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Abstract
We adopt an information-theoretic framework to analyze the generalization behavior of the class of
iterative, noisy learning algorithms. This class is particularly suitable for study under information-
theoretic metrics as the algorithms are inherently randomized, and it includes commonly used al-
gorithms such as Stochastic Gradient Langevin Dynamics (SGLD). Herein, we use the maximal
leakage (equivalently, the Sibson mutual information of order infinity) metric, as it is simple to
analyze, and it implies both bounds on the probability of having a large generalization error and
on its expected value. We show that, if the update function (e.g., gradient) is bounded in L2-norm
and the additive noise is isotropic Gaussian noise, then one can obtain an upper-bound on maximal
leakage in semi-closed form. Furthermore, we demonstrate how the assumptions on the update
function affect the optimal (in the sense of minimizing the induced maximal leakage) choice of the
noise. Finally, we compute explicit tight upper bounds on the induced maximal leakage for other
scenarios of interest.
Keywords: Noisy iterative algorithms, SGLD, generalization error, maximal leakage, Gaussian
noise, Laplace noise

1. Introduction

One of the key challenges in machine learning research concerns the “generalization” behavior
of learning algorithms. That is: if a learning algorithm performs well on the training set, what
guarantees can one provide on its performance on new samples?

While the question of generalization is understood in many settings (Bousquet et al., 2003;
Shalev-Shwartz and Ben-David., 2014), existing bounds and techniques provide vacuous expres-
sions when employed to show the generalization capabilities of deep neural networks (DNNs)
(Bartlett et al., 2017, 2019; Jiang et al., 2020; Zhang et al., 2021). In general, classical mea-
sures of model expressivity (such as Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervo-
nenkis, 1991), Rademacher complexity (Bartlett and Mendelson, 2003), etc.) fail to explain the
generalization abilities of DNNs due to the fact that they are typically over-parameterized models
with less training data than model parameters. A novel approach was introduced by (Russo and
Zou, 2016), and (Xu and Raginsky, 2017) (further developed by Steinke and Zakynthinou (2020);
Bu et al. (2020); Esposito et al. (2021); Esposito and Gastpar (2022) and many others), where
information-theoretic techniques are used to link the generalization capabilities of a learning al-
gorithm to information measures. These quantities are algorithm-dependent and can be used to
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analyze the generalization capabilities of general classes of updates and models e.g., noisy iterative
algorithms such as the Stochastic Gradient Langevin Dynamics (SGLD) (Pensia et al., 2018; Wang
et al., 2021), which can thus be applied to deep learning settings. Moreover, it has been shown that
information-theoretic bounds can be non-vacuous and reflect the real generalization behavior even
in deep learning settings (Dziugaite and Roy, 2017; Zhou et al., 2018; Negrea et al., 2019; Haghifam
et al., 2020).

In this work we adopt and expand the framework introduced by Pensia et al. (2018), but instead
of focusing on the mutual information between the input and output of an iterative algorithm, we
compute the maximal leakage (Issa et al., 2020). Maximal leakage, together with other informa-
tion measures of the Sibson/Rényi family (maximal leakage can be shown to be Sibson Mutual
information of order infinity (Issa et al., 2020)), have been linked to high-probability bounds on the
generalization error (Esposito et al., 2021). In particular, given a learning algorithm A trained on
data-set S (made of n samples), one can provide the following guarantee in the case of the 0 − 1

loss:
Pr(|gen-err(A, S)| ≥ η) ≤ 2 exp(−2nη2 + L (S→A(S))), (1)

where L (S→A(S)) is defined in equation (2) below. This deviates from much of the literature
in which the focus is on bounding the expected generalization error instead (Xu and Raginsky,
2017; Steinke and Zakynthinou, 2020). Consequently, if one can guarantee that for a class of algo-
rithms, the maximal leakage between the input and the output is bounded, then one can provide an
exponentially decaying (in the number of samples n) bound on the probability of having a large
generalization error. This is in general not true for mutual information, which can typically only
guarantee a linearly decaying bound on the probability of the same event (Bassily et al., 2018).
Moreover, a bound on maximal leakage implies a bound on mutual information (cf. Equation (7))
and, consequently, a bound on the expected generalization error of A (exploiting the link between
mutual information and expected generalization error (Xu and Raginsky, 2017)). The main ad-
vantage of maximal leakage lies in the fact that it depends on the distribution of the samples only
through its support. It is thus naturally independent from the distribution over the samples and
particularly amenable to analysis, especially in additive noise settings.

The contributions of this work can be summarized as follows:

• we derive novel bounds on L (S→A(S)) whenever A is a noisy, iterative algorithm (SGLD-
like), which then implies the first bounds showing generalization with high-probability of said
mechanisms;

• we leverage the analysis to extrapolate to optimize the type of noise to be added (in the
sense of minimizing the induced maximal leakage), based on the assumptions imposed on
the algorithm. In particular, if one assumes the L∞ norm of the gradient to be bounded,
then adding uniform noise minimizes the maximal leakage upper bound. Hence, the analysis
and computation of maximal leakage can also be used to inform the design of novel noisy,
iterative algorithms.

1.1. Related Work

The line of work exploiting information measures to bound the expected generalization started
in (Russo and Zou, 2016; Xu and Raginsky, 2017) and was then refined with a variety of ap-
proaches considering Conditional Mutual Information (Steinke and Zakynthinou, 2020; Haghifam
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et al., 2020), the Mutual Information between individual samples and the hypothesis (Bu et al., 2019)
or improved versions of the original bounds (Issa et al., 2019; Hafez-Kolahi et al., 2020). Other ap-
proaches employed the Kullback-Leibler Divergence with a PAC-Bayesian approach (McAllester,
2013; Zhou et al., 2018). Moreover, said bounds were then characterized for specific SGLD-like
algorithms, denoted as “noisy, iterative algorithms” and used to provide novel, non-vacuous bounds
for Neural Networks (Pensia et al., 2018; Negrea et al., 2019; Haghifam et al., 2020; Wang et al.,
2023) as well as for SGD algorithms (Neu et al., 2021). Recent efforts tried to provide the opti-
mal type of noise to add in said algorithms and reduce the (empirical) gap in performance between
SGLD and SGD (Wang et al., 2021). All of these approaches considered the KL-Divergence or
(variants of) Shannon’s Mutual Information. General bounds on the expected generalization er-
ror leveraging arbitrary divergences were given in (Esposito and Gastpar, 2022; Lugosi and Neu,
2022). Another line of work considered instead bounds on the probability of having a large gener-
alization error (Bassily et al., 2018; Esposito et al., 2021; Hellström and Durisi, 2020) and focused
on large families of divergences and generalizations of the Mutual Information (in particular of the
Sibson/Rényi-family, including conditional versions).

