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Abstract
We study lower bounds for the problem of approximating a one dimensional distribution given
(noisy) measurements of its moments. We show that there are distributions on [−1, 1] that cannot
be approximated to accuracy ε in Wasserstein-1 distance even if we know all of their moments to
multiplicative accuracy (1 ± 2−Ω(1/ε)); this result matches an upper bound of Kong and Valiant
[Annals of Statistics, 2017]. To obtain our result, we provide a hard instance involving distributions
induced by the eigenvalue spectra of carefully constructed graph adjacency matrices. Efficiently
approximating such spectra in Wasserstein-1 distance is a well-studied algorithmic problem, and a
recent result of Cohen-Steiner et al. [KDD 2018] gives a method based on accurately approximating
spectral moments using 2O(1/ε) random walks initiated at uniformly random nodes in the graph.

As a strengthening of our main result, we show that improving the dependence on 1/ε in
this result would require a new algorithmic approach. Specifically, no algorithm can compute an
ε-accurate approximation to the spectrum of a normalized graph adjacency matrix with constant
probability, even when given the transcript of 2Ω(1/ε) random walks of length 2Ω(1/ε) started at
random nodes.
Keywords: spectral density estimation, moment methods, random walks, sublinear algorithm

1. Introduction

A fundamental problem in linear algebra is to approximate the full list of eigenvalues, λ1 ≤ . . . ≤
λn ∈ R, of a symmetric matrix A ∈ Rn×n, ideally in less time than it takes to compute a full
eigendecomposition.1 We focus on the particular problem of spectral density estimation where
given ε ∈ (0, 1) and the assumption that ∥A∥2 ≤ 1, the goal is find approximate eigenvalues
λ′1 ≤ . . . ≤ λ′n such that their average absolute error is bounded by ε, i.e.,

1

n

n∑
i=1

|λi − λ′i| ≤ ε. (1)

1. All eigenvalues can be computed to precision ε in O(nω+ηpolylog(n
ε
)) time, where ω ≈ 2.373 is the matrix multi-

plication constant (Banks et al., 2020). Methods typically used in practice run in time O(n3+n2 log( 1
ε
)) (Wilkinson,

1968).
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This problem is equivalent to that of computing an ε-approximation in Wasserstein-1 distance to the
distribution on [−1, 1] induced by the spectral density (function) ofA, i.e. p(x) := 1

n

∑n
i=1 δ(x−λi)

for indicator function δ (see Section 2 for notation).
Spectral density estimation is distinct from and in many ways more challenging than related

problems like low-rank approximation, where we only seek to approximate the largest magnitude
eigenvalues of A. Nevertheless, efficient randomized algorithms for spectral density estimation
were developed in the early 1990s and have been applied widely in computational physics and
chemistry (Skilling, 1989; Silver and Röder, 1994; Wang, 1994; Weiße et al., 2006). These algo-
rithms, which include the kernel polynomial and stochastic Lanczos quadrature methods, achieve
ε accuracy with high probability in roughly O(n2/ε) time, improving on the Ω(nω) cost of a full
eigendecomposition for moderate values of ε (Chen et al., 2021).

More recently, there has been a resurgence of interest in spectral density estimation within the
machine learning and data science communities. Research activity in this area has been fueled
by emerging applications in analyzing and understanding deep neural networks (Pennington et al.,
2018; Mahoney and Martin, 2019; Papyan, 2018), in optimization (Ghorbani et al., 2019; Sagun
et al., 2017), and in network science (Dong et al., 2019; Cohen-Steiner et al., 2018).

1.1. Spectral Density Estimation for Graphs

Interestingly, whenA is the normalized adjacency matrix2 of an undirected graphG, there are faster
spectral density estimation algorithms than for general matrices. Specifically, assume that we can
randomly sample a node from G and, given a node, randomly sample a neighbor, both in O(1)
time. This is possible, for example, in the word RAM model when given arrays containing the
neighbors for each node in G, and is also a commonly assumed access for computing on extremely
large implicit networks (Katzir et al., 2011). It was recently shown that the O(n2/ε) runtime of
general purpose algorithms like stochastic Lanczos quadrature can be improved to Õ(n/poly(ε))
(Braverman et al., 2022).3 This runtime is sublinear in the size of A, e.g., when the matrix has
Ω(n2) non-zero entries.

Perhaps even more surprisingly, it is possible to solve spectral density estimation for normalized
adjacency matrices without any dependence on n. Suppose that we are given a weighted graph G,
and again that we can randomly sample a node from G in O(1) time. Also assume that, for any
given node, we can randomly sample a neighbor with probability proportional to its edge weight in
O(1) time. In other words, we can initialize and take steps of an edge-weighted random walk inG in
O(1) time.4 Then Cohen-Steiner et al. (2018) gives an algorithm for any weighted undirected graph
that solves the spectral density estimation problem with high probabilty in 2O(1/ε) time5. While
completely independent of the graph size, the poor dependence on ε in the result of Cohen-Steiner
et al. (2018) unfortunately makes the algorithm impractical for any reasonable level of accuracy. As

2. If Ã is the unnormalized adjacency matrix of G and D is its diagonal degree matrix, we can equivalently consider
the asymmetric matrix, D−1Ã or the symmetric one, D−1/2ÃD−1/2, as they have the same eigenvalues.

3. We use Õ(m) to denote O(m logm). The runtime in (Braverman et al., 2022) can be improved by a logarithmic
factor to O(n/poly(ε)) if we have access to a precomputed list of the degrees of nodes in G.

4. To be more concrete, if a node x is connected to neighbors y1, . . . , yd with edge weights w1, . . . , wd, then the walk
steps from x to yi with probability wi/

∑
j wj .

5. Note that Cohen-Steiner et al. (2018) output a list of approximation eigenvalues λ′
1, . . . , λ

′
n with only O(1/ε) distinct

values that can be stored and returned in time independent of n.
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such, an interesting question is whether the exponential dependence on ε can be improved (maybe
even to polynomial), while still avoiding any dependence on the graph size n.

Question 1 Can we solve the spectral density estimation problem for a normalized adjacency
matrix A given access to 2o(1/ε) steps of random walks in the associated graph?

Central to this question is the connection between spectral density estimation and the problem
of learning a one dimensional distribution p given noisy measurements of p’s (raw) moments. In
this work, we consider distributions supported on the the [−1, 1], in which case these moments are:∫ 1

−1
xp(x)dx,

∫ 1

−1
x2p(x)dx,

∫ 1

−1
x3p(x)dx, . . . .

Recent work of Kong and Valiant (2017) shows that, for a fixed constant c, if the first ℓ = c/ε
moments of any two distributions p and q supported on [−1, 1] match exactly, then the Wasserstein-
1 distance between those distributions is at most ε. Given that the left hand size of (1) exactly equals
the Wasserstein-1 distance W1(p, q) between the discrete distributions p(x) = 1

n

∑n
i=1 δ(x − λi)

and q(x) = 1
n

∑n
i=1 δ(x−λ′i), the approach in Cohen-Steiner et al. (2018) is to approximate the first

ℓ moments of p, and then to find a set of approximate eigenvalues and eigenvalue multiplicities that
correspond to a discrete distribution q with the same moments. Given the approximate moments,
finding q can be done in poly(ℓ) time using linear programming algorithms.

Computing the estimates of p’s moments is more challenging. Cohen-Steiner et al. (2018) take
advantage of the fact that for any j ≤ ℓ, the jth moment of p is equal to 1

n

∑n
i=1 λ

j
i = 1

ntr(A
j).

This trace can in turn be estimated by random walks of length j in A: if we start a random walk at a
random node v, the probability that we return to v at the jth step is exactly equal to 1

ntr(A
j). So, we

can obtain an unbiased estimate for the jth moment by simply running random walks from random
starting nodes and calculating the empirical frequency that we return to our starting point.

