l

llalle +~=1d" 23

_ (d1/2 + 202 |2 +1) _ ®< a2 (1 + 42| ull2) 1)
lellz + a2 ull3 [lall2 (T 4+~ 2|pe]l2)

51



HUANG L1U DUNCAN GANDY

Case 3: v = ©(d'/?). Since in this case % is small, we have thatexp (O(%)) =1 + O(%) by
7! ¥
a Taylor expansion. Substituting this into (22), we have

01 1o () (140(4)
—1—exp (—ﬁwo(%) — o(1),

where the last line holds as 1 — exp ( — m) = O(1). A similar argument applied to (23) and
(24) gives
0<1—(1-6)% =1—exp (_(2-2&)2 (%)) - 0(1),

Combining the above derivations yields

A =0l + ) = Ol
2d
B =0(d+ S+ 2B o+ ) = ©(d+ a2+ )

where in the equality for B we have used the fact that ||zz]|3 = Q(1) implies ||u||3 = O(||u||3) and
that v = ©(d'/?) implies % = ©(d'/?). Therefore,

1/2 1/2 1/4
_  Ofall \@ « VB \/ d 1 — o d LA d 1)
Pd Tcond ( (13 H [lll3 3 " Tledl

This completes the proof.

E.3. Proof of Proposition 19

Recall the expressmns of O'C 4 and of ;1 for MMD-RBF from Lemma 24, which allow us to rewrite
4= CAand o} = CB, where

A o () 12 (252)" (22 ()
~ 20 (g ) - (332) (%)M
(5" (52) " e (5 3)
= ()" () (e (- ) - (52 ()™
—emn (= g el) - () (52) " e (- 5 )
~a(3) (G e (- st n)

¢ =2 <lzv>d/2 (317)d/2 '

COH
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This implies that 02,,/02 4 = B/A, so it suffices to calculate the leading terms in A and B,

By _ (342)(1+7) .
ey = 1y = L-oand SEER = sy = 145,

where o and 3 are small as v = w(1) by assumption. Rearranging A gives

1
A =1+exp (—mHMHg) — 2exp <—WH 12 )

+ (=) (2exp (= gy IulB) =1 —exp (- 55 llul3))

= A + (1 — Oé)d/2A2 ,

respectively. We first write iy

and similarly,
B =(1+8)"2(14+exp (= 1)) —4exp (- (lfj—gﬂu 13)
— (=) (1+exp (= = lul3) — dexp (= g i) )
= (14 8)¥?B; — By — (1 —a)¥*Bs .

These expressions can be simplified further depending on the relative growth rates of d,~ and || /|3;
we consider these cases individually.

Case 1: v = o(d'/?) and v = o(||u||3). Since v = o(||u||3), all exponential terms of the form
exp —m\\ |3, for any positive constants a, b, are o(1). Moreover, since we have assumed
that v = w(1), we can apply a Taylor expansion to yield

N

“on (4t 0 () = ew (- o(d) . @

Therefore, when v = o(d'/?), we have (1 — a)%? = o(1). Thus the dominating term in A is the
leading constant 1 and

A =1+0(1).

To control B, we first consider a similar Taylor expansion by noting that v = w(1):

4 = o 145) = (o 0()
:exp(%JrO(%)) _ exp( o <d>>' 06)

Since v = o(d"/?), we have that (1 4 5)%? = w(1). All exponential terms and (1 — )% are o(1)
by the calculations above, so

B = (148 +o((1+8)") = 0(exp (35 +0(5)) ) -

2

Combining the results for A and B gives

S (e (Ho(2)
PL= Gems — VA P iz 7 o\2)) )
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Case 2: v = o(d"/?) and v = w(||p||3). Since v = w(||x||3), we can bound A; by first extracting
an exponential factor and then applying two second-order Taylor expansions:

1 247
A = 1+exp (—ﬁHHH%) — 2exp <—(1ﬂ—3ﬂ” 12 )

=1+ ep (— g lul3) (1 - 2exp (5t IuB) )

(- gt o)

R 171 B v ||l 2 Nl
< (-1 Ar B+~ M 72G6 ) +0(1557))
=~ T ) B

34y (L+9)B+qy) /112

o )2 , ol
(= smrop ey T are e i o ()

_ 1 -2+ ||MH2)
= e B + Gl + 0 () -

=1-1+(

Note that the first term is on the order v~2||u||3, the second term is on the order v~2||u||3 and the
third term is on the order v~3||u1/|S. Since y~!||u||3 = o(1) and ||u||3 = Q(1), the second term
dominates and we get that

llell2 [
4 =l +—0( 722) . 27)

To control A, we use a similar Taylor expansion to get that

1 1
Az = 2exp (g ) —1 = exp (—5 ul3)

1
= —1+exp (= 5= lul) (200 (g lul) - 1)

-1+ (1- él’ﬂ'i*zwi) (WYY (14 JuB Iy o(1elE))

= (4(2i7)2 + Q(in) (2+’y )H ||2_}_0<HM||2)

_ (B [E:
T 4(2+41)2 +O< ) %)

In particular, we have Ay = O(y~2||u||3) = O(A;). Since v = o(d"/?), we have (1 —a)%? = o(1)
as before, which implies

4 4
A=A+ (1-a)?4, = %%§“+o(“$%)-

To control B, recall we have shown in Case 1 that (1 4+ 3)%? = w(1) and (1 — a)%? = o(1) for
v = o(d"/?). All exponential terms are O(1) and By = 2 4 O(y~"||u||3) by a Taylor expansion.
By (26), we obtain that

B = (1+8)Y2B; — By — (1 — a)¥?B; =2(1+ B)¥? + o((1 + B)¥/?)
~o(en (£+0(2)))
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We hence conclude that

= o VB (e (1 o ()
ri = oo = va O\ mEee e tolsE)) )

Case 3: v = w(||u||3) and v = w(d"/?). We first rewrite the expressions of A and B as

A= (A1 +4) —(1—(1-a)¥?)4,, (29)
B = (By— By~ B3) + (1+8)¥* = 1)B1 + (1 — (1 - a)**)Bs . (30)

Since v = w(dl/ 2), we can perform a further Taylor expansion on the expressions in (25) and (26):

e o (gt 0(2) - geteo(4) o
(1+8)% = exp (505 +0(5)) = 1+ 5 7O (50) 32

On the other hand, since v~!||||3 is small, we can consider performing Taylor expansions on each
exponential. By grouping the terms and extracting an appropriate exponential, we get that

1 1
A1+ Az = exp (—ﬁHMHQ) — exp ( - m”ﬂ”%)
247

— 200 (~ g 3) + 2ex0 (= gy )
= e (—g3= ) (e (G Iu3) - 1)

- 200 (= g lB) (o0 (- i) + 1)
= g+ oG InlE) + o(14E)

i lul3
= Brey *"( 7 ) : (33)

In the last line, we have used that the dominating term is of the order |z]|3/72. For As, we recall

4 4
from (28) that Ay = —% + 0(”‘7‘#). Substituting the computations into (29) and using (31), we
obtain that

A=(A1+4)-1->1-a)¥?)4,

= gt + () + (aaizp + 0(0)) (e +o(4))
_ (et ity

72 e
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We use a similar argument to compute 5. By grouping terms appropriately and performing Taylor
expansions, we have

1
By~ By~ By = exp (— = llul) — exp (5= ul})

2+
—texp (= gy lalB) + e (- 5 lul3)

- (= h51) (- (- st )

—texp (= g i) (= e (— s IHB) +1) -
I 171 2|13 [l4l13
= aroer Holarser) +O< 7 )
__ 2|luli3 Nl
= ame to(5r) 6

By performing Taylor expansions again, we can control B and Bs as
B =1+exp (= = lul3) = 2+0(1), (35)
— _ 2 - _
By =1+ exp (= 5= lf) — dexp (= gz Iuld) = ~2+0(). (6
Substituting the bounds into (30) and using the bounds in (31) and (32), we obtain that
B =(B1—By—Bs)+ ((1+8)"? = 1)B; + (1 - (1 - a)"?)Bs
2||ull3 4113 ( 3d 0 ( d ) )
— — 2 1
Gre+y o\ ) T \maey TG (2+0(1))
d d
+ (g + 0 (31) ) 2+ o)

2 2 2 2
21lpl3 +0(||u||2>+ 2d(6 + 47 +°) ro(4) = @<|\5|2|2+%>_

@+ 7)(2+) 72 Y24 7)2(4+7)

The variance ratio can therefore be bounded as

pg = T _ VB @(< v 2|ul3 +vd )1/2> :@( (lll3 + d)*"> )
Teond VA v =2 [[ull3 + = dlull3 (1ull3 +~~2dl|u][ ) 72
@@( ]2 + d/> )

lull> + = d 723 )

In (a), we have noted that fora,b > 0,va —|— < y/a++/b and, by the concavity of the square-root
function, vVa +b = /1(2a) + 1(2b) f +Vb).

Case 4: v = w(||p||3) and v = ©(d'/?). We can directly make use of the computations from
Case 2 and 3 except that we control (1 — o)%? and (1 + 8)%? differently. Since

1

a2 =g
0< (-0 = (-G

)<,
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we see that A = (A; + A2) — (1 — (1 — a)d/2)A2 takes value between A; + A and A;, whose
Taylor expansions under v = w(||11||3) have been obtained in (33) and (27) respectively. Therefore,

4
A= oA+ 4)+4) = ol
To compute B, we first recall the Taylor expansion from (26) using v = w(1) and additionally make
use of v = O(d"/?) to get

d

(1+B)%? = exp(%—i-O(?)) = exp (6(1)) = O(1).

By using the expressions from (34), (35) and (36), we get that

B = (Bl — B2 — B3) + ((1 +5)d/2 _ 1)B1 + (1 o (1 o Oé)d/2)Bg

= iy () 4 (14 B2 — )2+ 0(1) + (1= (1 - )22+ 0(1)

= @(”:‘—!% + A+ +(1—-a)? - 2))
=0y ?ulz3+1) = 0(1) .

In the last equality, we have noted that v ~2||1[|2 = o(y~!) = o(1) by assumption. By additionally
noting that v = ©(d'/?), the variance ratio can therefore be bounded as

pam g B of )=o)

Ocond \/Z 771HM||§ ||MH§

This completes the proof.

Appendix F. Proofs for Appendix A
F.1. Proofs for RBF decomposition and verifying Assumption 2

In this section, we prove Lemma 20, Lemma 21 and Lemma 23.

Proof of Lemma 20 We first focus on the one-dimensional RBF kernel, denoted as 1, which can
be expressed for z, 2’ € R as

()| = [exp(—(z —2'2/(29))] = [exp (£ )ems /M=)

By applying a Taylor expansion around O to the infinitely differentiable function z — exp(%) for
z € R, we obtain that for any K € N and every z, 2’ € R.

