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Abstract

We study the complexity of optimizing nonsmooth nonconvex Lipschitz functions by producing
(6, €)-Goldstein stationary points. Several recent works have presented randomized algorithms
that produce such points using 9] (6~ 1e=3) first-order oracle calls, independent of the dimension
d. Tt has been an open problem as to whether a similar result can be obtained via a deterministic
algorithm. We resolve this open problem, showing that randomization is necessary to obtain a
dimension-free rate. In particular, we prove a lower bound of £2(d) for any deterministic algorithm.
Moreover, we show that unlike smooth or convex optimization, access to function values is required
for any deterministic algorithm to halt within any finite time horizon.

On the other hand, we prove that if the function is even slightly smooth, then the dimension-
free rate of O(6~1e~3) can be obtained by a deterministic algorithm with merely a logarithmic
dependence on the smoothness parameter. Motivated by these findings, we turn to study the com-
plexity of deterministically smoothing Lipschitz functions. Though there are well-known efficient
black-box randomized smoothings, we start by showing that no such deterministic procedure can
smooth functions in a meaningful manner (suitably defined), resolving an open question in the liter-
ature. We then bypass this impossibility result for the structured case of ReLLU neural networks. To
that end, in a practical “white-box” setting in which the optimizer is granted access to the network’s
architecture, we propose a simple, dimension-free, deterministic smoothing of ReLLU networks that
provably preserves (, €)-Goldstein stationary points. Our method applies to a variety of archi-
tectures of arbitrary depth, including ResNets and ConvNets. Combined with our algorithm for
slightly-smooth functions, this yields the first deterministic, dimension-free algorithm for optimiz-
ing ReLU networks, circumventing our lower bound.
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1. Introduction

We consider the problem of optimizing a Lipschitz continuous function, f : R* — R, which is po-
tentially not smooth nor convex, using a first-order algorithm which utilizes values and derivatives
of the function at various points. The theoretical analysis of nonsmooth and nonconvex optimiza-
tion has long been a focus of research in economics, control theory and computer science (Clarke,
1990; Mikeld and Neittaanméki, 1992; Outrata et al., 1998). In recent years, this area has received
renewed attention stemming from the fact that essentially all optimization problems associated with
training modern neural networks are neither smooth nor convex, due to their depth and the ubiqui-
tous use of rectified linear units (ReLUs), among other nonsmooth components (Nair and Hinton,
2010; Glorot et al., 2011).

Since the minimization of a Lipschitz function f is well known to be intractable (Nemirovski
and Yudin, 1983; Murty and Kabadi, 1987; Nesterov, 2018), a local measure of optimality is re-
quired in order to obtain any reasonable guarantees. Accordingly, it is common to make use of
the generalized gradient O f(x) due to Clarke (1974, 1975, 1981), which is a natural generaliza-
tion of the gradient and the convex subgradient (Clarke et al., 2008; Rockafellar and Wets, 2009;
Burke et al., 2020), and seek points with small subgradient. Although under certain regularity as-
sumptions it is possible to asymptotically find an approximate Clarke stationary point of f,' the
standard subgradient method fails to approach a Clarke stationary point of a Lipschitz function in
general (Daniilidis and Drusvyatskiy, 2020); moreover, it is not possible to find such points using
any algorithm within finite time (Zhang et al., 2020, Theorem 1). Moreover, even getting near an
approximate Clarke stationary point of a Lipschitz function has been proven to be impossible unless
the number of queries has an exponential dependence on the dimension (Kornowski and Shamir,
2021). For an overview of relevant theoretical results in nonsmooth nonconvex optimization, we
refer to Appendix A.

These negative results motivate rethinking the definition of local optimality in terms of a relaxed
yet still meaningful notion. To this end, we consider the problem of finding a (J, €)-Goldstein
stationary point of f (Goldstein, 1977), which are points for which there exists a convex combination
of gradients in a d-neighborhood whose norm is less than € (see Section 2 for a formal definition).
The breakthrough result of Zhang et al. (2020) proposed a randomized algorithm that finds such
points with a dimension-free complexity of 6(5 ~1e=3) oracle calls. Though they make use of a non-
standard first-order oracle that does not apply to all Lipschitz functions, subsequent work (Davis
et al., 2022; Tian et al., 2022) has proposed variants of the algorithm that apply to any Lipschitz
function using a standard first-order oracle.

It is important to note that all of the aforementioned algorithms are randomized. This state
of affairs is unusual when contrasted with the regimes of smooth or convex optimization, where
deterministic optimal dimension-free first-order algorithms exist and cannot be improved upon by
randomized algorithms (Nesterov, 2018; Carmon et al., 2021). This raises a fundamental question:

What is the role of randomization in dimension-free nonsmooth nonconvex
optimization?

1. Namely, x € R? such that min{||g|| : g € 9f(x)} < e.
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1.1. Our Contributions

This paper presents several results on the complexity of finding (J, €)-Goldstein stationary points
using deterministic algorithms, providing a detailed answer to the question raised above. Our con-
tributions can be summarized as follows:

1. Necessity of randomness for dimension-free complexity (Theorem 1). We show that de-
terministic algorithms cannot find (4, €)-Goldstein stationary points at any dimension-free
rate, by proving a dimension-dependent lower bound of 2(d) for any deterministic first-order
algorithm, where 9, ¢ > 0 are smaller than given constants.

2. Deterministic algorithms require a zeroth-order oracle (Theorem 2). In sharp contrast
to smooth or convex optimization, we prove that without access to function values, no deter-
ministic algorithm can guarantee to return a (J, €)-Goldstein stationary point within any finite
time, whenever §,¢ > 0 are smaller than given constants. On the other hand, we note that
a gradient oracle is sufficient to obtain a finite-time guarantee using a randomized algorithm
(Remark 3).

3. Deterministic algorithm with logarithmic smoothness dependence (Theorem 5). Con-
sidering cases in which the objective function is slightly smooth, we present a deterministic
first-order algorithm that finds a (J, €)-Goldstein stationary point of any H-smooth function
within O(log(H)d~Le~?) oracle calls.?

4. Deterministic smoothing (Theorem 7 and Theorem 10). We show that unlike random-
ized black-box smoothings, no deterministic black-box smoothing can produce a reason-
able poly(d)-smooth approximation using a dimension-free complexity, essentially solving
an open question due to Kornowski and Shamir (2021). On the other hand, in a practical
white-box model of ReLU neural networks, we propose a simple, dimension-free, determin-
istic smoothing procedure which applies to a variety of architectures, while provably main-
taining the set of (J, €)-Goldstein stationary points. Combined with the algorithm described in
the previous bullet, we obtain the first deterministic, dimension-free algorithm for optimizing
ReLU networks, circumventing our aforementioned lower bound.

Related work. Following an initial publication of our results, Tian and So (2022) have indepen-
dently presented an alternative proof of our first result (Theorem 1). A more detailed account of
previous results in nonsmooth nonconvex optimization is deferred to Appendix A.

2. Preliminaries and Technical Background

Notation. We denote [d] := {1,2,...,d}. We denote by 0; € R? the zero vector and by
e1,es,...,e; € R? the standard basis vectors. For any vector x € R%, we let |x| be its Eu-
clidean norm, and denote by x; its ih coordinate. For a set X C RY, we let conv(X') denote its
convex hull. For a continuous function f(-) : R% — R, we let V f(x) denote the gradient of f at x
(if it exists). For a scalar a € R, we let |a] and [a] be the smallest integer that is larger than ¢ and
the largest integer that is smaller than a. In addition, we denote a closed ball of radius r > 0 around
a point x € R by B,(x) := {y € R? : |ly — x|| < r}. Given a bounded segment I C R, we

2. A function f : R? — Ris called H-smooth if for all x,y € R : |V f(x) — Vf(x)|| < H||x — y].
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denote by & ~ U(I) a random variable distributed uniformly over /. Finally, we use the standard
big-O notation, with O(-), ©(-) and €2(-) hiding absolute constants that do not depend on problem
parameters, O(-) and Q(-) hiding absolute constants and additional logarithmic factors, and also
denote by poly(-) polynomial factors.

