
Proceedings of Machine Learning Research vol 195:1–64, 2023 36th Annual Conference on Learning Theory

Learning and Testing Latent-Tree Ising Models Efficiently

Yuval Dagan DAGAN@CSAIL.MIT.EDU
Constantinos Daskalakis COSTIS@CSAIL.MIT.EDU
Anthimos-Vardis Kandiros KANDIROS@MIT.EDU
Department of Electrical Engineering and Computer Science, MIT

Davin Choo DAVIN@U.NUS.EDU

School of Computing, National University of Singapore

Editors: Gergely Neu and Lorenzo Rosasco

Abstract
We provide time- and sample-efficient algorithms for learning and testing latent-tree Ising models,
i.e. Ising models that may only be observed at their leaf nodes. On the learning side, we obtain
efficient algorithms for learning a tree-structured Ising model whose leaf node distribution is close
in total variation distance, improving on the results of Cryan et al. (2001). On the testing side,
we provide an efficient algorithm with fewer samples for testing whether two latent-tree Ising
models have leaf-node distributions that are close or far in total variation distance. We obtain
our algorithms by showing novel localization results for the total variation distance between the
leaf-node distributions of tree-structured Ising models, in terms of their marginals on pairs of leaves.
Keywords: Probabilistic graphical models, distribution learning/testing, learning from complex or
structured data (e.g. networks, time series), learning with algebraic or combinatorial structure

1. Introduction

Statistical estimation and hypothesis testing challenges involving high-dimensional distributions are
central in Statistics, Machine Learning and various other theoretical and applied fields. Core to this
challenge is the fact that even the most basic of those challenges, such as uniformity testing, require
exponential sample sizes in the dimension to solve if no structural or parametric assumptions are
placed on the underlying distributions; see e.g. Daskalakis and Pan (2017); Canonne et al. (2017);
Acharya et al. (2018); Daskalakis et al. (2019) for discussions of this point and further references.

The aforementioned exponential sample-size barriers motivate the study of models that sidestep
those requirements, e.g. models encapsulating conditional independence structure in the distribution,
such as Markov Random Fields (MRFs) and Bayesian networks (Bayes nets). In turn, a vast line
of research has studied statistical inference questions involving MRFs and Bayes nets and their
applications; see e.g. Pearl (1988); Lauritzen (1996); Jordan (2004); Koller and Friedman (2009)
for an introduction to graphical models, their uses, and associated inference algorithms, and see
e.g. Chow and Liu (1968); Chow and Wagner (1973); Narasimhan and Bilmes (2004); Ravikumar
et al. (2010); Tan et al. (2011); Jalali et al. (2011); Santhanam and Wainwright (2012); Bresler (2015);
Vuffray et al. (2016); Klivans and Meka (2017); Hamilton et al. (2017); Dagan et al. (2021); Kandiros
et al. (2021); Daskalakis and Pan (2021); Bhattacharyya et al. (2021); Vuffray et al. (2022) and the
references in the previous paragraph for some classical work and some recent theoretical progress on
learning and testing graphical models as well as other types of statistical inference with them.

Despite the vast study of graphical models, and a recent burst of activity towards computationally
and statistically efficient algorithms for inference with them, a broad outstanding challenge in this

© 2023 Y. Dagan, C. Daskalakis, A.-V. Kandiros & D. Choo.

DAGAN DASKALAKIS KANDIROS CHOO

space lies in computationally efficient inference with graphical models that have latent variables,
variables whose realized values we do not have direct observations of. Those are widely motivated in
practice (see e.g. Aigner et al. (1984); Bishop (1998); Everett (2013); Bartholomew et al. (2011);
Felsenstein (1973)) but inference with them is known to be computationally intractable in general.
For example, learning graphical models with latent variables in total variation distance is known
to be intractable, even when the underlying graph is a tree (Mossel and Roch, 2005), while in the
absence of latent nodes the same problem is computationally tractable, owing to classical work
of Chow and Liu (1968) and its recent analysis (Daskalakis and Pan, 2021; Bhattacharyya et al.,
2021). Similarly, computing the likelihood of a tree-structured graphical model is tractable in the
absence of latent nodes, but becomes intractable in the presence of latent nodes (Chor and Tuller,
2005; Roch, 2006). These computational challenges become more daunting when the underlying
graph gets cyclic, and the overall difficulty of handling latent variables has motivated the development
of an array of widely-used approximate inference methods, such as the expectation-maximization
algorithm of Dempster et al. (1977) and variational inference (see e.g. Blei et al. (2017) for a survey).

A main goal of this work is to advance the frontier of computationally efficient learning and
testing of graphical models with latent variables. As learning general tree MRFs over general
alphabets is hard (Mossel and Roch, 2005), we focus on the binary-alphabet tree-structured Ising
models, which have found extensive use in phylogenetics (Felsenstein, 1973).

We focus on the two following inference goals in this work:

1. (Proper Learning): Given sample access to the distribution at the leaves of a tree-structured
Ising model P , we want to learn a tree-structured Ising model Q whose leaf-node distribution
is ε-close it total variation distance to that of P .

2. (Identity Testing): Given sample access to the distribution at the leaves of two tree-structured
Ising models P and Q with the same leaf set, we want to distinguish whether the leaf-node
distributions of P and Q are equal or at least ε-far in total variation distance.

We provide computationally and statistically efficient algorithms for both Goals 1 and 2. Our
contribution to Goal 1 is an algorithm whose time- and sample- complexity provide substantial
improvements compared to the algorithm by Cryan et al. (2001) as well as the algorithm by Mossel
and Roch (2005), which requires restricting the correlations across the edges of the Ising model.
We also improve upon work in the phylogenetic literature (see Section 2) which has focused on
identifying the latent tree-structure of the model but also requires restrictions on the Ising model to
achieve this. Finally, we remark that the computational intractability results of Mossel and Roch
(2005) for learning tree-structured graphical models with latent variables do not apply to Goal 1
because we are working with binary-alphabet models.