K 1 Nk 2 ()2
[, at) = S () e e )|

L (e \EF ] —a2)2y) — ()2 /(27)
arm() e e -

< SUP;¢(0,za]

Fix v € (2,4]. Consider two independent normal random variables U ~ N (by,1) and V' ~
N (b2, 1) for some by, by € R, and recall that ¢} () = aFe=**/(27) and Ap = ﬁ The above
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then implies that

Hm (U, V) Zk o MEBi( )%(V)H

< E[Supze[O,UV] ‘ﬁ (¥>K+1e i E_VUQ/(2’Y)€_VV2/(2’Y):|
m UUV|V(K+1)ewUQ/(27)fuv2/(27)+supze[wv] yz/w]

: WEUU VB = (IUI=IVD?/ (2]

< T U D) B[]

In the last inequality, we have noted that U and V' are independent and bounded the exponential
term from above by 1. By the formula of absolute moments of a Gaussian, we get that

(vK)/2
E[‘U_blly(KJrl)] — E[’v_b2’V(K+l):| _ 2ﬁ F(VK2+1> .

By a Jensen’s inequality applied to the convex function x — |z|” (K+1) | we get that

E[[UED] = E[|by + (U — by)["EHY] = EH%(%I) N %(2([] b)) V(K+1)}

V(K+1)—1 (pr(K+1 v(K+1 (2b1)YEHD 93V KD (K 1) + 1
< K+ (b(+)+E[|U—b1|(+)]): 12 n — F( . )

Similarly, we get that

WE41)] o (2b2)" D 28D (K 1) 41
E[JV] < Bl 4 T (AR, (37)

Substituting these moment bounds and noting that (K + 1)! = I'(K + 2), we get that

? ]

r1(U, V) Zk 0 M (U)o (V)

1 ((le)u(K+1) n 2%u<K+1)F<y(K+1)+1))
= EED(T(K +2))" 2 2/ 2
(2b5)7EHD 9Bv(EHD (K 4 1) 41
(S T())

=T (A1 +B)(A2+ B) .

As K grows, the dominating terms are the Gamma functions, so we only need to control their ratios.
By Stirling’s formula for the gamma function, we have I'(z) = /27 2*~1/2¢72(1 + O(z™1)) for
z > 0. This immediately implies that

(4b1bg /)" K+ Y
(K + 2)/(K+3/2)g—v(K+2) | = o(1)

TA Ay = @(
as K — oco. Meanwhile,

Ty ~o('fer) = o(x),
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which implies that
TAB = @((4\/§b1/7)”KK*”K/2) — o(1),

since the dominating term is K ~V%/2. Similarly, TA;B = o(1). On the other hand, another
application of Stirling’s formula gives that

(D (M) — (2m) (212 (HEEL) VD o~ E+D)—14v(K+2) (1+0(K™)”
(P(K +2) (K +2)/(F+3/2) 1+ 0K 1))
2 L/KKUK v 3,
= o(LE) = e/ K )

This implies that
TB® = 0((8/7)" (v/2)"KK=/?) = &(@v/y)"K~*/?) = o(1),

where we have recalled that ¥ < 4 and used the assumption that v > 8. In summary, we have
proved that for v € (2, 4] and any fixed b1, b2 € R,

K—oo

H’“ (U V) =30 Ao )¢;(V)H < T(A + B)(As + B) X2 0.

To extend this to multiple dimensions, we note that for the vectors x = (z1,...,74) € R? and

x' = (x1,...,24) € R% the multi-dimensional RBF kernel can then be expressed as

k(x,x') = exp (- |x—x/|3/(27)) = Hl Lexp (- (z1— )/ (27)) = Hl L R, )

Recall that we have defined the independent normal vectors U ~ A (0, I;) and V ~ N (u, I). Let
Ui, ...,Ug be the coordinates of U and V7, ...,V be those of V, which are all independent since
the covariance matrices are 1. For 0 < [ < d and K € N, define the random quantities

Sire = e o Mot UNG (V) and Wi = (T, m @) (T10,., Sk )

In particular (U, V) = Wy.x. Now by expanding a telescoping sum and applying a triangle
inequality followed by a Jensen’s inequality, we have
]

E[Ix(U, V) = Wokl”] = E[| S Wi = Wirx)
co{(5t i)
<d ) EWik — Wisvk ]’

= a5 (L Blla (U, Vi)Y Ela (U, Vi) = Sl (T B8]

In the last equality, we have used the independence of U;’s and V;’s. To bound the summands, we
first note that «; is uniformly bounded in norm by 1, which implies that E[|x1(U;, V;)|"] < 1. By
the previous result, E[|x1(U;, V}) — Si.x|”] = o(1) as K — oo. By a triangle inequality and a
Jensen’s inequality, we have that

E(Sjxl'] < E[|lr1 (U Vi)l + Sy = ma(U;, Vi) |"]
< 2R [lw (U3, Vi)'] + 27 B[S — m(U V)I] < 2771 +0(1)
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This implies that each summand satisfies
-1 y y d v
(T2 Ella (U, Vi) ) Elloa (U1, ) = Stsrel”) (T EUS5c)) = o(1)

as K — oo. Since d is not affected by K, we have shown the desired result

K—oo

]EH (U, V) H (Zk 0 Uj)ox(V; ))‘V] = E[|x(U, V) - Wokl'] 222 0.

Proof of Lemma 21 We first rewrite uX5 as

u%SD(X,X/) :€7||xfx'||§/(27)< Ty — 7+ I —XIH%-F%)

w112 ’Y+1 Y2y +2 T d

_ /e (Il + 1) + R )
(-

—llx—x']|2 '}/+1
= elxxIB/ 2 (el3 + D'l + 1) + 5= I3 113
22y 42 y+1
+Tzz=1ml+(;+ )

For K’ € N, write Sk := Zf,/:l ag P (X1)r (X2), and define the following random variables

comparing each set of eigenvalue and eigenfunction to the corresponding term in u%SD:
K/

T = Y 0 A—1)(d+3)+1 Pk —1)(a+3)+1(X1) k1) (a+3)+1(X1)

e IXa=Xa3/(2) ( _ 74’1 X2+ D(IXol12 + 1
(X153 + D)(IXell5 + 1)

+1
- 772 (X113 + 1)(HX2H2 +1)Sk

K’ X X
Trrp = D g Mw-1)(d+3)+2 Sw—1)(@+3)+2(X1) S —1)(d+3)+2(X1)
B 12 +1
X X2H2/(2'Y)(%HXIH%HXQH%)

1
= X1 131Xl Sk

,y2

K/
Trrg = D 10y Mk —1)(d+3)+3 Pk —1)(d+3)+3(X1) d(rr—1)(a+3)+3(X1)
— -Pa-Xalfen (4 141

v 72
d fy—l—l)
pr— S

(v v? K

K/
Tiraet = D 0y Ah'—1)(d+3)+3+1 Plh—1)(d+3)+3+1(X1) Dk 1) (d43)+3+1(X1)

X, — 24 2y42
_ eI lel%/(%)(%(xl)l(xzm

24 2v+2
= (%(Xﬂz(xﬂl) Sk

60



A HIGH-DIMENSIONAL CONVERGENCE THEOREM FOR U-STATISTICS

forl = 1,...,d, where we have denoted the I-th coordinates of X; and X3 by (X;); and (Xz2);
respectively. We now bound the approximation error with (d 4+ 3) K’ summands for K’ € N and
v € (2,3]. Fix some v; € (v,4] and let vy = 1/(v~! — v !). By using the quantites defined above,
a Jensen’s inequality to the convex function z — |z|” and a Holder’s inequality to each E[|Tx,|"],
we have

[|Z(d+3 Netn(X1)or(X2) — up®® (X1, X2)["]
= B[] S0 Tl
< (d+3)"7 ) Bl Tl
< (@+3) Bl ((250) BLX 3 + 17217/ BI(1Xa 3 + 1))/

+ () RO 3 Bl + (24 T

v V2
d +2y+2
+ Zl=1 <%) E[’(Xl)l|l/2]V/Z/2E|:‘(X2)l’,/2}I//VQ) .
The only K’-dependence above comes from E[| S|/ = || S I, - which converges to 0 as

K’ grows by Lemma 20. Therefore

E[ Z d+3 Akqﬁk (X1) 61 (X2) — up®® (X1, X2)|"] Koy,

Now for K € N not necessarily divisible by d + 3, we let K’ be the largest integer such that
dK' < K. By a triangle inequality and a Jensen’s inequality, we have

E[|>,, /\k<f>k(X1)¢k(X2) — ufSP (X4, X5)|"]
< B[ (|00 Men (K1) (Xa) — ulSP (X0, Xa)| 4 |0 sy MK (X)) ]
<2 7'E[|30 oo Nk (X1) 85 (Xo) — P (X1, Xo)|]
+2V71E[}Zk:(d+3)[(/+1 Aot (X1)dr(X2)|7] -

The goal is to show that the bound converges to 0 as K grows. We have already shown that the first
term is o(1), so we focus on the second term. The expectation in the second term can be bounded
using a Jensen’s inequality as

E[] Zf=(d+3)K’+1 Aedn(X1)ok(Xa)|"] < E[( Zf:(d+3)K’+1 Mook (X1) 0k (X2)|)"]
< (K = (d+ 3K Y0 e ELOR6R(X1)64(X5)) ]

< A SUPpe{(d48) K41, (d+3) K+ (d+3)} B[ (Ae0r(X1) o1 (X2))"]
= d” sup; <3 B[ (Aars) 1103y k0 +1(X1) dassycr+1(X2)) "] -

By observing the formula for \;, and ¢y, we see that there exists some K -independent constant Cg -
such that for1 <[ <d + 3,

Narsyreril € Caqagrpr and  |darsyrril < Cayorr1(x)([1x3 + [Ix[l2 + 1) -
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This allows us to obtain the bound
B[] Y iy rss MOk (X1)0(Xa)]|"]
< d"CF e Bl($rr 1 (X)) rr1(X2))” (XK 13 + X2 + 1)7 (X213 + [ Xall2 + 1))
@ dqu*/(Hl . fgd(K/H)h)VEKH?:l Plgatrcr+1y, (X)) ¢fgd(K/+1)}l((X2)l)))y
< (I1Xall3 + [ Xall2 + 1" (1 X213 + [ Xall2 + 1)”}

® y L1172
< d"Ch E[(I1X1 3 + [IXall2 + 1) (1X2l3 + 1Xall2 + 1)*] /

d % v d . . .
X (lel )‘[Qd(K/Jrl)]l) E[(lel ¢[gd(K'+1)h((X1)l) ¢[9d(K/+1)]l((X2)l))> }
& B3 + XKl + D (Xl + 1Kol + 1] 2

v N v\ 1/
< T ()’ (T BL @0, (K00 TR 0000, (K200)) )

1/2

1/2

©

(d) 1% 14 17
= d’Co B[(IX1l3 + 1X1ll2 + 1) (X213 + [ Xzl2 +1)*]

Ty (o) B, 00y, ((%002))™]) -

where we have used the definitions of «j, and v, from (7) in (a), a Cauchy-Schwarz inequality in
(b), the independence of (X;); and (X3); for 1 <1 < d due to the identity covariance matrix in (c)
and finally the fact that X and X3 are identically distributed in (d). The only quantity that depends
on K’ now is

( ng(K’H)h)y E[(¢>[kgd(1<’+1)]l ((Xl)l) )21/]

for 1 <1 < d. We now seek to bound this quantity. Recall from Lemma 20 that A}, :=
for V.~ N (b, 1), we have

and

1
kl~k>

El(6{(U))*) = B[UP#e0*] < B[] < 2074 27 p(2hily.

where we have used a bound similar to (37) in the proof of Lemma 20. By Stirling’s formula for the
gamma function, we have I'(z) = v/27 27~ 1/2¢7%(1 + O(2™!)) for z > 0, which implies

OREIGLO)?] < g (B0 + 21 (2411)
()" i)

vk
(") = ol(2)") = o

as k — oo, where we have used the assumption that v > 24. By construction of g4 in (7), as
K’ — o0, minj<j<q[ga(K’ + 1)]; — oo, which implies that

* v * 2u K'—»co
( [gd(K/+1)]l) E[(¢[gd(K/+1)h((X1)l)) ] =% 0.