Nonsmooth analysis. We call a function f : R? — R L-Lipschitz if for any x,y € R? : | f(x) —
f(y)| < L||x — y||, and H-smooth if it is differentiable and V f : R? — R? is H-Lipschitz, namely
for any x,y € R? : ||Vf(x) — Vf(y)|| < H|x—yl|. By Rademacher’s theorem, Lipschitz
functions are differentiable almost everywhere (in the sense of Lebesgue). Hence, for any Lipschitz
function f : R? — R and point x € R¢ the Clarke subgradient set (Clarke, 1990) can be defined as

0f(x) :=conv{g : g = nh—>Holo Vi(xn), Xn — X},

namely, the convex hull of all limit points of V f(x,,) over all sequences of differentiable points
which converge to x. Note that if the function is continuously differentiable at a point or convex,
the Clarke subdifferential reduces to the gradient or subgradient in the convex analytic sense, respec-
tively. We say that a point x is an e-Clarke stationary point of f(-) if min{||g|| : g € 9f(x)} < e.
Furthermore, given § > 0 the Goldstein J-subdifferential (Goldstein, 1977) of f at x is the set

95 f (x) := conv (Uyep,x)0f(¥))

namely all convex combinations of gradients at points in a d-neighborhood of x. We say that a point
x is a (9, €)-Goldstein stationary point of f(-) if

min{||g| : g € 05 f(x)} <e.

Note that a point is e-Clarke stationary if and only if it is (0, €)-Goldstein stationary for all § > 0
(Zhang et al., 2020, Lemma 7). Moreover, if f is H-smooth and x is a (4, €)-Goldstein stationary
point of f, then it is also (6 + He)-Clarke stationary (this can be proven similarly to Zhang et al.,
2020, Proposition 6).

Algorithms and complexity. Throughout this work we consider iterative first-order algorithms,
from an oracle complexity perspective (Nemirovski and Yudin, 1983). Such an algorithm first pro-
duces an initial point xo € R? (possibly at random, if it is a randomized algorithm) and receives
(f(x0),0f(x0)).> Then, for any ¢ > 1 produces x; possibly at random based on previously ob-
served responses, and receives (f(x;),0f(x;)). We are interested in the minimal number 7" for
which we can guarantee to produce some (9, €)-Goldstein stationary point, uniformly over the class
of Lipschitz functions.

3. Lower bounds for deterministic algorithms

3.1. Dimension-dependent lower bound

As discussed earlier, (Zhang et al., 2020; Davis et al., 2022; Tian et al., 2022) have presented ran-
domized first-order algorithms that given any L-Lipschitz function f : R¢ — R and an initial point

3. For the purpose of this work it makes no difference whether the algorithm gets to see some subgradient or the whole
Clarke subgradient set. That is, the lower bounds to follow hold even if the algorithm has access to the entire
subgradient set, while the upper bounds hold even if the algorithm receives a single arbitrary subgradient.
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X that satisfies f(xo) — infx f(x) < A, produce a (, €)-Goldstein stationary point of f within
O(AL?/5¢3) oracle calls to f. We show that this rate, and indeed any dimension-free rate, cannot
be achieved by a deterministic algorithm.

Theorem 1 Forany A,L >0, d > 3, any T < d — 2 and any deterministic first-order algorithm,
there exists an L-Lipschitz function f : R? — R such that f(xq) — infy f(x) < A, yet the first
T iterates produced by the algorithm when applied to f are not (0, €)-stationary points for any
§< 2, e< o

Our result highlights that even though finding a (J, €)-Goldstein stationary point in nonsmooth
nonconvex optimization is computationally tractable using a randomized algorithm, it is essentially
harder than finding an e-stationary point in smooth nonconvex optimization without randomization
as it requires 2(d) oracle calls. We also note that Theorem 1 holds true regardless of the relation-
ship between the dimension d and the parameters (d, €), in contrast to the dimension-independent
lower bounds established for nonsmooth convex optimization (Nesterov, 2018), where the accuracy
parameter must scale polynomially with 1/d. Finally, we emphasize that the theorem holds true for
any algorithm whose update rule is deterministic, a condition satisfied by many algorithms which
are typically referred to as “stochastic” (due to their ability to handle noisy gradients).

The full proof of Theorem 1 is deferred to Appendix B.1, though we will now provide a proof
sketch. For any deterministic first-order algorithm, if an oracle can always return the “uninfor-
mative” answer f(x;) = 0,V f(x¢) = e; this fixes the iterates X1, ..., x7. Hence, it remains to
construct a Lipschitz function that will be consistent with the oracle answers, yet all the queried
points are not (J, €)-stationary. To that end, we construct a function which in a very small neigh-
borhood of each queried point x; looks like x +— e]—(x — x¢), yet in most of the space looks like
X + max{v'x, —1}, which has (9, ¢)-stationary points only when x is correlated with —v. By
letting v be some vector which is orthogonal to all the queried points (which is possible as long as
T < d — 1), we obtain the result.

This construction relies crucially on the function being highly nonsmooth—essentially interpo-
lating between two orthogonal linear functions in an arbitrarily small neighborhood. As it will turn
out, if the function to be optimized is even slightly smooth, then the theorem can be bypassed, as
we will show in Section 4.

3.2. Lower bound for gradient-only oracle

In this section, we demonstrate the importance of having access either to randomness or to a zeroth-
order oracle, namely to the function value. In particular, we prove that any deterministic algorithm
which has access only to a gradient oracle cannot return an approximate Goldstein stationary point
within any finite number of iterations.

Theorem 2 Forany0 < § < e < 1,anyd € N, T < oo, and any deterministic algorithm which
has access only to a gradient oracle, there exists a 1-Lipschitz function f : R¢ — [—1, 1] such that
the algorithm cannot guarantee to return a (9, €)-Goldstein stationary point using T oracle calls.

We will now sketch the proof; see Appendix B.2 for the full proof. We can assume without
loss of generality that d = 1 (otherwise we can simple apply the “hard” construction to the first
coordinate). Suppose a deterministic algorithm has access only to a derivative oracle, which always
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returns the “uninformative” answer f’(x;) = 1. This fixes the algorithm’s iterates x,...,Xr,
which then attempts to guarantee that some returned point X is a (4, €)-stationary point. It remains
to construct a Lipschitz function that will be consistent with the oracle answers, yet X will not be
(6, €)-stationary. To that end, we construct a function which looks like x — x — X in a long enough
segment around X, ensuring it is indeed not (0, €)-stationary. On the other hand, in a very small
neighborhood of each queried point x; we add a “bump” so that the function looks like x — x — x,
consistent with our resisting oracle. Finally, far away from all queried points we let the function be
constant, so that its image remains in [—1, 1].

Remark 3 In contrast with Theorem 2, there exist randomized algorithms that access only a gra-
dient oracle and guarantee to return a (9, €)-Goldstein stationary point in finite-time. Indeed, Lin
et al. (2022, Theorem 3.1) have shown that for fs(x) = Ey.p;x)Lf(0)] it holds that V fs(x) =
Eu~Bsx)[Vf(u)] € Osf(x) (where u ~ Bs(x) is distributed uniformly over a Euclidean ball
of radius § centered at x), thus it suffices to find an e-stationary point of fs. But since V f(u)
is an unbiased estimator of V f5(x) and ||V f(u)| < L, this is well known to be possible us-
ing stochastic gradient descent (Ghadimi and Lan, 2013). In particular, the same argument as in
the proof of Lin et al. (2022, Theorem 3.2) shows that it is possible to find such a point within
O(Wd(L*e* 4+ AL~ e %)) calls to a gradient oracle.

Remark 4 Note that in nonsmooth convex optimization or in smooth nonconvex optimization, a
deterministic algorithm can obtain (0, €)-Goldstein stationary points using only a gradient oracle,
even at a dimension-free rate. Indeed, in the nonsmooth convex case gradient descent returns x
such that f(x) — infy f(x) < de within O(6~2e~2) gradient evaluations, and any such point is in
particular a (5, €)-Goldstein stationary point.* Similarly, in the smooth nonconvex setting gradient
descent returns an e-stationary point within O(e~2) gradient evaluations, which is trivially also a
(6, €)-Goldstein stationary point.

4. Deterministic algorithm for slightly smooth functions

In this section we show that if the objective function is even slightly smooth, then the dimension
free rate of O(d~'e~3) can be obtained by a deterministic first-order algorithm, incurring a mild
logarithmic dependence on the smoothness parameter.

