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Abstract
We consider the problem of empirical Bayes estimation for (multivariate) Poisson means. Ex-

isting solutions that have been shown theoretically optimal for minimizing the regret (excess risk
over the Bayesian oracle that knows the prior) have several shortcomings. For example, the classical
Robbins estimator does not retain the monotonicity property of the Bayes estimator and performs
poorly under moderate sample size. Estimators based on the minimum distance and non-parametric
maximum likelihood (NPMLE) methods correct these issues, but are computationally expensive
with complexity growing exponentially with dimension. Extending the approach of Barbehenn and
Zhao (2022), in this work we construct monotone estimators based on empirical risk minimiza-
tion (ERM) that retain similar theoretical guarantees and can be computed much more efficiently.
Adapting the idea of offset Rademacher complexity Liang et al. (2015) to the non-standard loss and
function class in empirical Bayes, we show that the shape-constrained ERM estimator attains the
minimax regret within constant factors in one dimension and within logarithmic factors in multiple
dimensions.
Keywords: Monotone estimation, Nonparametric estimation, Offset Rademacher complexity, Con-
vex optimization, Mixture model

1. Introduction

At the heart of modern large-scale inference Efron (2012), empirical Bayes is a classical topic
and powerful formalism in statistics and machine learning. Consider the Poisson model in one
dimension as a concrete example. In a Bayesian setting, the latent parameter θ is drawn from a prior
π and the observation X is then sampled from Poi(θ), the Poisson distribution with mean θ. In other
words, X is distributed according to the following Poisson mixture pπ with mixing distribution π:

pπ(x) =

∫
e−θ θ

x

x!
dπ(θ), x ∈ Z+. (1)

The Bayes estimator for θ that minimizes the squared error is the posterior mean, which can be
expressed in terms of the mixture density as follows:

f∗(x) = (x+ 1)
pπ(x+ 1)

pπ(x)
(2)
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In the empirical Bayes setting, the prior π is unknown but we have access to a training sample
X1, . . . , Xn drawn independently from the mixture pπ. The goal is to learn a data-driven rule that
produces vanishing excess risk over the Bayes risk, known as the regret1

Regretπ(f) ≜ E
[
(f̂(X)− θ)2

]
− E

[
(f∗(X)− θ)2

]
. (3)

The problem of interest in this context is thus:

Can we construct computationally efficient and practically sound estimators of f∗ with
optimal regret over a class of priors?

Preliminary analyses of the Poisson empirical Bayes problem go back to Robbins (1951, 1956),
who proposed the following rule as an empirical approximation of (2):

f̂Rob(X) ≜ f̂Rob(X;X1, . . . , Xn) = (X + 1)
Nn(X + 1)

Nn(X) + 1
(4)

where Nn(x) =
∑n

i=1 1{Xi=x} is the empirical count for each x ∈ Z+ in the training sample.
Such an approach is termed “f -modeling” that focuses on approximating the mixture density Efron
(2014). Recent theoretical developments Brown et al. (2013); Polyanskiy and Wu (2020) have
established that the Robbins method achieves the optimal rate of regret when π has either bounded
support or subexponential tails. On the other hand, in practice, it is well-recognized that the Robbins
estimator suffers from multiple shortcomings such as numerical instability (cf. e.g. (Maritz, 1968,
Section 1), (Maritz and Lwin, 2018, Section 1.9), (Efron and Hastie, 2021, Section 6.1)) and lack
of regularity properties, including, notably, the desired monotonicity property of the Bayes rule f∗

(see Houwelingen and Stijnen (1983)).
In another approach to the empirical Bayes problem, known as “g-modeling” Efron (2014), one

tries to mimic the structure of the Bayes estimator by substituting the prior in the posterior mean with
a suitable estimator. It has recently been shown that optimal regret can be attained by g-modeling
estimators based on the minimum distance methodology that first finds the best approximation pπ̂
to the empirical distribution of the training data under suitable distances then applies the Bayes rule
with the learned prior π̂. A prominent example is the nonparametric maximum likelihood estimator
(NPMLE)

π̂NPMLE = argmax
Q

n∏
i=1

pQ(Xi) (5)

which minimizes the Kullback-Leibler divergence. Thanks to their Bayesian form, these estimators
inherit the desired regularity of Bayes estimator (such as monotonicity) and lead to more stable,
accurate, and interpretable estimates in practice. Recently, Jana et al. (2022) has shown that a
suite of minimum-distance estimators, including the NPMLE, attain the optimal regret similar to
the Robbins estimator for both bounded or subexponential priors. In addition, when π has heavier
(polynomial) tails, the NPMLE achieves the corresponding optimal regret while Robbins estimator

1. In the literature there are multiple ways to formulate the regret in empirical Bayes estimation Zhang (2003). As
opposed to the formulation (known as the individual regret) in (3), where the data are split into the training set
X1, . . . , Xn and the test set X , one can consider the total excess risk of estimating the latent parameters θ1, . . . , θn
based on X1, . . . , Xn over the Bayes risk. This quantity, known as the total regret, in fact equals to n times the
individual regret (3) (with n replaced by n− 1) as shown in (Polyanskiy and Wu, 2021, Lemma 5).
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provably fails Shen and Wu (2022). However, the downside of g-modeling is its much higher
computational cost. For example, (5) entails solving an infinite-dimensional convex optimization.
Although in one dimension faster algorithms akin to Frank-Wolfe have been proposed Lindsay
(1983); Jana et al. (2022), for multiple dimensions existing solvers essentially all boil down to
maximizing the weights over a discretized domain Koenker and Mizera (2014) which clearly does
not scale with the dimension.

1.1. Empirical Bayes via Empirical Risk Minimization

In this paper we propose a new approach for Poisson empirical Bayes by incorporating a framework
based on empirical risk minimization (ERM) and the needed technology from learning theory, no-
tably, the offset Rademacher complexity, refined via localization, to establish the optimality of the
achieved regret. In contrast to f -modeling and g-modelling that aim at approximating the mixture
density and the prior respectively, the main idea is to directly approximate the Bayes rule by solving
a suitable ERM subject to certain structural constraints satisfied by the Bayesian oracle. We note
that a similar technique has been applied earlier in Barbehenn and Zhao (2022) to the Gaussian
model; however, the theoretical guarantees therein are highly suboptimal.

The benefits of the ERM-based methodology are manifold:

1. Unlike the Robbins method, the constrained ERM produces an estimator that enjoys the same
regularity as that of the Bayes rule, at a small permillage of the computational cost of g-
modeling methods such as the NPMLE and other minimum-distance estimators.

2. The ERM-based estimator is scalable to high dimensions and runs in time that is polynomial
in both n and the dimension d. In contrast, all existing algorithms for NPMLE are essentially
grid-based and scale poorly with the dimension as nΘ(d).

3. The ERM approach invites powerful tools from empirical processes theory (such as Rademacher
complexity and variants) to bear on its regret.

4. The flexibility of the ERM framework allows one to easily incorporate extra constraints or
replace the function class by more powerful ones (such as neural nets) in order to tackle
more challenging empirical Bayes problems in high dimensions for which there is no feasible
proposal so far.

To summarize, the ERM can be seen as an alternative solution to the empirical Bayes problem,
that excels over the Robbins method in terms of retaining the regularity properties of the Bayes
estimator, and is computationally much efficient than the other existing non-parametric alternatives.
We will also show that theoretically it achieves the optimal regret for certain light-tailed classes of
priors. Whether these guarantees carry over to the heavy-tailed classes of prior, where the Robbins
method is known to be suboptimal and NPMLE is known to be optimal Shen and Wu (2022), is
beyond the scope of the current paper.

Next we describe the construction of the ERM-based empirical Bayes estimator in detail. To
derive the objective function for the ERM, note that using f∗(X) = E [θ|X], we have

f∗ = argmin
f

E[(f(X)− θ)2] = argmin
f

E[(f(X))2 − 2θf(X)]

= argmin
f

E
[
f(X)2 − 2Xf(X − 1)

]
,
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where we get the last step by applying the identity E [θf(X)] = E [Xf(X − 1)] for X ∼ Poi(θ).
Since f∗ is monotone, this naturally leads to the ERM-based estimator

f̂erm ∈ argmin
f∈F

Ê[f(X)2 − 2Xf(X − 1)], (6)

where Ê[h(X)] ≜ 1
n

∑n
i=1 h(Xi) denotes the empirical expectation of a function h based on the

sample X1, . . . , Xn, and the minimization (6) is over the class of monotone functions F = {f :
f(x) ≤ f(x+ 1),∀x ≥ 0}. We also note that the solution (6) is only uniquely specified on the set
S ≜ {X1, . . . , Xn} ∪ {X1 − 1, . . . , Xn − 1}, which can be easily computed by an algorithm akin
to isotonic regression (see Lemma 5). We then extend this solution to the whole Z+ in a piecewise
constant manner: for those x < minS, set f̂erm(x) = 0; for those x > maxS = Xmax ≜
max{X1, . . . , Xn}, set f(x) = f(Xmax); for the remaining x ̸∈ S, set f̂erm(x) = f̂erm(max{y ∈
S : y ≤ x}). This natural piecewise constant extension clearly retains monotonicity.

We note that the above construction of the ERM-based empirical Bayes estimator can be done in
a principled way for other mixture models than Poisson (see Table 1). Indeed, Barbehenn and Zhao
(2022) was the first to apply this approach to the Gaussian mixture model. However, only the slow
rate of polylog(n)√

n
is obtained for the regret by applying standard empirical process theory. In addition,

they use extra constraints, such as the ones based on bounded derivatives, bounds on the parameter
space, etc. These constraints can be used to further improve upon the practical performances of
the ERM estimator we use for the Poisson model; however the corresponding analysis is beyond
the scope of the current paper. One of the major technical contributions of the present paper is to
introduce a suitable version of the offset Rademacher complexity Liang et al. (2015) that leads to
the fast rate of polylog(n)

n (even with the optimal logarithmic factors!)

Mixture p(X|θ) Bayes estimator ERM Objective
Geo(θ) θX(1− θ) 1− pπ(X+1)

pπ(X) Ê[f(X)2 − 2f(X) + 2f(X − 1)1{X>0}]

NB(r, θ)
(
k+r−1

k

)
(1− θ)rθk X+1

X+r
pπ(X+1)
pπ(X) Ê[f(X)2 − 2X+1

X+rf(X − 1)1{X>0}]

N (θ, 1) 1√
2π

exp
(
− (X−θ)2

2

)
X + p′π(X)

pπ(X) Ê[f(X)2 − 2Xf(X) + 2f ′(X)]

Exp(θ) θ exp(−θX) −p′π(X)
pπ(X) Ê[f(X)2 − 2f ′(X)]

Table 1: ERM objectives for other mixture models: geometric, negative binomial, normal location,
and exponential distributions.

1.2. Regret optimality

In addition to its conceptual simplicity and computational advantage, the ERM-based estimator
comes with strong statistical guarantees which we now describe. Let P[0, h] denote the class of all
priors supported on the interval [0, h] and SubE(s) the set of all s-subexponential distributions on
R+, namely SubE(s) =

{
G : G([t,∞)]) ≤ 2e−t/s,∀t > 0

}
. Our main result is as follows:

Theorem 1 (Regret optimality of ERM-based estimators) Let f̂erm be defined in (6), with F the
class of all monotone functions on Z+. Then there exists a constant C > 0 such that for any
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h, s > 0:

sup
π∈P([0,h])

Regretπ(f̂erm) ≤
Cmax{1, h}3

n

(
log n

log log n

)2

;

sup
π∈SubE(s)

Regretπ(f̂erm) ≤
Cmax{1, s}3

n
(log n)3 .

The regret bounds in Theorem 1 match the minimax lower bounds in (Polyanskiy and Wu,
2021, Theorem 2) up to constant factors depending on h and s, thereby establish the strong op-
timality of the ERM-based empirical Bayes estimators. Finally, as a side remark, we mention
that, one can show that a monotone projection of the Robbins estimator, given by f̂mono-Rob =
argminf∈F Ê[(f(X)− f̂Rob(X))2], also attains similar regret guarantees as in Theorem 1. This is
outside the scope of the current paper.

