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Abstract
We consider the question of estimating multi-dimensional Gaussian mixtures (GM) with com-

pactly supported or subgaussian mixing distributions. Minimax estimation rate for this class (under
Hellinger, TV and KL divergences) is a long-standing open question, even in one dimension. In
this paper we characterize this rate (for all constant dimensions) in terms of the metric entropy of
the class. Such characterizations originate from seminal works of Le Cam (1973); Birgé (1983);
Haussler and Opper (1997); Yang and Barron (1999). However, for GMs a key ingredient missing
from earlier work (and widely sought-after) is a comparison result showing that the KL and the
squared Hellinger distance are within a constant multiple of each other uniformly over the class.
Our main technical contribution is in showing this fact, from which we derive entropy character-
ization for estimation rate under Hellinger and KL. Interestingly, the sequential (online learning)
estimation rate is characterized by the global entropy, while the single-step (batch) rate corresponds
to local entropy, paralleling a similar result for the Gaussian sequence model recently discovered
by Neykov (2022) and Mourtada (2023). Additionally, since Hellinger is a proper metric, our com-
parison shows that GMs under KL satisfy the triangle inequality within multiplicative constants,
implying that proper and improper estimation rates coincide.
Keywords: KL divergence, Hellinger distances, Gaussian mixtures, estimation rates

1. Introduction

Gaussian mixtures are among the most popular and useful classes of distributions for modeling real
data with heterogeneity. Specifically, each d-dimensional mixing distribution π induces a Gaussian
mixture fπ, which is the convolution of π with the d-dimensional standard Gaussian distribution
N (0, Id), namely

fπ(x) = (π ∗ φ)(x) =
∫
Rd

φ(x− z)π(dz),

where φ(z) = 1√
2π

d exp
(
−∥z∥22/2

)
is the standard normal density.

There is a vast literature in statistics and machine learning on various aspects of mixture models
such as parameter estimation and clustering. In this paper we focus on learning the mixture model
in the sense of density estimation. To this end, it is necessary to impose tail conditions on the mixing
distribution. Specifically, we consider two classes of Gaussian mixtures classes, wherein the mixing
distribution is either compactly supported or subgaussian.
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To measure the density estimation error, it is common to use f -divergences, notably, Kullback-
Leibler (KL) divergence KL(f∥g) =

∫
f log f

g , the squared Hellinger distance H2(f, g) =
∫
(
√
f−

√
g)2, and the total variation distance TV(f, g) = 1

2

∫
|f − g|. In this paper, we are chiefly con-

cerned with mainly focus on the estimation rates under the KL-divergence and the squared Hellinger
distance, as opposed to the L2 distance due to its lack of operational meaning.1

Estimating Gaussian mixture densities is a classical topic in nonparametric statistics. Under the
squared Hellinger loss, the minimax lower bound Ω((log n)d/n) was proved in Kim (2014); Kim
and Guntuboyina (2022) the lower bound for subgaussian mixing distributions. On the constructive
side, nonparametric maximum likelihood estimator (NPMLE) and sieve MLE have been analyzed in
van de Geer (1993); Wong and Shen (1995); van de Geer (1996); Genovese and Wasserman (2000);
Ghosal and van der Vaart (2001, 2007); Zhang (2009). In particular, the NPMLE, which offers a
practical algorithm for properly learning the mixture model, is shown to achieve a near-parametric
rate of O((log n)2/n) for the subgaussian case Zhang (2009), which is subsequently generalized
to O(logd+1 n/n) in d dimensions Saha and Guntuboyina (2020). Similar results for compactly
supported mixing distribution are also obtained in (Polyanskiy and Wu, 2021, Theorem 20) Despite
these advances, determining the optimal rate remains a long-standing open question even in one
dimension.

Departing from maximum likelihood, there is a long line of work that aims at characterizing den-
sity estimation rates in terms of metric entropy of the class. These general entropic upper bounds
originate from the seminal work of Le Cam (1973); Birgé (1983); Birgé (1986) for the Hellinger
loss, Yatracos (1985) for the TV loss, and Yang and Barron (1999) for the KL loss. (We refer to
in (Polyanskiy and Wu, 2022+, Chapter 33) for a detailed exposition on these results.) On the other
hand, entropic lower bounds for KL and Hellinger losses were established for both the batch Haus-
sler and Opper (1997) and sequential estimation Yang and Barron (1999). However, these entropy-
based upper and lower bounds in general do not match unless extra conditions are imposed on the
behavior on the model class (those conditions are satisfied, most notably, for the Hölder density
class on [0, 1]d). Notably, a simple condition that ensures a sharp entropic determination of the
minimax rate is the comparability of the Hellinger and KL divergence, namely, for any density f
and g in the model class:

KL(f∥g) ≍ H2(f, g) (1)

where ≍ denotes equality within constant multiplicative factors. Note that the one-sided inequality
KL(f∥g) ≥ H2(f, g) is always true cf. e.g. (Polyanskiy and Wu, 2022+, Eq. (7.30)). As such,
whenever KL is dominated by H2, the sharp minimax rate is determined by the local Hellinger
entropy of the model class.

Indeed, this entropy-based approach has been successfully taken in Doss et al. (2020) to deter-
mine the sharp rate for the special case of finite-component Gaussian mixtures in general dimen-
sions. Specifically, for the class of k-component GMs, (Doss et al., 2020, Theorem 4.2) shows
that

KL(fπ∥fη) ≍k H2(fπ, fη), (2)

1. Indeed, for densities supported on the entire real line, it is possible that two densities are arbitrarily close in L2

distance but separated by a large TV distance and hence easily distinguishable. In fact, for the entire class of Gaus-
sian mixtures, Kim (2014) showed ignoring the mixture structure and simply applying the kernel density estimator
designed for analytic densities Ibragimov (2001) achieves the optimal rate in L2. On the other hand, consistent es-
timation of Gaussian mixtures in more meaningful loss function such as TV is impossible unless tail conditions on
the mixing distribution are imposed.
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where π and η are k-atomic distributions supported on a Euclidean ball of bounded radius in Rd and
≍k hides constants depending only on k. The proof of this result is based on the method of moments
which shows both distances are proportional to the Euclidean distance between the moment tensors
of mixing distributions up to degree 2k − 1. The crucial part of (2) is that it does not depend on
the ambient dimension d. As such, this allows the optimal squared Hellinger rate to be determined
by the local entropy, which, in turn, can be tightly estimated via the low rank of the moment tensor,
leading to the sharp rate of Θk(

d
n) that holds even in high dimensions. On the other hand, (2) is

not fully dimension-free in that the proportionality constant therein is in fact exponential in k, the
number of components, a limitation of the moment-based approach. As such, it is unclear whether
(2) continues to hold for continuous GMs even in one dimension.

We review related results on upper-bounding the KL divergence by Hellinger distance. (Birgé
and Massart, 1998, Lemma 5) shows that DKL(f∥g) ≲ H2(f, g) if ess sup df

dg < ∞. This results
was further generalized to α-generalized Hellinger divergence in (Sason and Verdú, 2016, Theorem
9). However, ratios between two Gaussian mixture densities are not bounded. (Wong and Shen,
1995, Theorem 5) points out that if

∫
f/g≥exp(1/δ) f

δ+1/gδ < ∞ for some δ > 0, then we have
DKL ≲ H2 log(1/H2). This method was extended by Haussler and Opper (1997) and we also use
it in our Theorem 3. Note, however, that this method is unable to produce a linear upper bound:
DKL(f∥g) ≲ H2(f, g). Yet another result follows by choosing η = 1/2 and η̄ = 1 in (Grünwald
and Mehta, 2020, Lemma 13), which proves DKL ≤ cuH

2(f, g) with cu = u+2
c provided that

f, g ∈ F and F satisfies the so-called (u, c)-witness condition, i.e.
∫
f log(f/g)1f/g≤exp(u) ≥

c ·
∫
f log(f/g). However, Gaussian mixtures again do not satisfy this condition. In particular, the

left side of the above inequality can even be negative in some cases.2

In this paper we resolve the question of KL to Hellinger comparison and show that with a
constant factor that depends (at most linearly) on the dimension, by proving that

KL(fπ∥fη) ≍d H2(fπ, fη), (3)

where π and η are arbitrary distributions supported on a bounded ball in Rd; furthermore, this result
can be made dimension-free with an extra logarithmic factor. In addition, we show that (3) holds
for (1 − ϵ)-subgaussian mixing distributions but fails for (1 + ϵ)-subgaussian distributions. Curi-
ously, our method does not rely on comparing moments of mixing measures, the prevailing method
for analyzing statistical distances between mixture distributions (cf. e.g. Wu and Yang (2020a,b);
Bandeira et al. (2020); Fan et al. (2021); Doss et al. (2020); Chen and Niles-Weed (2021)).

The new comparison result has various statistical consequences, of which we report here one
(see Corollary 11). To estimate the GM density with compactly supported or (1 − ϵ)-subgaussian
mixing distributions based on an iid sample of size n, the minimax proper or improper density
estimation risks under KL divergence or squared Hellinger distance are tightly characterized by the
local Hellinger entropy of the density class, thereby reducing the question of optimal rates to that of
computing the local entropy. Furthermore, the minimax risks in the sequential version (as opposed
to the batch setting above) of this problem are tightly characterized by the global Hellinger entropy
of the class. A similar phenomenon of local-vs-global entropy has been observed in a pair of recent
works on Gaussian sequence model: Neykov (2022) showed that batch risk is controlled by the
local entropy and Mourtada Mourtada (2023) showed that sequential risk is controlled by the global
entropy.

2. To see this, consider f = N (0, 1) and g = N (−δ, 1) with δ > 0. Then
∫
f log(f/g)1f/g≤exp(u) = δ2

2
−

1√
2π

δ exp(−u2/2). Hence for any choice of u, there always exists a δ close to zero such that this integral is negative.
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Notation Let B2(r) =
{
x ∈ Rd : ∥x∥2 ≤ r

}
denote the Euclidean ball of radius r centered at

0. Denote by supp(π) the support of a probability measure π. We say a distribution π on Rd is
K-subgaussian if for X ∼ π,

P[∥X∥2 > t] ≤ exp

(
− t2

2K2

)
, ∀t ≥ 0.

Organization The rest of the paper is organized as follows. Section 2 states our main results by
providing upper bounds on KL divergence according to squared Hellinger for Gaussian mixtures.
To illustrate the main ideas, the proof for one dimension is provide in Section 3 as a warm-up. The
dimension-free bound for Gaussian mixtures where mixing distribution is compactly supported is
provided in Section 4. Finally, the proof of Corollary 11, showing that the estimation rates are tightly
characterized by Hellinger entropies, is given in Section 5. Proofs of other results are deferred to
appendices.

2. Main Results

Before discussing their statistical consequences, we first state the main comparison results that
control the KL divergence between Gaussian mixtures using their Hellinger distance.

For compactly supported mixing distributions, our main result is as follows:

Theorem 1 Let π and η be supported on B2(M) in Rd where M ≥ 2. Then

KL(fπ∥fη) ≤ 5154(M2 ∨ d)H2(fπ, fη).

In Section 3 we provide a proof of Theorem 1 in one dimension. The proof of general cases is
included in Appendix A.

Remark 2 The bound in Theorem 1 is tight up to constant factors depending on the dimension d. To
see this, consider π = δu where u = (M, 0, 0, · · · , 0) and η = δ−u. Then we have fπ = N (u, I)

and fη = N (−u, I). A direct computation shows that KL(fπ∥fη) = ∥u−(−u)∥2
2 = 2M2, while

H2(fπ, fη) = 2− 2 exp
(
−M2

2

)
≤ 2.