=0
0
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Therefore

K—oo

K v
E[| Y iy rr i MO (X)u(X2)["] == 0,
which finishes the proof that

E[‘Z’If(zl Netr(X1) o (X2) — up™® (X, Xo)["] = 0.

In other words, Assumption 2 holds.
Proof of Lemma 23 Fix v € (2, 3]. Consider the independent Gaussian vectors X, Xo Hdp =

N(0,1;) and Y1, Y5 "5 Q = N(u, Iy). Write Z1 = (X1,Y1), Zs = (Xa,Y>) and

Tr(x,x) = e XD _ S o ()
for K € N, and recall that
uWMMP(Z,, 7o) = e IX1=Xal3/(27) _ o=IIX1=Y2l3/(27) _ o=IX2=Y1ll3/(2v) L o= IY1=Y2[3/(27)
Then by a triangle inequality and Jensen’s inequality, we get that
K v
EHUMMD(Zl, Zo) -, Ak¢k(zl)¢k(z2)‘ ]

= EHUMMD(Zl, Zy) — Zle o (Pe(X1) = Ye(Y1)) (vr(X2) — 1r(Y2)) H
=E[|Tk (X1, X2) — Tx (X1, Y2) — T (X2, Y1) + Tk (X2, Y2)|”]
<4V H(E[|Tx (X1, Xo)|"] + E[|Tx (X1, Y2)|'] + B[ Tie (X2, Y1)["] + E[| Tk (Y1, Y2)|"]) -

Since each expectation is taken with respect to a product of two Gaussian distributions with identity
covariance matrices, by Lemma 20 and (8), they all decay to 0 as K — oco. This proves that

EHUMMD(Zl,ZQ)—Zszl )\k¢k(Z1)¢k(ZQ)’V} Koo,

and therefore Assumption 2 holds. |

F.2. Proof for Lemma 22
We restate the KSD U-statistic for RBF under our Gaussian mean-shift setup from (9):

1 +1 d
ufS (%) = exp (—5-x = x[3) (xTx = Lr x = x 3+ 5) - (38)
v gl v
F.2.1. PROOF FOR g(x)
Fix x € R%. Taking expectation of u15°P (x, X’) with respect to the distribution of X',
9(x) = E[up(x,X")]
_ ol 2 T 1+7po 2 d
= E|exp (—g-Ix = X'I) (x "X = 2 x - x|+ 2 |

d/2 1 14+ d
Y 2 T Y 2
= (1) e (—gramlx—ul) B [x W = 2 x - W3+ 2
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where the third line follows by applying Lemma 28, and W’/ ~ N/ <ﬁ (/L + %x), ﬁ—@)- The
proof is completed by calculating the expectation as

E ){T‘Af/—-}Aj;Z|LX _,‘qu|2.+.g
2 27 y
1 d
= E [ W - 2 (W - 2 W Hxn%) +1]
oy 1.\" y+1 [ ~d 1 \" 2 d
=i (e 5x) x5 (Hﬁ apllet Sxl - 7 (v o+ 5%) x+||x||2)+7

_ 2ty T
- 1.+,71L X = ]V+_7|’ﬁt”2

F.2.2. PROOF FOR D¥SP(Q, P)
Noting that D¥SP(Q, P) = E[¢¥SP(x)], we can apply Lemma 28 again to yield

D¥SP(Q. P) = (ﬁ)d/QE[eXp (—ﬁHX—MH%) (% X - 1+7HMH )}
() ) ]

where W ~ N (HV (1 + 1+yu)

5 s 7Id> We then have

2+

Do = ()" (G2 (7 (v hon) - )

d/2
— 2 2
= (32) " ui3.

as required.

F.2.3. PROOF FOR o2

cond

We first calculate the second moment as

EloX)”) = (1) Blexp (~ X — ul) (220X~ )]
= ()" G2) e[ (P w s es)|

where in the last line we have applied Lemma 28 while setting W ~ A (m 1i’Id) and m =

1 T3y B
3i§(u+1+yu):u. This gives
d d/2
2 = (2 1ty 2 1 1 22+7) }
2o = (+2)" (52) TR () 0 TWP 4 il — 22 3
d d/2
= v };t;X +7 1'+'V T 4
a (1+7) <3+7) (<1+y> H <3+71d+/‘f‘ )M+7(1ﬂ)gllullz
= 22 )
(14~)2

) d/2
_ gl 2+7)
~ () (il + 1ul)
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‘We hence obtain

cond - E[Q(X)Q] - DKSD(Qa P)2

) /2
— gl (2+7)
- ((1+7)(3+7)> (i + i) = () o

2 d/2 d/2
— gl 2+~ 1+7)B+7) 4
a ((1+7)(3+7)> <(1+7)3+7)H H2+< ( 2+ ) )”“’”2>'

2
F.2.4. PROOF FOR o}

For simplicity, we define Z := X — prand Z' .= X'z — p so that Z, Z’ are independent copies from

N (0, 1;). By (38), the second moment can be simplified as

X'y
Ix - X3) (XX - X - X+ )2]

7+1

S
o (-

Q\»—k Q\H

sl

_E 12— 2Z13) ((Z+ )7 (% + ) -
- ()" [<<W+M>T(W’+alw+u>—a2’<1—0‘1)W‘W"3+j)2] ’

=T
where in the last line we have applied Lemma 29, and
1+9/2 / _ 1 _ o+l
WwN(O, 2+7/2.Td) . W NN(o, - Id) e T ek

We now aim to compute the expectation 7" by first taking an expectation over W':

) [((W+M)T(W’+a1W+M) — agl[(1 — a)W — W'|[3 + %) ]

E[( — || W2+ (W + 4 201 — a))W) W

W) @ W ) = a1 = e W+ £ )]

=:fw
_ 2 714 _ T ) 2
= E[ad[W[l; + (W + s+ 2051 = a1)W) W)+ By
— 200 (W + 1 + 2a2(1 — a1) W) W'|| W’ |13 — 2008w || W'||2
+ 28w (W + 1+ 209(1 — al)W)TW’} .

Since W' is zero-mean, independent of W and follows a distribution symmetric around zero,
E[W’'] = E[W/|W’||3] = 0. Since |[W'|j3 ~ Xd where x?7 is a chi-squared distribution

with d degrees of freedom, we have E[||[W’||3] = 2ﬂd and E[|W'||3] = QH)Q (2d + d?). We also
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have E[W'W'T] = -1, Thus

2+7

r 2
T =E |3 W[y + (W + 4 202(1 = a1) W) W) +B%v—2a26wHW’H§]

2
=K OP(H E (2d+d2)+—||2a2(1—a1)w+w+u||2+ﬁw 200Bw 5 —d

(a) (1+9)° 2)
YE | g 2d+ @)

"+ By 25w (1;])d

2+’y
2

[ (14 2 v ||2+4y+o° 2 1+
=E 2d+d W + +Bw — 28w ——d
73(2+7)? 3 ( )+ 249 2+ # 5 b b Y(2+7) ]

B (1+7)? 2y _(2+4y+4%)? 1+
= o r 2+ ) S Il + B - 28w

_ 0+ o, (20+9)° | 2+4y+19°) L+
= art + (FEE s+ s Il + B[S — 20w

In (a), we have substituted in vy = 2/(2 + ) and ag = (7 + 1)/~?, and in (b) we have taken the
expectation of the second term. Now re-express Ow as

bw = o IWIE+ (52 +1) wTW ol — 250 (1= 522 ) W3 +
= (2 = L) IWIE+ 2 TW o +
= S W+ 2 W ul3+ 2
By noting that odd moments of W vanish, we get that
Bl-20w 55 ) = = Sty + Il + )
= ey (arnars * 3)F — Saraduld.

and
2 d 2
B[] —%(mcz%#”m (a3 + 2) " + et B (lul + 2 )

_ (v+3)? 1 (v+3) 2 2(y +3)*
= ((2+7)2(4+7)2 + +(2+7)(4+7)v)d +((2+7)2(4+7)2>d

2 L) 4+, 412 4
(2 G2 DY 2l +

The coefficient of d? in T" can then be computed by noting v = w(1) as

(I+7)?  20+9) v+3 1 (v+3)° 1 2(y +3)
2@+ 2@ty <(2+v)(4+v) + 7) + ((2+v)2(4+7)2 Tt (2+v)(4+v)7>
(2+W) 1

1
= —_— = o\ =) .
A+ T 2 (72)

Similarly, the coefficient of d in T" can be computed as

2(1 +7)? (2 + 4y ++°)? 2(y + 3)? _
(Parar T aerrary) T (@rpasse) =1+,
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the coefficient of d||||3 in T can be computed as

_2(1+9) 2 2(y+3) _22+4) 2 1
7(2+7)+( +(2+7)(4+7)) y(d+7) v < )’

the coefficient of ||x4||3 in T can be computed as

4+
v Aty

777 ey - 2ol

and finally the coefficient of ||x||3 in 7" is 1. Combining the five computations of coefficients, we
get that

2d\|u|\2

d
T = ddt S+ 2 ol 4 o(d 4 S+ )

and therefore the desired quantity is given as

Jf2ull = E[UI;SD(Xv X,)2] - DKSD(Q P)2

)1 () i
)" (75)" ()
)" (o o 2 g (1 (B

d
ro(a+Soa 2t ) )

F.2.5. PROOF FOR UPPER BOUND ON E[|g¥5P(X)|]

0
44+
.
44~
.