Theorem 5 Suppose f : R® — R is L-Lipschitz, H-smooth, and xo € R? is such that f(xg) —
infy f(x) < A. Then DETERMINISTIC-GOLDSTEIN-SG(Xq, d, €) (Algorithm 2) is a deterministic
first-order algorithm that given any 6,e¢ € (0,1) returns a (6, €)-Goldstein stationary point of f

within T = O <%> oracle calls.

The idea behind this de-randomization is to replace a certain randomized line search in the al-
gorithms of Zhang et al. (2020); Davis et al. (2022); Tian et al. (2022), which in turn are based
on Goldstein (1977), with a deterministic binary search subroutine, Algorithm 1. This subroutine
terminates within O(log(HJ/¢)) steps provided that the function is H-smooth. We note that such
a procedure was derived by Davis et al. (2022) for any H-weakly convex function along differen-
tiable directions, and since any H-smooth function is H-weakly convex and differentiable along

4. Otherwise, let g be the minimal norm element in 95 f (x), and assume by contradiction that ||g|| > €. Then Goldstein
(1977) ensures that f(x — ﬁg) < f(x) — d|lg|| < f(x) — de < infx f(x) which is a contradiction.
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Algorithm 1 BINARY-SEARCH(J, V f(-), g0, X)
Initialization: Set b <+ §, a < O and ¢ < b.
while —V f (x — t782r) - 182 + J|go| > — do
Sett < “TH’.
if f(x — 5”278”) + %HgoH > flx— t||§8||) + §llgol| then
Set a + t.
else
Set b + t.
end if
end while

. _ + 80
Output: V f(x t\lggll)’

Algorithm 2 DETERMINISTIC-GOLDSTEIN-SG(x, d, €)

1: Input: initial point xq € R, accuracy parameters §, ¢ € (0, 1).
2: fort=20,1,2,..., T —1do

30 Setg(xt) < Vf(x¢).

s while f(x; — 675X0) — £(x,) > 3 glx,)] and g(x,)| > € do
5 Set new < BINARY-SEARCH(G, V f(+), g(x¢), X¢).

6: h; < arg min{||g(x¢) + A(8new — &(x¢))[| : 0 < A < 1}.
7 g(Xt) < hy.

8:  end while

9: if ||g(x¢)|| < e then

10: Stop.

11:  else

12: X141 ext—dﬁ.

13:  end if

14: end for

15: Output: x;.

any direction, this can be applied in an identical manner. Although this algorithmic ingredient ap-
pears inside a proof of Davis et al. (2022), they use it in a different manner in order to produce
a randomized algorithm for weakly convex functions in low dimension, with different guarantees
suitable for that setting. We defer the full analyses of Algorithm 1, Algorithm 2 which lead to the
proof of Theorem 5 to Appendix B.3.

5. Deterministic smoothings

Motivated by the mild smoothness dependence of DETERMINISTIC-GOLDSTEIN-SG (Algorithm
2) as proved in Theorem 5, we turn to the design of smoothing procedures. These are algorithms
that act on a Lipschitz function, and return a smooth approximation—allowing the use of smooth
optimization methods. Smoothing nonsmooth functions in order to allow the use of smooth op-
timization algorithms is a longstanding approach for nonsmooth nonconvex optimization, both in
practice and in theoretical analyses. We refer to Appendix A for references. From a computational
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perspective, it is not clear what it means for an algorithm to “receive” a real function as an input.
For this reason, we make the distinction between “black-box” smoothings which are granted oracle
access to the original function, and “white-box” smoothings which are assumed to have access to
additional structural information.

5.1. Black-box smoothings

Recently, Kornowski and Shamir (2021) have studied black-box smoothings from an oracle com-
plexity viewpoint. One of their main results is that randomized smoothing (Duchi et al., 2012) is
an optimal smoothing procedure, in the sense that no efficient black-box smoothing procedure can
yield an approximation whose smoothness parameter is lower than O(\/ﬁ), which is achieved by
randomized smoothing. In particular, this implies that any efficient black-box smoothing unavoid-
ably suffers from some dimension dependence. In that paper, the authors posed the open question
of assessing what can be achieved by a deterministic black-box smoothing, since efficient random-
ized smoothing is only able to return stochastic estimates of the smoothed function. We solve this
question for all “reasonable” smoothing procedures, as defined next. Without loss of generality, we
consider functions whose Lipschitz constant is 1, since if the objective function is L-Lipschitz the
algorithm can simply rescale it by L.

Definition 6 An algorithm S is called a black-box smoothing with complexity T € N, if it uses a
first-order oracle of a 1-Lipschitz function f : R® — R, such that given any x € R® it sequentially
queries f’s oracle at T points and returns f(x), gx = Vf(x) for some smooth fv: R? — R. We
say that the smoothing algorithm is meaningful if ]? is poly(d)-smooth, and any (0, €)-Goldstein
stationary point of f is a (poly (6, €), poly (9, €))-Goldstein stationary point of f.

In other words, a smoothing fails to be meaningful if either the smooth approximation has super-
polynomial smoothness (thus can hardly be treated as smooth), or introduces completely “fake”
approximately-stationary points of f 2> The latter case implies that running a nonconvex optimiza-
tion algorithm over f fails to provide any meaningful guarantee for the original function f. Note
that these assumptions are extremely permissive, as we allow for any polynomial parameter blow-
up, and do not even quantify the requirement regarding the accuracy of the approximation. Notably,
all black-box smoothings considered in the literature, including randomized smoothing and the
Moreau- Yosida smoothing for weakly-convex functions (Davis and Drusvyatskiy, 2019), are easily
verified to be meaningful (and, indeed, satisfy more stringent conditions with respect to the original
function). Further note that the randomized complexity of these procedures is dimension-free.

Under this mild assumption, our previous theorems readily imply a answer to the question posed
by Kornowski and Shamir (2021).

Theorem 7 There is no deterministic, black-box meaningful smoothing algorithm with dimension-
free complexity.

Proof. Assuming towards contradiction there is such a smoothing algorithm S, we compose it
with DETERMINISTIC-GOLDSTEIN-SG. Namely, given any Lipschitz f, we consider the first-order
algorithm obtained by applying Algorithm 2 to f = S(f). Since f is poly(d)-smooth, and any

5. It is important to recall that for smooth fthe notions of approximate-Clarke stationarity and approximate-Goldstein
stationarity coincide (Zhang et al., 2020, Proposition 6).
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(6, €)-Goldstein stationary point of fisa (poly (4, €), poly(d, €))-Goldstein stationary point of f, by
Theorem 5 we obtain overall a deterministic algorithm that finds a (poly(d, €), poly(d, €) )-Goldstein
stationary point of f within O(log(poly(d)) - poly(6—,e~1)) = O(log(d) - poly(6—1, e~ 1)) first-
order oracle calls—contradicting Theorem 1. g

5.2. Deterministic smoothing of ReLLU networks

In this section we introduce a smoothing technique that can be applied to optimization of non-
smooth functions, provided that they are expressed as ReLUs in a neural network accessible to the
smoothing procedure. The idea of utilizing the representation of a function, as opposed to just
having oracle access to it, has been commonly used across diverse domains, from purely theoretical
applications e.g., computational complexity theory, Daskalakis and Papadimitriou, 2011; Fearnley
et al., 2021 to practical applications e.g., deep neural networks, LeCun et al., 2015; Goodfellow
et al., 2016. We refer to this function representation as the white-box model to contrast it with the
previously discussed black-box model. Our results demonstrate that having such a white box access
is powerful enough to allow for meaningful deterministic smoothing, as opposed to the black-box
model whose insufficiency is established in Theorem 7.