Complementing Theorem 1, we also have the following dimension-free upper bound at the price
of a mere logarithmic factor. This theorem is a direct corollary of (Wong and Shen, 1995, Theroem
5), if we notice that fπ, fη satisfy their condition

∫
fπ/fη≥e fπ(fπ/fη) ≤ exp(4M2) < ∞ for any

π, η supported on B2(M). For completeness, we include a proof in Section 4:

Theorem 3 Let π and η be supported on B2(M) in Rd where M ≥ 1. Then

KL(fπ∥fη) ≤ 200M2H2(fπ, fη) + 16H2(fπ, fη) log
1

H2(fπ, fη)
.

Next we consider the class of subgaussian mixing distributions. We discover a dichotomy de-
pending on the subgaussian constant K: When K < 1, the KL divergence is indeed proportional to
the squared Hellinger distance. When K > 1, such upper bound does not exist.
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Theorem 4 Let π, η be two d-dimensional K-subgaussian distributions where K < 1. Then

KL(fπ∥fη) ≤ 1660056

(
1

(1−K)3
∨ 8d3

)
H2(fπ, fη).

Theorem 5 Fix K > 1. For any C > 0, there exists a 1-dimensional K-subgaussian distribution
π such that

KL(fπ∥N (0, 1)) ≥ C ·H2(fπ,N (0, 1)).

Remark 6 Notice that this phenomenon of dichotomy of K > 1 and K < 1 for Gaussian mixtures
with K-subgaussian mixing distribution was also observed in Block et al. (2022). Therein, it is
shown that the convergence rate of smoothed n-point empirical distribution to the smoothed popu-
lation distribution under Wasserstein distance is O(1/

√
n) for K < 1, and ω(1/

√
n) for K > 1.

We further have the following dimension-free upper bound that holds for all K > 0.

Theorem 7 Let π and η be K-subgaussian distributions on Rd. Then

KL(fπ∥fη) ≤ (10240K4 + 652)H2(fπ, fη) log
4

H2(fπ, fη)
.

The results presented so far are structural results on the information geometry of Gaussian mix-
ture, whose proof are included in Appendix A-D. Next we discuss their statistical consequences. We
start with the definition of covering/local covering number and minimax risks of density estimation.

Definition 8 (Covering Number and Local Covering Number) Let P be a set of distributions
over some measurable space X . The Hellinger covering number of P is

NH(P, ϵ) ≜ min

{
N : ∃Q1, · · · , Qn ∈ ∆(X ), sup

P∈P
inf

1≤i≤N
H(P,Qi) ≤ ϵ

}
,

where ∆(X ) denotes the collection of all probability distributions on X . The local Hellinger cov-
ering number of P is

Nloc,H(P, ϵ) ≜ sup
P∈P,η≥ϵ

NH(BH(P, η) ∩ P, η/2),

where BH(P, η) is the Hellinger ball of radius η centered at P .

We further define the minimax risks for proper and improper density estimation as well as the
minimax risk in a sequential setting.

Definition 9 (Proper and Improper Density Estimation Minimax Risk) For a given class P of
distributions over X , we define the improper minimax risk RH2,n, RKL,n and the proper minimax
risk R̃KL,n with sample size n as follows: for d ∈ {H2,KL}, we define

Rd,n(P) ≜ inf
f̂n

sup
f∈P

Ef

[
d(f, f̂n)

]
,

5
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and also3

R̃KL,n(P) ≜ inf
f̂n∈P

sup
f∈P

Ef

[
KL(f∥f̂n)

]
,

where f̂n(·) = f̂n(·;X1, . . . , Xn) is a density estimator based on X1, . . . , Xn drawn iid from P .

Definition 10 (Sequential Density Estimation Minimax Risk (Improper)) For a given class P
of distributions over X , the sequential minimax risks CH2,n and CKL,n are defined as: for d ∈
{H2,KL},

Cd,n(P) = inf
f̂1,··· ,f̂n

sup
f∈P

N∑
t=1

E[d(f, f̂t(·|X1, · · · , Xt−1))]

where f̂t : X t−1 → ∆(X ) denotes the density estimator at time t based on observations X1, · · · , Xt−1.

We refer to Definitions 9 and 10 as the batch and online settings, respectively. The following
corollary shows that the minimax density estimation risks in these settings can be characterized by
the local and global Hellinger entropy up to constant factors. Furthermore, we show that proper and
improper density estimation rates coincide. As explained earlier this is well-known for Hellinger
loss but far from clear for KL loss which does not satisfy triangle inequality. In fact, the celebrated
Yang-Baron construction Yang and Barron (1999) produces an improper density estimate. Nev-
ertheless, we show that for Gaussian mixture class there is no gain in stepping outside the model
class.

Corollary 11 Let Pcom(M) and Psub(K) denote the collection of d-dimensional Gaussian mix-
tures where the mixing distribution is supported on B2(M) and K-subgaussian, respectively, i.e.,

Pcom(M) = {π ∗ N (0, Id)|supp(π) ⊂ B2(M)},
Psub(K) = {π ∗ N (0, Id)|π is K-subgaussian}.

Then for any compact (under Hellinger) subset P where P ⊂ Pcom(M) or P ⊂ Psub(K) with
K < 1, we have the following characterization on the proper or improper minimax risk:

RH2,n(P) ≍ RKL,n(P) ≍ R̃KL,n(P) ≍ inf
ϵ>0

ϵ2 +
1

n
logNloc,H(P, ϵ),

and also for sequential minimax risk:

CH2,n(P) ≍ CKL,n(P) ≍ inf
ϵ>0

nϵ2 + logNH(P, ϵ).

Here ≍ hides constants that may depend on M,K, or d but not on n.

As we mentioned previously, a recent pair of works Neykov (2022); Mourtada (2023) estab-
lished the same phenomenon: the sequential rate is given by global entropy, while the batch rate is
given by the local entropy, though, their work is for a very different setting of a Gaussian sequence
model.

Apart from the KL divergence and Hellinger distance, we also obtained comparison results for
other distances between distributions, e.g. χ2-divergence, TV and L2 distances. See Appendix E.

We close this section with a list of related open problems.

3. Since Hellinger distance is a valid metric, for proper and improper density estimation, the minimax squared Hellinger
risks coincide within a factor of four, as any estimator can be made proper by its Hellinger projection on the model
class.
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1. Fully dimension-free comparison: Currently our upper bound on KL/χ2 according to Hellinger
is depending on the dimension of the distributions, can we remove this dependence on the di-
mension? Suppose π and η are two d-dimensional distributions supported on B2(M), is there
a constant CKL(M), Cχ2(M) such that

KL(fπ∥fη) ≤ CKL(M) ·H2(fπ, fη),

which would have the best of both worlds of (2) and (3). Note that from Theorem 4.2 in Doss
et al. (2020) we can obtain the following dimension-free bound

KL(fπ∥fη) ≲ eCk2H2(fπ, fη)

for some constant C, if we assume π and η are k-atomic distributions. But this bound de-
pending exponentially on the number of components.

2. Minimax rate for estimating Gaussian mixtures: Find the sharp rate of

RH2,n(Pcom(M)) = inf
f̂n

sup
f∈Pcom(M)

Ef [H
2(f̂n, f)].

Thanks to the comparison inequality in Theorem 1, Corollary 11 reduces this problem to com-
puting the local Hellinger entropy of the mixture class Pcom(M). The best known estimates
for this in one dimension are

log(1/ϵ) ≲ logNloc,H(Pcom(M), ϵ) ≲

(
log(1/ϵ)

log log(1/ϵ)

)3/2

.

Here the lower bound is from Theorem 1.3 in Kim (2014), which shows that RH2,n =
Ω(log n/n); the upper bound is from Nie and Wu (2021) by constructing a covering of the
truncated moment space of the mixing distributions. The upper bound leads to an upper bound
O
(
(log n/ log logn)1.5/n

)
on the minimax risk, improving the O((log n)2/n) result of Kim

(2014).

3. Linear comparison between TV and Hellinger: It is well-known that H2 ≲ TV ≲ H in
general. Can we show that TV ≍ H for Gaussian mixtures? Specifically, for any two π and
η supported on [−M,M ], can we show that there exists some constant C = C(M) such that

TV(fπ, fη) ≥ C ·H(fπ, fη).

We notice that it is impossible to lower bound the L2-distance ∥fπ−fη∥2 linearly in H(fπ, fη),
because Kim (2014) showed that for subgaussian mixing distributions, the minimax squared
L2 risk for estimating the mixture density is at most O(

√
log n/n) and the squared Hellinger

risk is at least Ω(log n/n). Thus the best comparison between L2 and H will involve log
factors. Similarly, the best known comparisons for L2 and TV, which we derive in Section E,
also involve log-factors. It is an open problem to find tight log-factors in these comparisons
of L2, H and TV.
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3. Proof of Theorem 1 in one dimension

In this section, we provide a proof of Theorem KL ≲ H2 for one-dimensional Gaussian mixtures
where the mixing distribution is compactly supported. Similar proof techniques can also be applied
in multiple dimensions; see Appendix A for the proof of Theorem 1 in general dimensions.

Theorem 12 (One-dimensional version of Theorem 1) Let π and η be supported on B2(M) in
R where M ≥ 2. Then

KL(fπ∥fη) ≤ 1563M2H2(fπ, fη).

For simplicity we abbreviate fπ(·) and fη(·) as p(·), q(·). Then we have

KL(p∥q) =
∫ ∞

−∞
q(x) · p(x)

q(x)
log

p(x)

q(x)
dx, H2(p, q) =

∫ ∞

−∞
q(x) ·

(√
p(x)

q(x)
− 1

)2

dx.

We first state several lemmas. The first is a straightforward computation.

Lemma 13 Let p = π ∗ N (0, 1) where supp(π) ⊂ [−M,M ]. Then we have ∀y ≥ r ≥ x ≥ M ,

p(y) exp

(
(y −M)2 − (r −M)2

2

)
≤ p(r) ≤ p(x).

The following result bounds the grownth of the “score function” in the Gaussian mixture model.

Lemma 14 Let p = π ∗ N (0, 1) where supp(π) ⊂ [−M,M ]. Then

|∇ log p(r)| ≤ 3|r|+ 4M, ∀r ∈ R.

Proof By (Polyanskiy and Wu, 2016, Proposition 2), we have for all r ∈ R, |∇ log p(r)| ≤ 3|r|+
4|E[X]|, where X ∼ π. Since π is on [−M,M ], we have |E[X]| ≤ M .

Lemma 15 For every 0 ≤ t ≤ exp
(
8M2

)
with M ≥ 1, we have

t log t− t+ 1 ≤ 9M2
(√

t− 1
)2

.

Proof We define
g(t) ≜

t log t− t+ 1

(
√
t− 1)2

.

Then we have g′(t) = t−1−
√
t log t√

t(
√
t−1)3

. The numerator h(t) = t − 1 −
√
t log t within satisfies that

h′(t) = 1− log t

2
√
t
− 1√

t
=

√
t−1−log

√
t√

t
≥ 0. Hence for 0 ≤ t ≤ 1 we have h(t) ≤ h(1) = 0 and for

t ≥ 1 we have h(t) ≥ h(1) = 0. Therefore, we have g′(t) = h(t)√
t(
√
t−1)3

≥ 0 for all t ≥ 0, which

indicates that g is non-decreasing on t ≥ 0. Hence for 0 ≤ t ≤ exp
(
8M2

)
and M ≥ 1, we have

g(t) ≤ g(exp(8M2)) ≤ exp(8M2) · 8M2

(
√
exp(8M2)− 1)2

=
8M2

(1− exp(−4M2))2
≤ 9M2,

8
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which indicates that
t log t− t+ 1 ≤ 9M2

(√
t− 1

)2

Proof [Proof of Theorem 12] It is easy to see that for every x ∈ [−2M, 2M ], we have

1√
2π

exp
(
−8M2

)
≤ p(x), q(x) ≤ 1√

2π
.