This approach leads to the remarkably simple algorithm of Cohen-Steiner et al. (2018). So
where does the 2O(1/ε) runtime dependence come from? The issue is that the result of Kong and
Valiant (2017) is brittle to noise. In particular, if the sum of squared distances between p’s moments
and q’s moments differ by ∆, the bound from Kong and Valiant (2017) weakens, only showing that
the Wasserstein-1 distance is bounded by O(1ℓ +∆ · 3ℓ). To obtain accuracy ε, it is necessary to set
ℓ = O(1/ε) and thus ∆ equal to 2−O(1/ε). By standard concentration inequalities, to obtain such
an accurate estimate to p’s moments, we need to run an exponential number of random walks of
length 1, . . . , ℓ. Accordingly, an important step towards answering Question 1 is to understand if
such extremely accurate estimates of the moments is necessary for spectral density estimation.

Note that many other spectral density estimation algorithms for general matrices are also based
on moment-matching. A common approach is to use randomized trace estimation methods (Hutchin-
son, 1990; Meyer et al., 2021) to estimate moments of the form

∫ 1
−1 Tj(x)p(x)dx = 1

ntr(Tj(A)),
where Tj(x) is a degree j polynomial, not equal to xj . If Tj is the jth Chebyshev or Legendre poly-
nomial, then it can be shown that only poly(1/ε) accurate estimates of the first ℓ = c/εmoments are
needed to approximate the spectral density to ε error in Wasserstein-1 distance (Braverman et al.,
2022). A natural question then is, can these general polynomial moments be estimated using ran-
dom walks in time independent of n for graph adjacency matrices? Unfortunately, it is not known
how to do so: the challenge is that the ℓth Legendre polynomial or Chebyshev polynomial has co-
efficients exponentially large in ℓ, so tr(Tj(A)) cannot be effectively approximated given a routine
for approximating tr(Aj) for different powers j.
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1.2. Our Contributions

In this paper, we answer Question 1 negatively. First, we show that exponentially accurate moments
are necessary for estimating a distribution in Wasserstein-1 distance, even in the special case of
distributions that arise as the spectral density of a graph adjacency matrix.

Theorem 1 For any ε ∈ (0, 1/4], there exist weighted graphs G1 and G2 (see Definition 7) with
spectral densities p1 and p2, such that:

• The densities are far in Wasserstein-1 distance: W1(p1, p2) ≥ ε.

• For all positive integers j, moments mj(p1) =
∫ 1
−1 x

jp1(x)dx and mj(p2) =
∫ 1
−1 x

jp2(x)dx

are exponentially close: (1−δ)mj(p1) ≤ mj(p2) ≤ (1+δ)mj(p1) for some δ ≤ 16 ·2−1/4ε.

Theorem 1 shows that Kong and Valiant (2017)’s requirement that each moment be estimated
to accuracy 2−O(1/ε) cannot be avoided if we want an ε accurate approximation in Wasserstein
distance. It thus rules out a direct improvement to the analysis of the spectral density estimation
algorithm from of Cohen-Steiner et al. (2018). In particular, even if we had a procedure that returned
exponentially accurate multiplicative estimates to the moments of a graph’s spectral density,6 and
even if it returns such estimates for all of the moments (not just the first O(1/ε)), then we would
not be able to distinguish between G1 and G2.

Our proof of Theorem 1 is based on a hard instance built using cycle graphs. It is not hard to
show that the spectral densities of two disjoint cycles of length 1/ε and of one cycle of length 2/ε
differ by ε in Wasserstein-1 distance. Additionally, it can be shown that the first c/ε moments of
these graphs are exponentially close. This example would thus prove Theorem 1 if we restricted
our attention to moments of degree j ≤ c/ε. However, for the cycle graph, higher moments can be
more informative: for example, the jth moment for j = O(1/ε2) can be shown to distinguish the
cycles of different length, even when only estimated to polynomial additive accuracy. To see why
this is the case, note that, since a random walk of lengthO(1/ε2) mixes on the cycle, the probability
of it returning in the shorter cycle is roughly twice that as in the longer cycle.

To avoid this issue, we modify the cycle graph to diminish the value of higher degree moments.
In particular, we force all high moments close to zero by creating a graph that consists of many
disjoint cycles, either of length 1/ε or 2/ε, joined by a lightweight complete graph on all nodes. If
weighted correctly, then any walk of length Ω(1/ε) will exit the cycle it starts in (via the complete
graph) with high probability, and the chance of returning to its starting point can be made extremely
low by making the graph large enough. At the same time, the lower moments are not effected
significantly, so we can show that the graphs remain far in Wasserstein-1 distance.

Theorem 1 has potentially interesting implications beyond showing a limitation for graph spec-
trum estimation. For example, related to the discussion about generalized moment methods above,
it immediately implies that for any ℓ, the ℓth Chebyshev polynomial cannot be approximated to ac-
curacy 1/poly(ℓ) with a polynomial (of any degree!) whose maximum coefficient is ≤ 2ℓ. If it
could, we could use less than exponentially accurate measures of the raw moments to approximate
the Chebyshev moments, and then use these moments to approximate the spectral density, following
Braverman et al. (2022). However, by Theorem 1, this is impossible.

6. When run for O(1/δ2) steps, the random walk method of Cohen-Steiner et al. (2018) actually achieves a weaker
moment approximation with additive rror δ. This is always greater than δmℓ(p1) because all of p1’s moments are
upper bounded by 1 since it is supported on [−1, 1].

4



MOMENTS, RANDOM WALKS, AND LIMITS FOR SPECTRUM APPROXIMATION

While Theorem 1 rules out direct improvements to the moment-based method of Cohen-Steiner
et al. (2018), it does not rule out the possibility of some other algorithm that can estimate the spectral
density to ε accuracy using fewer random walk steps. For example, we could consider methods that
use more information about each random walk than checking whether or not the last step returns
to the starting node. However, our next theorem shows that, in fact, no such algorithm can beat
the exponential dependence on 1/ε; we show that, information theoretically, 2Ω(1/ε) samples from
random walks started from random nodes are necessary to estimate the spectral density accurately
in Wasserstein-1 distance.

Theorem 2 For any ε < 1/2, no algorithm that is given access to the transcript of m, length
T random walks initiated at m uniformly random nodes in a given graph G can approximate G’s
spectral density to ε accuracy in the Wasserstein-1 distance with probability > 3/4, unless m ·T >
1
16 · 2

1/4ε.

While more technical, the proof of Theorem 2 is based on the same hard instance as Theorem 1.
The distribution D is supported on two graphs that are ε far in Wasserstein distance: a collection of
cycles of length 1/ε added to a lightweight complete graph, and a collection of cycles of length 2/ε
added to a lightweight complete graph. We establish that, if node labels are assigned at random, the
only way to distinguish between these graphs is to complete a walk around one of the cycles. We
show that event happens with exponentially small probability for a random walk of any length.

1.3. Open Problems and Outlook

Our main results open a number of interesting directions for future inquiry. Most directly, the bound
from Theorem 2 is based on an instance involving weighted graphs. It would be great to extend the
lower bound to unweighted graphs, which are common in practice. While we believe the same lower
bound should hold, such an extension is surprisingly tricky: for example, replacing the lightweight
complete graph in our hard instances with, e.g., an unweighted expander graph significantly impacts
the spectra of both graphs, making them more challenging to analyze.

A bigger open question is to extend our lower bounds to what we call the adaptive random
walk model, which means that the algorithm is allowed to start a random walk either at a random
node, or at any other node it wishes. Since this model allows for e.g. sampling random neighbors
of any node, it is closely related to other access models. For example, up to logarithmic factors,
the number of random walk steps required in the adaptive model is equal to the number of memory
accesses needed when given access to data structure storing an array of neighbors for each node in
the graph Braverman et al. (2022). Currently, the best lower bound we can prove in the adaptive
random walk model is that just Ω(1/ε2) steps are necessary; we show this result in Appendix A.
Proving a lower bound exponential in 1/ε or finding a faster algorithm that runs in this model would
be a nice contribution. Even a conjectured hard instance would be nice – currently we don’t have
any.