2. Preliminaries, Setup, and a General Bound

2.1. Preliminaries

2.1.1. INFORMATION MEASURES

The main building block of the information measures considered in this work is the Rényi’s α-
divergence between two measures P and Q, Dα(P∥Q) (which can be seen as a parametrized gen-
eralization of the Kullback Leibler-divergence) (van Erven and Harremoës, 2014, Definition 2).
Starting from Rényi’s Divergence and the geometric averaging that it involves, Sibson built the no-
tion of Information Radius (Sibson, 1969) which can be seen as a special case of the following
quantity (Verdú, 2015):

Iα(X,Y ) = min
QY

Dα(PXY ∥PXQY ).

Sibson’s Iα(X,Y ) represents a generalization of Shannon’s mutual information, indeed one has
that:

lim
α→1

Iα(X,Y ) = I(X;Y ) = EPXY

[
log

(
dPXY

dPXPY

)]
.

Differently, when α→∞, one gets:

I∞(X,Y ) = logEPY

[
ess-sup

PX

dPXY

dPXPY

]
= L (X→Y ) , (2)

whereL (X→Y ) denotes the maximal leakage from X to Y , a recently defined information measure
with an operational meaning in the context of privacy and security (Issa et al., 2020). Maximal
leakage represents the main quantity of interest for the scope of this paper, as it is amenable to
analysis and has been used to bound the generalization error (Esposito et al., 2021). As such, we
will bound the maximal leakage between the input and output of generic noisy iterative algorithms.
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To that end, we mention a few useful properties of L (X→Y ). If X and Y are jointly continuous
random variables, then (Issa et al., 2020, Corollary 4)

L (X→Y ) = log

∫
ess-sup

PX

fY |X(y|x)dy, (3)

where fY |X is the conditional pdf of Y given X . Moreover, maximal leakage satisfies the following
chain rule (the proof of which is given in Appendix A):

Lemma 1 Given a triple of random variables (X,Y1, Y2), then

L (X→Y1, Y2) ≤ L (X→Y1) + L (X→Y2|Y1) , (4)

where the conditional maximal leakage

L (X→Y2|Y1) = ess-sup
PY1

L (X→Y2|Y1 = y1) , (5)

where the latter term is interpreted as the maximal leakage from X to Y2 with respect to the distri-
bution PXY2|Y1=y1 . Consequently, for random variables (X, (Yi)

n
i=1),

L (X→Y n) ≤
n∑

i=1

L
(
X→Yi|Y i−1

)
. (6)

Moreover, one can relate L (X→Y ) to I(X;Y ) through Iα. Indeed, an important property of Iα is
that it is non-decreasing in α, hence for every∞ > α > 1:

I(X;Y ) = I1(X,Y ) ≤ Iα(X,Y ) ≤ I∞(X,Y ) = L (X→Y ) . (7)

For more details on Sibson’s α-MI we refer the reader to (Verdú, 2015), as for maximal leakage the
reader is referred to (Issa et al., 2020).

2.1.2. LEARNING SETTING

Let Z be the sample space,W be the hypothesis space, and ℓ : W × Z → R+ be a loss function.
Say W ⊆ Rd. Let S = (Z1, Z2, . . . , Zn) consist of n i.i.d samples, where Zi ∼ P , with P

unknown. A learning algorithm A is a mapping A : Zn → W that given a sample S provides a
hypothesis W = A(S). A can be either a deterministic or a randomized mapping and undertaking a
probabilistic (and information-theoretic) approach one can then equivalently considerA as a family
of conditional probability distributions PW |S=s for s ∈ Zn i.e., an information channel. Given a
hypothesis w ∈ W the true risk of w is denoted as follows:

LPZ
(w) = EP [ℓ(w,Z)] (8)

while the empirical risk of w on S is denoted as follows:

LS(w) =
1

n

n∑
i=1

ℓ(w,Zi). (9)
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GENERALIZATION ERROR BOUNDS FOR SGLD VIA MAXIMAL LEAKAGE

Given a learning algorithm A, one can then define its generalization error as follows:

gen-errP(A, S) = LP(A(S))− LS(A(S)). (10)

Since both S and A can be random, gen-errP(A, S) is a random variable and one can then study
its expected value or its behavior in probability. Bounds on the expected value of the generalization
error in terms of information measures are given in Xu and Raginsky (2017); Issa et al. (2019); Bu
et al. (2019); Steinke and Zakynthinou (2020) stating different variants of the following bound (Xu
and Raginsky, 2017, Theorem 1): if ℓ(w,Z) is σ2-sub-Gaussian1 then

|E[gen-errP(A, S)]| ≤
√

2σ2I(S;A(S))
n

. (11)

Thus, if one can prove that the mutual information between the input and output of a learning
algorithm A trained on S is bounded (ideally, growing less than linearly in n) then the expected
generalization error of A will vanish with the number of samples. Alternatively, Esposito et al.
(2021) demonstrate high-probability bounds, involving different families of information measures.
One such bound, which is relevant to the scope of this paper is the following (Esposito et al., 2021,
Corollary 2): assume ℓ(w,Z) is σ2-sub-Gaussian and let α > 1, then

Pr(|gen-errP (A, S)| ≥ t) ≤ 2 exp

(
−α− 1

α

(
nt2

2σ2
− Iα(S,A(S))

))
, (12)

taking the limit of α→∞ in (12) leads to the following (Esposito et al., 2021, Corollary 4):

Pr(|gen-errP (A, S)| ≥ t) ≤ 2 exp

(
−
(
nt2

2σ2
− L (S→A(S))

))
. (13)

Thus, in this case, if one can prove that the maximal leakage between the input and output of a
learning algorithmA trained on S is bounded, then the probability of the generalization error ofA
being larger than any constant t will decay exponentially fast in the number of samples n.