1.3. Multiple dimensions

The ERM-based estimator (6) can be easily extended to the d-dimension Poisson model. For clar-
ity, we use the bold fonts to denote a vector, e.g., θ = (θ1, . . . , θd) ,θi = (θi1, . . . , θid),X =
(X1, . . . , Xd),Xi = (Xi1, . . . , Xid),x = (x1, . . . , xd), etc. Let π be a prior distribution on Rd

+.
Consider the following data-generating process

θi
iid∼π Xij

ind.∼Poi(θij). (7)

Note that the marginal distribution of the multidimensional Poisson mixture is given by

pπ(x) =

∫
θ

d∏
i=1

e−θi
θxi
i

xi!
dπ(θ), x ∈ Zd

+.

Similar to (3), let us define the regret of a given estimator f : Zd
+ → Rd

+ as

Regretπ(f) = E
[
∥f(X)− θ∥2

]
− E

[
∥f∗(X)− θ∥2

]
, (8)

where X ∼ pπ is a test point independent from the training sample X1, . . . ,Xn
iid∼pπ. For each

f , let f = (f1, · · · , fd) where fi : Zd
+ → R+. Denote by f∗ the Bayes estimator, whose i-th

coordinate f∗
i is given by

f∗
i (x) = E[θi|x] =

∫
θ θi

∏d
j=1 e

−θi θ
xi
i
xi!

dπ(θ)

pπ(x)
= (xi + 1)

pπ(x+ ei)

pπ(x)
, i = 1, . . . , d,

where ei denote the i-th coordinate vector. Using Cauchy-Schwarz, one can show that the Bayes es-
timator for the i-th coordinate is increasing in the i-th coordinate of the input if all other coordinates
are fixed, i.e.,

f∗
i (x) ≤ f∗

i (x+ ei), ∀i = 1, . . . , d, ∀x ∈ Zd
+ (9)

5
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This leads to the following ERM procedure.

f̂erm = argmin
f∈F

Ê

∥f(X)∥2 − 2

d∑
j=1

Xjfj(X − ei)

 ,

F ={f : Zd
+ → Rd

+ : fi(x) ≤ fi(x+ ei), ∀i = 1, · · · , d,∀x ∈ Zd
+}. (10)

We again note that f̂erm is not uniquely defined for all x ∈ Zd
+. To specify a minimizer, note that

(f̂erm)j , the j-th coordinate of f̂erm, is uniquely defined on S ≜ {Xi} ∪ {Xi − ej}. We may
extend it to Zd

+ in the same manner as the one-dimensional case of (6) in a piecewise constant
manner. That is, for each x ̸∈ S, if there exists y ≥ 0 such that x− yej ∈ S, we set (f̂erm)j(x) =
(f̂erm)j(min y≥0

x−yej∈S
x − yej). Otherwise, set (f̂erm)j(x) = 0. By convention, we also define

(f̂erm)j(−ej) = 0.

Theorem 2 The ERM estimator (10) satisfies the following regret bounds:

1. If π is supported on [0, h]d, then Regretπ(f̂erm) ≤ O( dn max{c1, c2h}d+2( log(n)
log log(n))

d+1) ;

2. If all marginals of π are s-subexponential for some s > 0, then
Regretπ(f̂erm) ≤ O( dn(max{c3, c4s} log(n))d+2),

where c1, c2, c3, c4 > 0 are absolute constants.

We conjecture these regret bounds in Theorem 2 are nearly optimal and factors like (log n)d are
necessary. Indeed, for the Gaussian model in d dimensions, the minimax squared Hellinger risk for
density estimation is shown to be at least O((log n)d/n) for subgaussian mixing distributions and
the minimax regret is typically even larger. A rigorous proof of matching lower bound for Theorem
2 will likely involve extending the regret lower bound based on Bessel kernels in Polyanskiy and
Wu (2021) to multiple dimensions; this is left for future work.

Remark 3 (Time complexity) For the statistical rate of ERM in multiple dimensions to be mean-
ingful, we require d to be significantly smaller than n. Nonetheless, even in the dimensions where
the regret in Theorem 2 is vanishing, the ERM method is computationally much more scalable, com-
pared with the conventional approach based on NPMLE or other minimum-distance estimators.

To elaborate on this, ERM is a linear program and has a dedicated solver due to its special form.
NPMLE is an infinite-dimensional convex optimization, and the prevailing solver either discretizes
the domain (at least

√
n level in order to be statistically relevant, thus requires a grid of size nΘ(d))

or runs Frank-Wolfe style iteration, which is only known to converge slowly at 1
t rate Lindsay

(1983) and requires mode finding that is expensive in multiple dimensions. In contrast, the ERM
approach scales much better with the dimension. To evaluate the d-dimensional ERM (10), as we
will demonstrate in Remark 7, if ℓ is the number of distinct vector-valued observations X1, . . . ,Xn,
our algorithm runs in O(dℓ2) ≤ O(dn2) time (apart from reading the sample of size n). An almost
linear time O(dℓ log ℓ) algorithm (which is how we implemented in the simulations), exists but is
beyond the scope of this paper. (We will describe the basic idea in Appendix C.)

On the empirical side, we demonstrate the multidimensional feasibility of ERM by running a
simulation with θ1, . . . ,θn sampled uniformly from a triangle with n = 106 and compute the empir-
ical Bayes denoiser f̂erm in (10) to Xi

ind.∼Poi(θi). Here, we see that f̂erm can recover the triangular

6
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(a) Latent θi’s. (b) Observations Xi’s. (c) Denoised f̂erm.

Figure 1: A two-dimensional experiment with n = 106: Left: θi’s are sampled uniformly from a
triangle. Middle: the observations Xi’s are drawn independently from Poi(θi), with their
empirical distribution shown on the grid Z2

+ (notice that this is also the MLE estimator for
θ, hence very different from the empirical Bayes solution). Right: the empirical Bayes
denoised version obtained by applying f̂erm in (10) to Xi’s.

structure of the prior, as in Fig. 1. To further compare the computational costs of ERM and mini-
mum distance methods, we did a comparison in the statistical software R with the popular package
“REBayes” Koenker and Gu (2017) and the results are as follows. With the prior Unif(4, 30) and
sample sizes n = 50, 500, 5000, 50000, we ran both REBayes and ERM 100 times and found that
on average the ERM is respectively 21, 50, 212, 588 times faster. This improvement is even more
pronounced (25, 58, 227.5, 2160 times) if we supply the empirical distribution to the ERM instead
of the full sample.

Remark 4 (Comparison with f -modelling) While both f -modelling (i.e. the Robbins estimator)
and the ERM estimator f̂erm are asymptotically optimal, we demonstrate more concretely the ad-
vantage of f̂erm over Robbins. The shortcomings of the Robbins method have been widely ob-
served in practice and discussed in the existing literature. Most recently, it has been demonstrated
in Jana et al. (2022) extensively through both simulated and real data experiment. Expanding
on Fig. 1(a), which compares the performance of the multidimensional Robbins method and f̂erm
under a uniform prior on the 2d triangle, for n = 10k, k = 4, 5, 6, 7, we found that the Rob-
bins method achieved a regret of 0.356, 0.0575, 0.00771, 0.00116 and f̂erm achieved a regret of
0.0748, 0.0161, 0.00276, 0.000463, suggesting a much better performance. On another experiment,
we also compared the methods in dimensions 1, 2, 3, 4 using a product of Exp(2) distributions as
prior, fixing n = 10000. The Robbins method achieved regrets 0.0125, 0.0607, 0.185, 0.427; f̂erm
achieved regrets 0.00422, 0.0208, 0.0660, 0.161.

1.4. Related work

Empirical Bayes estimation for the Poisson means incorporating shape constraint has a long re-
search thread. However, the majority of the work relies on approximating the Robbins estimator
using monotone functions. For example, Maritz (1966) used linear approximation to the Robbins
estimator and Maritz (1969) represented the marginal distribution pπ based on a monotone ordinate
fit to the Robbins and then used it to compute a maximum likelihood estimation of the ordinates.

7
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Both of these papers focus on numerical comparison of the corresponding error guarantees; see
(Maritz and Lwin, 2018, Section 3.4.5) for a concise exposition. In recent work, Brown et al.
(2013) discussed the numerical benefits of first performing a Rao-Blackwellization on the Robbins
estimator and then using an isotonic regression to impose the monotonicity of the final estimator.
An important theoretical contribution to the monotone smoothing of any given empirical Bayes esti-
mator has been proposed in Van Houwelingen (1977). Using the monotone likelihood ratio property
of the Poisson distribution, it is shown that any estimator (e.g., the Robbins estimator) can be made
monotone without increasing the regret. In contrast, our main estimator is computed directly via
minimizing an empirical version of the regret. It might be possible to use the monotone smoothing
of Van Houwelingen (1977) to further improve the ERM estimator, which is not pursued in this
work.

As mentioned in Section 1.1, the application of empirical risk minimization in empirical Bayes
has been introduced in the one-dimensional normal mean model by Barbehenn and Zhao (2022).
Using the monotonicity of the posterior mean, they construct an empirical Bayes estimator by solv-
ing the ERM under monotonicity constraint (see Table 1). However, the regret bound they establish
is of the slow rate polylog(n)√

n
which is highly suboptimal, compared with the nearly optimal rate

of O( (logn)
5

n ) by Jiang and Zhang (2009) (based on the g-modeling approach via NPMLE) and

O( (logn)
8

n ) by Li et al. (2005) (based on the f -modeling approach of polynomial kernel density
estimates). As mentioned earlier, the NPMLE is computationally expensive, especially in multiple
dimensions due to the reliance on grid-based approximation Koenker and Mizera (2014); Soloff
et al. (2021). In contrast, as mentioned before, ERM-based estimators algorithm can be easily
constructed for multiple or high dimensions.

The rest of the paper is organized as follows. Section 2 provides a regret upper bound on the
ERM-based estimator in one dimension in terms of the offset Rademacher complexities, and a proof
sketch for Theorem 1. Section 3 contains the analysis for the multidimensional ERM-estimator and
a proof sketch of Theorem 2. Omitted proofs are provided in the appendices.

2. Regret guarantees for the ERM estimator via Offset Rademacher complexity

As mentioned in the last section, our proposed estimator is based on ERM framework. In many sta-
tistical problems, the statistician intends to find a function f that approximates a target statistic s(X)
in order to minimize the error E [ℓ (s(X), f(X))] for some suitable loss function ℓ. In the ERM
framework, the population average is replaced by the empirical average Ê [ℓ (s(X), f(X))] over the
training sample. There is a rich literature on using such methods to approximate nonparametric tar-
get functions. See, for example, Nemirovskii (1985); Van de Geer (1990) for regression problems,
Barron (1991); Barron and Cover (1991); Barron (1994) for penalized empirical risk minimization,
Birgé and Massart (1993); Lugosi and Zeger (1995) for consistency results of general nonparamet-
ric ERM-estimators, etc. In this paper, we aim to approximate the nonparametric target function
f∗ (the Bayes rule) by minimizing E

[
(f∗(X)− f(X))2

]
. As shown in Section 1.1, in the Poisson

mixture model, this can be equivalently expressed as minimizing E
[
f(X)2 − 2Xf(X − 1)

]
and

we minimize the corresponding empirical loss over the class of all monotone functions. Isotonic
minimization of such quadratic loss is easy to compute; Best and Chakravarti (1990) showed that
monotone projection can be done in linear time. Next, we present a general optimization result to
any well-formed quadratic loss function.

8



POISSON EMPIRICAL BAYES ESTIMATION VIA ERM

Lemma 5 Let a1 < · · · < an be a sequence of non-negative integers and {vi}ni=1, {wi}ni=1 be two
non-negative sequences with vn > 0 and max{vi, wi} > 0 for all i. Consider the iterative bi

bi =


1 i = 0

1 + argminbi−1≤i∗≤n

∑i∗
i=bi−1

wi∑i∗
i=bi−1

vi
i ≥ 1

where the fraction is +∞ whenever the denominator is 0, and where tie exists at argmin, choose
biggest such i∗. We stop at bm = n+ 1. Then the solution to

f̂erm = argmin
f∈F

n∑
i=1

vif(ai)
2 − 2wif(ai)

is given as

∀i = 1, · · · ,m,∀x : bm ≤ x < bm+1 : f̂erm(ax) =

∑bm+1−1
i=bm

wi∑bm+1−1
i=bm

vi
.