Finally, we note that our graph-based lower bounds show that, with non-adaptive random walks,
it is impossible to distinguish if the spectral densities of two graphs are identical or ε-far away in
Wasserstein-1 distance with 2o(1/ε) steps. Consequently this result constitutes a particular type of
hardness for comparing graphs. However, one might consider other notions of graph comparison.
For example, in Appendix C, we consider estimating the spectrum of the differenceA1−A2 between
two normalized adjaceny matrices A1 graphs A2 corresponding to graphs G1 and G2 with the same
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node degress. We show that an 2O(1/ε) upper bound is obtainable. Seeking matching upper and
lower bounds for this and related problems is another interesting direction for future work.

1.4. Paper Organization

In Section 2 we introduce notation and preliminaries. In Section 3 we prove a lower bound for spec-
trum estimation based on moments, establishing Theorem 1. In Section 4 we prove lower bound
for spectrum estimation based on random walks, establishing Theorem 2. In Appendix A, we give
an Ω(1/ε2) lower bound for approximating graph spectra in the (stronger) adaptive random walk
model. In Appendix B, we use cycle graphs to construct distributions that are 2/ℓ far in Wasserstein-
1 distance and have the same first ℓ − 1 moments, slightly strengthening a result from Kong and
Valiant (2017). In Appendix C, we show a new algorithm that uses alternating random walks to
estimate the spectrum of the difference of two normalized adjacency matrices.

2. Preliminaries

General notation. We use δ : R→ R to denote the indicator function with δ(0) := 1 and δ(x) := 0
for all x ̸= 0. We use 1 ∈ Rn to denote the all ones vector when n is clear from context. We use
P[E] to denote the probability of an event E. We let Ec denote the complement of a random event
E, so P[Ec] = 1− P[E].

Graphs and graph spectra. We consider undirected graphs G = (V,E) where each edge e ∈ E
has a non-negative weight we ∈ R≥0. We call G unweighted when we = 1 for all e ∈ E. We use
Ã ∈ RV×V

≥0 to denote the weighted adjacency matrix of G where Ã(v, v′) = we if e = (v, v′) ∈ E
and Ã(v, v′) = 0 otherwise. We use D ∈ RV×V

≥0 to denote the diagonal degree matrix of G where
D is diagonal with D(v, v) :=

∑
e=(v,v′)∈E we for all v ∈ V . We let A(G) ∈ RV×V denote the

normalized adjacency matrix of G, i.e. A(G) := D−1/2ÃD−1/2. We refer to D−1Ã as the random
walk matrix and note that, for degree-regular graphs, A(G) = D−1Ã.

For an n-vertex graph G, we let −1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 1 be the eigenvalues of
the normalized adjacency matrix A(G), and use λ = λ(G) to denote this sorted (in ascending
order) eigenvalue list. We let p(x) : [−1, 1] → [0, 1] denote the spectral density of G, i.e., p(x) =
1
n

∑
i∈[n] δ(x−λi), which is the density of the distribution on [−1, 1] induced by λi (for brevity, we

do not distinguish between spectral density and the distribution it induces). We use mj(p) to denote
the jth moment of p, i.e., mj(p) =

1
ntr(A(G)

j).

Wasserstein distance. In this work, we consider the standard Wasserstein-1 distance between
distributions, which we may simply refer to as the Wasserstein distance for brevity.

Definition 3 The Wasserstein-1 distance W1(p1, p2) between two distributions, p1 and p2, sup-
ported on the real line is defined as the minimum cost of moving probability mass in p1 to p2, where
the cost of moving probability mass from value a to b is |a − b|. Concretely, let Ψ be the set of all
couplings ψ(x, y) between p1 and p2, i.e., Ψ contains all joint distributions ψ(x, y) over x ∈ R and
y ∈ R with marginals equal to p1 and p2. Then:

W1(p1, p2) = min
ψ∈Ψ

∫
R

∫
R
|x− y| · ψ(x, y) dx dy .

A well known fact is that the Wasserstein-1 distance has a dual characterization. Specifically,
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Fact 4 (Kantorovich-Rubinstein Duality Kantorovich (1940, 1942))

W1(p1, p2) = sup
f :1−Lipschitz

∫
R
f(x) · (p1(x)− p2(x))dx. (2)

Above, the supremum is taken over all 1-Lipschitz functions f , i.e., that satify |f(a)−f(b)| ≤ |a−b|
for all a, b ∈ R. Overloading notation, for graphs G1 and G2 with spectral densities p1 and p2
respectively, we let W1(G1, G2) := W1(p1, p2) to denote the Wasserstein-1 distance between p1
and p2. We note that, for any two n-vertex graphs G1 and G2, it can be checked (see, e.g. Kong and
Valiant (2017)) that:

W1(G1, G2) =
1

n
∥λ(G1)− λ(G2)∥1 . (3)

Access models. As discussed in the introduction, we consider several possible data access mod-
els for estimating the spectral density of a normalized graph adjacency matrix, A(G) for G =
(V,E,w). First, we consider algorithms that, for some integer j ≥ 0 and accuracy parameter δ,
have access to δ-accurate approximations, m̃1, . . . , m̃j , to the first j moments of G’s spectral den-
sity p, m1(p), . . . ,mj(p). Specifically, we have that |m̃j −mj(p)| ≤ δ ·mj(p).

A natural generalization of the setting where approximate moments are available is to consider
algorithms that accessG via random walks, since repeated random walks can be used to approximate
moments Cohen-Steiner et al. (2018). In this work, we primarily consider a non-adaptive random
walk model, where the algorithm can run m random walks each of length T ≥ 1, starting at m
vertices v(1)0 , . . . , v

(m)
0 chosen uniformly at random from G. For each walk, the algorithm can

observe the entire sequence of vertex labels visited in order We call this information the the walk
“transcript” and denote the set of transcripts by S = {S1, · · · , Sm}. Note that, at vertex v, the
probability that the next vertex in the random walk is equal to v′ is the (v, v′) entry of D−1Ã.

In Appendix A, we also consider the richer random walk model that we refer to as the adaptive
random walk model where the algorithm can choose the starting node v(1)0 , . . . , v

(m)
0 . This is in

contrast to the non-adaptive random walk model where starting nodes are uniformly random.

Cycle spectra. Our lower bound instances in this paper involve collections of cycle graphs. We
let Rc denote an undirected cycle graph of length c, and we let Rkc denote a collection of k such
cycles. Recall that we useA(Rkc ) to denote the normalized adjacency matrix and λ(Rkc ) for a sorted
list of eigenvalues for the normalized adjacency matrix. We leverage the following basic lemma on
the spectrum of cycle graphs.

Lemma 5 (Eigenvalues of cycle graph) For any odd integer ℓ, the eigenvalues of A(Rℓ) are
cos(2kℓ π) with multiplicity 2 for 0 < k < ℓ

2 and 1 with multiplicity 1. The eigenvalues of A(R2ℓ)

are cos(kℓπ) with multiplicity 2 for 0 < k < ℓ and ±1 each with multiplicity 1. Further, we have
W1(R

2
ℓ , R2ℓ) = 1/ℓ.

Proof The eigenvalues of the normalized adjacency matrix of cycle graphs are well known and can
be found, e.g., in Spielman (2019). The Wasserstein distance immediately follows since we have:

∥λ(R2
ℓ )− λ(R2ℓ)∥1 = |1− cos(π/ℓ)|+ |cos(2π/ℓ)− cos(π/ℓ)|+ · · ·+ |−1− cos(π(ℓ− 1)/ℓ)|

= 1− cos(π/ℓ) + cos(π/ℓ)− cos(2π/ℓ) + · · ·+ cos(π(ℓ− 1)/ℓ)− (−1) = 2 .

7
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G1 :

G2 :

1 2 3 4 2n− 1 2n

1 2 n

2nℓ + 1

4nℓ

2nℓ + 2

2nℓ + 1

4nℓ

2nℓ + 2

Figure 1: Diagram depicting graphsG1 andG2 from Definition 7. G1 contains 2n cycles of length ℓ
and 2nℓ isolated vertices, andG2 contains n cycles of length 2ℓ and 2nℓ isolated vertices.
In both graphs, the purple edges have weight 1/4 + 1/(4nℓ), the grey edges connect all
the vertices not connected by purple edges (including self-loops), with weight 1/(4nℓ),
and the green edges are self-loops of weight 1.