Let r be the smallest positive number (possibly infinite) such that log p(r)
q(r) ≥ 8M2, then we have r ≥

2M . Without loss of generality we assume r < ∞. (Otherwise
∫∞
r p(x) log p(x)

q(x)−p(x)+q(x)dx =

0 and there is nothing to prove.) Since log p(·)
q(·) is a continuous function, we have log p(r)

q(r) = 8M2.
According to Lemma 13, we have for every x ≥ r,

p(x) ≤ p(r) exp

(
−(x−M)2 − (r −M)2

2

)
, q(x) ≤ q(r) exp

(
−(x−M)2 − (r −M)2

2

)
and according to Lemma 14 we have∣∣∣∣log p(x)

q(x)

∣∣∣∣ ≤ ∣∣∣∣log p(r)

q(r)

∣∣∣∣+ ∫ x

r
(3|t|+ 4M)dt = 8M2 + (x− r)(3x+ 3r + 8M), ∀x ≥ r ≥ 0.

Therefore, we obtain that∫ ∞

r
p(x) log

p(x)

q(x)
− p(x) + q(x)dx ≤

∫ ∞

r
p(x) log

p(x)

q(x)
+ q(x)dx

≤ p(r) exp

(
(r −M)2

2

)∫ ∞

r
(8M2 + (x− r)(3x+ 3r + 8M)) exp

(
−(x−M)2

2

)
dx

+ q(r) exp

(
(r −M)2

2

)∫ ∞

r
exp

(
−(x−M)2

2

)
dx

≤ p(r) ·
(

6

(r −M)3
+

6r + 8M

(r −M)2
+

8M2

r −M

)
+

q(r)

r −M
≤ 36M2

r −M
p(r) +

q(r)

r −M

≤ 37M2

r −M
p(r),

where the last inequality uses the fact M ≥ 1 and log p(r)
q(r) = 8M2 ≥ 0 hence p(r) ≥ q(r).

Moreover, according to Lemma 14 we also notice that for 0 ≤ x ≤ r we have
∣∣∣∇ log p(x)

q(x)

∣∣∣ ≤
6x + 8M ≤ 6r + 8M . Hence noticing that log p(r)

q(r) = 8M2 and also r ≥ 2M , we have for every

r − M2

r+M ≤ x ≤ r,

log
p(x)

q(x)
≥ 8M2 − M2

r +M
· (6r + 8M) ≥ M2

and also p(x) ≥ p(r) according to Lemma 13. Therefore, noticing M ≥ 1, we have

H2(p, q) ≥
∫ r

r− M2

r+M

p(x) ·

(√
q(x)

p(x)
− 1

)2

dx ≥ p(r)M2

(r +M)
·
(
1− 1

eM2/2

)2

≥ p(r)M2

7(r +M)
.

9
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Since r ≥ 2M , we obtain that∫ ∞

r
p(x) log

p(x)

q(x)
− p(x) + q(x)dx ≤ 777H2(p, q).

Similarly, if we let s to be the largest negative number (possibly negative infinite) such that log p(s)
q(s) ≥

8M2, then we will also have∫ s

−∞
p(x) log

p(x)

q(x)
− p(x) + q(x)dx ≤ 777H2(p, q).

Next we consider those s ≤ x ≤ r. For those x we have log p(x)
q(x) ≤ 8M2. Hence according to

Lemma 15, we have

p(x)

q(x)
log

p(x)

q(x)
− p(x)

q(x)
+ 1 ≤ 9M2

(√
p(x)

q(x)
− 1

)2

.

Therefore,∫ r

s
p(x) log

p(x)

q(x)
− p(x) + q(x)dx =

∫ r

s
q(x) ·

(
p(x)

q(x)
log

p(x)

q(x)
− p(x)

q(x)
+ 1

)
dx

≤ 9M2

∫ r

s
q(x) ·

(√
p(x)

q(x)
− 1

)2

dx ≤ 9M2H2(p, q).

Overall, we have shown that

KL(p∥q) ≤ (777 + 777 + 9M2)H2(p, q) ≤ 1563M2H2(p, q),

which finishes the proof of Theorem 12.

4. Proof of Theorem 3

First of all, we notice that (Haussler and Opper, 1997, Lemma 5) shows that for any δ, λ > 1 such
that

0 < δ < exp(−1/2) and log log(1/δ)/ log(1/δ) ≤ (λ− 1)/2, (4)

and any probability measures P,Q, S and Q′ = (1− δ)Q+ δS, we have

KL(P∥Q′) ≤ 2 log(1/δ)

(1− δ)2
H2(P,Q) +

4δ log(1/δ)

(1− δ)2
+ δ

λ−1
2 ·

∫
Rd

(dP)λ

(dS)λ−1
. (5)

Let λ = 3, then as long as 0 < δ < 1/2, (4) holds. Choose, P = fπ and S = Q = fη, we get

KL(fπ∥fη) ≤
2 log(1/δ)

(1− δ)2
H2(fπ, fη) +

4δ log(1/δ)

(1− δ)2
+ δ ·

∫
Rd

fπ(x)
3

fη(x)2
dx. (6)

10
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Notice that the last term is an f -divergence with f = x3, which is a convex function, hence∫
Rd

fπ(x)3

fη(x)2
dx is convex in (fπ, fη). Define the set P(M) of Gaussian mixtures with mixing distri-

butions supported on the ball B2(M):

P(M) = {π ∗ N (0, Id) : supp(π) ⊂ B2(M)}

which is a convex set. Hence the maximum value of
∫
Rd

fπ(x)3

fη(x)2
dx where fπ, fη ∈ P(M) is attained

when fπ, fη are both at the boundary of P(M), i.e. ∃u,v with ∥u∥2, ∥v∥2 ≤ M and we have
fπ = δu ∗ N (0, Id), fη = δv ∗ N (0, Id). (This is because any fπ ∈ P(M) can be written as∫
B2(M) π(u)fδudu.) Therefore, we have

∫
Rd

fπ(x)
3

fη(x)2
dx ≤ sup

u,v:∥u∥,∥v∥2≤M

∫
Rd

(
1√
2π

d exp
(
−∥x+u∥22

2

))3
(

1√
2π

d exp
(
−∥x+v∥22

2

))2 dx
= sup

u,v:∥u∥,∥v∥2≤M

1
√
2π

d

∫
Rd

exp

(
−1

2

(
xTx+ 6xTu− 4xTv + 3uTu− 2vTv

))
dx

= sup
u,v:∥u∥,∥v∥2≤M

1
√
2π

d
exp

(
3∥u− v∥22

)
·
∫
Rd

exp

(
−∥x+ 3u− 2v∥22

2

)
dx

= sup
u,v:∥u∥,∥v∥2≤M

exp
(
3∥u− v∥22

)
= exp

(
12M2

)
.

Therefore, according to (6), we have for any δ ∈ [0, 1/2],

KL(fπ∥fη) ≤
2 log(1/δ)

(1− δ)2
H2(fπ, fη) +

4δ log(1/δ)

(1− δ)2
+ exp(12M2)δ.

Choosing δ = exp(−12M2)H2(fπ, fη) ∈ [0, 1/2] and noticing that (1− δ)2 ≥ 1
2 , we get

KL(fπ∥fη) ≤ H2(fπ, fη) + 96M2H2(fπ, fη) + 16H2(fπ, fη) log
1

H2(fπ, fη)

≤ 97M2H2(fπ, fη) + 16H2(fπ, fη) log
1

H2(fπ, fη)
.

This finishes the proof of Theorem 3.

5. Proof of Corollary 11

For convenience, denote by R̃H2,n the minimax squared Hellinger risk for improper density estima-
tion, similar to R̃KL,n. First, notice that for P ⊂ Pcom(M,d) or P ⊂ Psub(K, d)

RH2,n(P) ≤ R̃H2,n(P), RKL,n(P) ≤ R̃KL,n(P),

and also
RH2,n(P) ≲ RKL,n(P)

11
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since H2(P,Q) ≤ KL(P∥Q) holds for all distributions P and Q. Moreover, according to Theorems
1 and 4, for P,Q ∈ P , we have KL(P∥Q) ≲ H2(P,Q), which indicates that

R̃KL,n(P) ≲ R̃H2,n(P).

Therefore, we have

RH2,n(P) ≲ RKL,n(P) ≤ R̃KL,n(P) ≲ R̃H2,n(P).

Next, we notice that
RH2,n(P) = inf

f̂n

sup
f∈P

Ef

[
H2(f̂n, f)

]
.

For one estimator f̂n, suppose f̃n is the projection of f̂n into P under Hellinger distance (since P is
convex, such projection always exists). Then for every f ∈ P , we have

H(f̃n, f) ≤ H(f̃ , f̂) +H(f̂ , f) ≤ 2H(f̂ , f),

where the last inequality uses the fact that H(f̃ , f̂) ≤ H(f̂ , f) due to projection. Here f̃ is a proper
estimator. Therefore, we have

RH2,n(P) = inf
f̂n

sup
f∈P

Ef

[
H2(f̂n, f)

]
≥ 1

4
inf

f̂n∈P
sup
f∈P

Ef

[
H2(f̂n, f)

]
=

1

4
R̃H2,n(P).

Hence we have proved that

RH2,n(P) ≲ RKL,n(P) ≤ R̃KL,n(P) ≲ R̃H2,n(P) ≲ RH2,n(P),

so we have
RH2,n(P) ≍ RKL,n(P) ≍ R̃KL,n(P) ≍ R̃H2,n(P).

Similarly, for sequential density estimation minimax risks, we can also show that

CH2,n(P) ≍ CKL,n(P) ≍ C̃KL,n(P) ≍ C̃H2,n(P),

where C̃KL,n(P), C̃H2,n(P) are the proper sequential density estimation minimax risks (where we
restrict f̂1, · · · , f̂n to be in the class P in Definition 10. Therefore, to prove Corollary 11, we only
need to show:

RH2,n ≍ inf
ϵ>0

ϵ2 +
1

n
logNloc,H(P, ϵ),

CKL,n ≍ inf
ϵ>0

nϵ2 + logNH(P, ϵ).

For the first inequality above, the upper bound part follows directly from the celebrated Le
Cam-Birgé construction Le Cam (1973); Birgé (1983); Birgé (1986). The lower bound follows
from applying Fano’s inequality to a local Hellinger ball and the fact that KL(P∥Q) ≍ H2(P,Q)
for P,Q ∈ P; see Corollary 33.2 in Polyanskiy and Wu (2022+).

The second inequality (on CKL,n) follows directly from Lemma 6 and Lemma 7 in Haussler
and Opper (1997) after noticing that the coefficient b(ϵ) in Lemma 7 of Haussler and Opper (1997)
satisfies that

b(ϵ) = sup

{
KL(P∥Q)

H2(P,Q)
: P,Q ∈ P, H2(P,Q) ≤ ϵ

}
≲ 1.

12
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Appendix A. Proof of Theorem 1

Without loss of generality, we assume d ≤ M2 (otherwise we use
√
d ≥ M to replace M , and since

supp(π), supp(η) ⊂ B2(M) ⊂ B2(
√
d), the results still hold). For simplicity we abbreviate fπ(·)

and fη(·) as p(·), q(·). Then we can write

KL(p∥q) =
∫
Rd

p(x) log
p(x)

q(x)
dx, H2(p, q) =

∫
Rd

p(x) ·

(√
q(x)

p(x)
− 1

)2

dx. (7)

Denoting by Ω the unit sphere in Rd, each x in Rd can be written as x(r, ω), with r = ∥x∥2 and
ω to be the vector parallel to x in Ω.

To prove Theorem 1, we need the following lemmas.

Lemma 16 Suppose p = π ∗ N (0, Id), where supp(π) ⊂ B2(M). Then for any ω ∈ Ω, we have:

1. ∀r′ ∈ [M, r], we have p(x(r′, ω)) ≥ p(x(r, ω)).