On the technical front, a fruitful approach towards statistical inference with graphical models
uses the paradigm of localization, whose goal is to localize the difference between two graphical
models to differences of their marginals involving a small number of variables. Such localization
properties can be used to distinguish between models for the purposes of hypothesis testing, or
be exploited to learn graphical models or perform hypothesis selection. Localization of the KL
divergence between two Bayesian networks with the same DAG follows directly from their shared
factorization, which implies that the KL divergence between the two Bayes nets is upper bounded by
the sum of the KL divergences of their marginals on different neighborhoods of the graph, involving
a node and its parents. Similar subadditivity results have been established for total variation and

2

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

squared Hellinger distance (Daskalakis and Pan, 2017) as well as for other distances, for MRFs, and
for causal models (Acharya et al., 2018; Daskalakis et al., 2019; Ding et al., 2021). Localization
results can also be used for comparing graphical models on different graphs, as long as the underlying
graphs are trees (Daskalakis and Pan, 2017). In turn, the aforementioned localization results have
been exploited to show that the celebrated Chow and Liu (1968) algorithm learns tree-structured Ising
models with optimal sample complexity (Daskalakis and Pan, 2021) and to obtain optimal algorithms
for testing Bayesian networks (Daskalakis and Pan, 2017). Additionally, localization properties of
graphical models are implicit in much of the recent burst of activity on learning graphical models
referenced earlier in this section and often have applications beyond the actual problem studied by the
papers introducing them; for example, a recent work of Bhattacharyya et al. (2022) on independence
testing of bounded degree Bayes nets in total variation distance crucially relies on the subadditivity
localization result about Hellinger distance by Daskalakis and Pan (2017).

In the presence of latent variables, Bresler and Karzand (2020) gave localization bounds for
Ising models with zero external fields, the model which we are studying in this paper. However, as
their bound is exponential in the number of variables, we cannot directly apply it to obtain efficient
algorithms. As such, another important goal of our work is the following:

3. (Localization of TV in latent-tree Ising models): Given two tree-structured Ising models,
which have the same leaf set but potentially different underlying trees, upper bound the total
variation distance between the leaf-node distributions in terms of the marginals of these models
on pairs of leaves. Furthermore, the bound should be polynomial in the number of vertices.

In the fully observable case, the localization of distance results that are known for tree-structured
graphical models exploit factorization properties of distributions defined on trees and combina-
torial results that allow writing two tree-structured graphical models under a common factoriza-
tion (Daskalakis and Pan, 2017). Meanwhile, a key challenge arising from the presence of latent
variables is that the leaf-node distributions result from marginalizing out all non-leaf vertices in the
tree-structured models and thus cease to have any tree-structured factorization that we may exploit.

1.1. Results

Let us first formally define tree-structured Ising models.

Tree-structured Ising models. One is given some undirected tree T = (V,E) whose leaves are
labelled from 1 to n and whose internal nodes are labelled from n + 1 to n + n′. Without loss of
generality, we will assume that all non-leaf nodes have degree 31. For each edge {i, j} ∈ E, there is
an associated weight θij ∈ [−1, 1]; as T is undirected, we have θij = θji. Each node i is assigned a
spin xi ∈ {−1, 1}, and the probability of a spin-configuration is defined as

Pr [x1, . . . , xn+n′] ∝
∏

{i,j}∈E

1 + θijxixj
2

.

1. Every tree can be converted into one with all non-leaf nodes having degree 3, without affecting the leaf distribution.
We just contract every path that consists of nodes of degree 2 into a single edge and split nodes with degree larger than
3 by introducing edges with θ = 1. For more details, see Appendix A.

3

DAGAN DASKALAKIS KANDIROS CHOO

Note that this definition allows for any tree-structured Ising model with zero external fields2. A
sample can be obtained by rooting the tree at an arbitrary internal node, drawing a uniform random
value for the spin of the root, and randomly propagate the values of the spins along the tree as
follows: for any directed edge i→ j such that the spin xi was already set, we set the spin xj such
that Pr[xj = xi] = (1 + θij)/2 and Pr[xj = −xi] = (1− θij)/2. This process has been used as a
model in a variety of applications.

Our first result provides upper bounds on the total variation (TV) distance between any two
tree-structures Ising models with latents. Note that in the case of a fully observable tree, these
properties can be proven by using the product factorization of the probability distribution over the
edges of the tree but such an approach fails in the presence of latents. Instead, we rely on the
pairwise-marginals between the leaves, which are readily accessible. In the specific case of an Ising
model, for any two nodes i, j of the tree, the marginal distribution of (xi, xj) is characterized by

αij := E[xixj] =
∏

{k,l}∈Pij

θkl , (1)

where Pij is the unique path that connects i and j on the tree. Equation (1), which we call the
multiplication over paths property, states that to calculate the correlation between two leaves, it
suffices to multiply the correlations along all the edges on the path that connects them.

It is well known (see e.g. Section 6.1 in Steel (2016)) that the correlations αij between all pairs
of leaves uniquely identifies the underlying tree and edge weights of the distribution. We now
provide a simple example to illustrate this fact and refer to Chapter 6 of Steel (2016) for more details.
Without loss of generality, for the following example we will assume that all edge correlations θij
are non-zero. Indeed, if we allow some θij to be 0, then the leaves can be uniquely partitioned into a
maximal-size collection of subsets that are independent from each other and the below argument can
be applied to each subset separately.