Remark 6 The first j < ℓ moments of the spectral density of R2
ℓ and R2ℓ are the same. This is true

because the number of ways a walk of length j < ℓ can return to its starting node is the same in
both R2

ℓ and R2ℓ: 2 ·
( j
j/2

)
for even j and 0 for odd j.

3. Limits on Moment Estimation Methods

In this section, we construct two weighted graphs G1, G2 with a same number of vertices, i.e.,
|V1| = |V2|, that we prove are ε-far in Wasserstein distance but have exponentially close moments.
We detail the construction in the definition below.

Definition 7 G1 is constructed by starting with a collection of 2nℓ isolated vertices and 2n disjoint
cycles, each of size ℓ. G2 is constructed by starting with a collection 2nℓ isolated vertices and n
disjoint cycles, each of size 2ℓ. In both graphs, the edges in the cycle have weight 1/4 and every
vertex in a cycle is then connected to all other cycle vertices with weight 1/(4nℓ) (including a self-
loop); the isolated vertices only have self-loop with weight 1. We choose ℓ to be an odd number and
let n = ⌈2ℓ/4⌉. Note that each graph has 4nℓ vertices.

See Figure 1 for a visual representation of the construction from Definition 7 and Figure 2 for a
plot of the spectra of G1 and G2. We bound the Wasserstein distance between these spectra below.

Lemma 8 For weighted graphs G1, G2 constructed in Definition 7, W1(G1, G2) = 1/(4ℓ).

Proof Let I denote a 2nℓ × 2nℓ identity matrix. The normalized adjacency matrices of the two
graphs are

A(G1) =

[
1
2 ·A(R

2n
ℓ ) + 1

2 ·
1

2nℓ · 11
⊤ 0

0 I

]
, and A(G2) =

[
1
2 ·A(R

n
2ℓ) +

1
2 ·

1
2nℓ · 11

⊤ 0
0 I

]
.
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Figure 2: Spectral Density of G1 and G2 as defined in Definition 7, with cycles of length 11 and
22, respectively.

Recall that we use R2n
ℓ to denote the graph of 2n disjoint cycles of size ℓ, and Rn2ℓ to denote the

graph of n disjoint cycles of size 2ℓ, respectively. Additionally, recall we use λ(G1) and λ(G2) to
denote the sorted (in ascending order) eigenvalues of A(G1) and A(G2), and λ(R2n

ℓ ) and λ(Rn2ℓ)
for the sorted eigenvalue list of A(R2n

ℓ ) and A(Rn2ℓ), respectively.
Since A(R2n

ℓ ) and A(Rn2ℓ) are regular graphs and both commute with 11⊤, they both share the
same eigenvectors with 11⊤. For simplicity of notation we let R1 := R2n

ℓ , R2 = Rn2ℓ. For i ∈ [2]
we have:

λj(Gi) =

{
1
2λj(Ri) for j ∈ {1, 2, · · · , 2nℓ− 1}
1 for j ∈ {2nℓ, 2nℓ+ 1, · · · , 4nℓ} .

(4)

This impliesW1(G1, G2) =
1

4nℓ ∥λ(G1)− λ(G2)∥1 =
1
2 ·

1
4nℓ ∥λ(R1)− λ(R2)∥1 by the char-

acterization of Wasserstein distance given in (3). Thus it suffices to calculate ∥λ(R1)− λ(R2)∥1.
Since these are disjoint cycles, we only need to focus on the Wasserstein distance between a cycle
of size 2ℓ and 2 disjoint cycles of size ℓ. Applying Lemma 5, we get ∥λ(R1)− λ(R2)∥1 = n · 2ℓ ·
W1(R

2
ℓ , R2ℓ) = 2n. Plugging this back we get the claimed Wasserstein distance W1(G1, G2) =

1/(4ℓ).

Next we show that the moments of the constructed graphs G1 and G2 are exponentially close.

Lemma 9 Let G1 and G2 be weighted graphs as constructed in Definition 7. Let p1, p2 be the
spectral density of G1, G2 respectively. It holds that mj(pi) ∈ [1/2, 1] for all j ≥ 0, i = 1, 2 and

9
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also

|mj(p1)−mj(p2)| = 0 for j < ℓ and |mj(p1)−mj(p2)| ≤ 2−ℓ+1 for j ≥ ℓ.

Proof For the first claim, we note thatmj(pi) ≥ 2nℓ
4nℓ ·1

j ≥ 1
2 . The upper bound of 1 follows trivially

given boundedness of all eigenvalues of normalized adjacency matrices.
For j ≥ ℓ, and i ∈ [2], we also have

mj(pi) ≤
2nℓ+ 1

4nℓ
· 1j + 2nℓ− 1

4nℓ
·
(
1

2

)j
≤ 1

2
+

1

4nℓ
+

1

2j+1
.

Thus, we can immediately conclude that mj(pi) ∈ [12 ,
1
2 + 1

2j+1 + 1
4nℓ ] and obtain the claimed

bounds for j ≥ ℓ by plugging in the choice of n ≥ 2ℓ/4.
For j < ℓ, we use the fact that mj(pi) =

1
ntr(A(Gi)

j). Using (4) we can calculate:

|mj(p1)−mj(p2)| =
1

4nℓ
·

∣∣∣∣∣
2nℓ−1∑
i=1

λji
(
R2n
ℓ

)
2j

+ (2nℓ+ 1)−
2nℓ−1∑
i=1

λji (R
n
2ℓ)

2j
− (2nℓ+ 1)

∣∣∣∣∣
=

1

4nℓ
·

∣∣∣∣∣
2nℓ∑
i=1

λji
(
R2n
ℓ

)
− λji (R

n
2ℓ)

2j

∣∣∣∣∣ . (5)

Since R2n
ℓ and Rn2ℓ are disjoint cycles, the moments of the spectral density of R2n

ℓ and R2n
ℓ are the

same as the moments of the spectral density of R2
ℓ and R2ℓ. This is true because the eigenvalues of

the disjoint copies of A(R2n
ℓ ) and A(R2n

ℓ ) are the same as the eigenvalues of the disjoint copies of
A(R2

ℓ ) and A(R2ℓ) with increased multiplicity, which is scaled by the size of the respective graphs.
Since the first j < ℓ moments of R2

ℓ and R2ℓ are the same (see Remark 6), we get from (5) that

|mj(p1)−mj(p2)| =
1

4nℓ
·

∣∣∣∣∣
2nℓ∑
i=1

λi
(
R2n
ℓ

)j − λi (R
n
2ℓ)

j

2j

∣∣∣∣∣ = 0 .

We briefly remark that the proof of Lemma 9 required picking a value of n that is exponentially
large in ℓ to ensure that when a random walk leaves the cycle it started from, it only comes back to
the same cycle with a very low probability. Otherwise, we would not have been able to show that
the higher moments of G1 and G2 (j ≥ ℓ) are close.

Theorem 1 For any ε ∈ (0, 1/4], there exist weighted graphs G1 and G2 (see Definition 7) with
spectral densities p1 and p2, such that:

• The densities are far in Wasserstein-1 distance: W1(p1, p2) ≥ ε.

• For all positive integers j, moments mj(p1) =
∫ 1
−1 x

jp1(x)dx and mj(p2) =
∫ 1
−1 x

jp2(x)dx

are exponentially close: (1−δ)mj(p1) ≤ mj(p2) ≤ (1+δ)mj(p1) for some δ ≤ 16 ·2−1/4ε.

Proof The proof of the first statement follows by substituting ℓ with the largest odd integer smaller
than 1/(4ε) in Lemma 8. Next, we know that for all j, mj(p1) ∈ [1/2, 1]. So, by Lemma 9,
|mj(p1)−mj(p2)| ≤ 2−ℓ+2mj(p1). The statement holds since we have ℓ ≥ 1/(4ε)− 2.