Remark 6 Making the restriction vi ≥ 0 and vn > 0 ensures that our solution will be well-formed.
To apply this algorithm to estimate f̂erm, let {a1, · · · , ak} ⊆ {1, · · · , Xmax} be such that either
N(ai) > 0 or N(ai + 1) > 0. Here, vi = N(ai) and wi = (ai + 1)N(ai + 1). Our choice of ai’s
for i = 1, . . . , k ensures that max{vi, wi} > 0, and also vk > 0.

Remark 7 Lemma 5 can be applied to compute the ERM estimator (10) for the multivariate case.
Recall that the function class F dictates the following form of monotonicity: for each vector x′ =
(x′1, · · · , x′j−1, x

′
j+1, · · · , xd) of length d− 1, we define

Cj(x
′) ≜ {x ∈ Rd

+ : xi = x′i, ∀i ̸= j}. (11)

Then f ∈ F if and only if for each j ∈ [d], fj restricted on each Cj(x
′) is monotone in the j-th

coordinate of the argument. Since the objective function Ê[∥f(X)∥2 − 2
∑d

j=1Xjfj(X − ej)]

is separable, for each j we may determine (f̂erm)j by partitioning the samples X1, · · · ,Xn into
classes of Cj(x

′), and then apply Lemma 5 to each class.

To bound the regret of such ERM-estimators, we used the technique of Rademacher complex-
ities. The Rademacher analysis, popularized by Koltchinskii (2001); Mendelson (2002); Bartlett
et al. (2002), etc., uses a symmetrization argument to bound the error using the supremum of an em-
pirical process of the form supg∈F

1
n

∑n
i=1 ϵig(Xi), where ϵ1, . . . , ϵn are iid Rademacher random

variables, and F is some suitable function class. The complexity of such a function class is often
characterized by the VC dimension or the covering numbers. An immediate bound on the complex-
ity is produced by the uniform convergence bound when F is chosen to be the class of all possible
candidate functions. However, this has been shown to guarantee only a slow rate of regret ( 1√

n
),

which is the case in the prior work Barbehenn and Zhao (2022) that applies the ERM approach to
the Gaussian model. An improvement on this is made by restricting F to be a smaller class, for
example using the techniques of local Rademacher complexities Bartlett et al. (2005); Koltchinskii
and Panchenko (2004); Lugosi and Wegkamp (2004) which analyzes the complexity within a small
ball around the target function, the empirical minimizer, etc. We employ a similar technique of
using function classes with smaller complexity. Note that the empirical minimizer in (6) satisfies
the following regularity property.

9
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Lemma 8 Let f̂erm be the ERM-estimator defined in (6). Let Xmax = max{X1, . . . , Xn}. Then
max0≤x≤Xmax f̂erm(x) ≤ Xmax.

A proof of the above result has been provided in Appendix C. When X1, . . . , Xn are generated from
the Poisson mixture with either a compactly supported or subexponential prior, the above result
implies that the value of ERM-estimator is at most Θ(polylog(n)) with high probability. This, in
essence, dictates the required complexity of the function class. In other words, Lemma 8 shows that
f̂erm coincides with the ERM over the following more restrictive class

F∗ ≜ {f : f is monotone, f(Xmax) ≤ max {Xmax, f
∗(Xmax)}} . (12)

Note that F∗ is a (random) class that depends on the sample maximum. Furthermore, since it
depends on the unknown ground truth f∗, it is not meant for data-driven optimization but only for
theoretical analysis of the ERM (6). In addition, our work utilizes the quadratic structure of the
empirical loss to obtain a stronger notion of the Rademacher complexity measure, which closely
resembles and is motivated by the offset Rademacher complexity introduced in Liang et al. (2015).

Theorem 9 Let F be a convex function class that contains the Bayes estimator f∗. Let X1, . . . , Xn

be a training sample drawn iid from pπ, ϵ1, . . . , ϵn an independent sequence of iid Rademacher ran-
dom variables, and f̂ the corresponding ERM solution. Then for any function class Fpn depending
on the empirical distribution pn = 1

n

∑n
i=1 δXi that includes f̂ and f∗ we have

Regretπ(f̂) ≤
3

n
T1(n) +

4

n
T2(n) (13)

where

T1(n) = E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

(ϵi −
1

6
)(f(Xi)− f∗(Xi))

2

]
, (14)

T2(n) = E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

ϵi(f
∗(Xi)(f

∗(Xi)− f(Xi))

−Xi(f
∗(Xi − 1)− f(Xi − 1)))− 1

8
(f∗(Xi)− f(Xi))

2

]
, (15)

and F ′
pn is defined in the same way as Fpn with respect to an independent copy of X1, . . . , Xn.

Proof Define

R(f) = E
[
f(X)2 − 2Xf(X − 1)

]
, R̂(f) = Ê

[
f(X)2 − 2Xf(X − 1)

]
. (16)

We first note that f̂ satisfies the following inequality, thanks to the convexity of F :

R̂(h)− R̂(f̂) ≥ Ê[(h− f̂)2], ∀h ∈ F . (17)

To show this claim, since F is convex,for any ϵ ∈ [0, 1], (1− ϵ)f̂ + ϵh is inside the class F , so with
R̂(f̂) ≤ R̂((1− ϵ)f̂ + ϵh) we have

∂

∂ϵ
R̂((1− ϵ)f̂ + ϵh) = 2Ê[(h(X)− f̂(X))((1− ϵ)f̂(X) + ϵh(X))−X(h(X − 1)− f̂(X − 1))]

10
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By the ERM minimality of f̂ , such derivative must be nonnegative when evaluated at 0. That is,

Ê[(h(X)− f̂(X))f̂(X)−X(h(X − 1)− f̂(X − 1))] ≥ 0 (18)

Therefore, evaluating the difference gives us

R̂(h)− R̂(f̂)− Ê[(h(X)− f̂(X))2]

= Ê[(h(X)2 − f̂(X)2)− 2X(h(X − 1)− f(X − 1))]− Ê[(h(X)− f̂(X))2]

= 2Ê[h(X)f̂(X)− f̂(X)2 −X(h(X − 1)− f̂(X − 1))] ≥ 0 (19)

as desired. Then using Regretπ(f̂) = R(f̂)− R(f∗) we get

Regretπ(f̂)

≤ E
[
R(f̂)− R(f∗) + R̂(f∗)− R̂(f̂)− Ê[(f∗ − f̂)2]

]
= E

[
(R(f̂)− R(f∗)− E[(f∗ − f̂)2]) + (R̂(f∗)− R̂(f̂) + Ê[(f∗ − f̂)2])

+ E[(f∗ − f̂)2]− 2Ê[(f∗ − f̂)2]
]

= E
[
−E[2f∗(X)(f∗(X)− f̂(X))− 2X(f∗(X − 1)− f̂(X − 1))]

+Ê[2f∗(X)(f∗(X)− f̂(X))− 2X(f∗(X − 1)− f̂(X − 1))]− 1

4
(E[(f∗ − f̂)2] + Ê[(f∗ − f̂)2])

]
(20)

+ E
[
5

4
E[(f∗(X)− f̂(X))2]− 7

4
Ê[(f∗(X)− f̂(X))2]

]
. (21)

We separately bound the two terms (20) and (21) in the above display first by the suppremum
over all choices of f̂ over Fpn . We then bound the suppremums in terms of the Rademacher com-
plexities using the following symmetrization result. A proof of this lemma is provided in Ap-
pendix C.

Lemma 10 Let ϵ1, · · · , ϵn be independent Rademacher symbols. Let T,U be two operators map-
ping f(x) to Tf(x) and Uf(x). Then

E

[
sup

f∈Fpn

[E[Tf(X)]− Ê[Tf(X)]− (E[Uf(X)] + Ê[Uf(X)])]

]

≤ 2

n
E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

ϵiTf(Xi)− Uf(Xi)

]
where p′n is an independent copy of the empirical distribution pn.

As f ∈ Fpn , applying the last lemma to previous display above, with the choice for the first expec-
tation (20)

Tf(x) = − [2f∗(x)(f∗(x)− f(x))− 2x(f∗(x− 1)− f(x− 1))] , Uf(x) =
1

4
(f∗(x)− f(x))2 ,

and the choice for the second expectation (21) Tf(x) = 3
2(f

∗(x) − f(x))2, Uf(x) = 1
4(f

∗(x) −
f(x))2, we get the desired result.

11
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2.1. Proof of Theorem 1

We apply Theorem 9 with the function class Fpn = F∗ defined in (12). Denote by Fp′n = F ′
∗ its

independent copy based on a fresh sample X ′
1, . . . , X

′
n. Let us define the following generalization

of (14) and (15): for b > 1,

T1(b, n) = E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

(ϵi −
1

b
)(f(Xi)− f∗(Xi))

2

]
, (22)

T2(b, n) = E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

2ϵi(f
∗(Xi)(f

∗(Xi)− f(Xi))

−Xi(f
∗(Xi − 1)− f(Xi − 1)))− 1

b
(f∗(Xi)− f(Xi))

2

]
. (23)

Then we have the following bound on the complexities. See Appendix A for proof.

Lemma 11 Let π ∈ P[0, h] with h being either a constant or h = s log n for some s > 0. Let
M := M(n, h) > h be such that

• supπ∈P([0,h]) PX∼pπ [X > M ] ≤ 1
n7 .

• For Xi
iid∼ pπ, E

[
Xk

max

]
≤ c(k)Mk for k = 1, . . . , 4 and absolute constant c > 0.

Then there exists a constant c0(b) > 0 such that

T1(b, n), T2(b, n) ≤ c0(b)
(
max{1, h2}M +max{1, h}M2

)
. (24)

The first condition on the probability is an artifact of the proof. In general, any tail bounds on the
random variable X that decay polynomially in n, such as the ones satisfied by bounded priors or
priors with subexponential tails, are good enough for our proofs to go through.

We use the above result to first prove the regret bound for priors in P([0, h]). Note that there
exist constants c1, c2 > 0 such that for any fixed h > 0 such that M = max{c2, c1h} · logn

log logn
satisfies both conditions in Lemma 11 (see Lemma 15 and Lemma 16 in Appendix B for a proof).
Hence we get O(max{1,h3}

n ( logn
log logn)

2) bound on the regret.
Next we extend the above proof to the subexponential case. Given π ∈ SubE(s) define the

truncated version πc,n[θ ∈ ·] = π[θ ∈ · | θ ≤ c log n] for c > 0. Then we have the following
reduction.

Lemma 12 There exists constants c1, c2, c3 > 0 such that

Regretπ(f̂erm) ≤ Regretπc1s,n
(f̂erm) +

max{c2, c3s}
n

.

Proof Let π ∈ SubE(s), then there exists a constant c(s) ≜ 11s by the definition of SubE(s) such
that

ε = P[θ > c(s) log n] ≤ 1

n10
, θ ∼ π (25)

Denote, also, the event E = {θi ≤ c(s) log n,∀i = 1, · · · , n}; we have P[Ec] ≤ n−9. Let
πc(s),n be the truncated prior πc(s),n[θ ∈ ·] = π[θ ∈ · | θ ≤ c(s) log n]. Define mmse(π) ≜

12
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minf Eθ∼π[(f(X) − θ)2] (i.e. the Bayes error). Then we may use (Polyanskiy and Wu, 2021,
Equation 131) to obtain

Regretπ(f̂erm) ≤ Regretπc,n
(f̂erm) + mmse(πc,n)− mmse(π) + Eπ[(f̂erm(X)− θ)21{Ec}] (26)

By (Wu and Verdu, 2012, Lemma 2), mmse(πc,n) − mmse(π) ≤ ε
1−εmmse(π) ≤ 2ε whenever

ε ≤ 1
2 . In addition, Lemma 8 entails that f̂erm(X) ≤ Xmax, then one can show that E[f̂4

erm(X)] ≤
E[X4

max] ≤ O(max{1, s4}(log n)4), see Lemma 18 in Appendix B for a proof. Meanwhile, for
all π ∈ SubE(s) we have Eπ[θ

4] ∈ O(s4). This means Eπ[(f̂erm − θ)4] ≲s (log n)4. Thus by
Cauchy-Schwarz inequality

Eπ[(f̂erm(X)−θ)21{Ec}] ≤
√
P[Ec]Eπ[(f̂erm(X)− θ)4] ≤

√
n−9Eπ[(f̂erm(X)− θ)4] ≲

max{1, s2}
n

.