We start by giving a brief overview of the key observation underlying our deterministic smooth-
ing approach. Consider a single ReLU neuron with a bias term, namely for some point x € R
weight w € R% and bias b € R :

(x,w,b) — relu(w ' x 4 b) := max{w ' x +b,0} . (5.1)

We replace the nonsmooth ReLLU with a smooth, carefully chosen “Huberized” function:

z, z 2>
softrelu, (z2) = E¢p—y y[relu(z + §)] = % , Y < z<y,
0, z < =7

for some small v > 0. Accordingly, we obtain the “smoothed” neuron of the form

(x, W, b) — softrelu, (w ' x + b)

wix+b, W x+b>n~
.
= Egpyfoyreln(w x + (b4 €))] = § &0y < wTxp b <y
0, wix+b< —

Optimizing the function above (as a component of a larger neural network) with respect to (w, b)
is the goal of any optimizer seeking to “train” the network’s parameters to fit its input x. We
see that on one hand the smoothed neuron is a closed-form smooth approximation of the ReLU
neuron in Eq. (5.1), yet is mathematically equivalent to randomized smoothing over the bias term.
Hence, we obtain the meaningful guarantees of randomized smoothing, namely that optimizing
the smoothed model corresponds to optimizing the original nonsmooth function, without the need
for randomization. Moreover, as opposed to plain randomized smoothing which would smooth with
respect to (w, b) € R4*!, thus suffering from a dimension dependence in the smoothness parameter,
smoothing over b alone avoids dependence on d. Overall, replacing all ReLU neurons of a network
with smoothed neurons is mathematically equivalent to randomized smoothing over the parameter
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subspace corresponding to all bias terms, reducing the dimension-dependence to a dependence on
the number of biases, roughly the size of the network.

We now formally describe the class of representations that our smoothing procedure will apply
to. It is easy to see that this class contains ReLU neural networks with biases of arbitrary depth and
width, including many architectures used in practice.

Definition 8 (Neural Arithmetic Circuits (NAC)) We say that C is a neural arithmetic circuit with
biases if it is represented as a directed acyclic graph with four different group of nodes: (i) in-
put nodes; (ii) bias nodes, (iii) output nodes; and (iv) gate nodes. The gate node can be one of
{+,relu, x, const(c)}, where const(c) stands for a constant ¢ € [—1,1]. Moreover, a valid NAC
with biases satisfies the following conditions:

1. There is at least one input node. Every input node has 0 incoming edges and any number of
outgoing edges.

2. The number of bias nodes is equal to the number of relu gates. Every bias node has 0 incom-
ing edges, and only one outgoing edge.

3. The gate nodes in {+, x} have two incoming edges, and any number of outgoing edges.”
4. The gate node const(c) has 0 incoming edges, and any number of outgoing edges.

5. The gate node relu has 1 incoming edge but any number of outgoing edges. We also assume
that all the relu gates have biases, i.e., the predecessor vertex of a relu gate is always a “+”
gate connected to a bias node that is unique for every relu gate.

6. There is only one output node that has I incoming edge and 0 outgoing edges.

We denote by s(C) the size of C (i.e., the number of nodes in the graph of C).

The interpretation of C as a function f : R? — R is very intuitive. The input nodes correspond
to the input variables x1, ..., x4, followed by a gate node defining arithmetic operations over their
input, finally producing f(x) in the output node.

Example 1 Consider training a neural network ®w , to fit a labeled dataset (x;,vy;);—, with
respect to the quadratic loss, where W , b are the vectors of weights and biases of ®, respectively.
This task corresponds to minimizing the following function:
n
F(W,b) =" (Pwn(x:) —v:)°

i=1
It is easy to see that this function can be expressed as a neural arithmetic circuit according to Defini-
tion 8. The only requirement for @ y, is that every relu gate has a unique bias variable. Examples
for such ®w y, include feed-forward ReLU networks, convolutional networks, and residual neural
network with skip connections.

6. Note that due to dependencies between neurons at different layers, this does not correspond to standard randomized
smoothing with respect to an isotropic distribution, but rather to a nontrivial distribution capturing the dependencies
among different bias terms. We remark that this is a major technical challenge in proving Theorem 10 to follow.

7. We can generalize it to the case of any finite number of inputs. Focusing on two incoming edges does not lack the
generality since we can always compose these gates to simulate addition and maximum with many inputs by just
increasing the size and the depth of the circuit by a logarithmic factor.
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Following the example above, we see that the problem of finding a (9, €)-Goldstein stationary
point of a function represented by a neural arithmetic circuit C captures a wide range of impor-
tant nonsmooth and nonconvex problems. To prove the efficiency of our proposed method, we
need to impose the following assumption, measuring the extent to which function values increase
throughout the neural arithmetic circuit. We note in Remark 9 that this assumption is satisfied by
the practical design of deep neural networks.

Assumption 5.1 For G > 0, we say that h : R? — R is G-bounded over R if |h|r| < G. Suppose
f : R% — R is represented as a linear arithmetic circuit C. Let v1, ..., v, be the nodes in C and
fi be the function that would be computed if v; were the output of the neural circuit. We assume
that there is a set R C RY, such that for all i € [n] : f; is L;-Lipschitz and G;-bounded over R,
according to the following composition rules:

- v is a + gate: if f; = f; + fi then Ly = Lj + Ly, and G; = G + Gy,

- v;is arelugate: if f; = relu{f;} then L; = Lj and G; = G;.

- v;is a const(c) gate: L; = 0and G; = c.

- viisa X gate: if f; = f; - fr then Ly = L; - G, + G - Ly, and G; = G - G},
- v; is a input or a bias node: L; = 1, G; = diam(R) (the diameter of R).

In particular, we assume that f is L-Lipschitz and G bounded over R according to the rules above.
In this case, we say that f is L-recursively Lipschitz and G-recursively bounded in R.

Remark 9 Note that the recursive rules used in Assumption 5.1 always provide an upper bound on
L > 0, however this bound can be much larger than the true Lipschitz constant L in the worst-case.
To bypass these bad cases, we impose Assumption 5.1. Notably, this assumption is not theoretically
artificial but is satisfied by generic constructions of neural networks in the context of deep learning.
Indeed, since the 4+ and X gates are often used consecutively, leading to a bad Lipschitz constant in
the worst case, practitioners often force these upper bounds to be as small as possible by employing
normalization techniques in order to stabilize the training (loffe and Szegedy, 2015; Miyato et al.,
2018).

As previously discussed, our deterministic smoothing idea is to replace the relu activation func-
tion with its carefully chosen smooth alternative softrelu. We emphasize that this smoothing proce-
dure is simple, implementable and inspired by techniques that are widely accepted in practice (e.g
Tatro et al., 2020; Shamir et al., 2020). While proving that this results in a smooth approximation of
the original function is relatively straightforward, the main novelty of our proof is showing that any
(6, €)-Goldstein stationary point of the smoothed model is a (4, €)-Goldstein stationary point of the
original, following from our observation of the equivalence to randomized smoothing with respect
to a low dimensional subspace. This is crucial, as it allows optimization of the original function to
be carried through the smoothed model. We are now ready to state our main theorem in this section,
whose proof is deferred to Appendix B.4.

Theorem 10 Let f : R* — R be a L-recursively Lipschitz and G-recursively bounded function in
R C R (see Assumpti0n~5.] ), represented by a neural arithmetic circuit C. For every v > 0, we
can construct a function f : R® — R such that for all x € R it holds that:
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1F) = FRI <.

f is L-Lipschitz and G-bounded.

~

N

7. (G-0)°(9)
. f IA) m-smOOﬂ’l.

|9

N

. Every (9, €)-Goldstein stationary point of fisa (0', €')-Goldstein stationary point of f with
€ = 2eand ' = 20.

At first glance, the smoothness parameter provided by the theorem above, though dimension-
independent, may seem overwhelming as it depends exponentially on the size of the network. Luck-
ily, this brings us back to Theorem 5 where we have proved that it is possible to incur merely a loga-
rithmic dependence on this parameter, resulting in the following corollary by setting v = min{e, 4 }.

Corollary 11 Let f : R? — R be a L-recursively Lipschitz and G-recursively bounded function
in R C RY (see Assumption 5.1), represented by a neural arithmetic circuit C. Then if we apply
DETERMINISTIC-GOLDSTEIN-SG (Algorithm 2) to the function fdeﬁned in Theorem 10 and R is
such that the algorithm’s iterates do not escape R, the algorithm is guaranteed to return a (0, €)-

Goldstein stationary point of f using O (GLQS(C) ;:;g(GLé/ 6)) first-order oracle calls.

6. Conclusion

We have provided lower and upper bounds on the complexity of finding an approximate (9, €)-
Goldstein stationary point of a Lipschitz function in deterministic nonsmooth and nonconvex op-
timization. We have shown that unlike dimension-free randomized algorithms, any deterministic
first-order algorithm must suffer from a nontrivial dimension dependence, by establishing a lower
bound of €2(d) for any dimension d, whenever 6, ¢ > 0 are smaller than given constants. Further-
more, we established the importance of a zeroth-order oracle in deterministic nonsmooth nonconvex
optimization, by proving that any deterministic algorithm that uses only a gradient oracle cannot
guarantee to return an adequate point within any finite time. Both lower bounds stand in contrast to
randomized algorithms, as well as deterministic smooth nonconvex and nonsmooth convex settings,
emphasizing the unique difficulty of nonsmooth nonconvex optimization.