2.2. Problem Setup

We consider iterative algorithms, where each update is of the following form:

Wt = g(Wt−1)− ηtF (Wt−1, Zt) + ξt, ∀ t ≥ 1, (14)

where Zt ⊆ S (sampled according to some distribution), g : Rd → Rd is a deterministic function,
F (Wt−1, Zt) computes an update direction (e.g., the gradient in (noisy) SGLD), ηt is the step-size,
and ξt = (ξt1, . . . , ξtd) is a random noise vector. We will assume for the remainder of this paper
that ξt has an absolutely continuous distribution.

Let T denote the total number of iterations, W t = (W1,W2, . . .Wt), and Zt = (Z1, Z2, . . . , Zt).
The final output of the algorithm W is some (aribtray) function of W T : W = f(W T ) (e.g., the final
output could be the last iterate f(W T ) = WT , or some average of all the iterates). The algorithms
under consideration further satisfy the following two assumptions:

1. A 0-mean random variable X is said to be σ2-sub-Gaussian if logE[exp(λX)] ≤ σ2λ2/2 for every λ ∈ R.
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• Assumption 1 (Sampling): The sampling strategy is agnostic to parameter vectors:

P (Zt+1|Zt,W t, S) = P (Zt+1|Zt, S). (15)

• Assumption 2 (Lp-Boundedness): For some p > 0 and L > 0, supw,z ∥F (w, z)∥p ≤ L.

As a consequence of the first assumption and the structure of the iterates, we get:

P (Wt+1|W t, ZT , S) = P (Wt+1|Wt, Zt+1). (16)

The above setup was proposed by Pensia et al. (2018), who specifically studied the case p = 2.
They show that

Theorem 2 ((Pensia et al., 2018, Theorem 1)) If the boundedness assumption holds for p = 2

and ξt ∼ N (0, σ2
t Id), then

I(S;W ) ≤ d

2

T∑
t=1

log

(
1 +

η2tL
2

dσ2
t

)
. (17)

By virtue of inequality (11), this yields a bound on the expected generalization error.
In this work, we derive bounds on the maximal leakage between L (S→W ) for iterative noisy

algorithms, which leads to high-probability bounds on the generalization error (cf. equation (13)).
We consider different scenarios in which F is bounded in L1, L2, or L∞ norm, and the added
noise is Laplace, Gaussian, or Uniform. It is worth noting that the bounds we derive depend on F

only through the boundedness assumption (Assumption 2 above). Considering F to be a gradient
yields the most (practically) interesting scenario in which our results hold, as it represents a widely
used family of learning algorithms. However, we do not leverage any structure that is particular to
gradients (beyond the boundedness assumption).

2.3. Notation

Given d ∈ N, w ∈ Rd, and r > 0, let

Bdp(w, r) = {x ∈ Rd : ∥x− w∥p ≤ r} (18)

denote the Lp-ball of radius r and center w, and let Vp(d, r) denote its corresponding volume. When
the dimension d is clear from the context, we may drop the superscript and write Bp(w, r). Given a
set S, we denote its complement by S. The i-th component of wt will be denoted by wti.

We denote the pdf of the noise ξt by ft : Rd → R. The following functional will be useful for
our study: given d ∈ N, p > 0, a pdf f : Rd → R, and an r ≥ 0, define

h(d, p, f, r) :=

∫
Bd
p(0,r)

sup
x∈Bd

p(0,r)

f(w − x)dw. (19)

We denote the “positive octant” by Ad, i.e.,

Ad := {w ∈ Rd : wi ≥ 0, for all i ∈ {1, 2, . . . , d}}. (20)
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Since we will mainly consider pdfs that are symmetric (Gaussian, Laplace, uniform), the h func-
tional “restricted” to Ad will be useful:

h+(d, p, f, r) :=

∫
Bd
p(0,r)∩Ad

sup
x∈Bd

p(0,r)

f(w − x)dw. (21)

2.4. General Bound

Proposition 3 Suppose ft : Rd → R is maximized for x = 0. If Assumptions 1 and 2 hold for
some p > 0, then

L (S→W ) ≤
T∑
t=1

log (ft(0)Vp(d, ηtL) + h(d, p, ft, ηtL)) , (22)

where h is defined in equation (19).

The above bound is appealing as it implicitly poses an optimization problem: given a constraint
on the noise pdf ft (say, a bounded variance), one may choose ft as to minimize the upper bound in
equation (22). Moreover, despite its generality, we show that it is tight in several interesting cases,
including when p = 2 and ft is the Gaussian pdf.

In the next section, we consider several scenarios for different values of p and different noise
distributions. As a testament to the tractability of maximal leakage, we derive exact semi-closed
form expressions for the bound of Proposition 3. Finally, it is worth noting that the form of the
bound allows us to choose different noise distributions at different time steps, but these examples
are outside the scope of this paper.

Proof We proceed as in the work of Pensia et al. (2018):

L (S→W ) ≤ L
(
ZT→W T

)
≤

T∑
t=1

L
(
ZT→Wt|W t−1

)
=

T∑
t=1

L (Zt→Wt|Wt−1) , (23)

where the first inequality follows from Lemma 2 of Pensia et al. (2018) and the data processing
inequality for maximal leakage (Issa et al., 2020, Lemma 1), the second inequality follows Lemma 1,
and the equality follows from (16). Now,

exp {L (Zt→Wt|Wt−1 = wt−1)} =
∫
Rd

ess-sup
Pzt

p(wt|Zt)dwt (24)

=

∫
Rd

ess-sup
Pzt

ft (wt − g(wt−1) + ηtF (wt−1, Zt)) dwt, (25)

=

∫
Rd

ess-sup
Pzt

ft (wt + ηtF (wt−1, Zt)) dwt, (26)
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where the last equality follows from a change of a variable wt ← wt − g(wt−1). Finally, since
ηtF (wt−1, zt) ∈ Bp(0, ηtL) by assumption, we can further upper-bound the above by:

exp {L (Zt→Wt|Wt−1 = wt−1)} (27)

≤
∫
Rd

sup
xt∈Bp(0,ηtL)

ft (wt + xt) dwt (28)

=

∫
Bp(0,ηtL)

sup
xt∈Bp(0,ηtL)

ft (wt + xt) dwt +

∫
Bp(0,ηtL)

sup
xt∈Bp(0,ηtL)

ft (wt + xt) dwt (29)

= ft(0)Vp(d, ηtL) +

∫
Bp(0,ηtL)

sup
xt∈Bp(0,ηtL)

ft (wt − xt) dwt, (30)

where the last equality follows from the assumptions on ft.