Given the above result, it suffices to bound Regretπc,n
(f̂erm). Then one can show (see Lemma 17

and Lemma 15 in Appendix B for a proof) that there exist constants c1, c2 > 0 such that M =
max{c1, c2s} log n satisfies both the requirements in Lemma 11. Hence we get the desired regret
bound of O(max{1,s3}(logn)3

n ).

3. Regret bounds in multiple dimensions

We first extend Lemma 8 to the multidimensional setting in the following manner: For each j =
1, · · · , d, the j-th coordinate (f̂erm)j of f̂erm satisfies (f̂erm)j(Xi) ≤ Xj,max for all i = 1, · · · , n,
where Xj,max = max{X1j , · · · , Xnj}. Given a sample X1, . . . ,Xn with empirical distribution
pn, define the sample based function class

F∗ =

{
f ∈ F : fj(Xi) ≤ max

{
f∗
j (Xi),

n
max
i=1

Xij

}
, j = 1, . . . , d, i = 1, . . . , n

}
. (27)

Then using the quadratic structure of the regret, the convexity of the class of monotone func-
tions, similar to (20) and (21) in one dimension, applying Lemma 10 (details deferred to Ap-
pendix D) yields

Regretπ(f̂erm)

≤ 1

n
E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

3ϵi∥f(Xi)− f∗(Xi)∥2 −
1

2
∥f(Xi)− f∗(Xi)∥2

]

+
1

n
E

 sup
f∈F∗∪F ′

∗

n∑
i=1

d∑
j=1

2ϵi(f
∗
j (Xi)(f

∗
j (Xi)− fj(Xi))−Xij(f

∗
j (Xi − ej)− fj(Xi − ej)))

−1

4
∥f∗(Xi)− f(Xi)∥2

]
. (28)

13
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The above bound can be simplified as the sum of the following offset Rademacher complexities:

Regretπ(f̂erm) ≤
1

n

d∑
j=1

(3U1(j, n) + 4U2(j, n))

U1(j, n) ≜ E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

(ϵi −
1

6
)(fj(Xi)− f∗

j (Xi))
2

]

U2(j, n) ≜ E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

ϵi(f
∗
j (Xi)(f

∗
j (Xi)− fj(Xi))−Xij(f

∗
j (Xi − ej)

−fj(Xi − ej)))−
1

8
(f∗

j (Xi)− fj(Xi))
2

]
(29)

We bound these 2d Rademacher complexities to arrive at the results. Note that as we want to an-
alyze the supremum over all possible prior distributions whose marginals are subject to the same
tail assumption (either supported on [0, h] or s-subexponential), by the inherent symmetry on the d
coordinates, it suffices to consider only a single coordinate, say, the j-th, when bounding the offset
Rademacher complexity. The final regret bound then includes an extra factor of d over this single in-
stance of Rademacher complexity. Note that in our problem the function class F∗ is supported over
the hypercube

∏d
j=1[0,maxni=1Xij ]. The high-level idea for our analysis is that the effective size

of this hypercube, corresponding to different classes of priors, controls the Rademacher complexity
and hence the regret upper bound. See Appendix D for the technical details.
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Appendix A. Bounding (offset) Rademacher complexities (Proof of Lemma 11)

We consider the following notations.

N(x) =
n∑

i=1

1{Xi=x} ϵ(x) =
n∑

i=1

ϵi1{Xi=x} (30)

where ϵ1, · · · , ϵn are independent Rademacher symbols.

Bound on T2(b, n): Using f(−1) = 0 we note that

n∑
i=1

2ϵi(f
∗(Xi)(f

∗(Xi)− f(Xi))−Xi(f
∗(Xi − 1)− f(Xi − 1)))− 1

b
(f∗(Xi)− f(Xi))

2

=
∑
x≥0

2ϵ(x)(f∗(x)(f∗(x)− f(x))− x(f∗(x− 1)− f(x− 1)))− N(x)

b
(f∗(x)− f(x))2

=
∑
x≥0

2(ϵ(x)f∗(x)− (x+ 1)ϵ(x+ 1))(f∗(x)− f(x))− N(x)

b
(f∗(x)− f(x))2 (31)

In view of the above, we can bound T2(b, n) using the sum of the following two terms

t1(n) ≜ E{ sup
f∈F∗∪F ′

∗

[
∑
x≥0

2(ϵ(x)f∗(x)−(x+1)ϵ(x+1))(f∗(x)−f(x))−N(x)

b
(f∗(x)−f(x))2]1{N(x)>0}}

t0(n) ≜ E{ sup
f∈F∗∪F ′

∗

[
∑
x≥0

−2(x+ 1)ϵ(x+ 1)(f∗(x)− f(x))]1{N(x)=0}}.

For analyzing the term t1(n), since N(x) > 0, using 2ax− bx2 ≤ a2

b for any a, x and b > 0 we get

t1(n) ≤ b · E

∑
x≥0

(ϵ(x)f∗(x)− (x+ 1)ϵ(x+ 1))2

N(x)
1{N(x)>0}

 (32)

Using E {ϵ(x)|X1, . . . , Xn} = 0 and E
[
(ϵ(x))2|X1, . . . , Xn

]
= N(x) we get

E
[
(f∗(x)ϵ(x)− (x+ 1)ϵ(x+ 1))2

N(x)
1{N(x)>0}

]
= E

[(
(f∗(x))2 +

(x+ 1)2N(x+ 1)

N(x)

)
1{N(x)>0}

]
.

Using the results that

(P1) N(x) ∼ Binom(n, pπ(x)) and for absolute constant c′ > 0 (Polyanskiy and Wu, 2021,
Lemma 16)

E
[
1{N(x)>0}

N(x)

]
≤ c′min

{
npπ(x),

1

npπ(x)

}
,

(P2) conditioned on N(x), N(x+ 1) ∼ Binom(n−N(x), pπ(x+1)
1−pπ(x)

),

(P3) f∗(x) = (x+ 1)pπ(x+1)
pπ(x)

= E [θ|X = x] ≤ h for all x ≥ 0,
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(P4) Since for every x > 0, xye−x

y! ≤ yye−y

y! ≤ 1√
2πy

(Stirling’s), we have

pπ(y) <
1√
2πy

, y ≥ 1, (33)

we continue (32) to get

1

b
t1(n) ≤ E

∑
x≥0

f∗(x)21{N(x)>0}

+
∑
x≥0

(x+ 1)2
npπ(x+ 1)

1− pπ(x)
E
[
1{N(x)>0}

N(x)

]

≤ h2E [1 +Xmax] +
npπ(1)

1− pπ(0)
E
[
1{N(0)>0}

N(0)

]
+ n

∑
x≥1

(x+ 1)2pπ(x+ 1)E
[
1{N(x)>0}

N(x)

]
≤ h2E [1 +Xmax] +

c′pπ(1)

(1− pπ(0))pπ(0)
+ c′h

∑
x≥1

(x+ 1)min
{
(npπ(x))

2, 1
}
.

Let M > h be as in the lemma statement. For the second term notice that pπ(1)
(1−pπ(0))pπ(0)

≤
max {1, h}. For the third term, we use the bound

h
∑
x≥1

(x+ 1)min
{
(npπ(x))

2, 1
}
≤ hM2 + h

∑
x≥M

(x+ 1)min
{
(npπ(x))

2, 1
}

≤ hM2 + 2n2h
∑
x≥M

x(pπ(x))
2
(a)

≤ hM2 + 2n2h2PX∼pπ [X > M ] ≤ 2(hM2 +
2h2

n5
), (34)

where (a) is due to that xpπ(x) = f∗(x− 1)pπ(x− 1) ≤ h for all x ≥ 1. We finally note that since
h is either constant or in the form O(s log n) for some constant s, the term h2

n5 can be neglected.
Next, we evaluate t0(n). As |ϵ(x+ 1)| ≤ N(x+ 1) and N(x+ 1) = 0 for x ≥ Xmax we get

t0(n) ≤ E

∑
x≥0

2(x+ 1)N(x+ 1) sup
f∈F∗∪F ′

∗

|f∗(x)− f(x)|1{N(x)=0}


≤ E

[
Xmax−1∑

x=0

2(x+ 1)
(
f∗(x) +Xmax +X ′

max

)
N(x+ 1)1{N(x)=0}

]
. (35)

Let M > 0 be as in the lemma statement and A = {Xmax ≤ M,X ′
max ≤ M}. Then P [Ac] ≤ 2

n6

via the union bound argument. Thus we have, for some absolute constant c > 0,

E

[
Xmax−1∑

x=0

2(x+ 1)
(
f∗(x) +Xmax +X ′

max

)
N(x+ 1)1{N(x)=0} · 1{Ac}

]

≤ E

[
Xmax(h+Xmax +X ′

max)

Xmax−1∑
x=0

N(x+ 1)1{N(x)=0}1{Ac}

]
(a)

≤ nE
[
(Xmax) ·

(
h+Xmax +X ′

max

)
1{Ac}

] (b)

≤ n

√
E
[
(h+Xmax +X ′

max)
4
]√

P [Ac] ≤ cM2

n2
.

(36)
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with (a) follows from
∑Xmax−1

x=0 N(x + 1) ≤
∑∞

x=0N(x) = n, and (b) uses the Cauchy-Schwarz
inequality and E

[
X4

max

]
≲ c(2)M4.

For each x ≤ M , define qπ,M (x) ≜ pπ(x)
PX∼pπ [X≤M ] . Note that P [N(x) = 0|A] = (1−qπ,M (x))n

and conditioned on the set A and {N(x) = 0}, the random variable N(x+1) has Binom
(
n,

qπ,M (x+1)
1−qπ,M (x)

)
distribution. This implies

E

[
Xmax−1∑

x=0

2(x+ 1)
(
f∗(x) +Xmax +X ′

max

)
N(x+ 1)1{N(x)=0}

∣∣∣∣∣A
]

≤
M−1∑
x=0

2(x+ 1)(h+ 2M)E [N(x+ 1)|N(x) = 0, A]P [N(x) = 0|A]

≤
M−1∑
x=0

2(x+ 1)(h+ 2M)
nqπ,M (x+ 1)

1− qπ,M (x)
(1− qπ,M (x))n

=
M−1∑
x=0

2(h+ 2M)f∗(x)nqπ,M (x) (1− qπ,M (x))n−1
(a)

≤ 2Mh(h+ 2M).

where (a) uses f∗(x) ≤ h for all x, and also nw (1− w)n−1 ≤ (1 − 1
n)

n−1 < 1 for all w ∈ [0, 1].
We conclude our proof by combining the above with (36).

Bound on T1(b, n): Denote mb = b+1. Conditional on the sample X1, . . . , Xn and X1, . . . , Xn,
given any f ∈ F∗ ∪ F ′

∗ define

v(f) = min {min {x : f(x) ≤ mbh} , Xmax} .

Then using the above definition we get for each f ∈ F∗ ∪ F ′
∗, conditional on the samples,

n∑
i=1

(ϵi −
1

b
)(f(Xi)− f∗(Xi))

2 =
∑

x:N(x)>0

(ϵ(x)− 1

b
N(x))(f(x)− f∗(x))2

=

v(f)∑
x=0

+

Xmax∑
x=v(f)+1

 (ϵ(x)− 1

b
N(x))(f(x)− f∗(x))2

≤ m2
bh

2
Xmax∑
x=0

max

{
ϵ(x)− 1

b
N(x), 0

}
(37)

+ sup
v≥0

{
sup

mbh≤f≤Xmax

{
Xmax∑
x>v

(ϵ(x)− 1

b
N(x))(f(x)− f∗(x))2

}}
. (38)

For the first term (37), we invoke the following lemma, to be proven in Appendix C.