10
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4. Limits on Random Walk Methods

In this section, we prove Theorem 2, which can be viewed as a strengthening of Theorem 1. While
Theorem 1 rules out directly improving SDE algorithms like that of Cohen-Steiner et al. (2018)
based on estimating moments, Theorem 2 shows that no method that performs less than 2O(1/ε)

steps of non-adaptive random walks in a graph can reliably estimate the spectral density to error ε
in Wasserstein distance, whether or not the algorithm is based on moment estimation or not.

To prove Theorem 2, we construct a hard pair of graphs that are ε far in Wasserstein distance, but
difficult to distinguish based on random walks. This pair is identical to the hard instance constructed
in the previous section, although without isolated nodes. These nodes were necessary to show
that even accurate relative error moment estimates do not suffice for spectral density estimation.
However, they are not needed for the random-walk lower bound, and eliminating them simplifies
the analysis. Formally, the construction is as follows:

Definition 10 G1 is constructed by starting with a collection of 2n disjoint cycles, each having
size ℓ for odd integer ℓ. The edges in the cycle have weight 1/4. After constructing the cycles, we
connect every vertex in G1 to all other vertices with weight 1/(4nℓ) (including a self-loop). G2 is
constructed by starting with a collection of n disjoint cycles, each having size 2ℓ. The edges in the
cycle have weight 1/4 and every vertex is then connected to all other vertices with weight 1/(4nℓ)
(including a self-loop). We choose n = 2 · 22ℓ.

Lemma 11 For weighted graphs G1, G2 constructed in Definition 10, W1(G1, G2) ≥ 1/(2ℓ).

Proof The normalized adjacency matrices of the two graphs are:

A(G1) =
1

2
·A(R2n

ℓ ) +
1

4nℓ
11⊤ and A(G2) =

1

2
·A(Rn2ℓ) +

1

4nℓ
· 11⊤ .

As before, since A(R2n
ℓ ) and A(Rn2ℓ) are degree-regular graphs and both commute with 11⊤, we

can write the sorted vector of eigenvalues λ(G1),λ(G2) of A(G1), A(G2) as

λj(G1) =

{
1
2λj(R

2n
ℓ ) for j ∈ {1, · · · , 2nℓ− 1}

1 for j = 2nℓ ,

and λj(G2) =

{
1
2λj(R

n
2ℓ) for j ∈ {1, · · · , 2nℓ− 1}

1 for j = 2nℓ .

Since the top eigenvalues of Rn2ℓ and R2n
ℓ are the same, we conclude that W1(G1, G2) = 1

2nℓ ·(
1
2 ·

∥∥λ(R2n
ℓ )− λ(Rn2ℓ)

∥∥
1

)
. Applying Lemma 5, we have that

∥∥λ(R2n
ℓ )− λ(Rn2ℓ)

∥∥
1
= n · 2ℓ ·

W1(R
2
ℓ , R2ℓ) = 2n. Plugging in, we conclude that W1(G1, G2) = 1/(2ℓ).

We next show that the transcripts of randomly started, non-adaptive random walks generated on G1

and G2 have similar distributions.

Definition 12 For m non-adaptive random walks, each with length T , a random walk transcript
S is a collection of m individual walk, S = {S1, . . . , Sm} where each Si consists of a list of
T node labels vi,1, . . . vi,T (the nodes visited in the walk). Let DG1 and DG2 denote probability
distribution over random walk transcripts generated when walking in G1 and G2, respectively, with
nodes labeled using a uniform random permutation of the integers 1, . . . , 2nℓ.

11
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Our main result is as follows:

Lemma 13 For m non-adaptive walks of length T , the total variation distance between DG1 and
DG2 (Definition 12) is bounded by dTV(DG1 ,DG2) ≤ 2m2T 2

n + mT
2ℓ

.

To prove Lemma 13, we define a coupling betweenDG1 andDG2 . We then show that, with high
probability, the coupling outputs an identical transcript in both graphs. This establishes closeness in
TV distance via the standard coupling lemma, which we state specialized to our setting below:

Fact 14 Let D be any distribution over pairs of random walk transcripts S1 and S2 such that the
marginal distribution of S1 equals DG1 and the marginal distribution of S2 equals DG2 . Then:

dTV(DG1 ,DG2) ≤ PD[S
1 ̸= S2].

Proof [Proof of Lemma 13] We define a couplingD by describing a process that explicitly generates
two random walk transcripts S1 and S2 which are distributed according to DG1 and DG1 . To
do so, we use a “lazy labelling” procedure that randomly labels nodes as they are visited in the
random walks. To support that labeling, we define two dictionaries, L1 : V1 → 1, . . . , 2nℓ and
L2 : V2 → 1, . . . , 2nℓ that maps the vertex sets of G1 and G2 (denoted as V1 and V2) to labels.
Initially, Li(v) returns NULL for any vertex v ∈ Vi. However, if we set Li(v) ← j for a label j,
then for all future calls to the dictionary, Li(v) returns j. Additionally, in our description of the
coupling we will refer to the “cycle” that a node v lies in (in G1 or G2) and to v’s “left neighbor”
and “right neighbor”. Referring to Definition 10, these terms refer to the cycle that v would be in if
the lightweight copy of the complete graph had not been added to to the graph, and respectively to
v’s neighbors in that cycle.

With this notation in place, we describe the coupling procedure below.

1. Choose a random permutation Π of the labels 1, . . . , 2nℓ. Let Π(j) denote the jth label in the
permutation. Initialize j ← 1.

2. For k = 1, . . . ,m:

(a) Choose independent, uniformly random nodes v1k,1 in G1 and v2k,1 in G2. If L1(v
1
k,1) =

NULL (which means that the node has never been visited before in any of our k − 1
previous random walks) set L1(v

1
k,1) ← Π(j). Likewise, if L2(v

2
k,1) = NULL, set

L2(v
2
k,1)← Π(j). Increment j ← j + 1.

(b) For i = 1, . . . , T

i. With probability 1
4 let v1k,i+1 be the right neighbor of v1k,i in G1 and let v2k,i+1 be

the right neighbor of v2k,i in G2. With probability 1
4 let v1k,i+1 be the left neighbor

of v1k,i in G1 and let v2k,i+1 be the left neighbor of v2k,i in G2. With probability 1
2 ,

let v2k,i+1 and v2k,i+1 be uniformly random nodes in G1 and G2, respectively. In this
last case, which we refer to as the RESET case, v2k,i+1 and v2k,i+1 can be chosen
independently.

ii. If L1(v
1
k,i+1) = NULL, set L1(v

1
k,i+1)← Π(j). Likewise, if L2(v

2
k,i+1) = NULL,

set L2(v
1
k,i+1)← Π(j). Increment j = j + 1.

12
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3. Return

S1 = {{L1(v
1
1,1), . . . , L1(v

1
1,T )}, . . . , {L1(v

1
m,1), . . . , L1(v

1
m,T )}} ,

S2 = {{L2(v
1
2,1), . . . , L2(v

1
2,T )}, . . . , {L2(v

2
m,1), . . . , L2(v

2
m,T )}} .

We first observe that the above process is a coupling, as it returns S1 sampled from DG1 and S2

sampled from DG2 . So, we are left to argue that, with high probability, S1 = S2.
To do so, we use the fact that the transcripts are identical if two events hold. To define these

events, note that each walk in each transcript begins in a cycle in G1 or G2, and then takes a random
number of steps left and right in that cycle until “resetting” with probability 1/2 to a uniformly
random node in the graph (which could bring the walk to a new cycle, the same cycle it is currently
in, or a cycle visited previously). For transcript S1, let R1

1, . . . , R
1
q denote the list of cycles visited

between each RESET step across all m walks in that transcript. Likewise, let R2
1, . . . , R

2
q denote

the set of cycles visited in S2. S1 and S2 are always identical if the following events occur:

Event 1: For all j ̸= k, R1
j ̸= R1

k and R2
j ̸= R2

k.