Now, consider a model with four leaves, which is also called a quartet. There are three possible
topologies for a tree with 4 leaves, which are depicted in Figure 2(a). Suppose the true tree has the
topology of the first graph in Figure 2(a), where leaves 1,2 and 3,4 are separated by an edge with
length θ. Now, suppose we know all the covariances αij exactly. Let θ ∈ [−1, 1] be the weight of the
middle edge. Since covariances multiply along paths we have

|α13α24| = |α14α23| = θ2|α12α34| ≤ |α12α34|

Thus, by comparing the three products |α13α24|, |α14α23|, |α12α34| and picking the highest, we can
distinguish which of the three topologies of Figure 2(a) is the correct one. If all products are the
same then the middle edge is contracted and the topology is a star. For general trees, for two leaves
i, j, consider all supersets of four leaves i, j, k, l and suppose we conduct for each one this quartet
test. If i, j are never on different sides of the quartet test, then they form a cherry (children of the
same parent). We can continue inductively to recover the topology of the tree. Regarding the lengths
of the edges, notice that in our example, by the above calculation we have

θ2 =
|α13α24|
|α12α34|

.

2. A more common expression is Pr[x1, . . . , xn+n′] ∝ exp(
∑

(i,j)∈E βi,jxixj)/Z, which can be translated to our
setting by substituting θij = E[xixj] = (eβij − e−βij)/(eβij + e−βij).

4

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Using this observation, we can identify the lengths of all the edges of the topology. The identifiability
of the topology and its edge lengths using covariances is also discussed after Equation 6.1 in Steel
(2016). To summarize, if we know the pairwise distances exactly, we could recover the correct
topology and weights.

Given m samples from the leaves, these pairwise-marginals can be easily approximately estimated
from data samples. It is then clear by the previous discussion that if we know the pairwise correlations
up to some good accuracy, we should be able to estimate the distribution of leaves accurately as well,
in some metric. Hence, a natural analogue of the marginal distribution of edges in the fully observed
tree would be the marginal distribution of all pairs of leaves in the latent-tree. From this perspective,
we provide a bound on the total variation of two leaf distributions based solely on their pairwise
correlations which can be viewed as an approximate tensorization property for total variation in
latent tree Ising models. Our results come in two settings: when both distributions share the same
underlying tree structure, and when they do not.

Theorem 1 Let µ and µ∗ be distributions over the leaves of two tree-structured Ising models with n
leaves. Suppose |Eµ[xixj]− Eµ∗ [xixj]| ≤ ε for all pairs of leaves i, j.

• Same topology: If µ and µ∗ are defined on the same graph, then TV(µ, µ∗) ≤ 2n2ε.

• Different topologies: If µ and µ∗ are defined on two different trees T and T ∗ such that the
minimum diameter of T and T ∗ is D, then TV(µ, µ∗) ≤ O(Dn5ε), where O hides absolute
constants.

The previous bound by Bresler and Karzand (2020), which holds for both same and different
topologies, was TV(µ, µ∗) ≤ n2nε; though their setting was slightly more general, as it applied
to arbitrary subsets of the nodes of an Ising model, rather than only sets of leaves. We conjecture
that the techniques presented here could be useful for obtaining a more general theorem, similar to
Proposition 1 in Appendix H of Bresler and Karzand (2020). Such a general result would improve
the bounds for learning in k-local-TV (Bresler and Karzand, 2020; Boix-Adsera et al., 2022) from
being exponential in k to polynomial (see Section 2 for more details on this line of work). We believe
this is a very fruitful direction for future work.

We make the following observations regarding the tightness of Theorem 1. For a fixed topology,
the following example shows that the bound of Theorem 1 is off by a factor of at most n. Consider
two tree models (I) and (II) with the same topology of a star, with a single latent node u that is
connected to n leaves 1, . . . , n. In (I), we have θui = 1 and in (II) we have θui = 1− ε < 1, for all
i ∈ [n]. Clearly, in (I) it holds that αij = 1 and in (II) that αij = (1 − ε)2, for all i, j ∈ [n]. We
observe that the left hand side of the bound is

1

2

(
1−

(
1− ε

2

)n
−
(ε
2

)n)
= Θ(nε)

if ε is sufficiently small, while the right hand side is Θ(n2ε). For unknown topology, we do not have
a better lower bound.

We believe that Theorem 1 is a result of independent interest beyond the scope of this paper
as it can be applied in a variety of applications. For instance, one can obtain a polynomial time
algorithm for identity testing of latent tree Ising models by directly combining Theorem 1 with
standard ideas from testing. Note that we have diameter D ∈ O(log n) in many applications of
interest. For example, the phylogenetic trees produced by the recent gene editing technologies are
balanced (Jones et al., 2020).

5

DAGAN DASKALAKIS KANDIROS CHOO

Corollary 2 Let P,Q be leaf distributions of two potentially different tree Ising models. Suppose we
are given access to samples from P and we wish to distinguish whether P = Q or TV (P,Q) > ε.
Assume also that the minimum diameter of the two trees is D. Then, there exists a polynomial time

algorithm that answers correctly with probability at least 1− δ, with sample size O
(
n10D2 log n

δ
ε2

)
.

To see why this is true, let αP , αQ denote the correlations for P,Q respectively. Notice that by the
Chernoff bound and a union bound, if the number of samples is O(n10D2 log(n/δ)/ε2), then with
probability 1 − δ the empirical correlations α̂ satisfy |αP

ij − α̂ij | ≤ ε/(2Dn5) for all i, j. Now,
suppose TV (P,Q) > ε. Applying Theorem 1 then gives that there should exist a pair i, j with
|αP

ij − αQ
ij | > ε/(Dn5) This implies that |α̂ij − αQ

ij | > ε/(2Dn5), which the tester can detect. If

P = Q, then |α̂ij − αP
ij | = |α̂ij − αQ

ij | ≤ ε/(2Dn5) for all i, j.
To further show the utility of Theorem 1, we provide polynomial-time and polynomial-sample

algorithms for learning tree-structured Ising models. We provide two algorithms: the first requires to
know the structure of the tree in advance while the second is assumption-free. Unsurprisingly, the
latter requires more samples.