Lemma 13 For each x and b > 1, conditioned on Xn
1 we have

E[max{ϵ(x)− 1

b
N(x), 0}] ≤

1− 1
b

e ·D(
1+ 1

b
2 ||12)
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For brevity, we denote Nb ≜
1− 1

b

e·D(
1+1

b
2

|| 1
2
)
. This gives us

E

[
m2

bh
2
Xmax∑
x=0

max

{
ϵ(x)− 1

b
N(x), 0

}∣∣∣∣∣Xn
1

]
≤ Nbm

2
bh

2E[(1 +Xmax)]. (39)

For the second term (38), we note that for any f with values in [mbh,Xmax], we have mb−1
mb

f ≤
f − f∗ ≤ f and hence

(ϵ(x)− 1

b
N(x))(f(x)− f∗(x))2 ≤ max

{(
ϵ(x)− 1

b
N(x)

)
,

(
mb − 1

mb

)2(
ϵ(x)− 1

b
N(x)

)}
f(x)2.

(40)

Now given that −N(x) ≤ ϵ(x) ≤ N(x), define function g : [−1, 1] → R given by

g(x) = max

((
x− 1

b

)
,

(
mb − 1

mb

)2(
x− 1

b

))
(41)

Since g is the maximum of two linear functions, it is convex, and therefore bounded by the line

joining their endpoints, (−1,−(1b + 1) ·
(
mb−1
mb

)2
) and (1, 1− 1

b ). Now define:

α =
1

2

[(
1 +

1

b

)
·
(
mb − 1

mb

)2

+

(
1− 1

b

)]
;

β =
1

2

[(
1 +

1

b

)
·
(
mb − 1

mb

)2

−
(
1− 1

b

)]
=

1

2b(b+ 1)

using the fact that mb = b + 1. Note that 0 < β < α. Then we have g(x) ≤ αx − β for all
x ∈ [−1, 1]. Hence, we have

(ϵ(x)− 1

b
N(x))(f(x)− f∗(x))2 ≤ (αϵ(x)− βN(x))f(x)2 (42)

Hence (38) can be bounded by, modulo a constant multiplicative factor c2(b) depending on b,

sup
v≥0

{
sup

mbh≤f≤Xmax

{
Xmax∑
x>v

(ϵ(x)− 1

b
N(x))(f(x)− f∗(x))2

}}

≤ c2(b)

[
sup
v≥0

{
sup

mbh≤f≤Xmax

{
Xmax∑
x>v

(ϵ(x)− β

α
N(x))f(x)2

}}]
. (43)

Note that the above f -based maximization problem is a linear programming of the form

sup
a1,...,ak

k∑
i=1

viai, (mbh)
2 ≤ a1 · · · ≤ ak ≤ (Xmax)

2 ,
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with k = Xmax + 1. The optimization happens on the corner points of the above convex set, that
are given by Xmax + 1 length vectors of the form{

(mbh)
2, . . . , (mbh)

2, (Xmax)
2 , . . . , (Xmax)

2
}
.

This implies we can bound (43) by

(mbh)
2
Xmax∑
x=0

max

{
ϵ(x)− β

α
N(x), 0

}
+ (Xmax)

2 sup
v≥0

{
Xmax∑
x>v

(ϵ(x)− β

α
N(x))

}
. (44)

The bound of the first term, conditional on the data, is given as per Lemma 13 as m2
bh

2Nb(1 +
Xmax). For the second term, we first note the following result.

Lemma 14 Let c > 0 be given. For ϵ = (ϵ1, · · · , ϵn) n independent Rademacher symbols, denote

Lc(ϵ) = max
0≤j≤n

{
j∑

i=1

ϵi − cj

}
(45)

Then E[Lc(ϵ)] ≤ Mc where Mc ≜ 1 + (1− exp(−D( c+1
2 ||12)))

−2.

The proof of the above result is provided in Appendix C.
Therefore, using Lemma 14, we have

E

[
sup
v≥0

{
Xmax∑
x>v

(ϵ(x)− β

α
N(x))

}∣∣∣∣∣Xn
1

]
≤ E[ sup

w:0≤w≤n
(ϵw+1 + · · ·+ ϵn)−

β

α
(n− w)] ≤ c(b)

for some constant c(b) > 0 via Lemma 14. Thus we get

E

[
(Xmax)

2 sup
v≥0

{
Xmax∑
x>v

(ϵ(x)− β

α
N(x))

}∣∣∣∣∣X1, . . . , Xn

]
≤ c(b)(1 +Xmax)

2. (46)

Combining (43), (44), and (46) we get

E

[
sup
v≥0

{
sup

mbh≤f≤Xmax

{
Xmax∑
x>v

(ϵ(x)− 1

b
N(x))(f(x)− f∗(x))2

}}∣∣∣∣∣Xn
1

]
≤c3(b)

(
h2(1 +Xmax) + (1 +Xmax)

2
)

(47)

for a constant c3(b) depending on b. Then taking expectation on both the sides and using the
definition of M in the lemma statement we finish the proof.
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Appendix B. Moments of Poisson mixtures

Lemma 15 Consider a random variable W . If there exists a function p(n) such that for all integers
c ≥ 1, P(W ≥ cp(n)) ≤ n−c, then for each integer m ≥ 1 there exists a constant c(m) such that
for all n ≥ 2,

E[Wm1{W≥p(n)}] ≤
(
2m +

3mm!

(log n)m+1

)
p(n)m

n

Proof Denote the event Ek = {kp(n) ≤ W ≤ (k + 1)p(n)}, then for all n ≥ 2, we consider the
expansion of P (m,n) as per the claim to get

E[Wm1{W≥p(n)}] =

∞∑
k=1

E[Wm1{Ek}] ≤ (p(n))m
∞∑
k=1

(k + 1)m

nk
≤ (p(n))m

n

(
2m + 3m

∞∑
k=2

(k − 1)m

nk−1

)
(48)

Using the Gamma integration we bound the last term in the above display using
∞∑
k=2

(k − 1)m

nk−1
≤
∫ ∞

0
xmn−xdx =

∫ ∞

0
xme−x logndx =

m!

(log n)m+1
.

Plugging this bound back in (48) finishes the proof.

Lemma 16 There exist constants c1, c2 such that for all h > 0, k ≥ 1 and π ∈ P([0, h]), Xmax on
n ≥ 3 samples have the following bound:

P[1 + maxXi ≥ max{c2, c1h} · k
log n

log logn
] ≤ n−k

Proof Consider λ ∈ [0, h]. Then for x ≥ h we have the following approximation for X ∼ Poi(λ)
via Chernoff’s bound (Mitzenmacher and Upfal, 2005, p.97-98):

P[X ≥ x] ≤ (eλ)xe−λ

xx
≤ (eh)xe−h

xx
(49)

Therefore for X ∼ pπ and x ≥ h we have P(X ≥ x) ≤ (eh)xe−h

xx .
Now choose c0 such that c0 ≥ max{4, h}, and for all n ≥ 3,

log log n+ log c0 − log log log n− log h− 1 ≥ 1

2
log logn

That is, denoting L = supn≥3

{
log log log n− 1

2 log log n
}

, we take log c0 ≥ log h + 1 + L.
Notice that this mean we may take c0 = max{4,max{1, exp(1 + L)} · h}. Then for all k ≥ 1,
c0k

logn
log logn ≥ c0

logn
log logn ≥ c0 ≥ h given that n > log n for all n > 1, so the tail bound in (49) can

be applied. Setting x = c0k
logn

log logn , we have

log(
(eh)xe−h

xx
) = −h+ c0k

log n

log logn
(1 + log h− log c0 − log k − log log n+ log log log n)

≤ −h+ 4k
log n

log log n
(−1

2
log logn)

< 2k log n , (50)
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which implies that P[X ≥ c0k
logn

log logn ] ≤ n−2k. Finally, taking c = 2c0 = max{8,max{2, 2 exp(1+
L)} · h}, we have

P[1 +Xmax ≥ ck
log n

log log n
]
(a)

≤ nP[1 +X ≥ ck
log n

log logn
]
(b)

≤ nP[X ≥ c0k
log n

log log n
]
(c)

≤ n−k

where (a) is union bound on X1, · · · , Xn, (b) is using logn
log logn > 1 for all n ≥ 3 and logn

log lognk(c −
c0) ≥ c0k ≥ c0 > 1 for all k ≥ 1, and (c) is 2k − 1 ≥ k for all k ≥ 1.

Lemma 17 There exist constants c1, c2 > 0 such that for all s > 0, k ≥ 1 and π ∈ P([0, s log n]),
Xmax on n ≥ 2 samples has the following bound:

P[Xmax ≥ max{c2, c1s}k log n] ≤ n−k

Proof Again, consider the following argument via Chernoff’s bound (Mitzenmacher and Upfal,
2005, p.97-98): for x ≥ s log n and X ∼ pπ we have

P[X ≥ x] ≤ sup
0≤λ≤s logn

(eλ)xe−λ

xx
≤ (es log n)xe−s logn

xx
= exp(−s log n+x(1+log(s log n)−log x))

Now, choose c0 = max{2 + s, e2s}. Then for k ≥ 1 and x = kc0 log n we have

− s log n+ (kc0 log n)(1 + log(s log n)− log(kc0 log n))

= (log n)(−s+ kc0(1 + log s− log k − log c0))

= (log n)(−s+ kc0(1− log k − 2))

≤ (log n)(−s− k(2 + s)) ≤ (log n)(−2k) ≤ (log n)(−(k + 1)) (51)

Therefore P[X ≥ c0k log n] ≤ n−(k+1).
Take c3 = c0(1 + 1

log 2), we have 1 + c0k log n ≤ c3k log n for all k ≥ 1. Therefore, union
bound gives P[1 +Xmax ≥ c3k log n] ≤ nP[1 +X ≥ c3k log n] ≤ nP[X ≥ c0k log n] ≤ n−k. It
then follows that we can take c1 = e2(1 + 1

log 2) and c2 = 6(1 + 1
log 2).

Lemma 18 Given X1, · · · , Xn
iid∼ pπ ≜ Poi◦π. Let k ≥ 1 be an integer. Then there exist constant

c0(k), c1, c2, c3, c4 such that:

• E[(1 +Xmax)
k] ≤ c0(k)(max{c1, c2h} logn

log logn)
k for all π ∈ P([0, h]).

• E[(1 +Xmax)
k] ≤ c0(k)(max{c3, c4s} log n)k for all π ∈ P([0, s log n]).

Proof For π ∈ P([0, h]), choose c1, c2 according to Lemma 16 and use Lemma 15 to obtain
the constant c0(k) ≜ (2k + 2kk!) with p(n) ≜ max{c1, c2h} logn

log logn and W = 1 + Xmax.
For π ∈ P([0, s log n]), choose c3, c4 according to Lemma 17 and use Lemma 15 with p(n) ≜
max{c3, c4s} log n and W = 1 +Xmax.
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Appendix C. Technical Identities

Proof of Lemma 5

Throughout the solution, for s ≤ t we denote m(s, t) ≜
∑t

i=s wi∑t
i=s vi

, where m(s, t) = ∞ if vi = 0

for s ≤ i ≤ t. Denote, also, the cost function G(f) ≜
∑n

i=1 vif(ai)
2 − 2wif(ai). We restrict our

attention to establishing f̂erm(a1); the rest follows similarly. Let i2 be the maximum index such that
f̂erm(a1) = · · · = f̂erm(ai2) for some i2 ≥ 1.