3. Boundedness in L2-Norm

Considering the case where F computes a gradient, then boundedness in L2-norm is a common
assumption. It is commonly enforced, for instance, using gradient clipping (Abadi et al., 2016a,b;
Chen et al., 2020).

Theorem 4 If the boundedness assumption holds for p ≤ 2 and ξt ∼ N (0, σ2
t Id), then

L (S→W ) ≤
T∑
t=1

log

(
V2(d, ηtL)

(2πσ2
t )

d/2
+

1

Γ
(
d
2

) d−1∑
i=0

(
d− 1

i

)
Γ

(
i+ 1

2

)(
ηtL

σt
√
2

)d−1−i
)
, (31)

where V2(d, r) =
πd/2

Γ
(
d
2 + 1

)rd.

Note that even if the parameter L is large (e.g., Lipschitz constant of a neural network (Negrea
et al., 2019)), it appears in (31) normalized by Γ(d/2) so its effect is significantly dampened (as d
is also typically very large).

Moreover, note that the bound in Proposition 3 is increasing in p: this can be seen from line (28),
where the supremum over Bp can be further upper-bounded by a supremum over Bp′ for p′ > p.
Therefore for q ≤ p, the bound induced by Proposition 3 is smaller. The bound in Theorem 4 cor-
responds to p = 2, hence it applies for all q ≤ p = 2.

Proof The conditions of Proposition 3 are satisfied, thus it is sufficient to prove the bound for p = 2

(cf. discussion above):

L (S→W ) ≤
T∑
t=1

log

ft(0)V2(d, ηtL) +

∫
B2(0,ηtL)

sup
xt∈B2(0,ηtL)

ft(wt − xt)dwt

 (32)

=

T∑
t=1

log

V2(d, ηtL)

(2πσ2
t )

d
2

+

∫
B2(0,ηtL)

sup
xt∈B2(0,ηtL)

1

(2πσ2
t )

d
2

exp

{
−∥wt − xt∥22

2σ2
t

}
dwt

. (33)
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Hence, it remains to show that the second term inside the log matches that of equation (31). To that
end, note that the point in B2(0, ηtL) that minimizes the distance to wt is given ηtL

∥wt∥wt. So we get

∥wt − xt∥ ≥
∥∥∥∥wt −

ηtL

∥wt∥
wt

∥∥∥∥ = ∥wt∥ − ηtL. (34)

Then,

h(d, 2, ft, ηtL) =

∫
B2(0,ηtL)

sup
xt∈B2(0,ηtL)

1

(2πσ2
t )

d
2

exp

{
−∥wt − xt∥22

2σ2
t

}
dwt (35)

=

∫
B2(0,ηtL)

1

(2πσ2
t )

d
2

exp

{
−(∥wt∥2 − ηtL)

2

2σ2
t

}
dwt. (36)

To evaluate this integral, we use spherical coordinates (details in Appendix B). Then,

h(d, 2, ft, ηtL) =

(
ηtL

σt
√
2

)d−1 1

Γ
(
d
2

) d−1∑
i=0

(
d− 1

i

)(
σt
√
2

ηtL

)i

Γ

(
i+ 1

2

)
. (37)

Combining equations (33) and (37) yields (31).

Remark 5 One could also derive a semi-closed form bound for the case in which the added noise
is uniform.

4. Boundedness in L∞-Norm

The bound in Proposition 3 makes minimal assumptions about the pdf ft. In many practical sce-
narios we have more structure we could leverage. In particular, we make the following standard
assumptions in this section:

• ξt is composed of i.i.d components. Let ft0 be the pdf of a component, then ft(xt) =
d∏

i=1

ft0(xti).

• ft0 is symmetric around 0 and non-increasing over [0,∞).

In this setting, Proposition 3 reduces to a very simple form for p =∞:

Theorem 6 Suppose ft satisfies the above assumptions. If Assumptions 1 and 2 hold for p = ∞,
then

L (S→W ) ≤
T∑
t=1

d log (1 + 2ηtLft0(0)) . (38)

9



ISSA ESPOSITO GASTPAR

Note that the bounded L∞-norm assumption is weaker than the bounded L2-norm assumption.
Moreover, the assumption of having a bounded L∞-norm is satisfied in Pichapati et al. (2019)
where the authors clipped the gradient in terms of the L∞-norm, thus “enforcing” the assumption.
On the other hand, the theorem has an intriguing form as, under standard assumptions, the bound
depends on ft0 only through ft0(0). This naturally leads to an optimization problem: given a
certain constraint on the noise, which distribution f⋆ minimizes f(0)? We consider the case in
which the variance of the noise is required to be bounded, and show that the optimal distribution2

f⋆ corresponds to the uniform distribution:

Theorem 7 Let F be the family of probability densities (over R) satisfying for each f ∈ F:

1. f is symmetric around 0.

2. f is non-increasing over [0,∞).

3. Ef [X
2] ≤ σ2.

Then, the distribution minimizing f(0) over F is the uniform distribution U(−σ
√
3, σ
√
3).

That is, uniform noise is optimal in the sense that it minimizes the upper bound in Theorem 6
under bounded variance constraints. The proof of Theorem 7 is deferred to Appendix D.