We have also provided a deterministic algorithm that achieves the best known dimension-free
rate with merely a logarithmic smoothness dependence, allowing de-randomization for slightly-
smooth functions. This motivated the study of deterministic smoothings, in order to apply our algo-
rithm for nonsmooth problems. We proved that unlike existing randomized smoothings, no efficient
deterministic black-box smoothing can provide any meaningful guarantees, providing an answer to
an open question raised in the literature. Moreover, we have bypassed this impossibility result in a
practical white-box model, providing a deterministic smoothing for a wide variety of widely used
neural network architectures which is provably meaningful from an optimization viewpoint. Com-
bined with our algorithm, this yields the first deterministic, dimension-free algorithm for optimizing
such networks, circumventing our lower bound.

As to future directions, it is interesting to note that our lower bound for deterministic first-
order optimization is linear with respect to the dimension, though we are not aware of any such
algorithm with sub-exponential dimension dependence (namely, better than exhaustive grid-search).
Therefore, we pose the following question:

12



DETERMINISTIC NONSMOOTH NONCONVEX OPTIMIZATION

Open problem: Is there a deterministic first-order algorithm for nonsmooth nonconvex
optimization that returns a (6, ¢)-Goldstein stationary point using poly(d,d~ ', e1)
oracle calls?
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Appendix A. Related Work

To appreciate the difficulty and the scope of research agenda in nonsmooth nonconvex optimiza-
tion, we describe the relevant literature. In this context, existing research is mostly devoted to
establishing the asymptotic convergence of optimization algorithms, including the gradient sam-
pling (GS) method (Burke et al., 2002a,b, 2005; Kiwiel, 2007; Burke et al., 2020), bundle meth-
ods (Kiwiel, 1996) and subgradient methods (Benaim et al., 2005; Davis et al., 2020; Daniilidis and
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Drusvyatskiy, 2020; Bolte and Pauwels, 2021). More specifically, Burke et al. (2002a) provided
the systematic investigation of approximating a generalized gradient through a simple yet novel
random sampling scheme, motivating the subsequent development of celebrated gradient bundle
method (Burke et al., 2002b). Then, Burke et al. (2005) and Kiwiel (2007) proposed the modern GS
method by incorporating key modifications into the scheme of the aforementioned gradient bundle
method and proved that any cluster point of the iterates generated by the GS method is a Clarke
stationary point. For an overview of GS methods, we refer to Burke et al. (2020).

There has been recent progress in the investigation of different subgradient methods for non-
smooth nonconvex optimization. It was shown by Daniilidis and Drusvyatskiy (2020) that the
standard subgradient method fails to find any Clarke stationary point of a Lipschitz function, as
witnessed by the existence of pathological examples. Benaim et al. (2005) established the asymp-
totic convergence guarantee of stochastic approximation methods from a differential inclusion point
of view under additional conditions and Bolte and Pauwels (2021) justified automatic differentia-
tion as used in deep learning. Davis et al. (2020) proved the asymptotic convergence of subgradient
methods if the objective function is assumed to be Whitney stratifiable. Turning to nonasymptotic
convergence guarantee, Zhang et al. (2020) proposed a randomized variant of Goldstein’s subgra-
dient method and proved a dimension-independent complexity bound of O(5~'e=3) for finding a
(6, €)-Goldstein stationary point of a Hadamard directionally differentiable function. For the more
broad class of Lipschitz functions, Davis et al. (2022) and Tian et al. (2022) have proposed two other
randomized variants of Goldstein’s subgradient method and proved the same complexity guarantee.
Comparing to their randomized counterparts, deterministic algorithms are relatively scarce in non-
smooth nonconvex optimization.

In convex optimization, we have a deep understanding of the complexity of finding an e-optimal
point (i.e., x € R? such that f(x) — inf,cpa f(x) < €) (Nemirovski and Yudin, 1983; Guzmén
and Nemirovski, 2015; Braun et al., 2017; Nesterov, 2018). In smooth nonconvex optimization,
various lower bounds have been established for finding an e-stationary point (i.e., x € R such
that ||V f(x)|| < €) (Vavasis, 1993; Nesterov, 2012; Carmon et al., 2020, 2021). Further extensions
to nonconvex stochastic optimization were given in Arjevani et al. (2020, 2022) while algorithm-
specific lower bounds for finding an e-stationary point were derived in Cartis et al. (2010, 2012,
2018). However, these proof techniques can not be extended to nonsmooth nonconvex optimization
due to different optimality notions. In this vein, Zhang et al. (2020) and Kornowski and Shamir
(2021) have demonstrated that neither an e-Clarke stationary point nor a near e-Clarke stationary
point can be obtained in a poly(d, e 1) number of queries when € > 0 is smaller than some constant.
Our analysis is inspired by their construction and techniques but focus on establishing lower bounds
for finding a (J, €)-Goldstein stationary point.

The smoothing viewpoint starts with Rockafellar and Wets (2009, Theorem 9.7), which states
that any approximate Clarke stationary point of a Lipschitz function is the asymptotic limit of appro-
priate approximate stationary points of smooth functions. In particular, given a Lipschitz function
f, we can attempt to construct a smooth function f that is d-close to f (i.e., |[f — glloc < 6)s
and apply a smooth optimization algorithm on f. Such smoothing approaches have been used
in convex optimization (Nesterov, 2005; Beck and Teboulle, 2012) and found the application in
structured nonconvex optimization (Chen, 2012). For a general Lipschitz function, Duchi et al.
(2012) proposed a randomized smoothing approach that can transform the original problem to a
smooth nonconvex optimization where the objective function is given in the expectation form and
the smoothness parameter is dimension-dependent. Moreover, there are deterministic smoothing
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approaches that yield dimension-independent smoothness parameters but they are computationally
intractable (Lasry and Lions, 1986; Attouch and Aze, 1993). Recently, Kornowski and Shamir
(2021, 2022) have explored the trade-off between computational tractability and smoothing, ruling
out the existence of any (possibly randomized) smoothing approach that achieves computational
tractability and a dimension-independent smoothness parameter.

Appendix B. Proofs
B.1. Proof of Theorem 1

Fixd > 3, AL > 0andlet T < d — 2. Consider the case that for any ¢t € [T" — 1] the first-
order oracle response is f(x;) = 0,V f(x;) = ej. Since the algorithm is deterministic this fixes
the iterate sequence xy,...,x7. We will show this resisting strategy is indeed consistent with a
function which satisfies the conditions in the theorem.

To that end, we denote r := min<;»j<7 [|X; — X;{|/4 > 0 (without loss of generality) and fix
some v € (span{ey,Xi,...,x7})* with ||v|| = 1 (which exists since d > T + 2). For any z € R?
we define

g2(x) := min{||x — z|*/r*, 1}v x + (1 — min{||x — z*/r? 1} )e] (x — z) ,
and further define

h(x) :=

vix, Vie[T): ||lx—x¢| >r
gx, (%), T E[T]:|x—xff <7

Note that h is well defined since by definition of r there cannot be ¢ # j such that ||x — x;|| < r
and ||x — x| <.