Event 2: For all j ∈ 1, . . . , s, we take fewer than ℓ left/right steps in R1
j and R2

j before a RESET.

To see why this is the case, note that, if Event 1 occurs, the only way that S1 and S2 would differ is
if, while random walking in R1

j and R2
j , we move to nodes v1 and v2 where L1(v

1) is defined but
L2(v

2) is NULL, or vice-versa. However, the only way this can happen is if we complete an entire
loop around R1

j , and thus return to a node that was previously labeled. Since each R1
j has ℓ nodes,

such a loop cannot be completed if we always take < ℓ steps before resetting to a new cycle.
We proceed to show that Event 1 and Event 2 both occur with high probability. First, consider

Event 1. We take at mostmT RESET steps across allm random walks. At each step, the probability
we return to a cycle we had previously visited is at most mT

2n for the walk in G1 and at most mT
n

for the walk in G2. So, by a union bound, we do not return to any previously visited cycle after a
RESET in either walk with probability:

P [Event 1] ≥ 1−mT · mT
2n
−mT · mT

n
≥ 1− 2m2T 2

n
. (6)

Next, consider Event 2. Note that, since we take a left/right step with probability 1/2 (and RESET
with probability 1/2) the chance that we take ℓ steps or more in a given cycle is equal to (1/2)ℓ. We
visit at most q = mT cycles, so by a union bound, we take less then ℓ left/right steps in each cycle
with probability:

P [Event 2] ≥ 1− mT

2ℓ
. (7)

Combining (6) and (7) with a union bound, we conclude that both events hold, and thus S1 = S2

with probability at least 1− 2m2T 2

n − mT
2ℓ

. Combined with Fact 14, this proves the lemma.

With Lemma 13 in place, we can prove our main lower bound result for non-adaptive random
walks:

13
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Theorem 2 For any ε < 1/2, no algorithm that is given access to the transcript of m, length
T random walks initiated at m uniformly random nodes in a given graph G can approximate G’s
spectral density to ε accuracy in the Wasserstein-1 distance with probability > 3/4, unless m ·T >
1
16 · 2

1/4ε.

Proof The theorem follows from Lemma 11 and Lemma 13. In particular, choose ℓ to equal the
largest odd integer smaller than 1/4ε and choose n = 2 · 22ℓ. Then consider graphs G1 and G2

generated as in Definition 10 with random node labels. By Lemma 11, W1(G1, G2) > 2ε. So, there
is no distribution p that is ε-close in Wasserstein distance to both the spectral density of G1 and G2.
Accordingly, any algorithm that estimates the SDE of a graph to error ε with probability 3/4 can be
used to correctly distinguish samples from DG1 and DG2 with probability 3/4. However, with n set
as above, we have that dTV(DG1 ,DG2) ≤ 2m2T 2

n + mT
2ℓ

= m2T 2

22ℓ
+ mT

2ℓ
. And thus we can check that

dTV(DG1 ,DG2) ≤ 1/2 whenever mT ≤ 1
42

1/4ε−2. As is standard, no algorithm can distinguish
between samples from two distributions with TV distance δ with probability greater than 1

2 + 1
2δ,

which establishes the result: any method that correctly distinguishes DG1 and DG2 with probability
> 3/4 must use mT > 1

42
1/4ε−2 random walk steps.
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Appendix A. Lower Bound for the Adaptive Random Walk Model

In this section, we consider lower bounds against a possibly richer class of spectral density esti-
mation algorithms that can access graphs via adaptive random walks. Specifically, the algorithm is
allowed to start random walks (of any length) at any node of its choosing and can store the entire
transcript of these walks. In the adaptive model, the algorithm also has the ability to uniformly
sample nodes from the graph, as in the non-adaptive random walk model considered for Theorem 2.

Interestingly, an adaptive algorithm can solve the hard instance from Theorem 2 using roughly
O(log(1/ε)/ε) random walk steps. Specifically, for any node, the algorithm can identify its adjacent
cycle nodes with high probability by taking a logarithmic number of 1-step random walks and
identifying the two nodes that are visited most frequently. This allows it to walk one way around
the cycle, check its length, and thus distinguish between G1 and G2.

Proving a lower bound in the adaptive random walk setting appears to be much harder than
the non-adaptive setting, and we do not have any proposed constructions that we conjecture could
establish that 2O(1/ε) random walk steps are necessary. However, in this section we give a simple
argument for a lower bound of Ω(1/ε2) steps. The lower bound is via a reduction to a natural
sampling problem, introduced below.

Problem 15 For a parameter α ∈ (1/2, 1) and integer n, suppose we have a jar that contains
either α · n red marbles and (1− α) · n blue marbles (Case 1) or contains (1− α) · n red marbles
and α · n blue marbles (Case 2). Our goal is to determine if we are in Case 1 or 2 given a sample
of s marbles drawn without replacement from the jar.

Lemma 16 Let ε ∈ (0, 1/2), let α = (1 + ε)/2, and let n = 2/ε4. There is no algorithm that
solves Problem 15 with probability > 3/4 unless s > 1/(4ε2).

Proof Suppose we draw s marbles from the jar and encode the result in a length s vector (e.g., with
a 0 at position i if the ith marble drawn is red, and a 1 if it is blue). Let X(s)

1 denote the distribution
over vectors observed in Case 1, and let X(s)

2 denote the distribution for Case 2. We will show that
dTV(X

(s)
1 , X

(s)
2 ) is small. To do so, we introduce two auxiliary distributions: let X̂(s)

1 denote the
distribution over vectors observed if we are in Case 1 and draw marbles randomly with replacement
and let X̂(s)

2 denote the distribution if we are in Case 2 and draw marbles with replacement.
We first show that dTV(X

(s)
i , X̂

(s)
i ) is small for i ∈ {1, 2} when n is large. To do so, let E be

the event that in s independent draws with replacement, we never pick a previously picked marble.
Let [X̂(s)

i ]E denote the distribution X̂(s)
i conditioned on E , and note that [X̂(s)

i ]E = X
(s)
i . The
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probability that E happens is equal to 1 ·(1− 1
n) ·(1−

2
n) ·(1−

s
n) ≥ 1− s2

n . Therefore, we conclude
that:

dTV(X̂
(m)
i , X

(m)
i ) ≤ s2/n. (8)

Next, we show that dTV(X̂
(s)
1 , X̂

(s)
2 ) is small. Doing so is equivalent to bounding the total

variation distance between s independent draws from a Bernoulli distribution with mean 1 − α
and s independent draws from Bernoulli distribution with mean α. Let DKL(p, q) denote the Kull-
back–Leibler divergence between distributions p and q. Applying Pinsker’s inequality, we have:

dTV(X̂
(s)
1 , X̂

(s)
2 ) ≤

√
1

2

√
DKL(X̂

(s)
1 , X̂

(s)
2 ) =

√
s

2

√
DKL(Ber(1− α),Ber(α))

=

√
s

2

√
α log(α/(1− α)) + (1− α) log((1− α)/α)

≤
√
s

2
· ε. (9)

The last inequality holds for any α equal to (1 + ε)/2 whenever ε ≤ 1/2. Applying triangle in-
equality to combine (8) and (9), we have that:

dTV(X
(s)
1 , X

(s)
2 ) ≤ dTV(X̂

(s)
1 , X

(s)
1 ) + dTV(X̂

(s)
2 , X

(s)
2 ) + dTV(X̂

(s)
1 , X̂

(s)
2 ) ≤ 2s2

n
+

√
s

2
· ε.

For any s ≤ 1/(4ε2) and n = 2/ε4 we conclude that dTV(X
(m)
1 , X

(m)
2 ) < 1/2. Accordingly, no

algorithm can distinguish between X(s)
1 and X(s)

2 with probability ≥ 3/4 unless s > 1/(4ε2).

With Lemma 16 in place, we are now ready to prove our lower bound for spectral density
estimation. To do so, we will show that any adaptive random walk algorithm that can estimate the
spectral density of a graph to accuracy ε using s total random walk steps can solve the Problem 15
using ≤ s samples. This reduction requires introducing a second pair of “hard graphs” that are
close in Wasserstein distance. In comparison to the hard instance in Theorem 2, these graphs are
also based on collection of cycles. The main difference is that we consider two graphs that each
contain a mixture of cycles of length 2ℓ and ℓ, but in different proportions.