We first claim that f̂erm(a1) = m(1, ai2). Indeed, for each real t, and integer j = 1, · · · , k, we

define the following function fj,t(ai) ≜

{
f̂erm(ai) + t 1 ≤ i ≤ j

f̂erm(ai) otherwise
. Then by the maximality of i2,

for some small ϵ > 0, fi2,t is still monotone for some t ∈ (−ϵ, ϵ). In addition,

∂G(fj,t)

∂t
=

j∑
i=1

2(vi(f̂erm(ai) + t)− wi) . (52)

Since f̂erm = argminG(f), ∂G(fi2,t)

∂t |t=0 = 0. Therefore,

f̂erm(a1)

i2∑
i=1

vi =

i2∑
i=1

f̂erm(ai)vi =

i2∑
i=1

wi . (53)

Since max{vi, wi} > 0 and each vi, wi is nonnegative, we cannot have
∑i2

i=1 vi =
∑i2

i=1wi = 0.

It then follows that f̂erm(a1) =
∑i2

i=1 wi∑i2
i=1 vi

= m(1, i2).

It now remains to show that m(1, i2) ≤ m(1, j) for all j = 1, · · · , k, and the inequality is strict
for j > i2. Now for any j with 1 ≤ j ≤ k, for some small ϵ > 0, fj,t is still monotone for some
t ∈ (−ϵ, 0]. Given also f̂erm = argminG(f), ∂G(fj,t)

∂t |t=0 ≤ 0. Since f̂erm(ai) ≥ f̂erm(a1) for all i,
we have

f̂erm(a1)
∑

1≤i≤j

vi ≤
∑

1≤i≤j

f̂erm(ai)vi ≤
∑

1≤i≤j

wi , (54)

which implies that m(1, j) ≥ f̂erm(a1) = m(1, i2). To show that m(1, j) > m(1, i2) for all j > i2,
suppose otherwise. Then m(1, j) = m(1, i2). This means the inequality in (54) is an equality. In
particular,

f̂erm(a1)

j∑
i=1

vi =

j∑
i=1

f̂erm(ai)vi (55)

In view of (53), from
∑j

i=1 f̂erm(ai)vi =
∑j

i=1wi we have

j∑
i=i2+1

f̂erm(ai)vi =

j∑
i=i2+1

wi . (56)

By the maximality of i2, we have f̂erm(ai) > f̂erm(a1) for all i > i2. Given that vi ≥ 0 for all i,
(55) then implies vi = 0 for i = i2 + 1, · · · , j. This would imply that

∑j
i=i2+1wi = 0, i.e. wi = 0

for all i = i2 + 1, · · · , j. This contradicts max{vi, wi} > 0 for each i = 1, · · · , n.
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Proof of Lemma 8

Recall that f̂erm is characterized by piecewise constancy, where for each maximal interval I on
which f̂erm is constant (maximal in the sense we cannot extend I further), we have

∀x0 ∈ I : f̂erm(x0) =

∑
x∈I(x+ 1)N(x+ 1)∑

x∈I xN(x)

Now that we have defined f̂erm(x) = f̂erm(Xmax) for all x > Xmax, it suffices to show that
f̂erm(Xmax) ≤ Xmax. Indeed, there exists an i∗ ≤ Xmax such that

f̂erm(k) =

∑Xmax
i=i∗ (i+ 1)N(i+ 1)∑Xmax

i=i∗ N(i)

(a)
=

∑Xmax
i=i∗+1 iN(i)∑Xmax
i=i∗ N(i)

≤
∑Xmax

i=i∗+1XmaxN(i)∑Xmax
i=i∗ N(i)

≤ Xmax

where (a) is due to N(Xmax + 1) = 0.

Proof of Lemma 10

Here, we note that the symmetrization technique has been introduced in (Liang et al., 2015, p.11-
12). However, given that we are taking a supremum over a data-dependent subclass of F , some
extra care need to be taken.

E[ sup
f∈Fpn∪Fp′n

Ê′[T (f(X))]− Ê[T (f(X))]− (Ê′[U(f(X))] + Ê[U(f(X))])]

(a)
=

1

2
E[ sup

f∈Fpn∪Fp′n

Ê′[T (f(X))]− Ê[T (f(X))]− (Ê′[U(f(X))] + Ê[U(f(X))])]

+
1

2
E[ sup

f∈Fpn∪Fp′n

Ê[T (f(X))]− Ê′[T (f(X))]− (Ê′[U(f(X))] + Ê[U(f(X))])]

=
1

2n
E[ sup

f,g∈Fpn∪Fp′n

n∑
i=1

T (f)(X ′
i)− T (f)(Xi)− U(f)(Xi)− U(f)(X ′

i)

+ T (g)(Xi)− T (g)(X ′
i)− U(g)(Xi)− U(g)(X ′

i)]

≤ 1

2n
E[ sup

f1,g1∈Fpn∪Fp′n

n∑
i=1

T (g1)(Xi)− T (f1)(Xi)− U(f1)(Xi)− U(g1)(Xi)]

+
1

2n
E[ sup

f2,g2∈Fpn∪Fp′n

n∑
i=1

T (f2)(X
′
i)− T (g2)(X

′
i)− U(f2)(X

′
i)− U(g2)(X

′
i)]

(b)
=

1

n
E[ sup

f,g∈Fpn∪Fp′n

n∑
i=1

T (g)(Xi)− T (f)(Xi)− U(f)(Xi)− U(g)(Xi)]

(c)
≤ 2

n
E[ sup

f∈Fpn∪Fp′n

n∑
i=1

ϵiT (f)(Xi)− U(f)(Xi)] (57)

where (a), (b) are symmetry and (c) is Jensen’s inequality.
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Proof of Lemma 13

Recall that conditioned on Xn
1 , ϵ(x) ∼ 2 · Binom(N(x), 12) −N(x). Since b > 1, it then follows

that

E[max{ϵ(x)− 1

b
N(x), 0}] = E[(ϵ(x)− 1

b
N(x))1{ϵ(x)> 1

b
N(x)}]

≤ (1− 1

b
)N(x)P[ϵ(x) >

1

b
N(x)]

(a)

≤ (1− 1

b
)N(x) exp(−N(x)D(

1 + 1
b

2
||1
2
))

(b)

≤
1− 1

b

e ·D(
1+ 1

b
2 ||12)

where (a) is from (Polyanskiy and Wu, 2022+, Example 15.1, p.254) and (b) is using the fact that
for all a > 0 and y ≥ 0, y exp(−ay) ≤ 1

ae .

Proof of Lemma 14

We will bound P[Lc(ϵ) ≥ k] for each integer k ∈ [0, n]. First, we see that
∑j

i=1 ϵi − cj ≤ (1− c)j

(i.e. we’ll only consider j ≥ k) and for this sum to be positive we need
∑j

i=1 ϵi > cj. If Xj ∼
Binom(j, 12) we have

P[
j∑

i=1

ϵi > cj] = P[Xj > j(
c+ 1

2
)] ≤ exp(−jD(

c+ 1

2
||1
2
))

by (i.e. Lemma 13). Now denoting D( c+1
2 ||12) = c1 > 0, we have

P[Lc(ϵ) ≥ k] = P[∃j ≥ k :

j∑
i=1

ϵi − cj ≥ k]

≤
n∑

j=k

P[
j∑

i=1

ϵi − cj ≥ k] ≤
n∑

j=k

exp(−jc1) ≤
exp(−c1k)

1− exp(−c1)
(58)

Therefore we have

E[Lc(ϵ)] ≤ 1 +

n∑
k=0

P[Lc(ϵ) ≥ k] ≤ 1 +

n∑
k=0

exp(−c1k)

1− exp(−c1)
≤ 1 +

1

(1− exp(−c1))2
.

as desired.

An ERM algorithm with O(Xmax logXmax) time complexity

The algorithm in Lemma 5 is quadratic in O(X2
max). We now describe an algorithm based on

stack that does O(Xmax logXmax), with this log factor only used in sorting {(X,N(X))} for X =
0, 1, · · · , Xmax.

Let W1 < · · · < Wk be the distinct elements in {X1, · · · , Xn} ∪ {X1 − 1, · · · , Xn − 1}. We
consider a stack S, initialized as ∅, with each element being the triple (I, w, t) where I denotes
the interval of piecewise constancy, w =

∑
k∈I N(Wk) and t =

∑
j∈I(Wk + 1)N(Wk + 1). The

27



JANA POLYANSKIY TEH WU

invariant we are maintaining here is that the ratio t
w is nondecreasing (this ratio is considered as

+∞ if w = 0).

At each step t = 1, · · · , k we do the following:

• Initialize a ≜ ([t, t], N(Wt), (Wt + 1)N(Wt + 1)), the active element;

• Suppose, now, a = (I, w, t). While the stack is nonempty and the top (most recent) element
a′ = (I, w, t) w′t ≤ wt′ (in particular, when w,w′ > 0 we have the ratio t

w ≤ t′

w′ ), we pop
a′ from the stack, and set a = (I ∪ I ′, w + w′, t+ t′).

• Push a onto the stack.

Then for each element in the form ([a, b], w, t) we have f̂erm(x) = t
w for all x = Wa, · · · ,Wb.

Notice that the largest element, Wk, has N(Wk) > 0, so the solution will always be well-formed.

To justify the time complexity, we see that there are at most k pushes into the stack. Each pop
decreases the stack size by 1, so that cannot appear more than k times either. Assuming that each
computation (e.g. calculating w′t and wt′) is O(1), this stack operation takes O(k).

Appendix D. Proofs for the multidimensional Case

To prove the regret bound for the multidimensional estimator f̂ = (f̂1, . . . , f̂d) we use the approxi-
mation error for the different coordinates. In particular, similar to (16) we define

R(f) ≜ E

[
∥f(X)∥2 − 2

d∑
i=1

Xifi(X − ei)

]
, R̂(f) ≜ Ê

[
∥f(X)∥2 − 2

d∑
i=1

Xifi(X − ei)

]
(59)

and note that

Regretπ(f̂erm) = E
[
R(f̂erm)− R(f∗)

]
(60)

As mentioned before, in the multidimensional setup our estimator is produced by optimizing over
the class of coordinate-wise monotone functions F in (10) and f∗ ∈ F as well. Using the quadratic
structure of the regret and the convexity of F , we can mimic the proof of (??) to get

R̂(f)− R̂(f̂) ≥ Ê
[
∥f − f̂∥2

]
, f ∈ F . (61)
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Then following a similar argument as in (20), (21), using (60) we have

Regretπ(f̂erm) ≤ E
[
R(f̂)− R(f∗) + R̂(f∗)− R̂(f̂)− Ê

∥∥∥f∗ − f̂
∥∥∥2]

= E

[
Ê
[ d∑

j=1

2f∗
j (X)(f∗

j (X)− f̂j(X))− 2Xj(f
∗
j (X − ej)− f̂j(X − ej))

]

− E
[ d∑

j=1

2f∗
j (X)(f∗

j (X)− f̂j(X))− 2Xj(f
∗
j (X − ej)− f̂j(X − ej))

]

− 1

4
(Ê
[
∥f∗ − f̂∥2

]
+ E[∥f∗(X)− f̂(X)∥2])

]
(62)

+ E
[
5

4
E[∥f∗(X)− f̂(X)∥2]− 7

4
Ê[∥f∗(X)− f̂(X)∥2]

]
. (63)

As Lemma 10 is still directly applicable in the multidimensional setting, applying it with

T (f(x)) = −
d∑

j=1

[2f∗
j (x)(f

∗
j (x)−fj(x))−2xj(f

∗
j (x−ej)−fj(x−ej))], U(f(x)) =

1

4
∥f∗(x)− f(x)∥2

to bound (62) and with T (f(x)) = 3
2∥f

∗(x)− f(x)∥2, U(f(x)) = 1
2∥f

∗(x)− f(x)∥2 to bound
(63) we get: for any function class Fpn depending on the empirical distribution pn of the sample
X1, . . . ,Xn that includes f̂erm and f∗ and its independent copy Fp′n based on an independent
sample X ′

1, . . . ,Xn

Regretπ(f̂erm) ≤
3

n
E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

(ϵi −
1

6
)(fj(Xi)− f∗

j (Xi))
2

]

+
4

n
E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

ϵi(f
∗
j (Xi)(f

∗
j (Xi)− fj(Xi))−Xij(f

∗
j (Xi − ej)

− fj(Xi − ej)))−
1

8
(f∗

j (Xi)− fj(Xi))
2

]
(64)

To achieve the best possible bound we choose Fpn with low complexity. Note that the objective
function R defined in (59) is separable into sum of individual loss functions. Thus, given the defini-
tion of F in (10), for each coordinate j and each class Cj(x

′) defined in (11), we have

(f̂erm)j |Cj(x′) = argmin
f∈F1

Ê
[
fj(X)− 2Xjfj(X − ej)|X ∈ Cj(x

′)
]
, ∀x′ ∈ Rd−1

+ .

where F1 is the class of all one-dimensional monotone function from Z+ → R+. Considering this
for all classes Cj(x

′) and from Lemma 8, we have

(f̂erm)j(Xi) ≤ Xj,max, Xj,max ≜
n

max
i=1

Xij , j = 1, . . . , d. (65)
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Given the sample X1, . . . ,Xn define the sample based function class

F∗ ≜
{
f ∈ F : fj(Xi) ≤ max

{
f∗
j (Xi), Xj,max

}
, j = 1, . . . , d, i = 1, . . . , n

}
. (66)

Let F ′
∗ be an independent copy of F∗. Then simplifying (64) with Fpn = F∗,Fpn = F ′

∗ we get

Regretπ(f̂erm) ≤
1

n

d∑
j=1

(3U1(j, n) + 4U2(j, n))

U1(j, n) ≜ E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

(ϵi −
1

6
)(fj(Xi)− f∗

j (Xi))
2

]

U2(j, n) ≜ E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

ϵi(f
∗
j (Xi)(f

∗
j (Xi)− fj(Xi))−Xij(f

∗
j (Xi − ej)

−fj(Xi − ej)))−
1

8
(f∗

j (Xi)− fj(Xi))
2

]
. (67)

We bound these 2d Rademacher complexities to arrive at the results.