Fix v > 2. We can apply Lemma 28 to rewrite the v-th moment of g%5P(Z) as

Bl 001] = (122)" B e (~ g 1% - i) [E20Tx - ]
=<AZY“@EJ%hY“H?Hf -5 e ]
=T

where W ~ N (m, a®1;) with m = lil(J{l)W/)V/l, (u+ 1 4]/-7”) + pand a? == lfgl)w/)”/y = 1};17

Defining V := W — p so that V. ~ N(0, a%I;), we have
_ w2+, T 1 2|l _ 24y, T 2|”
T =E[|[F20T (V) - s lul] | = E (2T = i) ]
v—1 2 Tx7 |V 2v
<27 ((52) Bl VI + )
vV— 2 + v 14 v 174
=271 (0 (F2) allulls + I3

where (i) follows by the fact that |u + v|¥ < 2¥71(|u|” + |v|¥) for any u, v € R, and in the last line
we have computed the expectation by noting that " 'V follows a univariate Gaussian distribution
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N(0,a?||u||3) and using its moment formula to yield E[|u' V|¥ < C,a"||p||y for some constant
C,, that depends only on v. Combining these and substituting the definition of a? gives

B[]
<2 () () (e (FR) (Fs) e )
< ()" ()" (s 2 )

where in the last line we have used the assumption that v > 2 to yield the inequality

() () - G () -t -
1+~ 1+v+7y 1+~ 1+v+7y ’

Defining the constants C := 23*/2-1C,, and Cs := 2¥~! completes the proof.

F.2.6. PROOF FOR UPPER BOUND ON E[|u85P (X, X")|¥]

Fix v > 2. Define Z := X —pand Z' := X’ — i so that Z, Z' are independent draws from N (0, I).
Using (9), we can write the v-th central moment as

Efluf®” (X, X")|"]
_ 1 "2 T/ Y +1 m2 . 4\1|”
= B[ exp (5 X - X3) (XTX/ = L X - X3 + ¢

72
1 d|¥
—E[exp (—5- 12 - Z1B) [(Z+ ) (2 + 1) - 12 - 23+ 5| ]
vy 2 Tw/ / 2 df
= (5225) E[[(W+ ) (W (- an)W 4 ) — ar[W = W= (1= ag) W[+ 2]
=T
(39)
where the last line follows by using Lemma 29 and defining the quantities o = %21, Qg = %,

Qasg and

— _7
T 2u4y?

W ~N(0, 11/5”1,1) — N, asly), W NN(O, 21/:/1/Id> — N(0, asly) |

/v v _ v

while also noting that 1 — ag = 5 v Xy T o

=1 — a. By a Jensen’s inequality, we get that

T =E[[(W+0) (W + (1= a)W+p) - [JaaW = W[5+ 2]

d v
—E[|(W+ 1) "W+ (1= ) [W + 3 + 0o (W + ) T = anas W = W3+ 2]
< 5V*1E[‘(W —|—Iu,)TW/‘V + ‘1 o a2|l/HW+:U’H%V + ag‘(w +,U/)TM‘V
v 1112V d v
+ ¥ ||aa W — W'|13 + (;) ],
where the last line follows from a Jensen’s inequality applied to the convex function z — |x|”.
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We next seek to bound the expectation of each term individually. To bound E H (W+ w) W’ | V} ,
we note that (W — 1) " W’ conditioning on W follows a normal distribution N (0, ca || W — p|3).
Hence, using the moment formula of univariate Gaussians, we have

E[|(W+u)"W'|"] =E[E[|(W +p)"W'|"|W]] = E[C,a5|W + ul5] ,

for some constant C,, constant depending only on v. By the convexity of the function x — [|x]|5,
we can bound the above term as

E[Co5|W +pll5] <277 Coas (E[WI5] + [lul)

@ STV 1/2
< Cyabal (E[IW(3])Y
(’L’L) 1% 12 v 1% v 14
= Cyagzag(d 2 4 o(d /2)) + Cuag]|pllz
(i)

< Cud'? + o(d"?) + Cy ||y,

+ Gyl

where (i) holds by a Jensen’s inequality, in (ii) we have noted that a3 ' ||W||2 follows a chi-squared
distribution with d degrees of freedom and used the formula for its v-th moment, and (iii) follows
vy gl

since ag = v < 1l and a3 = 2y < 1. The expectation of the second term can be bounded

using a similar argument as

E[IW +ulf] < 2 E[WIB] + i) =27 (a5 + o) + ul3)
<271 4 o(d) + 2wl

The expectation of the third term is

E[|(W+p)"u"] = E[[WTu+p3]"] <2 Y E[W 1]"] +11l3)

V— 2 124 1%
— 271 (a5 + 13)

<27 Hpllz + 2 w3

where the second last line holds as 11 W is a univariate Gaussian with zero-mean and variance
a3||p]|3, and the last line holds again as e < 1. It then remains to bound E[[|aa W — W'||3].
Noting that as W — W’ ~ N (0, g (3 + 1) I1), the random variable oy ! (a3 +1) 7 |ao W — W |2
follows a chi-squared distribution with d degrees of freedom. A similar argument as before gives

E[[laeW — W'||2Y] < ab(as+ 1) (d” + o(d”)) < 2“d” + o(d") ,

where in the last inequality we have used the fact that ao(ag + 1) < 2. Combining these terms, we
can bound 7" as

T <571 |:(0de/2 + O(du/Q) + CVHM%) +1- a2|y2u—1 (dy +o(d) + ||MH%V)
v 4 v vov ( Jv v AN
+ 27 (ally + i) + at2* (@ +o(@) + (£) ] -

To proceed, we note that o} = (%21)” = (%—1—7%)'/ = %—i—o(,y%) and that (1 —a2)” = (;4)" =

ﬂ/% + o(,y%), since 7 = w(1) by assumption. Therefore,

1= a2 (& o) + uly) = 2% 4oy (4 Il
,-yl/ ’YV ,-YV ,-YV )

69



HUANG L1U DUNCAN GANDY

and

af2" (d” + o(d")) = j—: +0(j—:> .

It then follows by grouping and rearranging that 7" can be bounded as

e u » u l/du » 2v du 2v
T <571 G2 4 ofd?) + Cylully + 205 4 o I o (£ Il
_ d’ d’ d\V
21/ 1 v 2v a4 (7) (7) :|
+ (el + Npell3”) + ol )+ (5

v— v v d v v— 14 v— 14
=51 |G + 2 +2)(5) + (G2l + 2l

+0(du/2 L& ||u||§”>]
,-yl/ ;yl/

v d v 14 174 174 dl’ 3
= 3+ Co(2)" + Cslulls + Collully + o @72 + & + 12
where in the last line we have redefined the constants: Cy = 5"~ 1C,, Cy = 5”_1(2 + 2Y),
Cs = 5"YC, + 27 !) and Cg := 10", The proof is finished by substituting this bound into
(39) to yield

, d/2 Y d\ v v
B X, X1 < (55=)" (Cod +Ca(2) + Cslully + Collul

2+
s+ Ly W)Y
Y Y

F.2.7. PROOF FOR VERIFYING ASSUMPTION 1

First note that when v = Q(d), for any fixed a, b, ¢ > 0, we have that by a Taylor expansion,
)= ()T = e (fe (1455)) = e (5 +o()
(b+7> = 1+b+’y = exp Clog 1+b+’y = exp C(b+7)+o e
. d(a —b) d N
= o (G (110 (5)) = e

Using this together with the assumption ||u||2 = ©(1) and the moment bounds in Lemma 22(iii)-
(vi), we get that

2 /2 2 /2
2 _ gl 2+7) 1+7B+7) _
“wnd_@((<1+w><3+w> <(1+v)(3+v)+<1_( T >>) -

> _of (2 £ () (tn &£ d
e _@<(4ﬂ) <d+72+7+<1 <(2+7)2) +old+5+2

and for v € (2, 3],

b <EF00M = 0 (135)™ (235)™) - 00

Vi, B X1 = 0 (575) " (#+ (5))) = o+ ).
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This implies that

Moty _ 1),  ang =~ Mumw _ 0<(d1/2+j)_1(d1/2+j)> = 0(1).

Ocond Ofull

Meopnd: M.
In other words, —<endiz gpd —fulliv
g, d Ofull

con
verifies Assumption 1.

are both bounded by finite, d-independent constants, which

F.3. Proof for Lemma 24

F.3.1. PROOF FOR g™™d(z)

Recall that the MMD U-statistic is uMMP(z,2") = k(x,x’) + k(y,y’) — k(x,¥’) — k(x',y) for
z = (x,y) and z’ = (x/,y’). Taking expectation with respect to the second argument, we have

gmmd(z) = E[UMMD(Z, ZN] = Elk(x, X))+ 6y, Y) - 6(xY") - (X, y)]

_ _ HX*X’H§> (_ IIy*Y’H%) _ (_ HX*Y’H%) _ (_ I\X’*y\li)]
=E [exp ( o + exp 5 exp 5 exp 5 .

We can apply Lemma 28 to compute each term. For example, setting a; = 1,as = v, m; = p and
my = X in Lemma 28, the first term simplifies to

Ix=X13\] _ (v \¥? 1 2
E[eXp<_ 27 )}_(lﬂ) eXp<_2(1+7)Hx_MH2>'

Computing similarly the other terms yields the desired result:

d/2 1 1 1 1
gmmd(z) _ (1:’7— ) / [e—m“x—uﬂg + e‘m”)’“% _ 6_WHXHE _ e‘m“)’-ﬂ“%] )
v

F.3.2. PROOF FOR DMMD (), P)

This is a special case of Ramdas et al. (2015, Proposition 1) with 3 = 0, puo = p and X = 1.
Alternatively, applying Lemma 28 to compute each term in E[g(Z)] yields the same result.

F.3.3. PROOF FOR 02

cond

For Z = (X,Y), the second moment of g(Z) is

2
d 1 x—pul2 1 y2 N ST 1 ly—pl2
Elg(Z)2] = (11 7) EKe skl | s VB _ a3 _ o~ alY N||2> ]

d 2 2 2

_ (. _ ||X*HH2> (_ ||Y||2> (_ ||XH2)
= (1+'y> E[exp( T+ + exp 1T + exp Tt
Y — p|2 X — pl|2 Y2

o (= B + 2o (= TR e (- i)

_ 2 2 _ 2 _ 2
e (- MBI g (Xl (o (1Y =

2(1+7) 2(1 +7) 2(14+7)
X3 Y3 Y5+ Y — pl3
_2exp(_2(1+w))exp(_2(1+~/)>_2‘”‘1’(_ 2(1+7) )

+ 20xp (=g IXIE) exp (g 1Y - i) |
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We can compute each term by applying Lemma 28. Noting that Y — p and X are equal in distribu-
tion, and also that Lemma 28 depends on m; and mj only through their difference, we have

E [eXp <_|X1_+:|%> _E [exp <—!Y+|$> - (;%)‘W 7

E |:eXp <_|1X+|3>: -k iexp <—W)] _ (;i;%)d/z oxp <—:|))|i|i> |
E [exp( I (1_+Mv|)2)_ _E :eXp (_2(|1Y+|§7)> _ <%>d/2 |
: [exp <_2(|1Xl|i)>: =E :exp (—M)] = (2) e <_2(||2u+|%7)> |

It remains to calculate the expectations of the sixth and ninth terms, which involve two differently
centred quadratic forms of X and Y respectively. The sixth term simplifies to

B oxp (- XSAEE) | [oxp (< (2118 - 207X+ 1))

_ |2 [P
_E[ ( 1+vH 2’2)}“@ <_4(1+v))
1442 [P [P
= (7)o <_4<3u+w) e

1 d/2 2+’Y
) o (o eb) (40)

=2

and a similar calculation gives,

IYIB+IY —ul3\] _ (1+7\¥? 2+
E[exl’ <‘ 21 +7) )] = (322) e (~gaeyaIHB) -

Combining the above identities yields

o] = () (2 (3520)" 2 (122) "o (- 125)
c2(32) -0 (52) " o (g )
_4 1+z ( % ) 2<;+7; eva(_Jﬂﬁ))
+ v +
—of( 2 Wiy d/2
(1+v) <3+W|?u|§ 3 AN G/2 (1 4 A df2 @+l +7)||H|\2
(e (-2E) - (5)" (323 ( )

Ly 42 E 1+
_2<2+’y> exp(_2(2+v) +(2+v) P 2+7
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By noting that DMMP (), P)?

cond _E[ (2)2]

. DMMD(Q, P)Q

2
= 4(ﬁ)d(l — exp ( — 2‘(‘5&))) , we hence obtain

= Elg(2)Y - 4 (52

d lalz \1°
) [1 - oxp (‘z<2+w>

=2(+5)"
< (1o (-
-

— 2exp

2 —_—
H1+71B+7) HMHQ)

3+7>d/2

JIES 3+’Y>d/2
3+ 2+7

74 5y

() () e (1)),

as required.