Lemma 12 h : R? — R as defined above is T-Lipschitz, satisfies for any t € [T] : h(x;) =
0, Vh(x¢) = ey and has no (6, 35 )-stationary points for any § > 0.

n—oo

Proof. We start by noting that & is continuous, since for any z and (y,)5°; C B.(2), yn — ¥y
such that |y — z|| = r we have

255, hlyn) = Jim, ga(yn)
= lim (miﬂ{Hyn —z|?/r?, 1}v yp + (1 - min{ly, — 2]/, 1})e] (yn — Z)>

n—r00 r2 r2
=v'y.
Having established continuity, since x ~ v ' x is clearly 1-Lipschitz (in particular 7-Lipschitz), in

order to prove Lipschitzness of A it is enough to show that gy, (x) is 7-Lipschitz in ||x — x¢|| < r
for any x;. For any such x, x; we have

2v I x X — x4 2¢e (x — x X — x4
Vs, (%) 5 (x — x¢) I . al v =1 ( : t) (x —x;) — wel + e
T r r T
T 2 T 2
1x; 2vi(x—x X —X 2e! (x —x X —X
vix; (th)(x_xt) | = e, 1(7’2 t)(X—Xt)_Wel+e1’

(B.1)
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hence
vl (x —x x — x4 2¢e (x — x x — x4
19w ()l = | B2 oy ol Zeslxmxd) o) Ixmxlly )
r T T T
2v] - llx = x* | [lx = x4 2lleq ]| - [Ix — x> | flx —x?
< 5 + 5 Ivl + 5 + 5——lle]| + [lei]]
r r T r

<24142+141=7,

which proves the desired Lipschitz bound. The fact that for any ¢ € [T] : h(x¢) = 0, Vh(x;) = e;
is easily verified by construction and by Eq. (B.1). In order to finish the proof, we need to show that
h has no (9, 3—16) stationary-points. By construction we have
vVt e [T : — >
o) {¥ (7] = > 7
Vg, (x), TFe[T]:||x—x <r

while for ||x — x;|| = r we would get convex combinations of the two cases.® Inspecting the set
{Vgx, (%) : ||x —x¢|| < r} through Eq. (B.1), we see that it depends on x, x; only through x — x;
and that actually

{Vgx, (x) = [lx = x4 <7} = {Vgo, (%) : [[x[| <7},

which is convenient since the latter set does not depend on x;. Overall, we see that any convex
combination of gradients of 4 is in the set

2 T 2 9 T 2
{/\1v+/\2( Y Xt I s S I e1+61> PAL A2 > 0,A1 + Ag =1, [|x]| ST}

r2 r2 r2 r2
:{Mv+A2@VBox+WXWV—2Q&'X—Wﬂ%1+m)LMJQZQArh&zlﬂngl}

= {0+ alIXIP)V + 222((v = 1) Tx)x + Ao (1 = [xIP)er s Az = 0,00+ do = 1, x| <1} -

We aim to show that the set above does not contain any vectors of norm smaller than %. Let u be
an element in the set with corresponding A1, A2, x as above. If ||u|| > 1 then there is nothing to
show, so we can assume ||u|| < 1. We have

u'v = 4 Xx]P 20 (v—e) 'x-xV
= A+ Ao + 2202 (vTx)% — 20 x - x TV
> A+ A (VIX)? + Aa(e] x)2 4 200 (v x)? — 20efx - x v
=M+ da(vix—e/x)2 + 2\ (v x)?
>\ + )\Q(VTX — eirx)2
> Ma(vix—elx)?, (B.2)

8. Since we are interested in analyzing the J-subdifferential set which consists of convex combinations of subgradients,
and subgradients are defined as convex combinations of gradients at differentiable points - it is enough to consider
convex combinations of gradients at differentiable points in the first place.
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which gives

u'(e1+v) =M+ +20 (v ix—elx)(e/x+Vv

>1—4)|vix—e]x|

(B.2)
> 1—-4 )\QuTV .

TX)

Hence
1< |u'(e; +v)| +4vV uTv < |[u] - |[er + V|| + 4/ ul|
luf|<1
<V2llul+4y/Jull < V2[[ull +4y/]u]]

1 1

= jjul| > —m———— > — .

Given the previous lemma we can easily finish the proof of the theorem by looking at

o) = max { T, -}

f is L-Lipschitz (since h is 7-Lipschitz) and satisfies f(xo) — infx f(x) <

required. Furthermore, for any ¢t € [T] : h(x;) = 0 > —A = f(x¢) = Zh(x;) = 0. Since
f is L-Lipschitz, this further implies that for any x such that ||x — x¢|| < % o f(x) > —A =
Of(x) = £0Oh(x). In particular, 95 f (x;) = £05h(x;) for any § < 2, so the lemma shows that x;

is not a (4, €) stationary point of f for e < % : % = fLQ

—(=A) = A, as

B.2. Proof of Theorem 2

Let0 < é < e < 1,andlet T" < oco. It is enough to prove the case d = 1, since otherwise we can
simply look at x +— f(x1) with f being the lower bound construction in one dimension.

Suppose that an algorithm has access only to a derivative oracle, and consider the case that for
any ¢t € [T the oracles response is f’(x;) = 1. Since the algorithm is deterministic this fixes the
iterate sequence @) := (X1, ...,xr). Afterwards, the algorithm returns the candidate solution x for
being a (0, €)-Goldstein stationary point. We remark that X might not be in Q. We will show that
the described resisting strategy is indeed consistent with a function which satisfies the conditions in
the theorem. Namely, it suffices to construct a 1-Lipschitz function f such that f'(x;) = 1 for all
t € [T] yet x is not a (d, €)-Goldstein stationary point.

To that end, let n € (0,1 — ) be suchthat x + 6+ 7 ¢ Q and x — § — n ¢ Q (recall
that @ is finite, thus such 7 exists). We set f(x) = x —xforallx € [x —J +n,x+ 0 + 7],
which ensures s f(X) = {1}, and in particular the norm of the minimal-norm element in 95 f(X)
is 1. Since € < 1, we get that X is not a (J, €)-Goldstein stationary, as required. Moreover, for all
xt €EQN[X—0+mn%x+0d+mn|, wehave f/(x;) = 1. Thus, for these query points that lie in the
interval [x — § + 7, X + 0 + 7], we satisfy the resisting oracle condition,

We continue on to define the function f(x) for any x > % + ¢ + 7. The idea is to simply keep
f(x) = 0 + n in this range while adding some small bumps to guarantee that f'(x;) = 1 for all
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x¢ € QN(X+641n,00). Let @ = QU{X—d+n,%x+5+n}tandr = {5 MiNy e xpx X=X
we define = min{ry, 0} and

|3

d+mn, vx'eQ:|x—x|>r
fx)=4q¢d0+n—x, X eQ:|[x—x[<rand x<x' - .
b+n—r+x, KeQ:|x—x|<rand x>x"-7%

We see from the above definition that 0 < f(x) < § + nforall x > x + § + n and f/(x) = 1 for
all x € Q N (x+ d +n,00). Similarly, we define f(x) forany x < —x —J —nas:

_5_7” \V/XIGQI|X—X/|>T
fx)=q-0-n+x, Ix' eQ:|[x—x[<rand x<x'+ 7 .
—0—n+r—-x, WeQ:|x-x|<rand x>x"+7%

Putting all the pieces together, we get that f is a 1-Lipschitz function satisfying f’(x;) = 1 for all
t € [T}, and x is not a (9, €)-Goldstein stationary point for any 0 < § < € < 1, yielding the desired
result.

B.3. Proof of Theorem 5

We start by concretely stating the purpose of the binary search given by Algorithm 1.

Lemma 13 Suppose x € R% and gy € 05 f(x) are such that f(x — 6&) — f(x) > —3|\gol| and
llgol| > €. Then BINARY-SEARCH(0, V f(-),80,%) terminates within O(log(H0d/€)) first-order

oracle calls and returns gnew € 05 f(x) such that g,g0 < (/g%

Proof. Using the first assumption on x, go we apply the fundamental theorem of calculus to see that

1 ol oYL/ r
el = B (560 — £ (x—apyp)) = 5 [ <Vf (x— Hgo||g0> ,go>dr

- EfNU[x,x—mgo} va(x + f): gO)] )

hence in expectation with respect to the uniform measure over the segment [x, x — @go], sampling
a gradient will indeed satisfy the required condition. Applying the fundamental theorem again, it is
easy to see that the if condition in Algorithm 1 checks whether the average gradient along the right
half of the segment has larger inner product with gy than other half or vise versa, and then continues
examining the half with the smaller expected inner product. Thus, after k iterations of this process
we are left with a segment I}, of length 27§ along which

Ee vy [(VF(x +€), 0)] < %HgoH?.

But recalling that V f is H-Lipschitz, we get that all gradients of f over I are at distance smaller
than H - 27%§ from one another. In particular, for k = O(log(Hd/¢)) we get that all £ € I satisfy

1 €2 3
(VF(x+€),80) < =llgol> + — < >|lgoll* .