D.1. Bounding Rademacher Complexity for Bounded Prior

Here we first prove a bound for the generalization of the Rademacher complexities in (67) for b > 1:

U1(b, j, n) ≜ E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

(ϵi −
1

b
)(fj(Xi)− f∗

j (Xi))
2

]

U2(b, j, n) ≜ E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

2ϵi(f
∗
j (Xi)(f

∗
j (Xi)− fj(Xi))−Xij(f

∗
j (Xi − ej)

−fj(Xi − ej)))−
1

b
(f∗

j (Xi)− fj(Xi))
2

]
(68)

We have the following result similar to Lemma 11.

Lemma 19 Let π ∈ P[0, h] with h being either a constant or h = s log n for some s > 0. Given
X1, . . . ,Xn be iid observations from pπ, let M := M(n, h) > h be such that

• For each coordinate j = 1, · · · , d, we have the j-th coordinate Xj of X satisfying

sup
π∈P([0,h])d

PX∼pπ [Xj > M ] ≤ 1

n7
.

• For β = 1, 2, 3, 4, constants c1(β) depending on β and absolute constant c > 0

E
[
(Xj,max)

4
]
≤ cM4, E

(1 +Xj,max)
β

d∏
k=1
k ̸=j

(1 +Xk,max)

 ≤ c1(β)M
d−1+β.
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Then there exists a constant r(b) > 0 such that for all n ≥ d,

U1(b, j, n), U2(b, j, n) ≤ r(b)
{
max{1, h2}+max{1, h}M

}
(1 +M)d. (69)

Proof At a high level, using the monotonicity of F , for a target coordinate j we partition the samples
X1, · · · ,Xn such that samples in the same class differ by (possibly) only the j-th coordinate.
Then for each class, using monotonicity, we mimic the proof for the one-dimensional case. Before
proceeding with the proof we define the following notations for all j = 1, . . . , d and x′ ∈ Zd−1

+

Cj(x
′) ≜ {x ∈ Zd

+ : xi = x′i ∀i ≤ j − 1 and xi = x′i−1 ∀i ≥ j + 1},

Nj(x
′) =

∑
x∈Zd

+

N(x)1{x∈Cj(x′)}. (70)

In addition, we will use multiple times that by union bound we have

sup
π∈P([0,h])d

PX∼pπ

[
X ̸∈ [0,M ]d

]
≤

d∑
i=1

sup
π∈P([0,h])d

PX∼pπ [Xj > M ] ≤ d

n7

Bound on U1(b, j, n). Denote mb = 1 + b and note that for each f ∈ F , and for each class
Cj(x

′), as fj is monotone over the j-th coordinate of all x-s in Cj(x
′), there exists v ≜ v(fj ,x

′)
such that for all x ∈ Cj(x

′), fj(x) ≤ mbh if and only if xj ≤ v. Using the above we can write

sup
f∈F∗∪F ′

∗

n∑
i=1

(
ϵi −

1

b

)
(f∗

j (Xi)− fj(Xi))
2 = sup

f∈F∗∪F ′
∗

∑
x:N(x)>0

(ϵ(x)− 1

b
N(x))(fj(x)− f∗

j (x))
2

= sup
f∈F∗∪F ′

∗

∑
x′:Nj(x′)>0

∑
x∈Cj(x′)

(ϵ(x)− 1

b
N(x))(fj(x)− f∗

j (x))
2

= sup
f∈F∗∪F ′

∗

∑
x′:Nj(x′)>0

 ∑
x∈Cj(x′),xj≤v

+
∑

x∈Cj(x′),xj>v

 (ϵ(x)− 1

b
N(x))(fj(x)− f∗

j (x))
2

≤ sup
f∈F∗∪F ′

∗

∑
x′:Nj(x′)>0

(
m2

bh
2
∑

x∈Cj(x
′),

xj≤v

max{0, ϵ(x)− 1

b
N(x)}+

∑
x∈Cj(x

′),
xj>v

(ϵ(x)− 1

b
N(x))(fj(x)− f∗

j (x))
2

)

≤ m2
bh

2
∑

N(x)>0

max{0, ϵ(x)− 1

b
N(x)}

+


∑

x′:Nj(x′)>0

sup
f∈F∗∪F′

∗,
Nch≤fj≤Xj,max

 sup
v(x′)≥0

∑
x∈Cj(x

′),
xj>v(x′)

(ϵ(x)− 1

b
N(x))(fj(x)− f∗

j (x))
2


 (71)
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As there are at most
∏d

j=1(1+Xj,max) vectors x with N(x) > 0, we apply Lemma 13 to bound
the expectation of the first term in the above display as

m2
bh

2E[
∑

N(x)>0

max{0, ϵ(x)− 1

b
N(x)}|X1, . . . ,Xn]

≤m2
bh

2E[
∑

N(x)>0

1|X1, . . . ,Xn]
(a)

≤ r1(b)m
2
bh

2
d∏

j=1

(1 +Xj,max). (72)

where (a) followed from Lemma 13 with r1(b) =
1−1/b

e·D(
1+1/b

2
∥ 1
2
)
.

For the second term in (71), note that for the vectors in the set Cj(x
′), the only coordinate that

takes different values is the j-th coordinate, and the function fj is monotone when we condition on
the coordinates {1, . . . , j − 1, j + 1, . . . , d}. It follows that conditional on X1, . . . ,Xn, for this
class Cj(x

′), we can mimic the proof for (47) in one dimensional case of T1(b, n) to bound the
innermost term as

E

sup
v

sup
f∈F∗∪F ′

∗


∑

x∈Cj(x
′),

xj>v

max{0, (ϵ(x)− 1

b
N(x))(fj(x)− f∗

j (x))
2}


∣∣∣∣∣Xn

1


≤r2(b)

(
h2(1 +Xj,max) + (1 +Xj,max)

2
)

for a constant c(b) depending on b. Finally, the number of such classes with Nj(x
′) > 0 is bounded

above by
∏d

k=1
k ̸=j

(1 +Xk,max). Therefore, summing over all classes and taking the expectation, and

including (72), we get the bound

U1(b, j, n) = E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

(
ϵi −

1

b

)
(f∗

j (Xi)− fj(Xi))
2

]

≤ r1(b)m
2
bh

2E

 d∏
j=1

(1 +Xj,max)

+ r2(b)E

 d∏
k=1
k ̸=j

(1 +Xk,max) · (h2Xj,max +X2
j,max)


≤ (r1(b) + r2(b))(c1(1)h

2 + c1(2)M)Md. (73)

Bounding U2(b, j, n). As per the one dimensional case, we bound the Rademacher complexity
term U2(b, j, n) with t0(n) + t1(n), where

t1(n) ≜ E

[
sup

f∈F∗∪F ′
∗

∑
x

(2(ϵ(x)f∗
j (x)− (xj + 1)ϵ(x+ ej))(f

∗
j (x)− fj(x))

−N(x)

b
(f∗

j (x)− fj(x))
21{N(x)>0}

]
(74)

t0(n) ≜ E

[
sup

f∈F∗∪F ′
∗

∑
x

−2(xj + 1)ϵ(x+ ej)(f
∗
j (x)− fj(x))1{N(x)=0}

]
(75)
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We first analyze t1(n). Using the inequality 2ax− bx2 ≤ a2

b for any b > 0 we have

1

b
t1(n) ≤ E

[∑
x

(ϵ(x)f∗
j (x)− (xj + 1)ϵ(x+ ej))

2

N(x)
1{N(x)>0}

]
(76)

Using the facts

• E[ϵ(x)|X1, . . . ,Xn] = 0, E[ϵ(x)ϵ(x+ ej)|X1, . . . ,Xn] = 0

• E[ϵ(x)2|X1, . . . ,Xn] = N(x), and,

• E[N(x+ ej) | N(x)] =
(n−N(x))pπ(x+ej)

1−pπ(x)
≤ npπ(x+ej)

1−pπ(x)

we continue the last display to get

1

b
t1(n) ≤ E[

∑
x

(
f∗
j (x)

2 +
(xj + 1)2N(x+ ej)

N(x)

)
1{N(x)>0}]

≤ E[
∑
x

h21{N(x)>0}] + E[
∑
x

(xj + 1)2npπ(x+ ej)

1− pπ(x)
·
1{N(x)>0}

N(x)
]

(a)

≤ E[
∑
x

h21{N(x)>0}] + c′ ·
∑
x

(xj + 1)2npπ(x+ ej)

1− pπ(x)
·min{npπ(x),

1

npπ(x)
}

(b)
= E[

∑
x

h21{N(x)>0}] + c′ ·
∑
x

(xj + 1)f∗
j (x)

1− pπ(x)
·min{1, (npπ(x))2}

(c)

≤ h2E[
d∏

j=1

(1 +Xj,max)] +
c′f∗

j (0)

1− pπ(0)
+ c′

∑
x̸=0

(xj + 1)f∗
j (x) ·min{1, (npπ(x))2}

(77)

(here c′ is an absolute constant), where:

• (a) is due to Property A in the analysis of T2(b, n);

• (b) is using f∗
j (x) = (xj + 1)

pπ(x+ej)
pπ(x)

= E [θj |X = x] ≤ h;

• (c): for the first term, we use the fact that the number of vectors x with N(x) > 0 is bounded
by
∏d

j=1(1 +Xj,max); for the third term, for each x ̸= 0 we may choose a coordinate k with
xk > 0. Thus setting pπk

as the marginal distribution of xk we have by Stirling’s inequality,
again,

pπ(x) ≤ pπk
(xk) ≤ sup

θ≥0
PX∼Poi(θ)[X = xk] = sup

θ≥0

θxke−θ

xk!
=

xxk
k e−xk

xk!
≤ 1√

2πxk
≤ 1√

2π

and therefore 1
1−pπ(x)

≤ 1
1− 1√

2π

≤ O(1).