Theorem 3 Fix error and confidence parameters ε > 0 and δ > 0. Given m samples from the joint
distribution over the leaves of an underlying tree-structured Ising model, there exist polynomial-time
algorithms for learning a tree-structured Ising model (T, θ) whose marginal over the leaves is ε-close
to the true marginal in total variation distance, with success probability 1− δ.

• Known topology: If T is given, then m ∈ O(n4 log(n/δ)/ε2) samples suffice.

• Unknown topology: In general, m ∈ O(n14 log(n/δ)/ε6) samples suffice.

The algorithms for both settings consist of two steps: first, they empirically estimate the pair-
wise correlations between every pair of leaves. Then, they utilize an algorithm that, given these
approximate correlations, finds some tree Ising model whose pairwise correlations are close to the
estimated ones. The guarantees of those algorithms then follow directly from Theorem 1. Notice
that for the case of known topology, it is possible to implement this algorithm using a simple linear
programming, as outlined in Section 4. Thus, we only need to argue that the pairwise correlations
are estimated with accuracy O(ε/n2), which gives O(n4/ε2) sample complexity. In contrast, for
unknown topology, the algorithm is slightly more complicated, which is why we lose some additional
polynomial factors when trying to construct a topology with correlations close to the estimated ones.
This is outlined in Appendix D.

To the best of our knowledge, the only prior work that provided a polynomial time algorithm for
learning in total variation without any restrictions on the weights of the model was Cryan et al. (2001).
While they do not explicitly state the sample complexity required, it can be inferred from their proof
that at least Ω(n89/ε18) samples are necessary, though we note that their result is slightly more
general and holds for general trees with a binary alphabet; see Appendix D for a technical comparison
between our results. Meanwhile, information theoretically, it is well-known that Θ̃(n/ε2) samples are
sufficient and necessary for learning the joint distribution, both in the known and unknown topology
settings; for example, one can show this by modifying the arguments in Devroye et al. (2020);
Brustle et al. (2020); Koehler (2020). For completeness, we provide a sketch of these arguments in
Appendix E. While our work presents the best known efficient algorithm (runs in polynomial time), it
uses poly(n)/ε2 samples. It remains an open problem whether there exists an efficient algorithm that

6

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

only uses O(n/ε2) samples or whether there exists a statistical-computational gap for the problem
at hand.

Remark 4 The seminar work of Berthet and Rigollet (2013) conjectured that there is a fundamental
gap between what is statistically required and what is achievable by computationally efficient
algorithms, in the context of the sparse PCA problem. Multiple follow-up works suggest that such a
gap is inherent to the problem (e.g. see d’Orsi et al. (2020); Choo and d’Orsi (2021); Ding et al.
(2023)) justify the computational hardness via average-case reductions (Brennan and Bresler, 2020),
sum-of-squares lower bounds (Raghavendra et al., 2018), or low-degree polynomial arguments
(Schramm and Wein, 2022). Many other well-studied problems involving the recovery of planted
signals also exhibit such a statistical-computational gap, e.g. tensor PCA, planted clique, etc.; see
(Hopkins et al., 2017; Barak et al., 2019; Kunisky et al., 2019; Brennan and Bresler, 2020) for more.

2. Related Work

A popular method for latent-tree estimation are tree-metric approaches, which rely on estimating the
pairwise correlations between any two leaves. For these algorithms, there is a vast theoretical analysis
which is largely focused on estimating the structure of the tree, namely, finding the set of edges E
(Felsenstein, 1973; Chang, 1996; Erdős et al., 1999; Huson et al., 1999; Csurös, 2002; Felsenstein,
2004; King et al., 2003; Daskalakis et al., 2006; Roch, 2006; Mossel, 2007; Gronau et al., 2008;
Roch, 2010; Roch and Sly, 2017). The results typically require some upper and lower bounds on the
edge-weights aij . Such bounds guarantee that the structure of the tree can be completely identified
from polynomially many samples. In contrast, Daskalakis et al. (2009) design an algorithm that
reconstructs as much of the true topology as possible, without assuming bounds on the edge-weights.
However, they do not provide any guarantee on the closeness of the learned distribution to the true
distribution. Another popular family of algorithms are likelihood-based methods (Felsenstein, 1981;
Yang, 1997; Stamatakis, 2006; Lee et al., 2006; Wang and Zhang, 2006; Truell et al., 2021), but their
convergence guarantees are barely understood (Zwiernik et al., 2017; Daskalakis et al., 2018, 2022).

Beyond trees, the general problem of latent graphical model estimation has received some
attention (Bresler et al., 2019; Bresler and Karzand, 2020; Moitra et al., 2021; Goel, 2019; Goel et al.,
2020). However, all these algorithms have time- and sample- complexity that is exponential in the
maximum degree of the graph. Also, Acharya et al. (2018) study testing of Bayesnets with latent
variables, but under the assumption that the c-components have constant size.

Another related line of work is that of estimating a tree from fully observable data, while
guaranteeing that the error is bounded in k-local-TV: this means that the output model is ε-close in
total variation to the true model in any marginal of k nodes (where k is considered small). While
the complexity of learning the full tree to ε total variation distance is Θ(n log n/ε2) (Daskalakis and
Pan, 2021; Koehler, 2020), the algorithm of Boix-Adsera et al. (2022) has a sample complexity of
O(log n · k222k/ε2) for learning in k-local TV. The preceding paper of Bresler and Karzand (2020)
obtained the same guarantee, however, they assume some upper bounds on the edge correlations θij .

3. Technical Contributions – Proof Sketch

We describe the main tools for the proofs of Theorem 1.