2. ∀r′ ≥ r ≥ M , we have p(x(r′, ω)) ≤ p(x(r, ω)) exp
(
− (r′−M)2−(r−M)2

2

)
Proof We can write

p(x(r′, ω)) =

∫
B2(M)

φ(x(r′, ω)− u)π(u)du, p(x(r, ω)) =

∫
B2(M)

φ(x(r, ω)− u)π(u)du,

where we use π(·) to denote the density distribution of π (which can be a generalized function), and
φ(·) to denote the density distribution of N (0, Id). To prove this lemma, we only need to verify the
following two inequalities:

1. For any ∀r′ ∈ [M, r] and any u ∈ B2(M), we have φ(x(r′, ω)− u) ≥ φ(x(r, ω)− u);

2. For any ∀r′ ≥ r ≥ M and any u ∈ B2(M), we have φ(x(r′, ω) − u) ≤ φ(x(r, ω) −
u) exp

(
− (r′−M)2−(r−M)2

2

)
.

Without loss of generality, we assume ω = (1, 0, · · · , 0). Then for any u = (u1, u2, · · · , ud), we
have

φ(x(r, ω)− u) =
1

√
2π

d
exp

(
−
(r − u1)

2 +
∑d

i=2 u
2
i

2

)

φ(x(r′, ω)− u) =
1

√
2π

d
exp

(
−
(r′ − u1)

2 +
∑d

i=2 u
2
i

2

)
.

When M ≤ r′ ≤ r, it is easy to see that |r− u1| ≥ |r′ − u1| for any |u1| ≤ M . The first inequality
is verified. As for the second inequality, since |u1| ≤ M ≤ r ≤ r′, we have (r′−u1)

2−(r−u1)
2 ≥

(r′ −M)2 − (r −M)2, which indicates that

−
(r′ − u1)

2 +
∑d

i=2 u
2
i

2
≤ −

(r − u1)
2 +

∑d
i=2 u

2
i

2
− (r′ −M)2 − (r −M)2

2
.
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Lemma 17 Suppose p = π ∗ N (0, Id) where supp(π) ⊂ B2(M). Then we have

∥∇ log p(x)∥2 ≤ 3∥x∥2 + 4M, ∀x ∈ Rd.

Proof According to Proposition 2 in Polyanskiy and Wu (2016), we have ∀x ∈ Rd,

∥∇ log p(x)∥2 ≤ 3∥x∥2 + 4∥E[X]∥2,

where X ∼ π. Since the support of π is a subset of B2(M), we have ∥E[X]∥2 ≤ M .

Proof [Proof of Theorem 1] According to (7), we have

KL(p∥q) =
∫
Ω

∫ ∞

0
rd−1p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
drdω

=

∫
Ω

∫ ∞

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

H2(p, q) =

∫
Ω

∫ ∞

0
rd−1p(x(r, ω))

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω

(8)

For every ω ∈ Ω, we define rω as

rω ≜ inf

{
r : log

p(x(rω, ω))

q(x(rω, ω))
≥ 8M2

}
.

Notice that for any r ≤ 2M and ω ∈ Ω, we have

p(x(r, ω)) =

∫
B2(M)

π(u)φ(x(r, ω),u)du ≤ 1
√
2π

d

q(x(r, ω)) =

∫
B2(M)

η(u)φ(x(r, ω),u)du ≥ 1
√
2π

d
exp

(
−(2M +M)2

2

)
,

which indicates that

log
p(x(r, ω))

q(x(r, ω)
≤ 9M2

2
< 8M2.

Hence for every ω ∈ Ω, we all have rω ≥ 2M . And if rω ̸= ∞, we have that log p(x(rω ,ω))
q(x(rω ,ω))

= 8M2.
According to Lemma 16 and Lemma 17, we know that for every r ≥ rω, we all have

p(x(r, ω)) ≤ p(x(rω, ω)) exp

(
−(r −M)2 − (rω −M)2

2

)
,

log
p(x(r, ω))

q(x(r, ω))
≤ log

p(x(rω, ω))

q(x(rω, ω))
+ (r − rω)(3r + 3rω + 8M)

≤ 8M2 + (r − rω)(3r + 3rω + 8M).

Therefore, we obtain that∫ ∞

rω

rd−1p(x(r, ω)) log
p(x(r, ω))

q(x(r, ω))
dr

≤ p(x(rω, ω))

∫ ∞

rω

rd−1(8M2 + (r − rω)(3r + 3rω + 8M)) exp

(
−(r −M)2 − (rω −M)2

2

)
dr.

(9)
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We adopt the changes of variables from r to t = r − rω, and obtain that

8M2

∫ ∞

rω

rd−1 exp

(
−(r −M)2 − (rω −M)2

2

)
dr

= 8M2rd−1
ω

∫ ∞

0
exp

(
(d− 1) log

t+ rω
rω

− t2

2
− (rω −M)t

)
dt

(10)

and ∫ ∞

rω

rd−1(r − rω)(3r + 3rω + 8M) exp

(
−(r −M)2 − (rω −M)2

2

)
dr

= rd−1
ω

∫ ∞

0
exp

(
(d− 1) log

t+ rω
rω

+ log t+ log(3t+ 6rω + 8M)− t2

2
− (rω −M)t

)
dt.

(11)
We first prove the upper bound (10). We define

f(t) ≜ (d− 1) log
t+ rω
rω

− 1

2
(rω −M)t.

Since
d− 1 < d ≤ M2 =

1

2
· (2M) · (2M −M) ≤ 1

2
rω(rω −M),

the first-order derivative of f satisfies that

f ′(t) =
d− 1

t+ rω
− 1

2
(rω −M) ≤ d− 1

rω
− 1

2
(rω −M) ≤ 0, ∀t ≥ 0.

Therefore we have

(d− 1) log
t+ rω
rω

− 1

2
(rω −M)t = f(t) ≤ f(0) = 0, ∀t ≥ 0.

This directly indicates the following upper bound on (10).

1

rd−1
ω

∫ ∞

rω

rd−1 exp

(
−(r −M)2 − (rω −M)2

2

)
dr ≤

∫ ∞

0
exp

(
− t2

2
− 1

2
(rω −M)t

)
dt

≤
∫ ∞

0
exp

(
−1

2
(rω −M)t

)
dt =

2

rω −M
(12)

Next we prove the upper bound (11). We define

g(t) ≜ log t+ log(3t+ 6rω + 8M)− 1

3
(rω −M)t.

Then we have
g′(t) =

1

t
+

1

3t+ 6rω + 8M
− rω −M

3
,

which has a single root t0 on (0,∞), which is also the maximum of g(t) for t ≥ 0. Further notice

0 = g′(t0) =
1

t0
+

1

3t0 + 6rω + 8M
− rω −M

3
≤ 4

3t0
− rω −M

3
.
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Hence we get t0 ≤ 4
rω−M ≤ 4

M , and

3t0 + 6rω + 8M ≤ 12

M
+ 6rω + 8M ≤ 6rω + 20M ≤ 32(rω −M).

This gives the following upper bound on g(t) for t ≥ 0:

g(t) ≤ g(t0) ≤ log t0(3t0 + 6rω + 8M)− 4

3
≤ log 128− 4

3
,

Combining this result with our upper bound on the function f , we get

(d− 1) log
t+ rω
rω

+ log t+ log(3t+ 6rω + 8M)− t2

2
− (rω −M)t

= f(t) + g(t)− t2

2
− (rω −M)t

6
≤ log 128− 4

3
− (rω −M)t

6
.

This directly indicates the following upper bound on (11).∫ ∞

rω

rd−1(r − rω)(3r + 3rω + 8M) exp

(
−(r −M)2 − (rω −M)2

2

)
dr

≤ rd−1
ω

∫ ∞

0
exp

(
log 128− 4

3
− (rω −M)t

6

)
dt = 128rd−1

ω · 6e−4/3

rω −M

≤ 210rd−1
ω

rω −M
≤ 210M2rd−1

ω

rω −M
.

We combine these two upper bounds together. According to (9) we obtain that∫ ∞

rω

rd−1p(x(r, ω)) log
p(x(r, ω))

q(x(r, ω))
dr ≤ 212M2rd−1

ω

rω −M
p(x(rω, ω)),

Similarly, we can also obtain bound on
∫∞
rω

rd−1q(x(r, ω))dr: According to Lemma 16 we
obtain that

q(x(r, ω)) ≤ q(x(rω, ω)) exp

(
−(r −M)2 − (rω −M)2

2

)
.

According to (12) we have∫ ∞

rω

rd−1q(x(r, ω))dr ≤ q(x(rω, ω))

∫ ∞

rω

rd−1 exp

(
−(r −M)2 − (rω −M)2

2

)
dr ≤ 2rd−1

ω

rω −M
q(x(rω, ω)).

We further notice that

log
p(x(rω, ω))

q(x(rω, ω))
= 8M2 ≥ 0,

which indicates that q(x(rω, ω)) ≤ p(x(rω, ω)). Therefore, since M ≥ 1, we have∫ ∞

rω

rd−1q(x(r, ω))dr ≤ 2M2rd−1
ω

rω −M
p(x(rω, ω)).
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Therefore, we have the following upper bound

∫
Ω

∫ ∞

rω

rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

≤
∫
Ω

∫ ∞

rω

rd−1p(x(r, ω)) log
p(x(r, ω))

q(x(r, ω))
drdω +

∫
Ω

∫ ∞

rω

rd−1q(x(r, ω))drdω

≤
∫
Ω

(212 + 2)M2rd−1
ω p(x(rω, ω))

rω −M
dω =

∫
Ω

214M2rd−1
ω p(x(rω, ω))

rω −M
dω.

Next, according to Lemma 17, for ∀ω ∈ Ω and r ∈ [0, rω] we have∥∥∥∥∇ log
p(x(r, ω))

q(x(r, ω))

∥∥∥∥
2

= ∥∇ log p(x(r, ω))∥2 + ∥∇ log q(x(r, ω))∥2

≤ 6r + 8M ≤ 6rω + 8M ≤ 8rω + 8M.

Notice that we also have log p(x(rω ,ω))
q(x(rω ,ω))

= 8M2. Hence for ∀rω − 1
rω+M ≤ r ≤ rω,

log
p(x(r, ω))

q(x(r, ω))
≥ 8M2 − (8rω + 8M) · 1

rω +M
= 8M2 − 8 ≥ 2,

which indicates that (√
q(x(r, ω))

p(x(r, ω))
− 1

)2

≥
(

1

e2
− 1

)2

≥ 1

2
.

We further notice that rω ≥ 2M ≥ M and d− 1 < d ≤ M2. Hence for ∀rω − 1
rω+M ≤ r ≤ rω,

rd−1 ≥ rd−1
ω ·

(
1− 1

rω(rω +M)

)d−1

≥ rd−1
ω ·

(
1− d

rω(rω +M)

)
≥ rd−1

ω

(
1− d− 1

2M2

)
≥ 1

2
rd−1
ω .

After noticing that p(x(r, ω)) ≥ p(x(rω, ω)) according to Lemma 16, we obtain

∫ rω

rω− 1
rω+M

rd−1p(x(r, ω)) ·

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

dr

≥ 1

rω +M
· min
rω− 1

rω+M
≤r≤rω

rd−1p(x(r, ω)) ·

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

≥ 1

rω +M
· 1
2
rd−1
ω · 1

2
p(x(rω, ω)) ≥

rd−1
ω p(x(rω, ω))

12(rω −M)

≥ 1

2568M2

∫ ∞

rω

rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
dr.
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Therefore, according to (8), we have

H2(p, q) =

∫
Ω

∫ ∞

0
rd−1p(x(r, ω))

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω

≥
∫
Ω

∫ rω

rω− 1
rω+M

rd−1p(x(r, ω))

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω

≥ 1

2568M2

∫
Ω

∫ ∞

rω

rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω.

Next we consider those x(r, ω) with 0 ≤ r ≤ rω. According to the definition of rω, we know
that for any such r, we have

log
p(x(r, ω))

q(x(r, ω))
≤ 8M2.