2
F.3.4. PROOF FOR oy,

The second moment is

E[uMMD(Z, Z/)Q]

_x/2 12 —
:E{exp (_ |x Wx |2> 4 exp <_||Y 7Y ||2> +exp <_|x ) <

X - X'|3

Y||2)

+ 2exp <— I o

XX
D ( =

_ 112
2exp <_||Y Y5

2y

- 2 (55 1 <_n—;nz>] e

Yy - Y'|2> < X — X||2 X — Y||2>
||X' Y||2 ( Y - Y||2 X — Y||2)
X’ Y X Y’ X’ Y
| E +2exp< I = B | |>]

)

_ /12
+ QE[exp (— RS 27X 2 _

Y —Y'[|3 _ X=X X =Y
o 4E | exp o 5

_ 712
_4E[exp (_|Y Y3

2y

||x;yY’|%)] +2<E[6XP (—'XQWY”)DZ |

where the second equality follows by the fact that X, X’ and Y,Y” are respectively independent
copies from () and P. To calculate each term, we apply Lemma 29 to yield

B 12
E| exp (_|x }X |>]

I N2
E| exp <_ b 27x |2)

_ Y-y B\ _ w2 N2
= E[exp (—7>} = (2+7/2> -
= E[exp (—
[ X3 N Mk _Ix- Y3 v \%? 113

Bl = () Mew () L B[] < (1) ew (<L)

()"

S - GRS
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Y 2y
are the only remaining terms to compute. The first term can be simplified as

T :E[E[exp< |XX|2) ‘X] [exp( |XY|2) ‘X]
@E <$)d/2exp (_2(||1le|27)> X(va)dmeXp(—w)]
- (53 el (o (-3

() () e (gt )

d d
N (110 /2(310 P (—2(3;%” 13) .

where in (a) we have applied Lemma 28 to compute the conditional expectations, and (b) follows
from substituting (40). The second term can be simplified with a similar calculation as,

d/2 d/2 94
= (- 7 £ iull?
T2 = (l-i-’Y) <3+7> exp( 2(3_;_7)(1_,_7)”,“”2) .
Collecting all terms gives
d/2 d/2 2 d
MMD N2 =2 (- i _ lmliz ( v )
Efu (Z,2")7 —2( +7) +2<4+V> exp( 4+7>+2 g

8(r15) " (575) " e (i Ine)
( Y

LetT) = E[eXp <f ||X—2X'H§ o ||X—2’YY'H§>} and Ty == E[eXp (* IY—Y'l; ||X—2’YY'H§>]’ which

—~
=
=

W~

By noting that

DMVD(. p)? :4< v )d(l—exp(— 4113 ))2

2(2+7)
_ v \¢ 24113 [ME
- <2+7> <l_eXp(_2+7)+2€Xp(_2(2+7))>’

the variance takes the following form after subtracting DMMP(Q, P)? and collecting similar terms

Uf2ull = E[UMMD(Za Z,)Q] - DMMD(Q? P)2
—2() (e (= 388) 2(5)'
(7)) e (- g )
d 2 d 2
—2(525) e (- 342) +8(55) e (— as) -

which completes the proof.
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F.4. Proof of Lemma 25
With a linear kernel and under the stated assumption, the MMD statistic is

UMMD ( T,/ TX/

z2,7) = x' X +y'y —x'y —y'x', where z=(x,y),z = (x,y) € R*.

F.4.1. PROOF FOR g™™d(z) AND DMMP (), P)

The expression for g™™d

can be computed as
g™ (z) = E[uMMP (7, Z)] = E[XTX/ +y' Y —-x"Y - yTX’] =pu'x—ply.
The formula for DMMP(Q, P) then follows as
DMMP(Q,P) = E["P(Z,Z')] = Elg™(Z)] = E[u' X —u'Y] = p'p = |l

F.4.2. PROOF FOR 02

cond

A direct computation gives

E[g™™(2)?]

E[(u™X)? + (1TY)? = 2uTXpTY

p S+ pp D+ p" S = 2p" S+ |3 -

2
Therefore, o7

4 = E[gmmd(Z)?] — DMMD(Q, P)? = 2" S, as required.

F.4.3. PROOF FOR 0}

The second moment is
E[’U,MMD(Z, Z/)Q] — E[(XTX/)2 + (YTYI)Q + (XTY/)Q + (YTX/)Z
+2XTX'YTY —2XTX'XTY' - 2XTX'Y X
—2Y'Y'X'Y' - 2YTYY X +2XTY'Y'X/]
=E[(X'X)?+ (YY) +XTY)+(Y'X)?].

In the last equality, we have noted that the cross-terms vanish since X, X', 'Y and Y’ are mutually
independent and X, X’ are zero-mean. A direct computation gives

E[(X"X)?] =Tr(EXX'X'(X)']) = Tr(2?),
E[(Y'Y)] =Tr(E[YY'Y'(Y)']) = Te((S+pp')?) = Te(E%) + 20" Sp" + [|ull3
E[(X'Y")?] =E[(Y'X)?] = THE[Y(Y) XX)T]) = Te(Z?) + p' Zp.

Therefore, E[uMMP(Z, Z/)?] = 4Tr(X?) + 4p" Sy + || p|3, and

Uf2ull _ E[UMMD(Z,Z/)Q] - DMMD(Q,P)2 — 4Tr(22) +4MTE,U’7

which completes the proof.
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F.4.4. PROOF FOR UPPER BOUND ON Mé”ondﬁ
The 3rd absolute centred moment of ¢g™™4(Z) satisfies

Mgz = Ellg™(Z) —E[g™™ (D)) =Ellp"Y —p' X — p"uP’] =E[|p"Y — p VI,
where we have defined V := X — 1 so that V.~ N(0, ¥). Noting that |a + b|3 < 2371(|a|® + |b]?)

for any a, b € R by Jensen’s inequality, we can bound the above as

m (a) (b)
M s = B[ — u V"] 4B[p"YP + [TV = 8C (T 5u)*? = C(u"sp)* .

C

In (a) we have noted that the absolute 3rd moment of a univariate normal variable N (0, o2) is given
as C'o3 for some absolute constant C’. In (b), we have defined C := 8C".

F.4.5. PROOF FOR UPPER BOUND ON M3 .

Forany z = (x,y),z' = (x,z') € R?*! we have

UMMD(Z, Z/) — XTX, + yTy _ XTy, _ yTXl — (X _ y)T(X, _ y/) )

Write V := X — g and V' := X — y so that V, V' S N (0, X). We can compute the 3rd absolute
central moment as

Miy.3 [WwMP(Z,2) — B[P (Z,Z)))P]

(X =Y) (X =Y') — ' p]

(V+u—=Y) (V' +p—=Y)—p" ]

(V=Y)" (V=Y +u " (V-Y)+(V-Y) "] .

E[
E[
E[
E[

By a Jensen’s inequality applied to the convex function z + |z|> and a Holder’s inequality, we get
that

Mins <IE[V=Y) (V' =Y)P] +E[lx" (V' = Y)P] +E[I(V - Y) u?])
<YE[UTUP] +2E[[UTu]) .

In the last line, we have used that U := V — Y and U’ := V’/ — Y’ are identically distributed.
In fact they are both A/(0,2X). The second expectation can be computed by the formula for the
absolute 3rd moment of a univariate Gaussian as

E[[UTuf’] = C'(n"Sp)*?

where C’ is some absolute constant. Similarly the first expectation can be computed first by noting
that U T U’ conditioning on U is a univariate Gaussian and secondly by using the moment formula
for a Gaussian quadratic form Lemma 27:

E[[UTUP] = E[E[UTUP|U]] = C'E[(UTSU)*/?]
< CE[(UTSUYY? = ¢/ (Tr(3%)? + 6Tr(S2)Te(S4) + 8Tr(6)) < 15C'Tr(22)° .
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In the last line, we have noted that Tr(A™) < Tr(A)™ for m € N and positive semi-definite
matrix A, which holds by expressing each trace as a sum of eigenvalues and applying the Holder’s

inequality. Combining the two computations and redefining constants, we get that for some constant
C,

Mng < C(Te(S2)° + (1TSw)*?) < O(Te(?) + u"5p)*? .

F.4.6. PROOF FOR VERIFYING ASSUMPTION 1

By the bounds from (iii)-(vi), there exists absolute constants C7, C such that

1/2
Meonass - Ci°(u S o _1jpa1/3 Mans Oy (te(2) + " 2p) —1cl/3
Ceond  — 21/2(’uT2’u)1/2 1 > Oful 2(Tr(22)+MTZM)1/2 2

which prove that Assumption 1 holds with v = 3.

Appendix G. Proofs for Appendix B
G.1. Proofs for Appendix B.1

The proof of Lemma 26 combines the following two results:

Lemma 44 (Theorem 2, von Bahr and Esseen (1965)) Fix v € [1,2]. For a martingale differ-
ence sequence Y1, . ..,Y, taking values in R,

E[| >, Y] < 23" E[vi]].

Lemma 45 (Dharmadhikari et al. (1968)) Fix v > 2. For a martingale difference sequence
Yi,....,Y, taking values in R,

E[IXL, Yl < G2 300 BVl
where C,, = (8(v — 1) max{1,2"~3})".

Proof of Lemma 26 We first consider the upper bound. For v € [1, 2], the result follows directly
from the Von Bahn-Esseen inequality as stated below in Lemma 44, and for v > 1, the result follows
directly from Lemma 45. As for the lower bound, by Theorem 9 of Burkholder (1966), there exists
an absolute constant ¢, > 0 depending only on v such that

E[| Y%7 = e B[, v

For v € [1, 2], by applying Jensen’s inequality on the concave function x +— z” /2, we get that

E[Y0 Y] 20 B[ Y0 s ] > on 1 BV

For v > 2, by noting that (a + b)*/2 > a*/? 4+ b*/? for a,b > 0, we get that
B[S Y] 2 B[ (v)] = a3 BV,
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Combining the two results above give the desired bound.