Definition 17 For odd integer ℓ and parameter α ∈ (0.5, 1), let G1 be a collection of αn disjoint
cycles of length 2ℓ and 2(1 − α)n cycles of size ℓ. Similarly, let G2 be a collection of (1 − α)n
cycles of length 2ℓ and 2αn cycles of size ℓ. Both graphs have 2nℓ vertices in total.

We use the following expression for the Wasserstein distance between the spectra of the two
graphs.

Lemma 18 Let G1 and G2 be unweighted graphs as in Definition 17. W1(G1, G2) =
(2α−1)

ℓ .

Proof We can compute the exact eigenvalues of the two graphs by combining Lemma 5 with the fact
that eigenvalues just increase in multiplicity with repeated components. As in that lemma, recall
we use Rℓ to denote a cycle of length ℓ and R2ℓ to denote a cycle of length 2ℓ. The Wasserstein
distance between R2

ℓ and R2ℓ is W1(R
2
ℓ , R2ℓ) = 1/ℓ.

17
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Note that G1 and G2 both have (1 − α)n cycles of length 2ℓ and 2(1 − α)n cycles of length
ℓ, while G1 has (2α − 1)n extra R2ℓ cycles and G2 has (2α − 1)n extra copies of R2

ℓ . Let p1(x)
and p2(x) be the spectral density of G1 and G2 respectively, and let p̃1(x) and p̃2(x) be the spectral
density of R(2α−1)n

2ℓ and R2(2α−1)n
ℓ , respectively. We have that 2nℓ · (p1(x) − p2(x)) = (2(2α −

1)nℓ · (p̃1(x) − p̃2(x)) for all x ∈ [−1, 1]. Thus, due to the dual characterization of Wasserstein
distance in (2),

W1(G1, G2) = (2α− 1) ·W1(R
(2α−1)n
2ℓ , R

2(2α−1)n
ℓ ) = (2α− 1) ·W1(R2ℓ, R

2
ℓ ) =

(2α− 1)

ℓ
.

We now have all the ingredients in place to prove the main result of this section:

Theorem 19 For any ε < 1/6, no algorithm that takes s adaptive random walks steps in a given
graph G can approximate G’s spectral density to ε accuracy in the Wasserstein-1 distance with
probability > 3/4, unless s ≥ 1/(36ε2).

Proof Suppose we had such an algorithm (call it A) that uses s < 1/(4ε2) random walk steps to
output an ε/3-accurate spectral density with probability greater than 3/4. We will show that the
algorithm could be used to solve Problem 15 using < 1/(4ε2) samples from the jar with probability
greater than 3/4, which is impossible by Lemma 16.

To prove this reduction we associated an instance of Problem 15 with a hidden graph G that is
either isomorphic to G1 or G2 as defined in Definition 17. To make the association, every marble
will correspond to 2ℓ vertices in the graph with some fixed set of known labels. However, the
connections between those nodes is hidden. In particular, if the marble is red, the 2ℓ vertices are
arranged in a single cycle of length 2ℓ. Otherwise, they are arranged in two cycles of length ℓ. The
ordering of nodes in both cases is known in advance, but we do not know which of the two cases
we are in. Also note that there are no other connections between vertices. Observe that if we are in
Case 1 for Problem 15, G is isomorphic to G1 and if we are in Case 2, G is isomorphic to G2. So
in particular, G’s spectral density is either equal to the spectral density of G1 or G2.

Our main claim is that we can run algorithm A on the hidden graph G while only accessing s
marbles from the jar. To so do, every time the algorithm requests to visit a specific node, we draw
the marble from the jar associated with that node’s label. In doing so, we learned all edges in the
ring containing that node (as well as other edges), so we can perform any future random walk steps
initiated from that node. SinceA takes s steps, we at most need to draw smarbles over the course of
running the algorithm. At the same time, note that when we choose ℓ = 1 (considering self loops)
and α = (1 + ε)/2 as in Lemma 16, Lemma 18 implies that the Wasserstein distance between G1

and G2 is equal to ε. So, if A returns an ε/3-accurate spectral density with probability 3/4, we can
determine if we are in Case 1 or Case 2 with probability 3/4, violating Lemma 16. We conclude
that no such algorithm can exist.

The final statement of the theorem follows by adjusting constants on ε.

Appendix B. Wasserstein Distance Bounds via Chebyshev Polynomials

In this section, we give an alternative proof of a lower-bound by Kong and Valiant (2017), which
shows that there exist distributions whose first ℓ − 1 moments match exactly, but the Wasserstein
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distance between the distributions is greater than 1/(2(ℓ+ 1)). Our analysis tightens their result by
a factor of ∼ 4, showing two such distributions with Wasserstein distance 2/ℓ. Moreover, we prove
that the Wasserstein distance is Ω(ℓ−1) for any distributions p, q whose first ℓ− 1 moments are the
same and whose ℓ-th moments differ by Ω(2−ℓ).

Lemma 20 (Improvement of (Kong and Valiant, 2017, Proposition 2)) For any odd ℓ, there ex-
ists a pair of distributions p, q, each consisting of (ℓ+1)/2 point masses, supported within the unit
interval [−1, 1] such that p and q have identical first ℓ − 1 moments, and the Wasserstein distance
W1(p, q) ≥ 2/ℓ.

Proof Recall that we use R2
ℓ to denote 2 disjoint cycles of length ℓ, and use R2ℓ to denote a cycle

of length 2ℓ, where ℓ is an odd number. We know the spectrum of R2
ℓ and R2ℓ from Lemma 5.

Let p′ and q′ denote the spectral density of A(R2
ℓ ) and A(R2ℓ). We first note that the first ℓ − 1

moments of the spectral density of p′ and q′ are the same because a random walk of length ℓ − 1
cannot distinguish R2

ℓ from R2ℓ (see Remark 6).
Also, recall we use λ(R2

ℓ ) to denote the sorted eigenvalue list of A(R2
ℓ ) and λ(R2ℓ) to denote

the sorted eigenvalue list of A(R2ℓ). We make the following observations about the spectrum of
A(R2

ℓ ) and A(R2ℓ) based on Lemma 5.

1. A(R2
ℓ ) has (ℓ+ 1)/2 unique eigenvalues, and A(R2ℓ) has ℓ+ 1 unique eigenvalues.

2. All eigenvalues of A(R2
ℓ ) overlap with eigenvalues of A(R2ℓ). In particular, all the eigen-

values of A(R2
ℓ ) occur two times more in frequency than the corresponding eigenvalues in

A(R2ℓ). Formally, ∀λ ∈ λ(R2
ℓ ),∣∣{j : λj ∈ λ(R2

ℓ ), λj = λ, j ∈ [2ℓ]
}∣∣ = 2 · |{j : λj ∈ λ(R2ℓ), λj = λ, j ∈ [2ℓ]}| . (10)

3. All the eigenvalues of A(R2ℓ) lies in [−1, 1].

Let Λ(2) denote the sorted list of eigenvalues where we remove all the eigenvalues from λ(R2ℓ) that
occurs in λ(R2

ℓ ). Let Λ(1) be the set of removed eigenvalues. The following observations follow
from (10). The size of Λ(2), and Λ(1) is ℓ. Moreover Λ(1) has the same eigenvalues as λ(R2

ℓ ) where
the frequency of each unique eigenvalue is λ(R2

ℓ ) is reduced by a factor of 2. Consequently, we

define p(x) = 1
ℓ

∑
j∈[ℓ] δ

(
x−Λ

(1)
j

)
= p′(x), and q(x) = 1

ℓ

∑
j∈[ℓ] δ

(
x−Λ

(2)
j

)
= 2q′(x) −

p′(x). This ensures that p, q are valid distributions and have a support size of (ℓ+ 1)/2.
Since p′, and q′ have the same first ℓ − 1 moments, we have p and q also have the same first

ℓ− 1 moments. Moreover, W1(p, q) =W1(2q
′ − p′, p′) = 2W1(q

′, p′) = 2
ℓ , where the penultimate

equality follows from the dual characterization of Wasserstein distance in (2) and the last equality
follows from Lemma 5.