4.1. Proof of Theorem 6

Since the assumptions of Proposition 3 hold, then

L (S→W ) ≤
T∑
t=1

log

ft(0)V∞(d, ηtL) +

∫
B∞(0,ηtL)

sup
xt∈B∞(0,ηtL)

ft(wt − xt)dwt

 (39)

=
T∑
t=1

log

(2ηtLft0(0))
d +

∫
B∞(0,ηtL)

d∏
i=1

sup
xti:|xti|≤ηtL

ft0(wti − xti)dwt

 . (40)

It remains to show that h(d,∞, ft, ηtL) (i.e., the second term inside the log in Equation (19)) is
given by

h(d,∞, ft, ηtL) = (1 + 2ηtLft0(0))
d − (2ηtLft0(0))

d. (41)

We will derive a recurrence relation for h in terms of d. To simplify the notation, we drop the
subscript t and ignore the dependence of h on p = ∞, ft, and ηtL, so that we simply write h(d)

(and correspondingly, h+(d), cf. Equation (21)).
By symmetry, h(d) = 2dh+(d). Letting wd−1 := (w1, . . . , wd−1), we will decompose the

integral over Bd∞(0, ηtL) into two disjoint subsets: 1) wd−1 /∈ Bd−1
∞ (0, ηtL), in which case wd can

2. The proof technique easily extends to the case in which the constraint is of the form Ef [X
m] ≤ γ2 where m is even,

i.e., the optimal distribution is again uniform with the width chosen so that the inequality is met with equality.

10
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take any value in R, and 2) wd−1 ∈ Bd−1
∞ (0, ηtL), in which case wd must satisfy |wd| > ηtL.

h+(d) =

∫
Bd−1
∞ (0,ηtL)∩Ad−1

d−1∏
i=1

sup
xi:|xi|≤ηtL

f(wi − xi)

∫ ∞

0
sup

xd:|xd|≤ηtL
f(wd − xd)dwddw

d−1 (42)

+

∫
Bd−1
∞ (0,ηtL)∩Ad−1

d−1∏
i=1

sup
xi:|xi|≤ηtL

f(wi − xi)

∫ ∞

ηtL
sup

xd:|xd|≤ηtL
f(wd − xd)dwddw

d−1 (43)

The innermost integral of line (43) is independent of wd−1 so that the outer integral is equal to
h+(d− 1). Similarly, the innermost integral of line (42) is independent of wd−1, and the supremum
in the outer integral yields f(0) for every i. Hence, we get

h(d) = (1 + 2ηtLf(0))h(d− 1) + (2ηtLf(0))
d−1, (44)

the detailed proof of which is deferred to Appendix C. Finally, it is straightforward to check that
h(1) = 1, hence h(d) = (1 + 2ηtLf(0))

d − (2ηtLf(0))
d.

5. Boundedness in L1-Norm

In this section, we consider the setting where Assumption 2 holds for p = 1. By Proposition 3, any
bound derived for p = 2 holds for p = 1 as well; in particular, Theorem 4 applies. Nevertheless, it
is possible to compute a semi-closed form directly for p = 1 (cf. Theorem 9 below).

We also consider the case in which the additive noise is Laplace, i.e., “matching” the L1 con-
straint on the update function. Interestingly, we show that in this case the limit of maximal leakage,
as d goes to infinity, is finite.

5.1. Bound for Laplace noise

We say X has a Laplace distribution, denoted by X ∼ Lap(µ, 1/λ), if its pdf is given by f(x) =
λ
2 e

−λ|x−µ| for x ∈ R, for some µ ∈ R and λ > 0. The corresponding variance is given by 2/λ2.

Theorem 8 If the boundedness assumptions holds for p = 1 and ξt is composed of i.i.d compo-
nents, each of which is ∼ Lap(0,

√
2

σt
), then

L (S→W ) ≤
T∑
t=1

log

(
V1(d, ηtL)

(σt
√
2)d

+
d−1∑
i=0

(
√
2ηtL/σt)

i

i!

)
, (45)

where V1(d, r) =
(2r)d

d!
. Consequently, for fixed T ,

lim
d→∞

L (S→W ) ≤
T∑
t=1

√
2ηtL

σt
. (46)

Proof We give a high-level description of the proof (as similar techniques have been used in proofs
of earlier theorems) and defer the details to Appendix E. Since the multivariate Laplace distribution

11
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(for i.i.d variables) depends on the L1-norm of the corresponding vector of variables, we need to
solve the following problem: given R > 0 and w /∈ B1(0, R), compute

inf
x∈B1(0,R)

∥w − x∥1. (47)

The closest element in B1(0, R) will lie on the hyperplane defining B1 that is in the same octant
as w, so the problem reduces to projecting a point on a hyperplane in L1-distance (the proof in
the appendix does not follow this argument but arrives at the same conclusion). Then, we need to
compute h(d, 1, ft, ηtL). We use a similar approach as in the proof of Theorem 6, that is, we split
the integral and derive a recurrence relation.

5.2. Bound for Gaussian noise

Finally, we derive a bound on the induced leakage when the added noise is Gaussian:

Theorem 9 If the boundedness assumptions holds for p = 1 and ξt ∼ N (0, σ2
t Id), then

L (S→W ) ≤
T∑
t=1

log

V1(d,Rt)

(2πσ2)
d
2

+
(2ηtL)

d−1(σt
√
2d)

(2πσ2
t )

d
2 ((d− 1)!)

d−1∑
i=0

(
d− 1

i

)(
σt
√
2d

ηtL

)i

Γ

(
i+ 1

2

) .

(48)

In order to prove Theorem 9 one has to solve a problem similar to the one introduced in Theo-
rem 8 (cf. equation (47)). However, in this case a different norm is involved: i.e., given R > 0 and
w /∈ B1(0, R), one has to compute

inf
x∈B1(0,R)

∥w − x∥2. (49)

Again, one can argue that the point achieving the infimum lies on the hyperplane defining B1 that is
in the same octant as w. In other words, the minimizer x⋆ is such that the sign of each component
is the same sign as the corresponding component of w (and lies on the boundary of B1). Thus, we
are projecting a point on the corresponding face of the L1-ball. The length of the projection is then
appropriately lower-bounded and the induced integral is solved by an opportune choice of change
of variables. The details of the proof are given in Appendix F.