Proof of Lemma 28 A direct computation gives
1
E[£(X) exp (= 501X = maf}3)]
2

1 1 1
— oy [ FO0exp (= gy x = mall) exp (— o x - ma3)

Ix3 | Imold  2mgx x| | |[mi)}  2mix
- 27rd/2d/f eXp(( + 2 >t o+ 2 2

)

a3 a3 as aj ay ay
~
=T
Simplifying 7" by completing the square yields
7o _L(IxIE I 2mix  2mix) L [mol 3

2\ a2 a? a3 a? 2 a2 a?

2 2 2 2 T 4 4 2
___aita3 H ”2_ 2aias (g_{_g) x 4 ajas m; | my
© 24} 2 dt+a\d | a (¥ +a3)* [l a3~ af [l

_ Lol | Jlmafli  afed ||me  m

2\ @ d a+dgllag @l

=T’

ai +a3 afa (m; | my

2,2
2a7aj

1 2
x— ik ()| - s o — ol
where we have simplified 7" as

a3
1(‘1? + a%)

oo ImelE | mip ol T

2 2
a; aj a3(a? + a2

55 1ma 3 -

1
= m”ml —my3 .
Substituting this into E [f(X) exp (—ﬁHX - mgHgﬂ , we have

1

E[f(X)exp (- 501X — ma3) ]

2
_ 1 [lmi — my |3 _a% + a3
= 4(271-)‘1/2&‘11 eXp< (a2 + a2) > /f T)exp 2a%a2

(" Jins — mall3 g o
T\t a exXp T 2@t ad) [F(W)],

where W ~ N ( ajas (221 + 222) aias Id), which completes the proof.
1

aa? m; ms
X— = = Tz

2 2
ay +a; \ aj az

ai+a3 " af + a3
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Proof of Lemma 29 Rewriting by the tower rule,

x|
() o (et ) s (k. 0

where the last line follows by applying Lemma 28 to the inner expectation, and where W’ ~

V(@i

B[10C X exp (- X - X)) = B | [ XX e (—Q—igux - x3)

i 71Ny, 2 + 51 d) Applying Lemma 28 again gives

a2+a

E[£(X. X)) exp (= 52 |X — X'|3)]

d/2 d/2
_ (e / _as+ai ! exp <_;Hm m ||2>
a3 + a3 o} + a3+ 2(af +a3 +ap) T RN

xE[E[f(W,W’+ e ‘W”
al 4/2 1 2 / a3
= (arvibem) o (amraragm —malf) B[ (W, W'+ W)

2/ .2 2
where W ~ N ((M (igml + : 21112) ) azl(% +a3)2[d> u

a? + a3 + a2 \a? a3 + a2 a?+ a3+ a2

G.2. Proofs for Appendix B.2

Proof of Lemma 30 Consider the sequence of sigma algebras with F{ being the trivial sigma
algebra and F; := 0(X1,...,X;) fori =1, ..., n. This allows us to define a martingale difference
sequence: Fori =1,...,n,let

Y; = E[D,|F;] — E[D,|Fi-1] .

This implies that E[| D,, —ED,|"] = E[| "I, ¥;|”]. By Lemma 26, we get that for some universal
constants c,,, C?,

¢, > ElYil"] < E[Dy —ED,"] < C)n**71 377 E[Yi|"]. (41)

To compute the v-th moment of Y;, recall that D,, = m Zj,le[n] ey u(X;, X;), which implies

E[v;] = HEDnr i)~ E[Da|Fi- H]
n—l |:‘ Z] lE[n]J;él (XJ,XZ)LFz] - E[U(X],XZ)‘fz_l])|V:|
= ,H B[ (Blu(Xi X)) ]~ Efu(X;, X)) Fi )]
o Bl
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In (a), we have used that each summand is zero if both j and [ do not equal 4, and that v is symmetric.
In the case j < ¢, we can compute each summand of S; as

Elu(Xi, X5)|Fi] = Blu(Xy, Xj)|Fia] = u(Xi, Xj) — Elu(Xq, X;)[X;]
= Aij — Bj + B; s

where A;; := u(X;, X;) — E[u(X;, X1)|X;] and
B; = Elu(X;, X1)|X;] — E[u(X1,X2)] = E[u(X1,X;)|X;] — E[u(X1, X2)]
by symmetry of u. In the case j > 4, we can compute each summand as
Elu(X;, X,)|F] — E[u(X,, X;)|Fia] = Efu(X1,X)|X,] - Elu(X1,X2)] = B;.
Therefore
S; = Zj<i(AiJ' — Bj)+nB; .

Consider Ry :=nB;and Ry := ) j<i (A;; — Bj), which forms a two-element martingale difference
sequence with respect to the filtration o(X;) C o(X;,X;...,X;_1). By Lemma 26 again, there
exist constants ¢}, and C}; depending only on v such that

ElSi) = E[| Y, &i'] < C;(ElnB1+E[| ¥, .Ai-—Bm)
= Czt<ny COIldV+EHZ <z Z] Bj)’V]>’
EISi] = E[| X0, Rl > o (E(nBil) + B[ Y, ( z-j—Bm”])

= (0" Meonay + B[ 32, (4i5 = B)[']) -

Now consider T; := A;; — Bj for j = 1,...,i — 1, which again forms a martingale difference
sequence with respect to o(X;, X1),...,0(X;,X;...,X;_1). Then by Lemma 26 again, there
exist constants ¢2* and C'2* depending only on v such that

E[| Y, (45— B)|"] < €7 (i—1)"/* 121 LEl4; - Bil"] = C2 (i 1) My,,
EH Zj<i(‘4ij - BJ)‘V} 2 Clé ijlE |A1J - BJ| } = CV (Z - 1)Mfl:111;1/ :
Therefore

EHSZ‘V] < C*ny cond;v + C*CA (,L - 1)V/2Mfl:111;1/ )
EHSZ‘V] > C n” Cond v + ¢y CA ( )Mfull 2

which yield the following bounds on the v-th moment of Y;:

E[|Y;|"] < 2C]((n— 1) Mpay +Con™" (n = 1)7" (i = 1)"2Mfy,,) |
E[Y;]"] = 2¢;((n — 1) Mina, +cpn™" (n = 1) (i = )MEy,,) |

IN
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To sum these terms over ¢ = 1, ..., n, we note that since v/2 > 0,
1+v/2
noos 1y/2 " v/ _n noo. _ n(n-1)
Zi:1<Z 1) < /Ox dr = 1+v/2° Zi:l(Z 1) = 2 ’
et A
Define C, := W and ¢, := c,ctmin{1,c5}. By summing the bounds on E[|Y;|"]

and substituting into (41), we get the desired bounds
EHDn - EDH|V] < CV nu/2—1 (n(n - 1)_V Cl/ond;u + n_y(n - 1)_Vn1+y/2Mfl:111;V)
- Cl/ nl//Z(n - 1)_V cVond;z/ + CV (TL - 1)_VMfI{111;11 )

EHDn - EDTL|V] 2 CVn(n - 1)711 éjond;u + CVni(Vil) (n - 1)7(V71)Mfl:111;l/ :

Proof of Lemma 31 The first result is directly obtained from linearity of expectation and Jensen’s
inequality:

DY | = B0 Xa)] - S0 ME[G (X El6e(X)]|
— ‘E [U(Xl, Xy) — Zszl )\kqf)k(Xl)QZ’k(XQ)} ‘
< E‘U(X1,X2) — Zle )\kﬁf)k(xl)ﬁbk(X?)‘ = €Kil -

To prove the next few bounds, we first derive a useful inequality: For a,b € R and v > 1, by
Jensen’s inequality, we have

v 1 14 1 v v v— 14 v
la+ 8" = |5(2a)+ 220" < fl2al + 5[20) = 27 (lal” + b]") -

By a triangle inequality followed by applying the above inequality again with a replaced by |a| — |b]
and b replaced by |b|, we have

ja+bl" = Jla| = bl = 27" Dla]” — b}
Since v € [1, 3], we have 2V~! € [1, 4]. Therefore
Zlal” = b < la+0l” < 4(a]” + b") . (42)
Now to prove the conditional bound, we make use of the fact that X, X5 are i.i.d. to see that
B[ 0, Aelon(Xa) — pdpn||
= B[] 0, M (Elon(X1)o(X2) %] — Elon(X1)dn (X)) ||
= EHE[U(XL X2)[X1] — Elu(Xy, Xo)] + Agy — AK;zH : (43)
where
A = S MEGR(X1)on(X2)|Xa] — E[u(X1, Xo)|X]
Az = 30 ME[G(X1)dr(Xz)] — Efu(X1, X)) .
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Moments of the two error terms can be bounded by Jensen’s inequality applied to x — |z|” with
respect to the conditional expectation [« | X5] and the expectation E[« |:

B[ A ) Bl Aral] < EJ[u(X1, %) = 3,0 Meon(X)on(Xa)] |

= X1, %) = S e (XnarXe)| = ek

Ly
On the other hand,

(Meonaw)” = E[|E[u(X1,X2)X1] — E[u(X1, X2)]|"] -
Therefore applying (42) gives

1 v v K v v v
E(Mcond;u) — &Ky < EHZkzl )‘k(gbk(xl)_uk)ﬂk‘ :| < 4((Mcond;1/) +5K;u)

For the last bound, we start by considering the following quantity, which can be thought of as
the truncated version of M ;. :

B[ 5 e )

=E H Zle Ak (0r(X1) — pi) o1 (X2) + Zle Akt (P (X2) — pk)
= E[[T2 +Th["] -

]

Since {T7,T>} forms a two-element martingale difference sequence with respect to o(Xsz) C
0(X1,X5), by Lemma 26, there exists absolute constants ¢, C/, > 0 depending only on v such
that

o (BT[] +E[)]) < mx < C(E[T1]"] +E[|T2]"]) .