Hence from Lemma 15, we have for any ω ∈ Ω and r ∈ [0, rω],

p(x(r, ω))

q(x(r, ω))
log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω))

q(x(r, ω))
+ 1 ≤ 9M2

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

,

which indicates that∫
Ω

∫ rω

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

=

∫
ω∈Ω

∫ rω

0
rd−1q(x(r, ω)) ·

(
p(x(r, ω))

q(x(r, ω))
log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω))

q(x(r, ω))
+ 1

)
drdω

≤ 9M2

∫
Ω

∫ rω

0
rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

≤ 9M2

∫
Ω

∫ ∞

0
rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω = 9M2H2(p, q).

Combine the above two cases, we obtain that

KL(p∥q) =
∫
Ω

∫ ∞

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

=

∫
Ω

∫ rω

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

+

∫
Ω

∫ ∞

rω

rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

≤ 18M2H2(p, q) + 5136M2H2(p, q) = 5154M2H2(p, q).

This completes the proof of Theorem 1.
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Appendix B. Proof of Theorem 5

Given some constant r > 1, we consider the following distribution:

πr = (1− hr)δ0 + hrδr,

where hr = exp
(
− r2

2K2

)
. Then for any r > 1, πr is a K-subgaussian distribution.

We let pr = πr ∗ N (0, 1). Since x log x− x+ 1 ≥ 0 holds for all x > 0, we have

KL(pr∥N (0, 1))

=

∫ ∞

−∞
pr(x) log

pr(x)

φ(x)
dx =

∫ ∞

−∞
φ(x) ·

(
pr(x)

φ(x)
log

pr(x)

φ(x)
− pr(x)

φ(x)
+ 1

)
dx

≥
∫ r+1

r
φ(x) ·

(
pr(x)

φ(x)
log

pr(x)

φ(x)
− pr(x)

φ(x)
+ 1

)
dx ≥

∫ r+1

r
pr(x) log

pr(x)

φ(x)
− pr(x)dx.

According to our construction, for r ≤ x ≤ r + 1 we have

pr(x) = (1− hr)φ(x) + hrφ(r − x) ≥ hr · φ(1) and also φ(x) ≤ φ(r).

Therefore, we obtain that for r ≤ x ≤ r + 1,

log
pr(x)

φ(x)
≤ log

prφ(1)

φ(r)
= log exp

(
− r2

2K2
− 1

2
+

r2

2

)
=

r2

2
− r2

2K2
− 1

2
.

Noticing that φ(1) = 1√
2π

exp
(
−1

2

)
≥ 1

5 , we obtain that

KL(pr∥N (0, 1)) ≥
∫ r+1

r

hr
5

·
(
r2

2
− r2

2K2
− 1

2
− 1

)
dx =

(
r2

10
− r2

10K2
− 3

10

)
hr. (13)

Next, we write

H2(pr,N (0, 1)) =

∫ ∞

−∞

(√
pr(x)−

√
φ(x)

)2
dx.

We divide the integral domain into three regions: (−∞,−r], [−r, r] and [r,∞), and upper bound
the contribution from each region separately.

Noticing that pr(x) = (1− hr)φ(x) + hrφ(r − x), we have for any x ≤ −r,

0 ≤ pr(x) ≤ φ(x).

Therefore,∫ −r

−∞

(√
pr(x)−

√
φ(x)

)2
dx ≤

∫ −r

−∞
φ(x)dx =

1√
2π

∫ 0

−∞
exp

(
−(x+ r)2

2

)
dx

≤ exp

(
−r2

2

)∫ 0

−∞
exp(−rx)dx =

1

r
exp

(
−r2

2

)
≤ exp

(
− r2

2K2

)
= hr.

Noticing that for those x ≥ r,

(1− hr)φ(x) ≤ φ(x) =
1√
2π

exp

(
−x2

2

)
≤ 1√

2π
exp

(
−r2 + (x− r)2

2

)
≤ hrφ(r − x),
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we obtain

0 ≤ φ(x) ≤ (1− hr)φ(x) + hrφ(r − x) = pr(x) ≤ 2hrφ(r − x) ∀x ≥ r,

which indicates that∫ ∞

r

(√
pr(x)−

√
φ(x)

)2
dx =

∫ ∞

r
pr(x)dx ≤ 2hr

∫ ∞

r
φ(r − x)dx = hr.

Finally for those −r ≤ x ≤ r, we notice that

pr(x)− φ(x) = (1− hr)φ(x) + hrφ(r − x)− φ(x) = hr(φ(r − x)− φ(x)),

hence |pr(x) − φ(x)| ≤ hr · |φ(r − x) − φ(x)| ≤ hr√
2π

≤ hr. Therefore, if either pr(x) ≥ hr or
φ(x) ≥ hr, we have

(√
pr(x)−

√
φ(x)

)2
=

(pr(x)− φ(x))2(√
pr(x) +

√
φ(x)

)2 ≤ h2r√
hr

2 = hr.

And if neither pr(x) ≥ hr nor φ(x) ≥ hr holds, then we have 0 ≤ pr(x), φ(x) ≤ hr and hence(√
pr(x)−

√
φ(x)

)2
≤ hr.

Overall, we have
(√

pr(x)−
√

φ(x)
)2

≤ hr and hence

∫ r

−r

(√
pr(x)−

√
φ(x)

)2
dx ≤ 2rhr.

Combining the contributions from these regions, we obtain that

H2(pr,N (0, 1)) =

∫ ∞

−∞

(√
pr(x)−

√
φ(x)

)2
dx ≤ hr + 2rhr + hr = (2 + 2r)hr. (14)

Finally, applying (13) and (14), we choose the parameter r so that KL/H2 exceeds an arbitrary
constant C. Noticing that K > 1, we have r2

10 − r2

10K2 ≥ 0, hence there exists r > 1 such that

r2

10
− r2

10K2
− 3

10
≥ c · (2 + 2r).

And for this r, we have
KL(pr∥N (0, 1)) ≥ c ·H2(pr,N (0, 1)).

This finishes the proof of Theorem 5.

Remark 18 Notice that with similar proving techniques, we can also show that
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Appendix C. Proof of Theorem 4

Without loss of generality, we assume d ≤ 1
2(1−K) (otherwise we use 1 − 1

2d ≥ K to replace K,
and since π, η are K-subgaussian, hence they are also

(
1− 1

2d

)
-subgaussian. The results still hold).

We abbreviate fπ(·), fη(·) as p(·), q(·).

Lemma 19 Suppose p = π∗N (0, Id), where π is a K-subgaussian distribution with K < 1. Then
for every r ≥ 2

√
K

1−
√
K

and any ω ∈ Ω, we have the following propositions:

1. ∀r′ ∈
[

2
√
K

1−
√
K
, r
]
, we have

p(x(r′, ω)) ≥ p(x(r, ω))

7
. (15)

2. ∀r′ ≥ r, we have

p(x(r′, ω)) ≤ 7p(x(r, ω)) · exp
(
−1−K

4
r(r′ − r)

)
. (16)

Proof For every r′ ≥ r and ω ∈ Ω, notice that we can write p(·) as the following integral:

p(x(r′, ω)) =

∫
Rd

φ(x(r′, ω)− u)π(u)du, p(x(r, ω)) =

∫
Rd

φ(x(r, ω)− u)π(u)du,

where we use π(·) to denote the density distribution of π (which can be a generalized function), and
φ(·) to denote the density distribution of N (0, Id).

Since π is a K-subgaussian distribution, we have P[∥X∥2 ≥ α] ≤ exp
(
− α2

2K2

)
for α ≥ 0 and

P[∥X∥2 ≥ 1] ≤ 1√
e
≤ 2

3 , where X ∼ π. Therefore, P[∥X∥2 ≤ 1] ≥ 1
3 . Given 0 ≤ α ≤ r ≤ β ≤

r′ (α, β will be specified later), we have∫
α≤∥u∥≤β

φ(x(r′, ω)− u)π(u)du ≤ 1
√
2π

d
exp

(
−(r′ − β)2

2

)
·P[∥X∥2 ≥ α]

≤ 1
√
2π

d
exp

(
− α2

2K2
− (r′ − β)2

2

)
;

p(x(r, ω)) ≥ 1
√
2π

d
exp

(
−(r + 1)2

2

)
·P[∥X∥2 ≤ 1]

≥ 1

3
· 1
√
2π

d
exp

(
−(r + 1)2

2

)
,

which indicates that∫
α≤∥u∥≤β

φ(x(r′, ω)− u)π(u)du ≤ p(x(r, ω)) · 3 exp
(
(r + 1)2

2
− α2

2K2
− (r′ − β)2

2

)
.

We further have∫
∥u∥2≥β

φ(x(r′, ω)− u)π(u)du ≤ 1
√
2π

d
·P[∥X∥2 ≥ β] ≤ 1

√
2π

d
exp

(
− β2

2K2

)
,
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which indicates that∫
α≤∥u∥≤β

φ(x(r′, ω)− u)π(u)du ≤ p(x(r, ω)) · 3 exp
(
(r + 1)2

2
− β2

2K2

)
Finally, for every x such that ∥x∥2 ≤ α, similar to previous proof we have

∥x− x(r, ω)∥22 − (r − α)2 ≤ ∥x− x(r′, ω)∥22 − (r′ − α)2,

which indicates that∫
∥u∥≤α

φ(x(r′, ω)− u)π(u)du ≤
∫
∥u∥≤α

φ(x(r, ω)− u)π(u)du · exp
(
(r − α)2

2
− (r′ − α)2

2

)
≤ p(x(r, ω)) exp

(
(r − α)2

2
− (r′ − α)2

2

)
.

Above all, we get

p(x(r′, ω)) ≤ p(x(r, ω)) ·

(
3 exp

(
(r + 1)2

2
− α2

2K2
− (r′ − β)2

2

)

+ 3 exp

(
(r + 1)2

2
− β2

2K2

)
+ exp

(
(r − α)2

2
− (r′ − α)2

2

))

Further noticing that when r ≥ 2
√
K

1−
√
K

, we have

r −
√
K(1 + r) ≥ 1−

√
K

2
r ≥ 0.

Therefore, choosing α =
√
K(r + 1) and β = r′+r

2 , and noticing that 2(1−
√
K) ≥ 1−K holds

for all 0 < K < 1, we will get

(r − α)2

2
− (r′ − α)2

2
= exp

(
−(r′ − r)2

2
− (r′ − r)(r −

√
K(r + 1))

)
≤ exp

(
−1−

√
K

2
r(r′ − r)

)
≤ exp

(
−1−K

4
r(r′ − r)

)
,

(r + 1)2

2
− α2

2K2
− (r′ − β)2

2
= −(r + 1)2(1−K)

2K
− (r′ − r)2

8
≤ −(1−K)r2

2
− (r′ − r)2

8
,

(r + 1)2

2
− β2

2K2
≤ (r + 1)2

2
− r2

2K2
− (r′ − r)2

8K2
≤ (r + 1)2

2
− (r + 1)2

2K
− (r′ − r)2

8K2

≤ −(1−K)r2

2
− (r′ − r)2

8
.

Hence we get

p(x(r′, ω)) ≤ p(x(r, ω)) ·
(
6 exp

(
−(1−K)r2

2
− (r′ − r)2

8

)
+ exp

(
−1−K

4
r(r′ − r)

))
.
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Next we notice that

(1−K)r2

2
+
(r′ − r)2

8
≥ (1−K)·

(
r2

2
+

(r′ − r)2

8

)
≥ 2(1−K)

r(r′ − r)

4
≥ (1−K)r(r′ − r)

4
,

which indicates that

p(x(r′, ω)) ≤ 7p(x(r, ω)) · exp
(
−1−K

4
r(r′ − r)

)
.

This proves (16).
Finally, swapping r and r′ in (16), and noticing that

0 ≤ exp

(
−1−K

4
r(r′ − r)

)
≤ 1,

we get (15).

Lemma 20 Suppose p = π ∗ N (0, Id), where π is a K-subgaussian distribution with K < 1. For
x ∈ Rd, we have

∥∇ log p(x)∥2 ≤ 3∥x∥2 + 12, ∥∇ log p(x)∥2 ≤ 3∥r∥2 + 12.