6. Conclusion

In this work, we analyzed the Maximal Leakage of SGLD-like mechanisms. The motivation behind
this analysis is the relationship between having a bounded leakage and exponential concentration of
the generalization error of the learning algorithm (Esposito et al., 2021). Moreover, with additional
assumptions over the loss function, one can leverage the ordering between mutual information and
Sibson’s α-Mutual Information to automatically provide bounds on the expected generalization er-
ror as well. Our initial contribution is the introduction of a general bound on maximal leakage
(Proposition 3) which depends solely on the Lp-Boundedness assumption (e.g., of the gradient of
the loss) and the pdf of the noise that is added in the iterates of the algorithm (Equation (14)). As

12
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a consequence of such bound, we could explicitly upper bound maximal leakage in a variety of
settings while shedding some light on the influence of the boundedness assumption on the perfor-
mance of the algorithm. To sum up, we provide a tractable analytical tool (maximal leakage and
its induced bounds on the generalization error) to analyze and inform the design of novel iterative
algorithms (as our analysis of maximal leakage explicitly links the Lp-boundedness assumption and
the iterative structure to the generalization error bound).
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Appendix A. Proof of Lemma 1

Recall the definition of maximal leakage and conditional maximal leakage:

Definition 10 (Maximal Leakage (Issa et al., 2020, Definition 1)) Given two random variables (X,Y )

with joint distribution PXY ,

L (X→Y ) = log sup
U :U−X−Y

Pr(Û(Y ) = U)

maxu PU (u)
, (50)

where U takes values in a finite, but arbitrary, alphabet, and Û(Y ) is the optimal estimator (i.e.,
MAP) of U given Y .

Similarly,

Definition 11 (Conditional Maximal Leakage (Issa et al., 2020, Definition 6)) Given three ran-
dom variables (X,Y, Z) with joint distribution PXY Z ,

L (X→Y |Z) = log sup
U :U−X−Y |Z

Pr(Û(Y, Z) = U)

Pr(Û(Z) = U)
, (51)

where U takes values in a finite, but arbitrary, alphabet, and Û(Y, Z) and Û(Z) are the optimal
estimators (i.e., MAP) of U given (Y,Z) and U given Z, respectively.

It then follows that

L (X→Y1, Y2) = log sup
U :U−X−(Y1,Y2)

Pr(Û(Y1, Y2) = U)

maxu PU (u)
(52)

= log sup
U :U−X−(Y1,Y2)

Pr(Û(Y1, Y2) = U)

Pr(Û(Y1) = U)

Pr(Û(Y1) = U)

maxu PU (u)
(53)

≤ log sup
U :U−X−(Y1,Y2)

Pr(Û(Y1, Y2) = U)

Pr(Û(Y1) = U)
· sup
U :U−X−(Y1,Y2)

Pr(Û(Y1) = U)

maxu PU (u)
(54)

≤ log sup
U :U−X−Y2|Y1

Pr(Û(Y1, Y2) = U)

Pr(Û(Y1) = U)
· sup
U :U−X−Y1

Pr(Û(Y1) = U)

maxu PU (u)
(55)

= L (X→Y2|Y1) + L (X→Y1) , (56)

where the last inequality follows from the fact that U −X − (Y1, Y2) implies U −X − Y2|Y1.
The fact that

L (X→Y2|Y1) = ess-sup
PY1

L (X→Y2|Y1 = y1) , (57)

has been shown for discrete alphabets in Theorem 6 of (Issa et al., 2020). The extension to continu-
ous alphabets is similar (with integrals replacing sums, and pdfs replacing pmfs, where appropriate).
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Finally, it remains to show equation (6). We proceed by induction. The case n = 2 has already
been shown above. Assume the inequality is true up to n− 1 variables, then

L (X→Y n) ≤ L (X→Y1) + ess-sup
PY1

L (X→Y n
2 |Y1 = y1) (58)

≤ L (X→Y1) + ess-sup
PY1

n∑
i=2

L
(
X→Yi|Y i−1, Y1 = y1

)
(59)

=

n∑
i=1

L
(
X→Yi|Y i−1

)
, (60)

where the second inequality follows from the induction hypothesis.

Appendix B. Proof of equation (37)

To evaluate the integral in line (36), we write it in spherical coordinates:

h(d, 2, ft, ηtL)

=

∫
B2(0,ηtL)

1

(2πσ2
t )

d
2

exp

{
−(∥wt∥2 − ηtL)

2

2σ2
t

}
dwt.

=
1

(2πσ2
t )

d
2

∫ 2π

0

∫ π

0
. . .

∫ π

0

∫ ∞

ηtL
e

−(ρ−ηtL)2

2σ2
t ρd−1 sind−2(ϕ1) sin

d−3(ϕ2) . . . sin(ϕd−2)dρdϕ
d−1
1

=
2π

(2πσ2
t )

d
2

(∫ π

0
sind−2(ϕ1)dϕ1

)
. . .

(∫ π

0
sin(ϕd−2)dϕd−2

)(∫ ∞

ηtL
e

−(ρ−ηtL)2

2σ2
t ρd−1dρ

)
. (61)

Now, note that for any n ∈ N, ∫ π

0
sinn(x)dx = 2

∫ π/2

0
sinn(x)dx, (62)

and ∫ π/2

0
sinn(x)dx

(a)
=

∫ 1

0

un√
1− u2

du

(b)
=

1

2

∫ 1

0
t
n−1
2 (1− t)−

1
2dy

(c)
=

1

2
Beta

(
n+ 1

2
,
1

2

)
=

√
πΓ
(
n+1
2

)
2Γ
(
n
2 + 1

) , (63)

where (a) follows from the change of variable u = sinx, (b) follows from the change of variable

t = u2, (c) follows from the definition of the Beta function: Beta(s1, s2) =
∫ 1

0
ts1−1(1 − t)s2−1,
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and the last equality is a known property of the Beta function (Γ(1/2) =
√
π). Consequently,

2π

(∫ π

0
sind−2(ϕ1)dϕ1

)
. . .