Similarly, by writing

EIT2P] = B[ S0 Ael6n(Xa) = ) n(Xe)] |

= B[ S M(0n(X0) — ) (80(K2) — ) + S0 Ml (X0) — gy |
=E[|Re + Ra|"],

and noting that {R;, Ro} forms a two-element martingale difference sequence with respect to
o(X1) C o(Xy,X2), by Lemma 26, there exists absolute constants ¢/, C;/ > 0 depending only
on v such that

oy (Bl B l"] + E[|R2"]) < E[IT2)"] < CU(E[IR:]"] + E[|R2]"]) -

Combining the results and setting A = sup,,c[y 5 C;, max{Cy, 1} and a = inf, 1 3 ¢}, min{cy, 1},
we have shown that

o(B[|T1 "] + B[ B ["] + E[| Ro|"]) < mi < A(B[T|"] + E[|Ra|"] + E[|Rs["]) -
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Notice that the quantity we would like to control is exactly

]
and that E[|T1|"] = E[|R1|"]. By setting ¢ = A~! and C = a~, this allows us to obtain a bound
about E[| R2|"] as

BllRol"] = E[| S0, Ml(0x(X1) = ) (64(X2) = jue)

emg — 2B[|Th|"] < EH Zf:l Ak (P (X1) = p) (D (X2) — /Mc)H < Cmg —2E[T1["] .
Now notice that

EITL)] = E[| S0, Aul0n(X0) = )i

which has already been controlled by the second result of the lemma as

(Mcond)” — €k < E[T1]"] < 4((Mcondw)” + €%) -

N

On the other hand, we can use an exactly analogous argument by using (42) and applying Jensen’s
inequality to control the errors to show that

1 14 14 v 14
Z(Mfull;y) - 5K;y < mg < 4((Mfull;u) + EK;V) .
Applying these two results to the previous bound gives the desired bounds:
K v 1
E H D ey (D6 (K1) — ) (65 (X2) — Mk)‘ } < 4C(Mpunw)” — 5(Meondw)” + (4C + 2)ek,,

E H Zszl Ak (Dr(X1) = pi) (Pr(X2) — k) V} T (Mrany)” = 8(Meonaw)” — (¢ + 8)ekc,

Proof of Lemma 32 To compute the first bound, we rewrite the expression of interest as a quantity
that we have already considered in the proof of Lemma 31:

(W) TARSRAR (1) = () TARE [ (6% (X1) = 1) (6% (X1) = %) T]A% (u)
£[ (0" (%0) ) A% ]
= [(Zk L (9 (Xa) — Nlc)/ik)Q}

— B[ (EDu(X, Xa)[Xs] ~ Elu(X1, Xo)] + Mgyt — Agea) |

where we have used the calculation in (43) with ¥ = 2 and defined the same error terms

= 3 ME[G (X)) 5 (Xa) [Xa] — Elu(X, X2) X
Ax = MEGR(X1)or(X2)] — Elu(X;, Xo)] .
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Since we are dealing with the second moment, we can provide a finer bound by expanding the
square explicitly:

(u)TARSEAR (") = VarE[u(Xy, X2)|[Xo] + E[(Ax — Ax)’]
+ 2E[(E[u(X1, X2)|Xs] — E[u(X1,X2)]) (Aga — Axpp)?] -

Then by a Cauchy-Schwartz inequality, we get that
() TAR SN (1) — VarE[u(X,, X2) X
= 2|E[(E[u(X1, X2)|X2] — E[u(X1,X2)]) (Axn — Ax2)?’]| + E[(Ax; — Aki2)?]
< 2¢/VarE[u(X 1, X3)|Xs] \/E[(AKJ — Ag2)?| +E[(Ag,1 — AK;2)2] .

The variance term is exactly agond. Since the individual error terms have already been bounded in
the proof of Lemma 31 as E[A% ], E[A%(;Q] < 5%(;2, by a triangle inequality and a Cauchy-Schwarz
inequality, we have

IE[(Aka — Ak2)?]l = |E[A%,] — 2E[A k1 Aks] + E[A% ]|
< [E[A%]l + 24/ IEIAL IEIAE )l + [E[Ak]| < dck -

Combining the bounds gives
‘(MK>TAKEKAK(,UK) - (O—Cond)Q‘ < 45%{;2 + 4UcondEK;Q )
which rearranges to give

02 - 40'(:0nd5K;2 - 45%{;2 < (NK)TAKEKAK(HK)

2 2
cond Ocond T 4UCOHd5K§2 + 45K;2

<
<

(Ucond + 25K;2)2

The second bound is obtained similarly by giving a finer control than the bound in Lemma 31.
We first rewrite the expression of interest by using linearity of expectation and the cyclic property
of trace:

Tr((ARE)?) = Tr(ARE[¢" (X1)6™ (X1) TJARE[¢" (X2)6™ (X2) '])
=E {(¢K(X1)TAK¢K(X2))2} = E[( Ziil Ak¢k(X1)¢k(X2))2} :
Again by expanding the square explicitly, we get that
TH((AR ) = B[ (S0, Meon(X1)6u(Xa) — (X1, Xo) + (X1, X)) |
—E [(Zle A (X))o (X2) — a(X1, XQ))Q] + E[a(Xy, X3)?] + 28k
= cho + 0fa + 20K33
where we have defined the additional error term as

Aris = B[ X, Mor(Xn)on(Xa) — a(X1, X)) a(X1, X))
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By a Cauchy-Schwarz inequality, we get that
‘Tr((AKZK)Q) - Uf2u11 - 6%(;2‘ = 2|AK73|

< 2\/1[“3[(25:1 M@k (X1)pr(X2) — u(X1, Xz))Q] Elu(X1,X2)?] = 2ek20fun -

Combining the above two bounds yields the desired inequality that

(ot — €1:2)? < Tr((AREE)?) < (o +er2)?

To prove the third bound, note that (/)" AKX Z; is a zero-mean normal random variable with
variance given by ()T AKSK K | which is already bounded above. By applying the formula of
the v-th absolute moment of a normal distribution and noting that v < 3, we obtain

2v/2 +1 v/2

(1) TARZ0"] = 220 (5 ) () TAR SR AR )

21//2 ([l) 21//2

< F(Ufull +2ek2)” < 7

In (a), we have noted that given a,b > 0, for v/2 € (0,1], (a + b)*/> < a*/?> + b/? and for

v/2 > 1, the bound follows from Jensen’s inequality. In (b), we have noted that v < 3. This
finishes the proof for the third bound.

(®)
max{l, 21/_1} (Ucyond + 2V5?(;2) < 7(Ucyond + 85?(;2) :

To prove the fourth bound, we can first condition on Zs:
E[|Z{ A®Zy|"] = E[E[Z{ AXZs|"|Z]] .

The inner expectation is again the v-th absolute moment of a conditionally Gaussian random vari-
able with variance Z2T AEYEAKZ,  so again by the formula of the v-th absolute moment of a
normal distribution, we get that
EHZTAKZ ] < ﬁE[(ZTAKEKAKZ )u/2} < ov/2 E[(ZTAKEKAKZ )2}1//4
1 2 = Ur 2 2 = r 2 2 .

We have noted that v < 3 and used a Holder’s inequality. The remaining expectation is taken over
a quadratic form of normal variables. Writing ¥, = (25)/2AK(K)1/2 for short, the second
moment can be computed by the formula from Lemma 27 as

(@
E[(Z] A SRARZ,)"| = Tr(22)? + 2Tr(3) < 3Te(52)? = 3Tr((AFF)?)?.

Note that in (a), we have used the fact that the square of a symmetric matrix, 32, has non-negative
eigenvalues, and therefore Tr(X%) < Tr(¥2)2. Since we have already bounded Tr((AKXK)2)
earlier, substituting the above result into the previous bound, we get that

21//231//4 Tr((AKEK)Q)V/2

y ov/2 9 v/4
B[|Z{ AKZ,|"] < FE[(ZJAKEKAKZQ) ] <
21//231//4
Nz

2u/23u/4

N

IN

2 2 2
(Ofan + 5K;2)V/

IN

maX{l,zy/Qfl}(Uflﬁu +cko) < 6(ofy +eka) -
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In the last two inequalities, we have used the same argument as in the proof for the third bound to
expand the term with v-th power. This gives the desired bound.

To prove the final bound, we first condition on Xj:
E[|(¢"(X1) — p™)TARZ|"] = E[E[|(¢"(X1) — 1) TARZ4]"]|X4]] .
The inner expectation is the v-th absolute moment of a conditionally Gaussian random variable

with variance (¢ (X1) — pf) TAEKSEAK (¢ (X1) — 1), so by the formula of the v-th absolute
moment of a normal distribution with v < 3, we get that

E[|(¢" (X1) — p") AR Z, ")

< B[ (09 (X1) — w) TARSAK (9K (%) — )"

= 22 B[ (0" (%) ) TARE[(6(0) — i) (6 (%) - ) TIAR (65 (0,) - 1)) "]
@ 2\7; E :\(¢K(X1) — ) TAR (7 (Xy) - uK)H

= 2 B[ T, mon (X))

(b)
S 8C(Mfull;u)y - (Mcond;y)y + (80 + 4)5?{;1/ .

In (a), we have applied Jensen’s inequality to the convex function z — |z|*/? to move the inner

expectation outside the norm. In (b), we have applied the bound in Lemma 31 and noted that
2\7; < 2 for v € [1, 3]. This gives the desired result. n

Proof of Lemma 33 For the first equality in distribution, we recall that {Tk;d}szl are the eigenval-
ues of (NF)/2ZAK(2K)1/2 and {¢,}) | are a sequence of i.i.d. standard Gaussian variables. Let
{Uik}ie[n], re[k) be a set of i.i.d. standard Gaussian variables. Since Gaussianity is preserved under
orthogonal transformation, we have
1 n KN\NT (yK\1/2 A K (yZKN\1/2, K K\K
m(ZiFl(m )T (EF)VPAR(SF) 20 — nTr(SFA ))
d 1 K n
T W2(n—1)1/2 ( Zk:l Zi,j:l Th;d"ikjk — nTr((ZK)l/zAK(EK)l/Q))
1

K n n
= n32(n — 1)1/2 Zkzl Tk;d (( Zizl mk) ( Zj:l 77jk) - n)

d 1 K 2 K
= ni2(n —1)1/2 Zk:l k(& —1) = W' =D,

which proves the desired statement.

We now use the expression above for moment computation. The expectation is given by E[W,X] =
D for every K € N. The variance can be computed by noting that the quantity is a quadratic form

in Gaussian, applying Lemma 27 and using the cyclic property of trace:
1
Var[W,F] = mvar[(ﬁf()T(EK)1/2AK(EK)1/277{K]
_ 2 Ky K\2
= n(n_l)Tr((A DRSS
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By Lemma 32, we get the desired bound that

2

n =) (ol — €12)? < Var[WE] <

2 2
WD) (oran +€K:2)°

The third central moment can be expanded using a binomial expansion and noting that each
summand is zero-mean:

E[(W) - D)Y] = (* E[(S1, mra(@ - 1)]
= g1 L (& - 1]
= W Zkzl Tied -
Meanwhile, the sum can be further expressed as
K 3
Zk:l Tk;d

_ Tr(((EK)l/ZAK(EK)l/Q)fi) _ Tr((EKAK)?))

= Tr((E[0" (X1) (6" (X1)) T]A)*)

= B[ (6" (X1)) AR (Xa) (6 (X2)) TAF 95 (X3) (6" (X)) TAR 65 (X1

= B[00, Mr(X)or(X2)) (0, Meon(Xa)on(Xa)) ( 0, Meoe(X) (X))

= E[Slgsggsgl] .