Proof According to Proposition 2 in Polyanskiy and Wu (2016), we only need to verify E[∥X∥2] ≤
3, where X ∼ π. Indeed, applying K-subgaussianity, we have

E[∥X∥2] =
∫ ∞

0
P[∥X∥2 ≥ r]dr ≤

∫ ∞

0
exp

(
− r2

2K2

)
dr =

√
2πK ≤ 3.

Proof [Proof of Theorem 4] First we can write

KL(p∥q) =
∫
Ω

∫ ∞

0
rd−1p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
drdω (17)

=

∫
Ω

∫ ∞

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω (18)

H2(p, q) =

∫
Ω

∫ ∞

0
rd−1p(x(r, ω))

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω (19)

For every ω ∈ Ω, we define rω as

rω = inf

{
r : log

p(x(rω, ω))

q(x(rω, ω))
≥ log 3 +

(3−
√
K)2

2(1−
√
K)2

}
.

We notice that for every x ∈ Rd,

p(x) =

∫
Rd

π(y)φ(x− y)dy ≤ 1
√
2π

d

∫
Rd

π(y)dy =
1

√
2π

d
,
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and we further have

q(x) =

∫
Rd

η(y)φ(x− y)dy ≥
∫
∥y∥2≤1

η(y)φ(x− y)dy

≥ (1− e−1/2) · min
∥y∥≤1

φ(x− y) ≥ 1

3
· 1
√
2π

d
exp

(
−(∥x∥+ 1)2

2

)
.

Therefore, for all x such that ∥x∥2 < 2
1−

√
K

, we have

log
p(x(rω, ω))

q(x(rω, ω))
< log 3 +

(3−
√
K)2

2(1−
√
K)2

≤ log 3 +
18

(1−K)2
≤ 20

(1−K)2
. (20)

Hence for every ω ∈ Ω, we have

rω ≥ 2

1−
√
K

=
2(1 +

√
K)

1−K
≥ 2

1−K
. (21)

Then according to Lemma 19 and Lemma 20, we know that for every r ≥ rω, we have

p(x(r, ω)) ≤ 7p(x(rω, ω)) exp

(
−1−K

4
rω(r − rω)

)
,

log
p(x(r, ω))

q(x(r, ω))
≤ T + (r − rω)(3r + 3rω + 24),

where T is defined in (20). Therefore, we obtain that∫ ∞

rω

rd−1p(x(r, ω)) log
p(x(r, ω))

q(x(r, ω))
dr

≤ 7p(x(rω, ω))

∫ ∞

rω

rd−1

(
20

(1−K)2
+ (r − rω)(3r + 3rω + 24)

)
· exp

(
−1−K

4
rω(r − rω)

)
dr.

(22)
We adopt the changes of variables from r to t = r − rω, and obtain that∫ ∞

rω

rd−1 exp

(
−1−K

4
rω(r − rω)

)
dr = rd−1

ω

∫ ∞

0
exp

(
(d− 1) log

t+ rω
rω

− (1−K)trω
4

)
dt

and ∫ ∞

rω

rd−1(r − rω)(3r + 3rω + 24) exp

(
−1−K

4
rω(r − rω)

)
dr

= rd−1
ω

∫ ∞

0
exp

(
(d− 1) log

t+ rω
rω

+ log t+ log(3t+ 6rω + 24)− (1−K)trω
4

)
dt

We first bound the first term in (22). We define

f(t) ≜ (d− 1) log
t+ rω
rω

− 1−K

8
rωt,
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then noticing that d ≤ 1
2(1−K)+1 and hence 8(d−1) ≤ 4

1−K ≤ (1−K)r2ω holds for rω ≥ 2
1−

√
K

≥
2

1−K , its derivative satisfies that

f ′(t) =
d− 1

t+ rω
− (1−K)rω

8
≤ d− 1

rω
− (1−K)rω

8
≤ 0, ∀t ≥ 0.

Therefore, for every t ≥ 0, we have

(d− 1) log
t+ rω
rω

− 1−K

8
rωt = f(t) ≤ f(0) = 0,

which indicates that

1

rd−1
ω

∫ ∞

rω

rd−1 exp

(
−1−K

4
rω(r − rω)

)
dr ≤

∫ ∞

0
exp

(
−1−K

8
rωt

)
dt =

8

(1−K)rω
(23)

We next bound the second term in (22). We define

g(t) ≜ log t+ log(3t+ 6rω + 24)− 1−K

16
rωt,

then we have
g′(t) =

1

t
+

1

3t+ 6rω + 24
− 1−K

16
rω,

which has a single root t0 on (0,∞). And we have g(t) ≤ g(t0) holds for all t ≥ 0. We further
have

0 = g′(t0) =
1

t0
+

1

3t0 + 6rω + 24
− 1−K

16
rω ≤ 4

3t0
− 1−K

16
rω,

which indicates that t0 ≤ 64
3(1−K)rω

. Next noticing that rω ≥ 2
1−

√
K

, we have (1 − K)rω ≥
2(1 +

√
K) ≥ 2, hence we get

3t0 + 6rω + 24 ≤ 64

(1−K)rω
+ 6rω + 24 ≤ 6rω + 56 ≤ 34rω.

Therefore for all t ≥ 0,

g(t) ≤ g(t0) ≤ log t0(3t0 + 6rω + 24)− 4

3
≤ log

2176

3(1−K)
− 4

3
,

Combine this result with our previous estimation on f , we get

(d− 1) log
t+ rω
rω

+ log t+ log(3t+ 6rω + 24)− 1−K

4
rωt

= f(t) + g(t)− 1−K

16
rωt ≤ log

2176

3(1−K)
− 4

3
− (1−K)rωt

16
.

Hence we obtain∫ ∞

rω

rd−1(r − rω)(3r + 3rω + 24) exp

(
−1−K

4
rω(r − rω)

)
dr

≤ rd−1
ω

∫ ∞

0
exp

(
log

2176

3(1−K)
− 4

3
− (1−K)rωt

16

)
dt =

2176e−4/3

3(1−K)
rd−1
ω · 16

(1−K)rω
≤ 3100rd−2

ω

(1−K)2
.
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Therefore, according to (22) we have∫ ∞

rω

rd−1p(x(r, ω)) log
p(x(r, ω))

q(x(r, ω))
dr ≤

(
160rd−2

ω

(1−K)3
+

3100rd−2
ω

(1−K)2

)
· 7p(x(rω, ω)) ≤

23000rd−2
ω p(x(rω, ω))

(1−K)3
,

Similarly, we can also obtain bound on
∫∞
rω

rd−1q(x(r, ω))dr: According to Lemma 19 we
obtain that

q(x(r, ω)) ≤ 7q(x(rω, ω)) exp

(
−1−K

4
rω(r − rω)

)
,

which indicates that∫ ∞

rω

rd−1q(x(r, ω))dr ≤ q(x(rω, ω))

∫ ∞

rω

rd−1 exp

(
−1−K

4
rω(r − rω)

)
dr.

According to (23), we get∫ ∞

rω

rd−1 exp

(
−1−K

4
rω(r − rω)

)
dr ≤ 8rd−2

ω

1−K
,

which indicates that ∫ ∞

rω

rd−1q(x(r, ω))dr ≤ 56rd−2
ω q(x(rω, ω))

1−K

Next noticing log p(x(rω ,ω))
q(x(rω ,ω))

= log 3 + (3−
√
K)2

2(1−
√
K)2

≥ 0. we have q(x(rω, ω)) ≤ p(x(rω, ω)). There-
fore, we have ∫ ∞

rω

rd−1q(x(r, ω))dr ≤ 56rd−2
ω p(x(rω, ω))

1−K
≤ 56rd−2

ω p(x(rω, ω))

(1−K)3
.

Therefore, we have the following upper bound∫
Ω

∫ ∞

rω

rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

≤
∫
Ω

∫ ∞

rω

rd−1p(x(r, ω)) log
p(x(r, ω))

q(x(r, ω))
drdω +

∫
Ω

∫ ∞

rω

rd−1q(x(r, ω))drdω

≤
∫
Ω

23056rd−2
ω p(x(rω, ω))

(1−K)3
dω.

Next, according to (20), we notice that for any ω ∈ Ω and 0 ≤ r ≤ rω we have

∇ log
p(x(r, ω))

q(x(r, ω))
≤ 6r + 24 ≤ 6rω + 24.

According to our choice of rω, we have log p(x(rω ,ω))
q(x(rω ,ω))

= log 3 + (3−
√
K)2

2(1−
√
K)2

. Hence noticing that

rω ≥ 2 for every ω ∈ Ω according to (21), we have for any rω − 1
18rω

≤ r ≤ rω,

log
p(x(r, ω))

q(x(r, ω))
≥ log 3 +

(3−
√
K)2

2(1−
√
K)2

− 6rω + 24

18rω
≥ 1 + 2− 1 = 2,
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which indicates that (√
q(x(r, ω))

p(x(r, ω))
− 1

)2

≥
(

1

e1
− 1

)2

≥ 1

3
.

Additionally, according to Lemma 16, for every rω − 1
18rω

≤ r ≤ rω, we have p(x(r, ω)) ≥
p(x(rω ,ω))

7 . We further adopt the assumption d ≤ 1
2(1−K) + 1 and also use (21) to get

rd−1 ≥ rd−1
ω ·

(
1− 1

18r2ω

)d−1

≥ rd−1
ω ·

(
1− d− 1

18r2ω

)
≥ rd−1

ω

(
1− 1

36

)
≥ 1

2
rd−1
ω .

Therefore, we have

∫
Ω

∫ rω

rω− 1
18rω

rd−1p(x(r, ω)) ·

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω

≥
∫
Ω

1

18rω
· 1
2
rd−1
ω · p(x(rω, ω)) ·

1

2
≥ rd−2

ω p(x(rω, ω))

72
dω

≥ (1−K)3

1660032

∫
Ω

∫ ∞

rω

rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω.

Therefore, according to (17), we have

H2(p, q) =

∫
Ω

∫ ∞

0
rd−1p(x(r, ω))

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω

≥
∫
Ω

∫ rω

rω− 1
rω+M

rd−1p(x(r, ω))

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω

≥ (1−K)3

1660032

∫
Ω

∫ ∞

rω

rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω.

Next we consider those x(r, ω) with 0 ≤ r ≤ rω. According to the definition of rω, we know
that for any such r, we have

log
p(x(r, ω))

q(x(r, ω))
≤ log 3 +

(3−
√
K)2

2(1−
√
K)2

≤ 20

(1−K)2
.

According to Lemma 15, we have

p(x(r, ω))

q(x(r, ω))
log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω))

q(x(r, ω))
+ 1 ≤ 22.5

(1−K)2

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

≤ 24

(1−K)2

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

.
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Hence we obtain that∫ rω

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
dr

=

∫ rω

0
rd−1q(x(r, ω)) ·

(
p(x(r, ω))

q(x(r, ω))
log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω))

q(x(r, ω))
+ 1

)
dr

≤
∫ rω

0
rd−1q(x(r, ω)) · 24

(1−K)2

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

dr.

Therefore, we have∫
Ω

∫ rω

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

≤ 24

(1−K)2

∫
Ω

∫ rω

0
rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

≤ 24

(1−K)2

∫
Ω

∫ ∞

0
rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω =
24

(1−K)2
M2H2(p, q).

Combine these two analysis together, we obtain that

KL(p∥q) =
∫
Ω

∫ ∞

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

=

∫
Ω

∫ rω

0
rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

+

∫
Ω

∫ ∞

rω

rd−1

(
p(x(r, ω)) log

p(x(r, ω))

q(x(r, ω))
− p(x(r, ω)) + q(x(r, ω))

)
drdω

≤ 24

(1−K)2
H2(p, q) +

1660032

(1−K)3
H2(p, q) =

1660056

(1−K)3
H2(p, q).