7

DAGAN DASKALAKIS KANDIROS CHOO

3.1. Preliminaries

For the discussion, fix some tree T = (V,E). For any leaves i, j, let Pij denote the path connecting
them. Denote by θ any vector in [−1, 1]E whose entry θe denotes the correlation across the edge
e ∈ E. When we write α, α̂ etc., this corresponds to a vector in [−1, 1](

n
2), whose entries, αij are

indexed by two distinct leaves i ̸= j. In general α can be an arbitrary vector, yet, we say that α is
induced by some probability distribution on a tree T if it represents the pairwise correlations of the
leaves in some Ising model that is defined over the tree (i.e. if (1) holds for some edge-correlations
{θe}e∈E). Given a tree T , edge-correlations θ and x ∈ {−1, 1}n, denote by PrT,θ[x] the probability
that the leaves equal x under the Ising model defined by T and θ. We say that PrT,θ is the leaf
distribution over {−1, 1}n.

First, we define a pair of leaves i, j to be a cherry if they share their common neighbor (recall
that a leaf has only one neighbor). In other words, if one directs the edges from some internal node
to the leaves, i and j would share their parent.

3.2. An expression for the probability distribution on the leaves from Bresler and Karzand
(2020)

We describe a convenient closed-form expression for the probability distribution over the leaves of
the tree. To describe it, we begin with some definitions. Let S be a subset of the leaves of even
cardinality. Then, there is a unique3 way to partition S into |S|/2 pairs (x1, y1), . . . , (x|S|/2, y|S|/2)
such that the path connecting xi and yi is edge-disjoint from the path connecting xj and yj , for all
i ̸= j. This partitioning can be obtained by matching leaves that are closest to being a cherry (i.e.
siblings have highest precedence) repeatedly. For example, if we have S = {i, j, k, ℓ,m, p} in the
tree shown in Fig. 1, then we partition S into (i, ℓ), (j,m) and (k, p). The leaf distribution can be
described as the following multilinear function of x, whose coefficients, that are indexed by sets S of
even cardinality, rely on the aforementioned partitioning into pairs:

fT
x (α) := 2−n ·

∑
S⊆[n]

|S| even

αT
S

∏
i∈S

xi , where αT
S :=

|S|/2∏
i=1

αxiyi (2)

The following lemma, which is a special case of Theorem H.1 in Bresler and Karzand (2020), argues
that fT

x (α) is the leaf distribution, as a function of x (proof in Appendix A for completeness).

Lemma 5 (Bresler and Karzand (2020)) For any latent tree distribution with tree-topology T
whose pairwise correlations over the leaves equal α = (αij)i,j leaves. Then, the probability of any
configuration x = (x1, . . . , xn) ∈ {−1, 1}n on the leaves equals fT

x (α).

3.3. Technical tools for the tensorization of Theorem 1 (same topology)

We now utilize Theorem 5 to prove Theorem 1 (same topology). The total variation distance between
two distributions on the same topology T with induced weight-vectors α and α̂ is

∑
x |PrT,α[x]−

PrT,α̂[x]|/2 =
∑

x |fx(α) − fx(α̂)|/2, where T is omitted from fT
x for brevity. We would like to

bound the above expression, assuming that α and α̂ are close and this corresponds to showing some

3. The uniqueness holds if each internal node has degree 3 and this assumption is without loss of generality, as we explain
in Appendix A.

8

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

i j

k

ℓ

m

p

(a)

i j

k

ℓ

m

p

(b)

Figure 1: Path removal (dashed edges are removed): In (a), we depict the graph obtained from T by
removing the path from i to j. In (b), we depict a removal of the quartet {i, k, ℓ,m}.

Lipschitzness properties on fx(α). For a vector α ∈ [−1, 1](
n
2), we say that α is induced by some

tree distribution, or that a tree distribution induces α, if there exists a topology T with leaves in [n]
and weights θij on the edges of T , such that for all pairs of leaves i, j (1) holds. We show that such a
Lipschitzness property holds in the neighborhood of a probability distribution. Namely, that if α is
induced by a tree distribution and we change one entry of α, then fx(α) does not change much:

Lemma 6 (Formal statement in Theorem 11) Suppose α ∈ [−1, 1](
n
2) is induced by some proba-

bility distribution on a tree T . Denote by α(ij) ∈ [−1, 1](
n
2) the vector that agrees with α everywhere,

except for pair of leaves ij, where α
(ij)
ij ̸= αij . Then,∑

x∈{−1,1}n
|fx(α)− fx(α

(ij))| ≤ |αij − α
(ij)
ij |

Proof [Proof sketch] Let θ denote the weight vector on the edges of T that induces the correlation-
vector α in accordance to (1), and let θ′ be the weight vector that is obtained from θ by replacing any
weight along the path from i to j with 0. Then, it can be shown that for all x ∈ {−1, 1}n, we have

|fx(α)− fx(α
(ij))|

|αij − α
(ij)
ij |

= Pr
T,θ′

[x]. (3)

In other words, the ratio above equals the probability of x in the distribution that is obtained from
PrT,θ by removing the path from i to j in T , as depicted in Fig. 1(a). Since the right hand side
represents a distribution over x, if we sum over x the result equals 1.

To bound the total variation between two weight vectors α and α̂, one would attempt to directly
apply Theorem 6 multiple times, each time substituting one entry of α with its corresponding entry of
α̂. However, in the process of transforming the vector one coordinate at a time, we may stumble upon
an intermediate weight vector α′ that is not induced by a probability distribution and so Theorem 6
does not apply. Hence, one has to prove an analogue of Theorem 6 for the case that α is close to
being induced by a distribution. Interestingly, this can be proved by an inductive application of
Theorem 6.