(∫ π

0
sin(ϕd−2)dϕd−2

)
= (2π)

d−2∏
i=1

√
πΓ
(
i+1
2

)
Γ
(
i
2 + 1

) (64)

= (2π)π
d−2
2

Γ(1)

Γ(d/2)
(65)

= 2πd/2 1

Γ(d/2)
. (66)

To evaluate the innermost integral, the following identity will be useful:∫ ∞

0
xne−x2

dx =
1

2

∫ ∞

0
t
n+1
2 e−tdt =

Γ
(
n+1
2

)
2

, (67)

where the first equality follows from the change of variable t = x2. Then,∫ ∞

ηtL
e

−(ρ−ηtL)2

2σ2
t ρd−1dρ =

∫ ∞

0
e

−ρ2

2σ2
t (ρ+ ηtL)

d−1dρ (68)

=

∫ ∞

0

d−1∑
i=0

(
d− 1

i

)
(ηtL)

d−1−iρie
−ρ2

2σ2
t dρ (69)

(a)
=

d−1∑
i=0

(
d− 1

i

)
(ηtL)

d−1−i

∫ ∞

0

(
σt
√
2
)i+1

tie−t2dρ (70)

(b)
= (ηtL)

d−1(σt
√
2)

d−1∑
i=0

(
d− 1

i

)(
σt
√
2

ηtL

)i
Γ((i+ 1)/2)

2
. (71)

where (a) follows from the change of variable t = ρ/(σ
√
2), and (b) follows from (67).

Finally, combining equations (61), (66), and (71), we get

h(d, 2, ft, ηtL) =
2πd/2

(2πσ2
t )

d
2Γ(d/2)

(ηtL)
d−1(σt

√
2)

d−1∑
i=0

(
d− 1

i

)(
σt
√
2

ηtL

)i
Γ((i+ 1)/2)

2
(72)

=

(
ηtL

σt
√
2

)d−1 1

Γ(d/2)

d−1∑
i=0

(
d− 1

i

)(
σt
√
2

ηtL

)i

Γ((i+ 1)/2). (73)

Appendix C. Proof of equation (44)

The innermost integral of line (43) evaluates to∫ ∞

ηtL
sup

xd:|xd|≤ηtL
f(wd − xd)dwd =

∫ ∞

ηtL
f(wd − ηtL)dwd =

∫ ∞

0
f(wd)dwd =

1

2
, (74)

where the first equality follows from the monotonicity assumptions, the second from a change of
variable, and the third from the symmetry assumption. Similarly, the innermost integral of line (42)
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evaluates to∫ ∞

0
sup

xd:|xd|≤ηtL
f(wd − xd)dwd (75)

=

∫ ηtL

0
sup

xd:|xd|≤ηtL
f(wd − xd)dwddw

d−1 +

∫ ∞

ηtL
sup

xd:|xd|≤ηtL
f(wd − xd)dwd (76)

= ηtLf(0) +
1

2
. (77)

Combining equations (43), (74), and (77), we get

h+(d) =

(
ηtLf(0) +

1

2

) ∫
Bd−1
∞ (0,ηtL)∩Ad−1

d−1∏
i=1

sup
xi:|xi|≤ηtL

f(wi − xi)dw
d−1 (78)

+
1

2

∫
Bd−1
∞ (0,ηtL)∩Ad−1

d−1∏
i=1

sup
xi:|xi|≤ηtL

f(wi − xi)dw
d−1 (79)

=

(
ηtLf(0) +

1

2

)
h+(d− 1) +

1

2
(ηtLf(0))

d−1, (80)

where the second equality follows from the fact that f is maximized at 0, and Bd−1
∞ (0, ηtL)∩Ad−1

is a (d− 1)-dimensional hypercube of side ηtL (with volume (ηtL)
d−1). Now,

h(d) = 2dh+(d) = (1 + 2ηtLf(0))h(d− 1) + (2ηtLf(0))
d−1. (81)

Appendix D. Proof of Theorem 7

Consider any f ∈ F , and let

f+(x) =

{
f(x), x ≥ 0,

0, x < 0,
(82)

and

f−(x) =

{
0, x ≥ 0,

f(x), x < 0.
(83)

Then

varf (X
2) =

∫ +∞

−∞
(f−(x) + f+(x))x

2dx =

∫ ∞

0
2f+(x)x

2dx, (84)

where the second equality follows from the symmetry assumption. Note that 2f+ is a valid proba-
bility density over [0,∞), and let X+ ∼ f+. Then, by previous equation,

varf (X
2) = E(2f+)

[
X2

+

]
(85)

=

∫ ∞

0
2x (1−Pr(X+ ≤ x)) dx (86)

≥
∫ 1/(2f(0))

0
2x (1− 2xf(0)) dx =

1

12f2(0)
. (87)
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Hence,

f(0) ≥ 1

2
√
3
√

varf (X2)
≥ 1

2
√
3σ

, (88)

which is achieved by the uniform distribution U(−σ
√
3, σ
√
3). ■

Appendix E. Proof of Theorem 8

First, we show that the limit of the right-hand side of equation (45) is given by the right-hand side
of equation (46). Note that

V1(d, ηtL)

(σt
√
2)d

= V1

(
d,

ηtL

σt
√
2

)
d→∞−−−→ 0. (89)

On the other hand,

lim
d→∞

d−1∑
i=0

(σtηtL/
√
2)i

i!
=

∞∑
i=0

(σtηtL/
√
2)i

i!
= eσtηtL/

√
2. (90)

Since T is finite, the limit and the sum are interchangeable, so that the above two equations yield
the desired limit.

We now turn to the proof of inequality (45). For notational convenience, set λt =
σt√
2

(so that

ft0(x) = λt
2 e

−λ|x| for all x ∈ R) and Rt = ηtL. Since the noise satisfies the assumptions of
Proposition 3, we get

L (S→W ) ≤
T∑
t=1

log

ft(0)V1(d,Rt) +

∫
B1(0,Rt)

sup
xt∈B1(0,Rt)

ft(wt − xt)dwt

 (91)

=

T∑
t=1

log

V1(d,Rt)

(λt/2)d
+

∫
B1(0,Rt)

sup
xt∈B1(0,Rt)

(
λt

2

)d

exp {−λ∥wt − xt∥1} dwt

 .

(92)

Recall h(d, p, ft, Rt) (cf. equation (19)) is defined to be the second term inside the log. Similarly to
the strategy adopted in the proof of Theorem 6, we will derive a recurrence relation for h in terms
of d, as such we will again suppress the dependence on p, ft, and Rt in the notation, and write h(d)
only (and correspondingly h+(d)).

Lemma 12 Given w ∈ Bd1(0, R) ∩Ad (Ad defined in equation (20)),

inf
x∈Bd

1(0,R)
∥w − x∥1 =

d∑
i=1

wi −R. (93)
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Proof Since we are minimizing a continuous function over a compact set, then the infimum can be
replaced with a minimum.