We complement Proposition 20 with the following Lemma 22, which shows that for two distri-
butions p and q such that all their first ℓ− 1 moments are the same and the ℓ-th moment differ only
by Ω(2−ℓ), even then the Wasserstein distance between p, q is large. The proof follows just by using
the fact that there are 1-Lipschitz polynomials with large leading coefficient. We note the following
standard facts about the Chebyshev polynomials which can, for example, be found in Allen and
Isaacson (2019).
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Fact 21 The Chebyshev polynomials of the first kind of degree i, (i ∈ Z≥0), denoted by Ti(x),
satisfy the following properties:

1. ∀i ∈ Z≥0, ∀x ∈ [−1, 1], |Ti(x)| ≤ 1.

2. The leading coefficient of Ti is 2i−1.

Lemma 22 Consider two distributions p and q supported on [−1, 1] such that the difference of
their first ℓ − 1 moments are 0 and the difference of their ℓ-th moment is c · 2−ℓ. Then, for such a
distribution, their Wasserstein distance is bounded by

W1(p, q) ≥
c

4ℓ
.

Proof We use the dual characterization of the Wasserstein distance in Definition 2 and consequently,
it suffices to exhibit a 1-Lipschitz function g which has a high inner-product with p− q. Let Tℓ−1 be
a degree ℓ−1 Chebyshev polynomial. From Fact 21 we know that fℓ(x) =

∫
Tℓ−1(x)dx is a degree

ℓ, 1-Lipschitz polynomial in [−1, 1], with leading coefficient 2ℓ−2/ℓ. Define gℓ(x) as follows:

gℓ(x) :=


fℓ(−1), for x ∈ (−∞,−1)
fℓ(x), for x ∈ [−1, 1]
fℓ(1), for x ∈ (1,∞) .

From properties of fℓ(x) and by construction, we know that gℓ(x) is a 1-Lipschitz function. There-
fore,

W1(p, q) ≥
∣∣∣∣∫

R
gℓ(x)(p(x)− q(x))dx

∣∣∣∣ = ∣∣∣∣∫ 1

−1
fℓ(x)(p(x)− q(x))dx

∣∣∣∣
=

∣∣∣∣∫ 1

−1

2ℓ−2

ℓ
xℓ(p(x)− q(x))dx

∣∣∣∣ = 1

4ℓ
2ℓ · c2−ℓ = c · 1

4ℓ
,

where the first equality holds because p(x) − q(x) = 0 outside [−1, 1] and the second equality
follows from the fact that the difference of the first 1, . . . , ℓ− 1 moments are 0.

Appendix C. Another Spectral Metric for Graph Comparison

Throughout this section we consider two graphsG1,G2 with the same vertex size n and same vertex
labeling V = [n], and their un-normalized adjacency matrix Ã1 and Ã2 with a common degree
matrixD. Here we consider learning the spectrum of their difference matrix, i.e.,A(G1)−A(G2) =
D−1/2Ã1D

−1/2 − D−1/2Ã2D
−1/2, or equivalently D−1(Ã1 − Ã2). We provide a simple proof

that exp(O(1/ε)) number of samples also suffice to estimate this distribution up to ε-Wasserstein
distance, using similar techniques as in Cohen-Steiner et al. (2018).

We first restate the main theorem in Kong and Valiant (2017) for completeness.

Theorem 23 (Kong and Valiant (2017, Proposition 1)) Given two distributions with respective
density functions p, q supported on [a, b] whose first k moments are α = (α1, · · · , αk) and β =
(β1, · · · , βk), respectively. The Wasserstein distanceW1(p, q) between p, q is bounded byW1(p, q) ≤
C( b−ak + 3k(b− a)∥α− β∥2) for some absolute constant C.
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Algorithm 1: Spectral Density of Difference of Adjacency Matrices

Input: Graphs G1, G2, oracle ÕNA−RW, accuracy ε, probability δ
Parameters: k ∈ Z+, θ > 0
for j ∈ [k] do

Initialize p̂j = 0
for (x1, x2, . . . , xj) ∈ {0, 1}j do

Generate 1
2θ

−2j4j log(2k/δ) independent samples of ÕNA−RW(G1, G2, j, {xj}j∈[k])
Let p̂j,x be the fraction of the trajectories which start and end at the same vertex
Update p̂j ← p̂j + p̂j,x

end
end
Construct a distribution p on [−1, 1] with first k moments equal to {p̂j}j∈[k]
Return: p

We define a variant of the non-adaptive random walk access model, represented via an oracle
ÕNA−RW(G1, G2, j, {xi}i∈[j]), specifically for this problem, which outputs the random trajectory
after taking a length j random walk starting from a uniformly randomly chosen vertex, where at
step i ∈ [j] it the follows probabilistic transition of D−1Ã1 when xi = 1 and D−1Ã2 when xi = 0.
We consider Algorithm 1 for estimating the spectral density of matrix D−1(Ã1 − Ã2).

Algorithm 1 computes estimates of the moments of difference matrix D−1(Ã1− Ã2). Together
with the procedure of computing a distribution based on first k moments using linear programming
as stated in Cohen-Steiner et al. (2018), we have the following guarantee.

Theorem 24 Given any two graphs G1, G2 on same set of vertices with a common degree matrix
D, Algorithm 1 with k = 4C/ε and θ = ε/(32k+2) outputs a distribution p that is ε-close in
Wasserstein-1 distance with the spectral density function of A(G1) − A(G2) with probability 0.9,
using a total of 2O(1/ε) calls to ÕNA−RW(G1, G2, j, ·), j ∈ [O(1/ε)].

Proof Note similarity transformation doesn’t affect eigenvalues, thus it suffices to estimate the spec-
tral density function of matrix D−1(Ã1 − Ã2), whose jth moment is 1

ntr((D
−1Ã1 −D−1Ã2)

j).
For any j ∈ Z+, note that

1

n
tr((D−1Ã1 −D−1Ã2)

j) =
∑

x1,x2,··· ,xj∈{0,1}

1

n
tr

 ∏
i=1,··· ,j

(xi ·D−1Ã1 + (1− xi) ·D−1Ã2)

 .

Given any x = (x1, · · · , xj), we run an alternating random walk as in ÕNA−RW to generate
unbiased samples of term 1

ntr(
∏
i=1,··· ,j(xi · D−1Ã1 + (1 − xi) · D−1Ã2)) (as in Line 1). By

concentration we can estimate each term 1
ntr(

∏
i=1,··· ,j(xi · D−1Ã1 + (1 − xi) · D−1Ã2)) using

p̂j,x (as in Line 1) up to θ/2j additive accuracy with high probability 1 − δ/(k2j) using a total of
1
2θ

−2j4j log(2k/δ) calls to ÕNA−RW(G1, G2, j, {xi}i∈[j]). Consequently, using a union bound we
have with probability 1 − δ, p̂j estimates the jth moments up to θ additive accuracy, each using a
total of O(θ−2j23j log(2k/δ)) calls to some ÕNA−RW(G1, G2, j, ·) for all j ∈ [k].
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Picking k = 4C
ε , θ = ε

32k+2 , we can apply Theorem 23 to conclude that the constructed
distribution p is an ε-approximation in Wasserstein distance to the spectral density function of
A(G1)−A(G2). Also, the algorithm uses a total of∑

j∈[k]

O(θ−2j23j log(2k/δ)) calls to ÕNA−RW(G1, G2, j, ·)

=
∑

j∈[O(1/ε)]

2O(1/ε) calls to ÕNA−RW(G1, G2, j, ·).

In the above equality we also used that δ = 0.1.

An interesting open problem is whether similar algorithms exist for comparing two graphs on
the same vertex set without a common degree matrix D.
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