9

DAGAN DASKALAKIS KANDIROS CHOO

3.4. Technical Tools for the tensorization of Theorem 1 (different topologies)

In this section, we aim to bound the total variation distance between a probability distribution defined
on a tree T with weights α and another defined on T̂ with weight α̂, under the assumptions that
the weights are ε-close: |αij − α̂ij | ≤ ε. To compare between two different topologies, we will
use the known fact that the topology on the nodes of a tree is completely determined by the set
of all subgraphs that are induced by four leaves (quartets), if all latent nodes have degree 3. The
idea is essentially the same as the one presented in Section 1.1, where it is argued that the pairwise
correlations of all leaves determine the distribution. The pairwise distances are used to find the
correct topology for each quartet. Then, using this information, we can identify which leaves are
cherries (since they will fall on the same side for each quartet that contains both of them) and then
proceed inductively to recover the entire topology. For more details, we refer the reader to Section
6.1 in Steel (2016).

Hence, in order to analyze the difference between two graphs, we can analyze the difference
between these subgraphs of 4 leaves. This is significantly easier to analyze since the subgraphs
contain only four nodes each. For this purpose, we introduce below some useful concepts, inspired
by the phylogenetics literature.

1

2

3

4

1

3

2

4

1

4

2

3

{(12)(34)}

{(13)(24)}

{(14)(23)}

(a) The 3 quartet possibilities

i v1 v2 v3 j

k ℓ m

i i i
Step 0 (T)

Step 1 (T 1) Step 2 (T 2) Step 3 (T 3)

K L M

(b)

Figure 2: (a) The three possible topologies for a quartet. In the first topology, {(12)(34)}, the path
from 1 to 2 does not intersect the path from 3 to 4. Further, α12α34 ≥ α13α24 = α14α23;
(b) The different positions of i in its movement across the tree towards j. Each position
corresponds to a different tree T i.

Definitions of a quartet. In the discussion below, we focus without loss of generality in the case
where αij ≥ 0 for all i, j. Similar claims can be made for arbitrary signs. We will use the notion of a
quartet of leaves: this is a collection of four leaves, {i, j, k, ℓ}. It is well known in the phylogenetics
literature that for every quartet there are 3 topologically distinct ways for these 4 leaves to connect
with each other, if we contract all the paths leading to other leaves in the tree. Depending on which
of the 3 ways we have, we say that the tree induces a topology for a specific quartet. We denote the

10

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

three induced topologies by {(ij)(kℓ)}, {(ik)(jℓ)} and {(iℓ)(jk)}, where {(ij)(kℓ)} means that
the path Pij is edge disjoint from the path Pkℓ, and similarly for the other topologies, as depicted
in Fig. 2 (a). For a fixed quartet {i, j, k, l}, there are three quantities that determine the topology,
out of the three possibilities, and those are αijαkℓ, αikαjℓ and αiℓαjk. It is known that two of these
quantities are always equal and always smaller than the third, which determines the true topology:
if αijαkℓ is the largest then {(ij)(kℓ)} is the topology. If two trees induce a different topology for
a quartet, we say that the trees disagree on that quartet, otherwise we say that they agree on it. It
is known (Steel (2016)) that if two trees agree on all the quartets, then they should have the same
topology. Lastly, note that in the special case where leaves {i, j} form a cherry, the path Pij does not
share edges with the path between any two other leaves. This implies that the topology of {ijkℓ}
would necessarily be {(ij), (jℓ)} for any two other leaves k and ℓ.

For the analysis, we would like to quantify how sensitive is the topology of a quartet to changing
the weights. For any quartet {i, j, k, ℓ} and weight-vector α, define

∆ijkℓ(α) := max{αijαkℓ, αikαjℓ, αiℓαjk} −min{αijαkℓ, αikαjℓ, αiℓαjk}

(where the dependence on α is omitted for brevity). Recall from Section 1.1 that the topology of this
quartet is determined by the largest of these three products, while the other two smaller products are
identical. Notice that if ∥α− α̂∥∞ ≤ ε, then

|∆ijkℓ(α)−∆ijkℓ(α̂)| ≤ ε

Hence, it is easy to see that two trees T and T̂ , with ε-close weights α and α̂, may disagree only
on quartets where ∆ijkℓ(α) ≤ 2ε. On the other hand, it is clear that if ∆ijkℓ(α) is small, then it is
impossible for any algorithm to find the right topology for {i, j, k, l}. As we argue in the sequel,
making a mistake for the topology of these quartets only results in a small loss in TV.

General approach Recall from Section 3.3 that we transformed α into α̂ by replacing its values
one coordinate at a time for the case where T̂ = T . Here, we first fix α and transform T into T̂ . In
other words, we find a sequence of topologies T 1 = T, T 2, . . . , T k = T̂ that interpolates between T
and T̂ in a way that T i, T i+1 only differ in a small part of the graph. After transforming T into T̂ ,
we then substitute α with α̂.

Transforming one tree into the other. We now describe in more detail the sequence of local
moves from T to T̂ . Intuitively, the quartets are the analog of the pairwise distances in the fixed
topology setting, and so we will measure dissimilarity between trees by the number of quartets that
they disagree on. Thus, the goal is to produce a sequence of local topological changes that reduces
quartet disagreements between T and T̂ while ensuring that each consecutive pair of terms fT i

x and
fT i−1

x is close.
The sequence of moves starts by identifying two leaves i, j that are a cherry in T̂ but are not a

cherry in T (if one exists). Since i, j are not a cherry in T , there is a path connecting them, which
involves at least 2 other nodes, by definition of a cherry. Denote the path by Pij = v1− v2− · · · − vℓ
where v1 = i, vl = j and l ≥ 4. In the process of transforming T into T̂ , we select one of the two
nodes (according to some criterion), say it is i, and move it along the path Pij in T until it becomes a
cherry with j. The sequence involved with making i form a cherry with j is called an epoch. To be
more specific, the t-th step in this epoch involves cutting i from its current place, attaching a node in
the middle of edge (vt, vt+1) and connecting i to that node. After we do that, we also contract any

11

DAGAN DASKALAKIS KANDIROS CHOO

potential paths of degree 2 nodes that were formed into a single edge. Thus, there is a total of l − 1
steps in the epoch to move i to j. The different steps of this epoch are shown in Fig. 2 (b), where we
can see the different positions of i.