We now approximate each .S;; term by u(X;, X;). For convenience, denote U;; = u(X;, X;) and
Aij = Sij — Uij' Then

K
Zk:l T;f;d =E[(Ui2 + A12)(Uzs + Aa3)(Ust + Agy)]
= E[U12U23U31] + E[U12U23Az1] + E[U12A23U31] + E[U12A23A31]
+ E[A12U23U31] + E[A12U23A31] + E[A12A23U31] + E[A12A23A31] .

Recall that e .3 = E[|A;;|?]'/3 for i # j by definition. Then by a triangle inequality followed by a
Holder’s inequality, we get that

‘ S T — Efu(X1, Xo)u(Xa, Xa)u(Xs, Xl)]’
< |E[U12U2As1]| + |E[U12823U31]| + |E[U12A3A51]|

+ |E[A12U23Us1]| + [E[A12U23A31]| + |E[A12A23U31] ‘ + |E[A12A03A3]|
< 3E[Ju(X1, Xo) ] ers + 3E[u(X1, Xa) ) ek + ehes
= 3Miusers + 3Muaacks + s

This implies that
K
Zkzl 7_lg;d < E[U(Xh X2)U(X27 X3)U(X3v Xl)] - Mﬁlll;?) + (Mfllll;?’ + EK;?))S )

K
Zkzl 7_lf;d > E[U(Xh X2)U(X27 X3)U(X3v Xl)] + Mf?lll;?) - (Mfllll;?’ + EK;?))S )
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which gives the desired bounds:

8(Elu(X1, Xa)u(Xa, X3)u(Xs, X1)] — Miuns + (Muns + ex:3)%)
K 3 ull;3 ; ;
E[(Wn - D) ] < n3/2(n — 1)3/2 ’
8(E[u(X1, Xa2)u(Xz, Xa)u(Xs, X1)] + Miys — (Muns + x3)%)
n3/2(n — 1)3/2 :

E[(WF - D)*] >

The fourth central moment can again be expanded using a binomial expansion and noting that
each summand is zero-mean:

E[(W," - D)*]

[ (S matet - ) |
*(E[ZS a6 = 0] + 3By e Rl — 1PRa(El - 1))
- m(ﬁo S T 12D e TR

(48X, T+ 1230 e TR

= n—l (4Zk 1de+(§:k 1de) )

Since we have already controlled ) szl Tl?_ 4= Tr((EK AK )2), we focus on bounding the first sum.
Using notations from the third moment, we can express the sum as

Zle = E[(Zk L Motk (X1)dr(X2) )(Zk | M (Xa)or(X3))

(Zk L Mk (X3) o (Xy) )(Zk 1/\k¢k(X4)¢k(Xl))}
= E[S125235934541]
=E[(Ur2 + A12)(Uzs + Ag3) (Uss + As4) (Ut + Ag1)] -

A similar argument as before shows that

‘ Zk 1 Elu(X1, X2)u(X2, X3)u(Xs, Xq)u(X4, X1)]

3 2 2 3 4
< AMpy g rca + 6Miaics + AMpaiagics + -
This implies that

Zk L < E[u(Xq, Xo)u(Xa, Xa)u(Xs, Xa)u(Xy, X1)] = Miyg + (M + ex34)*
Zk L > E[u(X1, Xo)u(Xo, X3)u(Xs, Xa)u(Xa, X1)] + Miny — (Meana + €xc4)”

On the other hand, by Lemma 32, we have

K
(oran — €K:2)° < > o1 Toa = Tr(ARSR)?) < (onn +exp2)?
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Combining the results give the desired bounds:

E[(WX - D)Y] < ﬁ(ZLE[u(Xl,Xg)u(XQ,X3)U(X3,X4)U(X4,X1)]
— AMgg + A Mpaa + ex4)" + (o + 5K;2)4) ;
E[((WK - D)Y] > ﬁ<4E[u(X1,Xg)u(Xg,Xg)u(Xg,X4)u(X4,Xl)]

+ AMiy.g — A(Meana + exc54)* + (O — €K;2)4) .

For the generic moment bound, we first use a Jensen’s inequality to get that

E[(W)*™] _E[(Wzk 1de(§ _1)+D> }
22m 1

2m 2m—1 12m
Sn'm n_lnL [(Zk ]_de 1)) :|+2 D °

Denote the set of all possible orderings of a length-2m sequence consisting of elements from [K]
by P(K,2m) and denote its elements by p. Consider the subset

P'(K,2m) = {p € P(K,2m) : every element in p appears at least twice } .

By noting that £, — 1 is zero-mean and {{k}szl are independent, we can re-express the sum first as
a sum over P(K, 2m) and then as a sum over P’ (K, 2m):

]E[(Zszl Thsa(Ef — 1))2m} = Zpep(mm) (erp Tk;d)E[erp(&g ~1)]
=2 epcom) Ty ) B[ T, (68 = 1]
2 e (P(K2m)\P'(K,2m) ) (ILe, ) E[TL,, (&% — )]
- Zpep/(K,zm) (HkEp Thsa) B [erp G-1].

Write C/, as the 2m-th central moment of a chi-squared random variable with degree 1, which
depends only on m and not on K or 7y.4. By a Holder’s inequality and the bound from Lemma 32,
we get that

K 2m
E [( Zk:l Tk;d(fg B 1)) } = C/ ZPEP'(K 2m) (chep Tk;d)
< O (On ) (i 7ta)”
= Cp (M) (A SF)P) ™ < 0 (30 (v + 2re2)™
Writing C,, == 22"~ ! max{1,C/, ( ")}, we get the desired bound that

Cm
E[(Wé()zm] < W(Ufull + 5K;2)2m +Cn D*m .
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Finally, if Assumption 2 is true for some v > 2, we have e .2 — 0 as K grows. Taking K — oo
in the bound for second moment gives

2

lim Var[Wé{] = maﬁﬂl .

K—oo

If Assumption 2 holds for v > 3, similarly we have

. 8E[u Xl,Xz 'LLXQ,X?, uX37X1
I{IE)HOOE[(WT{( . D)S] — [ ( n322((n7 1)3/)2( )} )

If Assumption 2 holds for v > 4, we have

lim E[(WK _ D)4] _ 12(4E[u(X1, X2)u(Xa, X3)u(Xs, Xa)u(Xa, X1)] —‘,—aﬁln)
K—00 " n?(n — 1) ’

G.3. Proofs for Appendix B.3

Proof of Lemma 34 Write ' := §/(m + 1) for convenience. Define the m-times differentiable
function

—(m x4+ ry1+0 Ym—1+6"  fym—+0’
hiria(w) = ()Y [ /y1 /y 1 /y Tiysry dy dym .- dyr .

In the case m = 0, the function is hg.,.5(x) = 51 f;M [{y>ry dy. By construction, h.r.5(x) =
0forz <7 —90, hypris(x) € 10,1] for z € (1 — 9§, 7] and hy.r5(x) = 1 for z > 7. This implies
[iosry < hmiris(®) < Iipsr_s5y and therefore the desired inequality

Pirt8:(2) < Liasry < himgris() -

Next, we prove the properties of the derivatives of h,,.,.s. Denote recursively

z+§’ z+8’
Imt1(z) = /x [ysrdy, Jp(x) = / Jrp1(y)dy for 0 <r<m.

T

Since huris(z) = (8)~M D Jo(z) and L J;(x) = Jip1(z + &) — Jigi(x) for 0 < i < m, by
induction, we have that for 0 < r < m,
T —(m 9 —(m r i )
W) (@) = (0)" D gy (w) = (87) 0D zizo(r) (1) Jogr (z + (r = 0)5) . (44)

7

Note that J,,,11 is continuous, uniformly bounded above by ¢’, and satisfies that .J,,,1(x) = 0 for
x outside [T — &', 7. By induction, we get that for 0 < r < m, J,.;1 is continuous, bounded above
by (6')™*1~" and satisfies that .J,,1(x) = 0 for  outside [T — (m + 1 — 7)d’, 7]. This shows that

h&?r s is continuous and hfq?T_ s(x) = 0 for x outside [T — §, 7], and the uniform bound

B < 7 EL(5) = G o <6
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Finally to prove the Holder property of hf:? s5(x), we first note that .J,,, 1 is constant outside = €
[T — &', 7] and linear within the interval with Lipschitz constant 1. The formula in (44) suggests that
hi::? 5() is piecewise linear and the Lipschitz constant in the interval [T —(m—i+1)d’, 7—(m—i)d']

is given by the Lipschitz constant of the ¢-th summand. Therefore, h( m)

Lipschitz constant

Ly = (8)~(m+) HlaXogigm(T:.l) — (5/)7(m+1)<Lm”;2J).

) is also Lipschitz with

For z,y € [T — 0, 7], we then have

]h%l; 5() — ™

mT6

)| < Lulz —y| = Ln, 5\ 7]

S = Ly e -yl (49)

where we have noted that |5 < 1 and € € [0,1]. (45) is trivially true for x,y both outside
(m )

[T — d, 7] since h 1. evaluates to zero. Now consider z € [T —6,7] and y < 7 — §. We have that

m m m (45) . .
0 5(@) = B )] = (B 5(2) — RS s(r = 8)| < L' ~(w— 7 + )

m;T;0 m;T;0
< L6tz —y|°.

Similarly for x € [T — ¢, 7] and y > 7, we have that

h h( m) h _h(m) (4<5)L 51*6 2 < L 5176 e
(R s(@) = B s @) = R s(@) = A (1] < Lind' (7 = 2)° < Lynd~Jz —y|°.

Therefore (45) holds for all ,y. The proof for the derivative bound is complete by computing the
constant explicitly as

Lnd' ™ = )7 (iy) = 87y )+ D

and therefore

B0 5(@) = B ()] < Cone 870 g (46)
with respect to the constant C), . = (Lmﬂ}%) (m + 1)™Fe, [ ]

Proof of Lemma 35 By conditioning on the size of Y, we have that for any a,b € R and € > 0,

Pla<X+4+Y <b) =Pa<X+Y<bh, [Y[<e)+Pa< X <D, |Y|>¢)
<Pla—e< X <b+e)+P(|Y]|>¢),

and by using the order of inclusion of events, we have the lower bound

Pla<X+Y <b) >Pla+e< X <b—¢,|Y|<e
=Pla+e<X<b—e)—P(|]Y]|>¢€).
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G.4. Proof for Appendix B.4

Proof of Lemma 37 By Lemma 2.3 of Steinwart and Scovel (2012), the assumption that x* is mea-
surable and E[x*(V1, V1)] < oo implies the RKHS # associated with £* is compactly embedded
into Lo (]Rd, R). By Lemma 2.12 and Corollary 3.2 of Steinwart and Scovel (2012), for some index
set Z C N, there exists a sequence of non-negative, bounded values {\j }rc7 that converges to 0
and a sequence of functions {¢y, } xe7 that form an orthonormal basis of La(R?, R) such that

Y her MVR(V1)Yr(Va) = £*(V1,Va),

where the equality holds almost surely when Z is finite and the convergence holds almost surely
when 7 is infinite. We can extend Z to N by adding zero values of A\ and ¢, whenever necessary
and drop the requirement that {¢;, }7° ; forms a basis, which gives the desired statement. |
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