This completes the proof of Theorem 4.

Appendix D. Proof of Theorem 7

Applying (5) with P = fπ and S = Q = fη, as long as (4) holds we get

KL(fπ∥fη) ≤
4 log(1/δ)

(1− δ)2
H2(fπ, fη) +

4δ log(1/δ)

(1− δ)2
+ δ

λ−1
2 ·

∫
Rd

fπ(x)
λ

fη(x)λ−1
dx. (24)

Notice that the last term is an fλ-divergence Dfλ with fλ(x) = xλ, which is a convex function for

λ ≥ 1, hence
∫
Rd

fπ(x)λ

fη(x)λ−1dx is convex in (fπ, fη). Therefore, by Jensen’s inequality we have∫
Rd

fπ(x)
λ

fη(x)λ−1
dx = Dfλ(E[δX ∗ N (0, Id)]∥E[δX′ ∗ N (0, Id)])

≤ E[Dfλ(N (X, Id)∥N (X ′, Id))]

= E
[
exp

(
λ(λ− 1)

2
∥X −X ′∥22

)]

31



JIA POLYANSKIY WU

for any possible coupling between (X,X ′) where X ∼ π,X ′ ∼ η.
Now according to the definition of subgaussian distributions, we have

P[∥X∥2 ≥ t] ≤ exp

(
− t2

2K2

)
, P[∥X ′∥2 ≥ t] ≤ exp

(
− t2

2K2

)
, ∀t ≥ 0,

which indicates that P[∥X∥2 ≥ 2K],P[∥X ′∥2 ≥ 2K] < 1
2 . Therefore, we can construct the

coupling between (X,X ′) so that if ∥X ′∥2 ≥ 2K we always have ∥X∥2 < 2K, and if ∥X∥2 ≥ 2K
we always have ∥X ′∥2 < 2K. And we have

E
[
exp

(
λ(λ− 1)

2
∥X −X ′∥22

)]
= E

[
exp

(
λ(λ− 1)

2
∥X −X ′∥22

)
1∥X∥2≥2K

]
+ E

[
exp

(
λ(λ− 1)

2
∥X −X ′∥22

)
1∥X∥2<2K

]
≤ E

[
exp

(
λ(λ− 1)

2
∥X −X ′∥22

)
1∥X′∥2<2K

]
+ E

[
exp

(
λ(λ− 1)

2
∥X −X ′∥22

)
1∥X∥2<2K

]
≤ E

[
exp

(
λ(λ− 1)

2
(∥X∥2 + 2K)2

)]
+ E

[
exp

(
λ(λ− 1)

2
(∥X ′∥2 + 2K)2

)]
≤ E

[
exp

(
λ(λ− 1)

(
∥X∥22 + 4K2

))]
+ E

[
exp

(
λ(λ− 1)

(
∥X ′∥22 + 4K2

))]
for any δ > 0.

Since π and η are K-subgaussian distributions, we have,

E
[
exp

(
∥X∥22
4K2

)]
=

∫ ∞

0
exp

(
t2

4K2

)
dπ[∥X∥ ≤ t] ≤

∫ ∞

0
exp

(
t2

4K2

)
· t

K2
exp

(
− t2

2K2

)
dt

=

∫ ∞

0
exp

(
− t2

4K2

)
d

(
t2

2K2

)
= 2,

and similarly we also have

E
[
exp

(
∥X ′∥22
4K2

)]
≤ 2.

We choose λ =
1+
√

1+1/K2

2 , and we have λ(λ− 1) = 1
4K2 . Hence we get

E
[
exp

(
λ(λ− 1)

2
∥X −X ′∥22

)]
≤
(
E
[
exp

(
∥X∥22
4K2

)]
+ E

[
exp

(
∥X ′∥22
4K2

)])
·exp(1) ≤ 4e ≤ 12.

Therefore, according to (24), as long as (4) holds we get

KL(fπ∥fη) ≤
4 log(1/δ)

(1− δ)2
H2(fπ, fη) +

4δ log(1/δ)

(1− δ)2
+ 12δ

λ−1
2 .

Choosing δ =
(
H2(fπ ,fη)

4

) 8
(λ−1)2

∨1
, and we will get

δ ≤ H2(fπ, fη)

4
≤ 1

2
and δ

λ−1
2 ≤ H2(fπ, fη).
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Therefore, the first inequality in (4) holds. As for the second one, we notice that if λ ≥ 2, then
λ−1
2 ≥ 1

2 and it always holds. For 1 < λ ≤ 2, we have 8
(λ−1)2

∨ 1 = 8
(λ−1)2

, and hence log 1
δ ≥

8 log(2)
(λ−1)2

≥ 4
(λ−1)2

> 4. Since log t
t is decreasing for t ≥ 4, we have log log(1/δ)

log(1/δ) ≤ log(4/(λ−1)2)
4/(λ−1)2

.

Moreover, using the fact that x > 2 log x holds for all x ≥ 0, we have λ−1
2 · 4

(λ−1)2
− log 4

(λ−1)2
=

2
λ−1 − 2 log 2

λ−1 > 0. Hence we get log log(1/δ)
log(1/δ) ≤ λ−1

2 , which proves that the second inequality in
(4) always holds.

Therefore, noticing that (1− δ)2 ≥ 1
4 and also

log(1/δ) ≤
(

8

(λ− 1)2
∨ 1

)
log

4

H2(fπ, fη)
= (32K2(K +

√
K2 + 1)2 ∨ 1) log

4

H2(fπ, fη)

≤ (512K4 + 32) log
4

H2(fπ, fη)
,

we get

KL(fπ∥fη) ≤ (10240K4 + 652)H2(fπ, fη) log
4

H2(fπ, fη)
.

Appendix E. Comparison inequalities for other distances

In this appendix, we discuss comparison inequalities for other popular distances between densities,
namely, the χ2-divergence, the TV distance, and the L2 distance.

First we presents the results of χ2 ≲ H2, where χ2(f∥g) =
∫ (f−g)2

g .

Theorem 21 For d-dimensional distributions π, η supported on B2(M) with M ≥ 2, we have

χ2(fπ∥fη) ≤ 2 exp
(
50(M2 ∨ d)

)
H2(fπ, fη).

Next, we show that for one-dimensional Gaussian mixtures where the mixing distribution is
compact supported, TV distance and L2 distance are close to each other up to log factors.

Theorem 22 Suppose π and η are one-dimensional distributions supported on [−M,M ] with
M ≥ 1. Then we have

TV(fπ, fη) ≤
(
8
√
M + 2 log1/4

1

∥fπ − fη∥2

)
∥fπ − fη∥2

Theorem 23 For any one-dimensional distributions π, η (that need not be compactly supported),

∥fπ − fη∥2 ≤
(
log1/4

1

TV(fπ, fη)
∨ 3

)
TV(fπ, fη).

We discuss a statistical application of these results. The L2 squared minimax estimation rates for
all Gaussian mixtures are shown in Kim (2014); Kim and Guntuboyina (2022) to be Θ

(
logd/2 n/n

)
,

which is sharp for all constant d. Therefore, equipped with the above comparison theorems, we can
also get an upper bound on the minimax estimation rates under the TV distance. Previously, Ashtiani
et al. (2020) showed a rate Õ(

√
kd2/n) for k-atomic Gaussian mixtures, where Õ hides polylog
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factors. For one-dimensional Gaussian mixtures with compactly supported mixing distributions, the
best TV upper bound so far is O

(
log3/8 n/

√
n
)

, which in fact follows from combining the sharp
L2 rate and Theorem 22.

More details and proofs are provided in Section E.1 and E.2. Throughout this appendix, for
simplicity we abbreviate p ≡ fπ and q ≡ fη.

E.1. Proof of Theorem 21

Lemma 24 Suppose p = π ∗N (0, Id), q = η ∗N (0, Id) where supp(π), supp(η) ⊂ B2(M), then
for every r ≥ rω ≥ M , we have

p(x(r, ω))

q(x(r, ω))
≤ p(x(rω, ω))

q(x(rω, ω))
exp (2(r − rω)M) .

Proof We first prove that for any ω ∈ Ω and r ≥ rω ≥ M ,

q(x(r, ω)) ≥ q(x(rω, ω)) exp

(
−(r +M)2 − (rω +M)2

2

)
.

Without loss of generality, we assume ω = (1, 0, · · · , 0). Then for any u = (u1, u2, · · · , ud) ∈
B2(M), we have |u1| ≤ M and

φ(x(r, ω)− u) =
1

√
2π

d
exp

(
−
(r − u1)

2 +
∑d

i=2 u
2
i

2

)

φ(x(rω, ω)− u) =
1

√
2π

d
exp

(
−
(rω − u1)

2 +
∑d

i=2 u
2
i

2

)
.

Noticing that |u1| ≤ M ≤ rω ≤ r, we have (r − u1)
2 − (rω − u1)

2 ≤ (r +M)2 − (rω +M)2,
which indicates that

−
(r − u1)

2 +
∑d

i=2 u
2
i

2
≥ −

(rω − u1)
2 +

∑d
i=2 u

2
i

2
− (r +M)2 − (rω +M)2

2
,

and hence

φ(x(r, ω)− u) ≥ φ(x(rω, ω)− u) exp

(
−(r +M)2 − (rω +M)2

2

)
.

Since we can write
q(x(r, ω)) =

∫
B2(M)

η(u)φ(x(r, ω)− u)du,

we can verify that

q(x(r, ω)) ≥ q(x(rω, ω)) exp

(
−(r +M)2 − (rω +M)2

2

)
.

Next, we notice that according to Lemma 16, we have

p(x(r, ω)) ≤ p(x(rω, ω)) exp

(
−(r −M)2 − (rω −M)2

2

)
.
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This indicates that

p(x(r, ω))

q(x(r, ω))
≤ p(x(rω, ω))

q(x(rω, ω))
exp

(
−(r +M)2 − (rω +M)2

2
+

(r −M)2 − (rω −M)2

2

)
=

p(x(rω, ω))

q(x(rω, ω))
exp (2(r − rω)M) .

Proof [Proof of Theorem 21] Without loss of generality, we assume d ≤ M2. We write

χ2(p∥q) =
∫
Ω

∫ ∞

0
rd−1q(x(r, ω)

(
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

H2(p, q) =
1

2

∫
Ω

∫ ∞

0
rd−1q(x(r, ω))

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

(25)

For every ω ∈ Ω, we define rω as

rω ≜ inf

{
r

∣∣∣∣p(x(rω, ω))q(x(rω, ω))
≥ exp

(
25M2

)}
.

Notice that for any r ≤ 6M and ω ∈ Ω, we have

p(x(r, ω)) =

∫
B2(M)

π(u)φ(x(r, ω),u)du ≤ 1
√
2π

d

q(x(r, ω)) =

∫
B2(M)

η(u)φ(x(r, ω),u)du ≥ 1
√
2π

d
exp

(
−(6M +M)2

2

)
,

which indicates that
p(x(r, ω))

q(x(r, ω)
≤ exp

(
49M2

2

)
< exp

(
25M2

)
.

Hence for every ω ∈ Ω, we all have rω ≥ 6M . And if rω ̸= ∞, we have that p(x(rω ,ω))
q(x(rω ,ω))

=

exp
(
25M2

)
. According to Lemma 16 and Lemma 24, we know that for every r ≥ rω, we all have

q(x(r, ω)) ≤ q(x(rω, ω)) exp

(
−(r −M)2 − (rω −M)2

2

)
,

p(x(r, ω))

q(x(r, ω))
≤ p(x(rω, ω))

q(x(rω, ω))
exp (2(r − rω)M) .