When we are done moving i towards j, we will find a new pair to make a cherry and so on. If
T and T̂ agree on all cherries, we look for disagreements due to parents of cherries. Specifically,
suppose u, v are two parents of cherries that are siblings in T̂ but not in T . Then, we will move u to
become a sibling with v, which corresponds to an epoch. The idea for the movement is the same as
the one described for leaves, except now instead of cutting and pasting u, we cut an paste u together
with the subtree that hangs below u and has already been fixed by the algorithm. We then continue
this process for grandparents of cherries, and so on. When this process ends, T and T̂ are guaranteed
to be the same. For more details, see Algorithm 3.

Analyzing one step. Let us focus on the first epoch in the above process. We first notice that the
first step of the first epoch does not change the topology over the leaves. This is because after we cut
and paste i, we contract all paths of nodes of degree 2. This is clear from Fig. 2(b), where we can see
that in T 1, node v1 has degree 2 and will be contracted, yielding essentially the same topology as
T 0 = T .

Thus, we will analyze the second step, transforming T 1 into T 2 as shown in Fig. 2 (b). This
involves cutting i from the middle of edge (v1, v2) and pasting it in the middle of edge (v2, v3).
We will bound |fT 1

x (α)− fT 2

x (α)| in terms of the parameters ∆ijkℓ of the quartets that T 1 and T 2

disagree on:

Lemma 7 (Formal statement in Theorem 18) Let i, j be a cherry in T̂ but not in T and let T 1

and T 2 be the topologies defined by the procedure above (depicted in Fig. 2 (b)). Also, denote by U
the set of quartets where T 1 and T 2 disagree on. Then,∑

x∈{−1,1}n
|fT 1

x (α)− fT 2

x (α)| ≤
∑

{i,k,ℓ,m}∈U

∆ikℓm (4)

Proof [Proof sketch] Let θ denote the weight vector on the edges of T that induces the correlation-
vector α in accordance to (1). For a quartet of leaves {i, k, l,m}, let θiklm be the weight vector that
is obtained from θ by replacing the weight of any edge along the paths Pik, Pil, Pim, Pkl, Pkm, Plm

with 0. Then, it can be shown using the expression (2) that for all x ∈ {−1, 1}n, we have

|fT 1

x (α)− fT 2

x (α)| =
∑

{i,k,l,m}∈U

∆iklm(α) Pr
T,θi,k,l,m

[x]. (5)

In other words, the difference above equals a sum of terms, each one corresponding to the probability
of x in the distribution that is obtained from PrT,θ by removing all the paths of the quartet {i, k, l,m}
from T , as depicted in Fig. 1(b). Summing over x completes the proof.

Theorem 7 can be seen as an analogue of Theorem 6 but we have quartets instead of pairwise
distances. It shows a type of Lipschitzness of fT 1

x when we change the topology of some of the
quartets.

Next, we will bound the right hand side of (4). Essentially, since we know that T and T̂ disagree
on the quartets in U , then it should be the case that ∆iklm(α) is small, otherwise the algorithm would
be able to find the correct topology for these quartets. The next lemma formalizes this idea.

12

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Lemma 8 (Formal statement in Theorem 19) Each term ∆ikℓm in the right hand side of (4) is
bounded by 2ε.

Proof [Proof sketch] Using a simple case analysis, it can be shown that the only quartets that can
change topology are those that contain i, some k ∈ K, some ℓ ∈ L and some m ∈ M ∪ {j} (see
Fig. 2 (b)). The quartet topology is {(ik)(ℓm)} in T 1 and {(im)(kℓ)} in T 2 and we would like to
argue that ∆ikℓm ≤ 2ε. First, let us assume that m = j. Then, the topology of {i, k, l,m} in T 1

equals that of T , since T and T 1 share the same leaf topology, while the quartet topology of T 2

equals that of T̂ : indeed, the topology of T̂ is {(ij)(kℓ)} since (i, j) is a cherry in T̂ , as assumed in
the algorithm and this is also the topology in T 2. In particular, since the topology in T 1 is different
than that in T 2, then the topology in T is different than that in T̂ . As explained after the definition
of ∆ikℓm above, this implies that ∆ikℓm(α) ≤ 2ε. In particular, this provides a bound on ∆ikℓm as
required. The case that j ̸= m is more complicated and it relies on the fact that i can be selected
such that ∆ikℓm ≤ ∆jkℓm and considering the quartet (j, k, ℓ,m).

Completing the proof After ensuring that the move described in Theorem 7 incurs a small loss,
the natural next step is to repeatedly apply a variant of Theorem 7 for each other step of the sequence
and obtain a bound for |fT

x (α) − f T̂
x (α)|, using the triangle inequality. We would like to analyze

the total loss incurred in all the steps. We divide these steps into rounds, where in the first round we
move leaves, in the second round we move parents of leaves etc. The number of rounds is bounded
by the diameter D of T̂ . We can show that in each round, every quartet changes topology at most 4
times. Furthermore, in the general variant of Theorem 8 that corresponds to a movement of a subtree
(rather than a leaf), ε is replaced with nε. Since there are at most

(
n
4

)
quartets, the total loss incurred

in TV during all these steps is O(Dn5ε).