33



JANA POLYANSKIY TEH WU

Now, the first term in (77) is bounded by h2c(1)Md. For the second term, using pπ(ej) ≤ 1−pπ(0)

we have
f∗
j (0)

1−pπ(0)
≤ f∗

j (0)

pπ(ej)
= 1

pπ(0)
, so

f∗
j (0)

1− pπ(0)
≤ min

{
f∗
j (0)

1− pπ(0)
,

1

pπ(0)

}
≤ 2max{f∗

j (0), 1} ≤ 2max{h, 1} (78)

given that f∗ is bounded by h in each coordinates. Finally, the third term in (77) has the following
bound:

∑
x̸=0

(xj + 1)f∗
j (x) ·min{1, (npπ(x))2}

≤ h
∑

x∈[0,M ]d

(xj + 1) + n2h
∑

x̸∈[0,M ]d

(xj + 1) · pπ(x)2

(a)

≤h(1 +M)d+1 + n2hPX∼pπ

[
X /∈ [0,M ]d

]
EX∼pπ [Xj + 1]

(b)

≤h(1 +M)d+1 + hdn−4(1 + c1(4)
1/4M) (79)

where (a) followed as there are (1 + M)d elements in [0,M ]d, and (b) is due to the assumptions
in Lemma 19 and E[Xj,max + 1] ≤

{
E[(Xj,max + 1)4]

}1/4. Thus, summarizing (77),(78),(79), we
have

t1(n) ≤ c′′ · b
(
h2c1(1)M

d +max{h, 1}+ h(1 +M)d+1 + hdn−4M
)

≤ 2c′′b
(
max{1, h}(1 +M)d+1 +max{1, h2}c1(1)(1 +M)d + hdn−4M

)
for an absolute constant c′′, as desired. Since d ≤ n, hdn−4M ≤ hn−3M < h(1 +M)d, and can
therefore be negleected.

Next we analyze t0(n). Since we have |ϵ(x+ ej)| ≤ N(x+ ej) and N(x+ ej) = 0 for all x
with x+ ej ̸∈

∏d
k=1[0, Xk,max], we get

t0(n) = E

[
sup

f∈F∗∪F ′
∗

∑
x

[−2(xj + 1)ϵ(x+ ej)(f
∗
j (x)− fj(x))1{N(x)=0}]

]

≤ E

 ∑
x+ej∈

∏d
k=1[0,Xk,max]

2(xj + 1)N(x+ ej) sup
f∈F∗∪F ′

∗

∣∣f∗
j (x)− fj(x)

∣∣1{N(x)=0}


≤ E

 ∑
x+ej∈

∏d
k=1[0,Xk,max]

2(xj + 1)
(
f∗
j (x) +Xj,max +X ′

j,max

)
N(x+ ej)1{N(x)=0}


(80)

where X ′
j,max is the maximum of j-th coordinate on n samples independent of X1, · · · ,Xn.
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Define A =
{
Xi,Xi′ ∈ [0,M ]d,∀i = 1, · · · , n

}
. We have P [Ac] ≤ 2d

n6 via union bound. Then
we have for an absolute constant c′1 > 0

E

 ∑
x+ej∈

∏d
k=1[0,Xk,max]

2(xj + 1)
(
f∗
j (x) +Xj,max +X ′

j,max

)
N(x+ ej)1{N(x)=0} · 1{Ac}


≤ E

2(Xj,max + 1)
(
h+Xj,max +X ′

j,max

) ∑
x+ej∈

∏d
k=1[0,Xk,max]

N(x+ ej)1{N(x)=0} · 1{Ac}


(a)

≤ nE
[
(Xj,max + 1)

(
h+Xj,max +X ′

j,max

)
1{Ac}

]
(b)

≤ n

√
E
[(

h+Xj,max +X ′
j,max

)2
(Xj,max + 1)2

]√
P [Ac] ≤ c′1

hd1/2M2

n2

(c)

≤ c′1hM
2

n
, (81)

where (a) is using
∑

x+ej∈
∏d

k=1[0,Xk,max]
N(x+ej)1{N(x)=0} ≤

∑
xN(x) = n, (b) is via Cauchy-

Schwarz inequality and E[(Xj,max)
4],E[(X ′

j,max)
4] ≤ cM4, and (c) is because d ≤ n by our

assumption.
Next, we condition on the event A. Similar to the proof of bound on T2(b, n) in the one-

dimensional setup, we define qπ,M (x) ≜ pπ(x)
PX∼pπ [X∈[0,M ]d]

. We have P [N(x) = 0|A] = (1 −

qπ,M (x))n, and conditioned on the set A and {N(x) = 0}, N(x+ ej) ∼ Binom
(
n,

qπ,M (x+ej)
1−qπ,M (x)

)
.

Therefore:

E

 ∑
x+ej∈

∏d
k=1[0,Xk,max]

2(xj + 1)
(
f∗
j (x) +Xj,max +X ′

j,max

)
N(x+ ej)1{N(x)=0}

∣∣∣∣∣∣∣A


≤
∑

x∈
∏d

k=1[0,M ]d

2(xj + 1)(h+ 2M)E [N(x+ ej)|{N(x) = 0}, A]P [N(x) = 0|A]

≤
∑

x∈
∏d

k=1[0,M ]d

2(xj + 1)(h+ 2M)
nqπ,M (x+ ej)

1− qπ,M (x)
(1− qπ,M (x))n

(a)
=

∑
x∈

∏d
k=1[0,M ]d

2(h+ 2M)f∗
j (x)nqπ,M (x) (1− qπ,M (x))n−1 ≤ 2(M + 1)dh(h+ 2M).

where (a) followed using f∗
j (x) = (xj +1)

pπ(x+ej)
pπ(x)

and the definition of qπ,M (x+ej), and for the
last inequality, we used the fact that nx(1− x)n−1 ≤ (1− 1

n)
n−1 < 1 for all x with 0 < x < 1 and

f∗
j (x) ≤ h. Collecting terms and using M > h, we therefore have

t0(n) ≤ c′1
hd1/2M2

n2
+ h(M + 1)d+1 ≤ c′2h(M + 1)d+1 (82)

for absolute constants c′1, c
′
2 as required.
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D.2. Proof of Regret bound in the multidimensional setup (Theorem 2)

We start by describing the bounds on E[
∏d

j=1(1+Xj,max)
kj ] in this multidimensional setting, which

we claim the following.

Lemma 20 Given any s, h > 0 and integer β ≥ 0 there exist constants c(β), c1, c2, c3, c4 > 0
such that

1. For all π ∈ P([0, h]d), E
[
(1 +Xj,max)

β
∏d

k=1
k ̸=j

(1 +Xk,max)

]
≤ c(β)

(
max{c1, c2h} log(n)

log log(n)

)d−1+β
;

2. For all π ∈ P([0, s log n]d), E
[
(1 +Xj,max)

β
∏d

k=1
k ̸=j

(1 +Xk,max)

]
≤ c(β)(max{c3, c4s} log(n))d−1+β .

Proof We note that conditioned on θ1, · · · , θd, the coordinates X1, · · · , Xd are independent (dis-
tributed as Xi ∼ Poi(θi)). It then follows that

E

(1 +Xj,max)
β

d∏
k=1
k ̸=j

(1 +Xk,max) | θ1, · · · ,θn

 =

d∏
i=1

E
[
(1 +Xi,max)

βi |θ1i, · · · , θni
]

where here βi is β if i = j and 1 otherwise.
For the bounded prior case, i.e. π ∈ P([0, h])d for some h > 0, we may mimic the proof

of Lemma 16 to obtain, for some absolute constant c(h) ≜ max{c1, c2h}, P[1 + Xi,max ≥
kc(h) logn

log logn | θ1i, · · · , θni] ≤ n−k (given that θ ≤ h). Thus we may then adapt Lemma 15 to

yield E[(1 + Xi,max)
βi | θ1i, · · · , θni] ≤ c0(βi)(c(h)

logn
log logn)

βi for some absolute constant c0(βi)
that depends only on the exponents βi. Since this inequality holds regardless of θ1i, · · · , θni (so
long as they are in the range [0, h]), the desired bound now becomes

E

(1 +Xj,max)
β

d∏
k=1
k ̸=j

(1 +Xk,max)

 ≤ c0(β)c0(1)
d−1

(
c(h)

log n

log log n

)d−1+β

≤ c0(β)

(
c(h)max{1, c0(1)}

log n

log log n

)d−1+β

Likewise, for the case π ∈ ([0, s log n]d), we may mimic the proof of Lemma 17 to obtain, for
some absolute constant c′(s) ≜ max{c3, c4h}, P[1 +Xi,max ≥ kc(s) log n | θ1i, · · · , θni] ≤ n−k.
Using Lemma 15 again, E[(1 +Xi,max)

βi | θ1i, · · · , θni] ≤ c0(βi)(c
′(s) log n)βi . Considering all

θ1, · · · ,θn we then get

E

(1 +Xj,max)
β

d∏
k=1
k ̸=j

(1 +Xk,max)

 ≤ c0(β)
(
c′(s)max{1, c0(1)} log n

)d−1+β
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For π ∈ P([0, h])d, by Lemma 20, there exist constants c1, c2 such that we may take M =

max{c1, c2h} log(n)
log log(n) into Lemma 19. This gives the overall regret bound as

d
n max{c1, c2h}d+2( log(n)

log log(n))
d+1.

Now assume that each marginals of πj are of SubE(s) for some s > 0. We now show that the
multidimensional version of Lemma 12 applies here.

Here, we choose c = c(s) ≜ 11s such that for each j = 1, · · · , d, we have P[Xj > c(s) log(n)] ≤
1

n10 . This means that we now have

ε = P[X ̸∈ [0, c(s) log(n)]d] ≤
d∑

j=1

P[Xj > c(s) log n] ≤ d

n10
(83)

the middle inequality via union bound on each coordinate.
Define the event E = {Xi ∈ [0, c(s) log(n)]d,∀i = 1, · · · , n}, and we have P[Ec] ≤ dn−9.

Again we define the truncated prior πc,n[X ∈ ·] = π[X ∈ · | X ∈ [0, c(s) log(n)]d]. Then, similar
to (26) in the one-dimensional case, the following equation applies:

Regretπ(f̂erm) ≤ Regretπc,n
(f̂erm)+mmse(πc,n)−mmse(π)+Eπ,c[∥f̂erm(X)−θ∥21{Ec}] (84)

Given that f̂j(·) ≤ Xj,max, we have E[(f̂j)4] ≤ E[X4
j,max] ≤ O(s4(log n)4) by Lemma 17, and

Eπ[θ
4
j ] ≤ O(s4 log4 n) from the properties of subexponential priors. The logic Eπ[(f

∗
j − θj)

4] ≤
O((s log n)4) and

Eπ[(f̂erm(X)− θj)
21{Ec}] ≤

√
P[Ec]Eπ[(f̂erm(X)− θj)4] ≲

s2d1/2

n2
, ∀j = 1, 2, · · · , d

then follows from there. This gives Eπ,c[∥f̂erm(X) − θ∥21{Ec}] ≤ d3/2

n4 by considering all the d
coordinates.

The identity mmse(πc) − mmse(π) ≤ ε
1−εmmse(π) ≤ 2dε ≤ 2d2

n2 still applies here in the
following sense. Let fπ be the Bayes estimator corresponding to π. Then denoting M ≜ c(s) log(n)
here we have

mmse(π) = E[∥f∗(X)− θ∥2]
= Eθ∼π[EX∼Poi(θ)[∥f∗(X)− θ∥2]|θ]
≥ Eθ∼π[EX∼Poi(θ)[∥f∗(X)− θ∥2]1{θ∈[0,M ]d}|θ]

= P[θ ∈ [0,M ]d]Eθ∼π[EX∼Poi(θ)[∥f∗(X)− θ∥2]1{θ∈[0,M ]d}|θ]

≥ (1− ϵ)mmse(πc,n) (85)

and that mmse(π) ≤ d given that the naive estimation of fid(x) = x achieves an expected loss
of d (i.e. 1 for each coordinate). This shows that we also have Regretπ(f

∗) ≤ Regretπc,n
(f∗) +

O(d
2s2

n2 ) ≤ Regretπc,n
(f∗) + O(ds

2

n ) in this multidimensional case (given that d ≤ n). Thus, it
suffices to work on prior πc,n for some c ≜ c(s) where πc,n ∈ [0, c log(n)]d.

Now under this truncated prior, by Lemma 20 there exist absolute constants c3, c4 such that
we may take M = max{c3, c4s} log n and substitute into Lemma 19. This gives an overall regret
bound of d

n(max{c3, c4s} log(n))d+2.
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