Since p(x(rω ,ω))
q(x(rω ,ω))

= exp(25M2) ≥ 1, and exp (2(r − rω)M) ≥ 1 for every r ≥ rω, we have

(
p(x(r, ω))

q(x(r, ω))
− 1

)2

≤ max

{
1,

(
p(x(rω, ω))

q(x(rω, ω))
exp (2(r − rω)M)

)2
}

= exp
(
50M2 + 4(r − rω)M

)
.
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Therefore, we obtain that∫ ∞

rω

rd−1q(x(r, ω)) ·
(
p(x(r, ω))

q(x(r, ω))
− 1

)2

dr

≤ q(x(rω, ω))

∫ ∞

rω

rd−1 exp

(
50M2 + 4(r − rω)M − (r −M)2 − (rω −M)2

2

)
dr.

We adopt the changes of variables from r to t = r − rω, and obtain that∫ ∞

rω

rd−1 exp

(
50M2 + 4(r − rω)M − (r −M)2 − (rω −M)2

2

)
dr

= rd−1
ω exp(50M2)

∫ ∞

0
exp

(
(d− 1) log

t+ rω
rω

− t2

2
− (rω −M)t+ 4Mt

)
dt.

Next, we define

f(t) ≜ (d− 1) log
t+ rω
rω

− 1

2
(rω − 5M)t.

Since
d− 1 < d ≤ M2 <

1

2
· (6M) · (6M − 5M) ≤ 1

2
rω(rω − 5M),

the first-order derivative of f satisfies that

f ′(t) =
d− 1

t+ rω
− 1

2
(rω − 5M) ≤ d− 1

rω
− 1

2
(rω − 5M) ≤ 0, ∀t ≥ 0.

Therefore we have

(d− 1) log
t+ rω
rω

− 1

2
(rω − 5M)t = f(t) ≤ f(0) = 0, ∀t ≥ 0.

This directly indicates that∫ ∞

0
exp

(
(d− 1) log

t+ rω
rω

− t2

2
− (rω −M)t+ 4Mt

)
dt

≤
∫ ∞

0
exp

(
− t2

2
− 1

2
(rω − 5M)t

)
dt ≤

∫ ∞

0
exp

(
−1

2
(rω − 5M)t

)
dt =

2

rω − 5M

Therefore, we obtain that∫ ∞

rω

rd−1q(x(r, ω)) ·
(
p(x(r, ω))

q(x(r, ω))
− 1

)2

dr ≤ 2rd−1
ω exp(50M2)q(x(rω, ω))

rω − 5M

Next, according to Lemma 17, for ∀ω ∈ Ω and r ∈ [0, rω] we have

∇ log
p(x(r, ω))

q(x(r, ω))
= ∇ log p(x(r, ω))−∇ log q(x(r, ω)) ≤ 6r + 8M ≤ 6rω + 8M ≤ 8rω + 8M.

Notice that we also have log p(x(rω ,ω))
q(x(rω ,ω))

= 25M2. Hence for ∀rω − 1
rω+M ≤ r ≤ rω,

log
p(x(r, ω))

q(x(r, ω))
≥ 25M2 − (8rω + 8M) · 1

rω +M
= 25M2 − 8 ≥ 2,
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which indicates that (√
p(x(r, ω))

q(x(r, ω))
− 1

)2

≥
(
e2 − 1

)2 ≥ 40.

We further notice that rω ≥ 5M ≥ M and d− 1 < d ≤ M2. Hence for ∀rω − 1
rω+M ≤ r ≤ rω,

rd−1 ≥ rd−1
ω ·

(
1− 1

rω(rω +M)

)d−1

≥ rd−1
ω ·

(
1− d− 1

rω(rω +M)

)
≥ rd−1

ω

(
1− d− 1

30M2

)
≥ 1

2
rd−1
ω .

After noticing that p(x(r, ω)) ≥ p(x(rω, ω)) according to Lemma 16, we obtain∫ rω

rω− 1
rω+M

rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

dr

≥ 1

rω +M
· min
rω− 1

rω+M
≤r≤rω

rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

≥ 1

rω +M
· 1
2
rd−1
ω · 40q(x(rω, ω)) ≥

2rd−1
ω q(x(rω, ω))

rω − 5M

≥ exp
(
−50M2

) ∫ ∞

rω

rd−1q(x(r, ω)) ·
(
p(x(r, ω))

q(x(r, ω))
− 1

)2

dr.

Therefore, according to (25), we have

H2(p, q) =

∫
Ω

∫ ∞

0
rd−1p(x(r, ω))

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω

≥
∫
Ω

∫ rω

rω− 1
rω+M

rd−1p(x(r, ω))

(√
q(x(r, ω))

p(x(r, ω))
− 1

)2

drdω

≥ exp
(
−50M2

) ∫
Ω

∫ ∞

rω

rd−1q(x(r, ω)) ·
(
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω.

Next we consider those x(r, ω) with 0 ≤ r ≤ rω. According to the definition of rω, we know
that for any such r, we have

p(x(r, ω))

q(x(r, ω))
≤ exp

(
25M2

)
.

Notice the inequality

(t− 1)2 = (
√
t+ 1)2(

√
t− 1)2 ≤ exp

(
50M2

) (√
t− 1

)2
, ∀0 ≤ t ≤ exp

(
25M2

)
.

Hence we obtain that∫ rω

0
rd−1q(x(r, ω)) ·

(
p(x(r, ω))

q(x(r, ω))
− 1

)2

dr

≤
∫ rω

0
rd−1q(x(r, ω)) · exp

(
50M2

)(√p(x(r, ω))

q(x(r, ω))
− 1

)2

dr.
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Therefore, we have∫
Ω

∫ rω

0
rd−1q(x(r, ω)) ·

(
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

≤ exp
(
50M2

) ∫
Ω

∫ rω

0
rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

≤ exp
(
50M2

) ∫
Ω

∫ ∞

0
rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω = exp
(
50M2

)
H2(p, q).

Combine these two analysis together, we obtain that

KL(p∥q) =
∫
Ω

∫ ∞

0
rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

=

∫
Ω

∫ rω

0
rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

+

∫
Ω

∫ ∞

rω

rd−1q(x(r, ω)) ·

(√
p(x(r, ω))

q(x(r, ω))
− 1

)2

drdω

≤ exp
(
50M2

)
H2(p, q) + exp

(
50M2

)
H2(p, q) = 2 exp

(
50M2

)
H2(p, q).

This completes the proof of Theorem 21.

E.2. Proof of Theorem 22 and 23

Proof [Proof of Theorem 22] First we notice that for any |t| ≥ M , we have

0 ≤ p(t) =

∫
|x|≥M

φ(t− x)dπ(x) ≤ max
|x|≥M

φ(t− x) =
1√
2π

exp

(
−(|t| −M)2

2

)
.

Similarly we have the same estimation for q(t). Hence we get

|p(t)− q(t)| ≤ 1√
2π

exp

(
−(|t| −M)2

2

)
∀|t| ≥ M,

which indicates that for any m ≥ M∫
|x|≥t

|p(x)− q(x)|dx ≤ 1√
2π

∫
|x|2≥t

exp

(
−(|x| −M)2

2

)
ds

=
2√
2π

∫ ∞

t
exp

(
−(s−M)2

2

)
ds ≤ 2

t−M
exp

(
−(t−M)2

2

)
.

Hence for t ≥ M + 1
3 we have∫

|x|≥t
|p(x)− q(x)|dx ≤ 6 exp

(
−(t−M)2

2

)
.
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Additionally, according to Cauchy-Schwarz inequality we have(∫
|x|≤t

|p(t)− q(t)|dt

)2

≤ 2t ·

(∫
|x|≤t

|p(x)− q(x)|2dx

)
,

which indicates that∫
|x|≤t

|p(x)− q(x)|dx ≤
√
2t ·

√∫
|x|≤t

|p(x)− q(x)|2dx ≤
√
2t · ∥p− q∥2.

Therefore, we obtain that for every t ≥ M + 1
3 ,

TV(p, q) =

∫
|x|≥t

|p(x)−q(x)|dx+
∫
|x|≤t

|p(x)−q(x)|dx ≤ 6 exp

(
−(t−M)2

2

)
+
√
2t·∥p−q∥2.

Finally, since for any x ∈ R, we have 0 ≤ p(x), q(x) ≤ maxx∈Rd φ(x) = 1√
2π

≤ 2
5 , we obtain

that

∥p− q∥22 =
∫ ∞

−∞
(p(x)− q(x))2dx ≤

∫ ∞

−∞

2(p(x) + q(x))

5
dx =

4

5
,

which indicates that

log
1

∥p− q∥2
=

1

2
log

1

∥p− q∥22
≥ 1

2
log

5

4
≥ 1

10
.

Therefore, choosing

t = M +

√
2 log

1

∥p− q∥2
≥ M +

√
1

5
≥ M +

1

3
,

we get

TV(p, q) ≤ 6∥p− q∥2 +

√√√√2M + 2

√
2 log

1

∥p− q∥2
∥p− q∥2

≤ 6∥p− q∥2 +

√
2M +

√√√√2

√
2 log

1

∥p− q∥2

 ∥p− q∥2

≤
(
8
√
M + 2 log1/4

1

∥p− q∥2

)
∥p− q∥2.

Proof [Proof of Theorem 23] For any distribution P, we define its characteristic function ΨP : R →
C as:

ΨP(t) ≜ E
[
eitX

]
, X ∼ P.
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Suppose the characteristic function of π, η, p, q are Ψπ,Ψη,Ψp,Ψq, respectively. Then by Gaus-
sian convolution

Ψp(t) = Ψπ(t) exp

(
− t2

2

)
, Ψq(t) = Ψη(t) exp

(
− t2

2

)
.

We notice that for every t ∈ R, we have from Plancherel’s identity

|Ψp(t)−Ψq(t)| =
∣∣∣∣∫ ∞

−∞
(p(x)− q(x))eitxdx

∣∣∣∣ ≤ ∫ ∞

−∞
|(p(x)− q(x))eitx|dx = TV(p, q).

Similarly, we also have |Ψπ(t)−Ψη(t)| ≤ ∥π − η∥1 ≤ 2, which indicates that for every t ∈ R,

|Ψp(t)−Ψq(t)| = e−
t2

2 |Ψπ(t)−Ψη(t)| ≤ 2 exp

(
− t2

2

)
.

Therefore, we obtain that for any s > 0,

∥Ψp −Ψq∥22 =
∫ ∞

−∞
|Ψp(t)−Ψq(t)|2 dt

=

∫ −s

−∞
|Ψp(t)−Ψq(t)|2 dt+

∫ s

−s
|Ψp(t)−Ψq(t)|2 dt+

∫ ∞

s
|Ψp(t)−Ψq(t)|2 dt

≤
∫ −s

−∞
exp

(
− t2

2

)
dt+

∫ ∞

s
exp

(
− t2

2

)
dt+ 2s · TV(p, q)2

= 2

∫ ∞

0
exp

(
−(t+ s)2

2

)
dt+ 2s · TV(p, q)2 =

2

s
exp

(
−s2

2

)
+ 2s · TV(p, q)2

When TV(p, q) ≥ 1
e . We further notice that |Ψp(t) − Ψq(t)| ≤ 2 exp

(
− t2

2

)
, which indicates

that

∥Ψp −Ψq∥22 =
∫ ∞

−∞
|Ψp(t)−Ψq(t)|2dt ≤

∫ ∞

−∞
4 exp(−t2)dt = 4

√
π ≤ 36

e
≤ 36TV(p, q)

When TV(p, q) ≤ 1
e , we have s =

√
2 log 1

TV(p,q)2
= 2
√
log 1

TV(p,q) ≥ 2, we get

∥Ψp −Ψq∥22 ≤

(
1 + 2

√
log

1

TV(p, q)

)
· TV(p, q)2 ≤ 4

√
log

1

TV(p, q)
· TV(p, q)2.

Above all, we get

∥Ψp −Ψq∥22 ≤ 4

(
log1/4

1

TV(p, q)
∨ 3

)2

· TV(p, q),

which indicates that

∥p− q∥22 =
√

1

2π
∥Ψp −Ψq∥2 ≤

(
log1/4

1

TV(p, q)
∨ 3

)
TV(p, q).
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