4 — 4
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where we have applied the second assumption on gg. Thus the algorithm terminates, and returns
Enew Satisfying the required condition. g

Having established the complexity and guarantee produced by the binary search subroutine, we
are now ready to analyze DETERMINISTIC-GOLDSTEIN-SG(xq, d, €). Since gnew € Is5f(x;) and
Os f(x) is a convex set, we observe that g(x;) € Jsf(x;). Accordingly, we see that whenever the
while loop terminates then either ||g(x;)|| < €, meaning that x; is a (, €)-Goldstein stationary

point, or else f(x41) < f(x¢) — %Hg(xt)H < f(x¢) — %. If the former occurs we are done, while
the latter can occur at most % = O(dé) times by the assumption that f(xg) — infyx f(x) < A.

€

2
Hence, it remains to show that the inner loop (lines 5-7) is repeated at most O (%)

times per outer loop (namely, per ¢) in order to obtain the desired complexity overall. To that end,
(xt)

assume that f (xt -4 HE(T)II

we know that g, g(x:) < §llg(xt)
all A € [0,1] :

) — f(x¢) > —3|lg(x¢)|| and ||g(x¢)|| > €. By the previous lemma,

||2. But that being the case, we get by definition of h; that for

el < llg(xe) + Mgnew — &)l
= [lg(xe)|I” + 228 (x¢) " (8new — &(x¢)) + A%l gnew — g(x:)
< (1—2)) llg(xo)|? + 228 (xt) " gnew + 4L

A
< <1 — 2) g (x)||* +4L% .

By letting A = H%é’gﬁ and recalling that € < ||g(x)|| < L we get

62
P < (1- 557 DGl

). Since initially ||g(x;)||? < L2,

Hence each iteration shrinks ||g(x;)||? by a factors of (1 - %

2 €
L lo;g,Q(L/ ))

this can happen at most O ( times before having ||g(x;)||? < €2, as claimed.

B.4. Proof of Theorem 10

We construct the function g by using exactly the same neural arithmetic circuit of f, where we
replace all the relu gates with the softrelu gates:

zZ, z>a
2
softreluy (z) = (ZZ:LL) , —a<z<a,
0, z < —a

and note that
softrelug(2) = E¢ p—q,q [relu(z + §)] .

The following summarizes the properties of softrelu gates, and can be easily verified.

Lemma 14 We have that (i) |relu(z) — softrelu, (2)| < ¢, (ii) softreluy(-) is 1-Lipschitz, and (iii)
softrelu,, is i-smooth.
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We prove the theorem inductively, going through the gates of C one by one with respect to a
topological sorting of C which will remain fixed throughout the proof. Our goal is to compare the
evaluation of the nodes, in the order of this topological sorting, in the circuit of f and in the circuit
of g under Assumption 5.1. We denote by f; be the function evaluated in the node 7 of the circuit
of f, in the topological sorting of the circuit of f, and by g; the corresponding function evaluated in
the node ¢ of the circuit of g. Let also L; > 0 be the corresponding Lipschitz parameter of f; and
G; > 0 the corresponding value bound parameter.

As to the base of our induction, we examine the input nodes. The input nodes and the constant
gates for f and g both have the same value, and have gradient e; for some j. Thus, they are 0-
smooth. Also, the input nodes are 1-Lipschitz and are bounded in value by the diameter of R, while
the constant nodes are clearly 0-Lipschitz. This will serve as the basis of our induction.

Our inductive hypothesis is that the following is satisfied for ¢ : For any x € R, any j < ¢,
it holds that (i) | f;(x) — g;(x)| < =, (ii) g; is S;-smooth, (iii) g; is L;-Lipschitz, and (iv) g; is
G'j-bounded. Then, we seek to prove that (i) | f;(x) — g;(x)| < ; forall x € R, (ii) g; is S;-smooth,
(iii) g; is L;-Lipschitz, and (iv) g; is G;-bounded, while bounding ~;, S;, L;, G; as functions of the
previous parameters.

We consider different cases according to the type of node i:

* output node. In this case, the value and Lipschitz constant of node i is the same as of a node
J < i. Thus, we have | fj(x) — gi(x)| < 7; =: 7; and obtain that S; = S;, L; = L;, and G; =
G;.

* x node. In this case, there exists j,k < i such that f;(x) = f;(x) - fi(x) and g;(x) =
9j(x) - gr(x) which means that

| fi(x) — gi(x)| = [ f5(x) - fr(x) — g;(x) - gr(x)]
< [f )] k(%) = ge(X)] + |gre(x)] - | £5(x) — g;(x)]
<Gj -+ Gr=7.

Also, S; < 8 - Gy, + Gj - S, + 2L; - Lj. The Lipschitz constant of g; is upper bounded by
L; - Gy + G - Ly, which is equal to L; by Assumption 5.1. Thus, g; is L;-Lipschitz. It is also
easy to see that g; is G; = G - G, bounded.

* + node. In this case, there exist j,k < i such that f;(x) = f;(x) + fr(x) and g;(x) =
9j(x) + gi(x) which means that | f;(x) — ¢;(x)| < v +7% =: 7. Also, S; < Sj + Si. Then,
the Lipschitz constant of g; is upper bounded by L; + Lj, which is equal to L; by Assumption
5.1. Thus, g; is L;-Lipschitz and is also easy to see that it is G; = G; + G, bounded.

* relu node. In this case, there exists j < ¢ such that f;(x) = relu(f;(x)) and g;(x) =
softrelu(g;(x)). Using Lemma 14, the triangle inequality and the fact that relu is 1-Lipschitz,
we have | f;(x)—g;(x)| < §+7; =: 7i. The next is to bound the smoothness .S;. By definition,
we have

Vgi(x) = Vsoftrelu, (gj(x)) = softrelu),(g;(x))Vg;(x) ,
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hence

IVgi(x) = Vagi(y)l

[[softrelug, (g;(x))Vg;(x) — softrelu;, (g;(y)) Vg, (y)||
< [softrelu (g;(x))] - [|Vg;(x) — Vg (y)ll
+ [softreluy, (g;(x)) — softreluy, (g;(y))| - [[Vg; (y)]

1
< (Gj-Sj+ %LJ’)HX -yl

So,5; < Gj-Sj+ ﬁLj. Also, due to the fact that softrelu is 1-Lipschitz, the Lipschitzness of
gi is upper bounded by L; which is equal to L; by Assumption 5.1. Thus, g; is L;-Lipschitz.
Finally, g; is obviously G; bounded and hence G; bounded by Assumption 5.1.

Note that the sequence of errors {~; };>1 is increasing. Going through all the cases we considered
above, we see that y; < § + Gyyj + Gy, < % + 2G~y;—1 which implies that v; < a - (2G)". Thus,
we have

1f(x) — g(x)| < a-(2G)*©).

Similarly, we have that S; < 2G - S; 1 + 2L% + %, so as long we set % large enough compared to
2L? (which will indeed be the case later on) we can simplify this to S; < 2G - S;_1 + 2%, hence
S < 2% - (2G)*. Thus, we have

S; < % ) (gg)S(C) )
a

Next, we proceed to prove the equivalence between the Goldstein stationary points of f and g.
Towards this goal we introduce some notation: let n = s(C), let B; be all the bias variables that are
used in the topological ordering of the neural circuit in nodes before the node 7 and b be the total
number of bias variables, i.e., b = |B,|. We relate any (J;, €;)-Goldstein stationary of g; to those of
fi through the following lemma.

Lemma 15 Let x € R. Then there exists two positive sequences 01, ...,0, > 0and €1, ...,€, >
0, a sequence of vectors sy,...,s,, and a sequence of distributions DY, ..., D} supported on
[—a, a]*©) such that for all i € [s(C)] the following hold:

° (51 S (40 -L- G)S(C) - a, € S (160 -L- G)3S(C) -a and H51”2 S €.
* Vgi(x) = Ey~px[V fi(y)] + si.

* The support of D¥ has diameter ¢; and contains only points where fy, is differentiable for
all k. Moreover, the support of D only contains points y for which either y; = x; for all i
that correspond to input variables that are not biases, or are biases which are not used in the
computation of f;, g;.

Proof. We prove this lemma by induction on ¢. For the base of the induction we observe that all the
input and constant nodes are in the beginning of the topological ordering, and satisfy g; = f;, and
that f; is differentiable. For this reason, input and constant nodes satisfy the lemma with DX equal
to the Dirac delta distribution at x, s; = 0, §; = 0, ¢; = 0. Now for the inductive step we assume
that the lemma holds for all j < ¢ and we split into the following cases for the node 7, depending on
the type of the node in the circuit.
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* output node. In this case, we have that g; = g;, f; = f; hence the lemma follows immedi-
ately by the inductive hypothesis.