Claim: There exists a minimizer x⋆ such that for all i, x⋆i ≤ wi.
Proof of Claim: Consider any x ∈ B1(0, R) such that there exists j satisfying xj > wj . Note

that wj ≥ 0 by assumption. Now define x′ = (x1, . . . , xj−1, wj , xj+1, . . . , xd). Then ∥x′∥1 < ∥x∥1
so that x′ ∈ B1(0, R). Moreover, ∥w − x′∥1 ≤ ∥w − x∥1 as desired. ■

Now,

inf
x∈Bd

1(0,R)
∥w − x∥1 = inf

x∈Bd
1(0,R):

xi≤wi, ∀ i

∥w − x∥1 = inf
x∈Bd

1(0,R):
xi≤wi, ∀i

d∑
i=1

(wi − xi) =
d∑

i=1

wi −R. (94)

Given the above lemma, we will derive the recurrence relation by decomposing the integral over
Bd1(0, Rt) into two disjoint subsets: 1) wd−1 /∈ Bd−1

1 (0, Rt), in which case wd can take any value
in R, and 2) wd−1 ∈ Bd−1

1 (0, Rt), in which case wd must satisfy |wd| > Rt − ∥wd−1∥1.

h+(d) =

∫
Bd
1(0,Rt)∩Ad

sup
xt∈B1(0,Rt)

(
λt

2

)d

e−λt(
∑d

i=1 wt−Rt)dwt (95)

=

∫
Bd−1
1 (0,Rt)∩Ad

(
λt

2

)d−1

e−λt(
∑d−1

i=1 wt−Rt)
(∫ ∞

0

λt

2
e−λtwddwd

)
dwd−1 (96)

+

∫
Bd−1
1 (0,Rt)∩Ad

(
λt

2

)d−1

e−λt(
∑d−1

i=1 wt−Rt)

(∫ ∞

Rt−
∑d−1

i=1 wi

λt

2
e−λtwddwd

)
dwd−1

(97)

=
1

2
h+(d− 1) +

∫
Bd−1
1 (0,Rt)∩Ad

(
λt

2

)d−1

e−λt(
∑d−1

i=1 wt−Rt)
(
1

2
e−λt(Rt−

∑d
i=1 wi)

)
dwd−1

(98)

=
1

2
h+(d− 1) +

1

2

(
λt

2

)d−1 V1(d− 1, Rt)

2d−1
(99)

=
1

2
h+(d− 1) +

1

2

(
λtRt

2

)d−1 1

(d− 1)!
. (100)

Hence,

h(d) = 2dh+(d) = h(d− 1) +
(λtRt)

d−1

(d− 1)!
. (101)

It is easy check that h(1) = 1, and hence

h(d) =

d−1∑
i=0

(λtRt)
i

i!
(102)
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satisfies the base case and the recurrence relation. Re-substituting ηtL and σt/
√
2 for Rt and λt,

respectively, yields the desired result in equation (45).

Appendix F. Proof of Theorem 9

Let Rt = ηtL. Since the noise satisfies the assumptions of Proposition 3, we get

L (S→W ) ≤
T∑
t=1

log

ft(0)V1(d,Rt) +

∫
B1(0,Rt)

sup
xt∈B1(0,Rt)

ft(wt − xt)dwt

 (103)

=

T∑
t=1

log

V1(d,Rt)

(2πσ2)
d
2

+

∫
B1(0,Rt)

sup
xt∈B1(0,Rt)

1

(2πσ2
t )

d
2

exp

{
−∥wt − xt∥22

2σ2
t

}
dwt

 .

(104)

Consider

h+(d) =

∫
B1(0,Rt)∩Ad

sup
xt∈B1(0,Rt)

1

(2πσ2
t )

d
2

exp

{
−∥wt − xt∥22

2σ2
t

}
dwt. (105)

First we solve

inf
xt∈B1(0,Rt)

∥wt − xt∥2. (106)

If wt ∈ Ad, then the infimum is achieved for x⋆t ∈ Ad as well (one can simply flip the sign of
any negative component, which cannot increase the distance). In the subspace Ad, the boundary of
the L1-ball is defined by the hyperplane

∑d
i=1 xti = Rt. As such, finding the minimum distance

corresponds to projecting the point w to the given face:

inf
xt∈B1(0,Rt)

∥wt − xt∥2 = min
xt∈B1(0,Rt)∩Ad:∑d

i=1 xi=Rt

∥wt − xt∥2 ≥
∑d

i=1wti −Rt√
d

. (107)

Now,

h+(d) ≤
∫

B1(0,Rt)∩Ad

1

(2πσ2
t )

d
2

exp

{
−
(
∑d

i=1wti −Rt)
2

2dσ2
t

}
dwt. (108)

For notational convenience, we drop the t subscript in the following. We perform a change of
variable as follows: w̃d =

∑d
i=1wi. Hence, for w /∈ B1(0, R), w̃d ≥ R. Since wd ≥ 0, then
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∑d−1
i=1 wi ≤ w̃d. For x ∈ R, define S(x) := {wd−1 ∈ Rd−1 :

∑d−1
i=1 wi ≤ x}. Then,

h+(d) =

∫ ∞

R

∫
S(w̃d)

1

(2πσ2)
d
2

e−
(w̃d−R)2

2dσ2 dwd−1dwd (109)

=
1

(2πσ2
t )

d
2

∫ ∞

R
e−

(w̃d−R)2

2dσ2

 ∫
S(w̃d)

dwd−1

 dwd (110)

(a)
=

1

(2πσ2)
d
2 ((d− 1)!)

∫ ∞

R
w̃d−1
d e−

(w̃d−R)2

2dσ2 dwd (111)

(b)
=

1

(2πσ2)
d
2 ((d− 1)!)

Rd−1(σ
√
2d)

d−1∑
i=0

(
d− 1

i

)(
σ
√
2d

R

)i
Γ((i+ 1)/2)

2
, (112)

where (a) follows from the fact that the innermost integral corresponds to the volume of a scaled
probability simplex (scaled by w̃d), and (b) follows from the same computations as in Equations (68)
to (71) (with σ̃ = σ

√
d). Noting that h(d) = 2dh+(d) yields the desired the term in Equation (48).
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