* + node. In this case, we have that g; = g; + gx, fi = fj + fr. By the inductive hypothesis
we get

Vg;(x) = Eypx[Vf;(¥)] +5;, Vgi(x) = Eypr [V fi(y)] + s -

Now let’s assume without loss of generality that j > k, then we set D = D7 and from the
fact that B; is a super set of B, and from linearity of expectation we get

Vgi(x) = Vg;(x) + Vgi(x) = Ey~px[Vfi(y) + V/fi(y)] +s; + sk
= Eyupx[Vfi(y)] + 85 + sk,
hence the lemma holds for this ¢ with §; < max{d;,x}, s; =s; + sk, € = €j + €.

* x node. In this case, we have g; = g, - gi, fi = f;j - fi and by inductive hypothesis we get
that

Vg;(x) = Bypx[Vf;(¥)] + 5, Vgi(x) = Eyopx [V fi(y)] + sk

Recall that g; is differentiable, hence

Vgi(x) = g;(x)Vgr(x) + gr(x)Vg;(x) .

Also, because we will only consider points x for which all f;’s are also differentiable we have
that

Vii(x) = [i()V fe(x) + fe(x)V f5(%) -

Let’s assume without loss of generality that j > k, then we set D} = D and from the fact
that BB; is a super set of Bj, we have that

Vgj(x) = Eyupx[Vfi(y)] +55 Vgr(x) = Eypx[Vfe(y)] +s6 . (B.3)

Using Eq. (B.3), the gradient of g; and linearity of expectation we have

Vgi(x) = g;(X)Eypx[V e (¥)] + gk (X)Eypx [V fi(¥)] + gk (X)) + g5 (x)sk
= Eypx[9;(x)V fi(y) + 9k (X)V i (¥)] + gr(x)s; + gj(X)sk - (B.4)

At this point we invoke Assumption 5.1 to utilize that g;, g, are G-bounded and that f;, f3,
are L-Lipschitz and hence we have that

IVgi(x) = Eyanx[Vfi(y)lll2 < L - (Ey~pxllg;j(x) — f;(3)]] + Ey~pxllgr(x) — fr(¥)]])
+G (¢ +ep). (B.5)

So it remains to bound Ey.px(|g;(x) — f;(y)|] and Ey~px[|gr(x) — fr(y)[]. We will prove
an upper bound on Ey..px[|g;(x) — f;(y)|], while the same upper bound will work for for &
as well. First, observe that because of the structure of the biases and the definition of D we
have that

Ey~px(lg;(x) = fi(¥)]] = Ey~pxlg;(x) = fi(¥)I] -
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Now we get that

Ey~pxllg;(x) = f;(¥)l] < Ey~px(lgj(x) — g;(¥)[] + Ey~px[lgi(y) = fi(¥)l] . (B.6)

We can now use the first statement of the theorem that we have already proved to recall that
l9;(y) — f;(¥)| <v; < (2G)? - a, and we can also use the Lipschitz constant of g; to get that

Ey~pxllg;(x) = fi(y)] < L6+ (2G)" -a. (B.7)
Combining Eq. (B.5) and Eq. (B.7) we obtain
IV9i(x) = Eyanx[Vfi(¥)lll2 < L - 8 + L+ (2G)" -a+ G - (¢j +ex) |

and the lemma follows for this case as well with §; < max{d;,0;} and ¢; < L? -6, + L -
(QG)Z ca+ G- (Gj + Ek).

relu node. In this case we use the structure of the bias variables, and see that g;(x) =
softrelu(g;(x) + xp,) and f;(x) = relu(f;(x) + xp,) where b; is the index of the vector x
that corresponds to the bias variable appearing only in the relu-node ¢. From the definition of
softrelu we have that g;(x) = E,y[—q,q)[relu(g;(x) + 25, + u)]. Using the fact that we only
focus on x for which f; is differentiable we get that

Vgi(x) = Eut[-a,a)[1{95 (%) + 21, + v = 0H(V(g;(x) + 2s,))]
= Eyv-aa1{g;(x) + 2, +u > 0}(V(g;(x) + z3,))
= Puvi—a,a)(95(%) +xp, +u > 0)(V(g;(x) +2,)) ,

and also
Vfi(x) = 1{fj(x) + zp, = 03 (V(f;(x) + 23,)) -
From the inductive hypothesis and the fact that every bias variable appears only once we get

V(gj(x) +ap,) = Eypx[V(f(y) + 2,)] + 55,

so by denoting (;(x) = Py y/[—a,q)(9;(X) + T, + u > 0) the above implies that

Vgi(x) = Gi(x) - (Ey~px[V(fi(y) +2p,)] +55) -

We now need to distinguish several cases: (1) g;(x) +zp, > a+7; + Léj, (2) gj(x) + x5, <
—a —~y; — Léj, and (3) |g;(x) + zp,| < a+ v + Lo;.

We start with the first case. If g;(x) + xp, > a + 7; + Ld; then this means that (;(x) = 1
and that f;(y) + x5, > 0 for all y that are J;-close to x. This implies that we can choose
D7 = D7 and we immediately get

Vgi(x) = Eyopx[V fi(y)] +s5 ,

hence the lemma holds with §; = d;, €; = €; and s; = s;.
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Similarly, for the second case we have that (;(x) = 0 and f;(y) + 23, < 0 for all y that are
d;-close to x. In this case we have that

Vgi(x) =0=Eypx[Vfi(y)] .

hence the lemma holds with J; = 6, ¢; = €¢j and s; = 0.

Finally, we consider the case |g;(x) + xp,| < a+; + Lé;. This implies that | f;(y) + xp,| <
a + 2v; + 2L6; for all y that are J;-close to x. We define the distribution D as follows: we
first sample y from D7, and let y_;; be the vector y with all the coordinates but b;. We then
sample y{)j from a distribution such that with probability ¢;(x) it holds that f(y) + yl’)j >
for some value > 0 and with probability 1 — (;(x) it holds that f(y) + yb < —n. We
then observe the following: (a) by Rademacher’s theorem we now that all fj s are almost
everywhere differentiable, so for an arbitrarily small value ) and for every y we can find
values ygj such that what we want holds and also all the functions f; are differentiable in
(y_bj , yl’)j), and (b) the desired values yl’jj are at most a + 2v; + 2Ld; away from xp, hence
at most 2a + 4y, + 4LJ; away from each other. Also, from the definition of D* we have that

Eypx[Vfi(y)] = Eypx[1{f;(y) + y», = 0H(Vf;i(y) + ep,)]
= By~px[By [1{f;(y-6.) + 5, = O}(Vf;(y) + e5,)]]

[
[ Z
= Ey~px[By [1{f;(y-s,) + v, = OH(V i (y) +e,)]
[ (Y—b) + 9, > 0)(Vi(y) +ep,)]
[ (vfj (y) + €y, ]
(vfj (y) + ey, ]
= Gi(x )(Vga (Y) ey,) — Gi(x)s;
= Vgi(x) = Gi(x)s; ,
where in the first line we used the definition of the distribution DY, in the second line we use
the fact that the bias variable 7, does not appear in the computation of f;, in the fourth line
we use the definition of the distribution of yl’)i given y, and in the rest we use the definition of

(; and our inductive hypothesis. Overall we get that the lemma follows with 6; < d; + 2a +
dy; +4L6;, €; < €, and s; = (3(x) - s

)
)

To conclude, using the fact that both d; and ¢; are increasing according to the definitions above and
using the worst bounds from all these cases we get

6 < 6i_1(AL+1) 4+ (8G)*©q

implying that
6p < (40- L-G)*©) . q

Using this bound we can compute the worst possible bound for ¢€;, as we have

EZ‘§L2-5j+L'(2G)i-a+2G-6i_1
— 6 <(80-L-G)*C) . a+2G €,
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implying that

en < (160 L-G)*©) . g,
hence the lemma follows.

Overall, for all the analyzed quantities we get

T < a-(2G)*©)
6p < a- (40LG)*©)
en < a- (160LG)>©)

s, < 2L 2y @
a

Setting a = (160 - L - G)35(©) .« finishes the proof.
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