4. Algorithm

Algorithm 1 Learn a tree-structured distribution with a known topology
Input :An unweighted tree T = (V,E) with leaf labels {1, . . . , n}, tolerance parameter η > 0,

and {α̂ij}i,j∈{1,...,n}, i ̸=j such that |α∗
ij − α̂ij | ≤ η

Output :Weight θkℓ for each edge {k, ℓ} ∈ E
1 Let {wkℓ}{k,ℓ}∈E be any solution satisfying the following linear constraints:

log(α̂ij − η) ≤
∑

{k,ℓ}∈path(i,j)wkℓ ≤ log(α̂ij + η) for all leaves i ̸= j

wkℓ ≤ 0 for all edges {k, ℓ}
(6)

2 For each edge {k, ℓ} ∈ E, set θkℓ ← ewkℓ .
3 return {θkℓ}{k,ℓ}∈E

We describe the algorithms of Theorem 3 both for the case that the tree topology is known and
when it is unknown, given m samples (x11, . . . x

1
n), . . . , (x

m
1 , . . . , xmn) ∈ {−1, 1}n. Both algorithms

first estimate the covariance between any two leaves from samples, setting α̂ij = 1
m

∑m
ℓ=1 x

ℓ
ix

ℓ
j .

We note that by Chernoff-Hoeffding and a union bound, with probability at least 1 − δ ∀i ̸=
j : |α̂ij − α∗

ij | ≤ η :=
√
2 log(n2/δ)/m. Given such estimates on the covariance, our algorithms

13

DAGAN DASKALAKIS KANDIROS CHOO

will find some weighted tree whose correlations αij between the leaves are close to the estimated
correlations α̂ij . By the triangle inequality, the correlations of the estimated tree are close to the true
correlations and the result will follow by applying Theorem 1.

Known tree topology. We describe an algorithm that learns the weights of a fixed tree, given the
estimated correlations α̂ij . From the previous discussion, we can assume that all these estimations
are accurate up to an additive error of η =

√
2 log(n2/δ)/m. For simplicity, we will assume that the

edge weights θ∗kl are non-negative, which implies that α∗
ij ≥ 0 for all i, j. In Appendix B.2, we show

how this technique can be modified to handle arbitrary signs.
We will construct a linear program that finds weights θkℓ ≥ 0 on the edges (k, ℓ) ∈ E. The

variables of the linear program are (wkℓ)(k,ℓ)∈E and they signify wkℓ = log θkℓ. We would like our
output to satisfy the following constraints: (1) θkℓ ∈ [0, 1], which can be rewritten as wkℓ ≤ 0; and (2)
For any leaves i, j, α̂ij − η ≤ αij ≤ α̂ij + η. If we take log and substitute αij =

∏
(k,l)∈path(i,j) θkℓ

according to (1), we get the linear constraints described in (6) (while using the convention log x =
−∞ for x ≤ 0). This yields a linear program for finding the logarithms of the weights of the tree,
and we can obtain weights for the tree by exponentiation of these log-values.

Algorithm 2 Learn a tree-structured distribution with an unknown topology
Input :Leaf correlation estimates {α̂ij}i,j∈{1,...,n}, i ̸=j and parameters η′, ξ, δ > 0.
Output :A weighted forest F

1 Let F be the forest output by the algorithm of Daskalakis et al. (2009) when given weights {α̂ij}i ̸=j

and parameters ξ, δ > 0 as input.
2 For each T = (V,E) ∈ F , run Algorithm 1 with T , η′, and α̂i,j to obtain weights {θkℓ}{k,ℓ}∈E .
3 For each T = (V,E) ∈ F , set tree edge weights to {θkℓ}{k,ℓ}∈E .
4 return F

Unknown tree topology. If we do not know the tree structure, we use the algorithm of Daskalakis
et al. (2011) that, given approximations α̂ij of the correlations between the leaves, finds a forest that
shares multiple properties with the original tree. Then, for any tree in this forest, we compute weights
on the edges, using Algorithm 1 and return the weighted forest, as summarized in Algorithm 2.
To analyze this algorithm, we perform a series of careful contractions and deletions of edges, that
transform this forest into one where each subtree has exactly the same topology as the one induced
by the true tree on that particular subset of leaves. Then, crucially, we use the analysis for the known
topology setting, to bound the difference in total variation between learned marginal distribution over
the leaves of each subtree and the true marginal distribution. For details, see Appendix D.

Acknowledgments

This research/project is supported by the National Research Foundation, Singapore under its AI
Singapore Programme (AISG Award No: AISG-PhD/2021-08-013). Constantinos Daskalakis, Yuval
Dagan and Vardis Kandiros was supported by NSF Awards CCF-1901292, DMS-2022448 and
DMS2134108, a Simons Investigator Award, the Simons Collaboration on the Theory of Algorithmic
Fairness, a DSTA grant, and the DOE PhILMs project (DE-AC05-76RL01830). Vardis Kandiros was
also supported by a Fellowship of the Eric and Wendy Schmidt Center at the Broad Institute of MIT

14

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

and Harvard and by the Onassis Foundation-Scholarship ID: F ZP 016-1/2019-2020. Part of this
work was done while the authors were visiting the Simons Institute for the Theory of Computing.

References

Jayadev Acharya, Arnab Bhattacharyya, Constantinos Daskalakis, and Saravanan Kandasamy. Learn-
ing and testing causal models with interventions. Advances in Neural Information Processing
Systems, 31, 2018.

Dennis J Aigner, Cheng Hsiao, Arie Kapteyn, and Tom Wansbeek. Latent variable models in
econometrics. Handbook of econometrics, 2:1321–1393, 1984.

Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron
Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM
Journal on Computing, 48(2):687–735, 2019.

David J Bartholomew, Martin Knott, and Irini Moustaki. Latent variable models and factor analysis:
A unified approach, volume 904. John Wiley & Sons, 2011.

Quentin Berthet and Philippe Rigollet. Complexity Theoretic Lower Bounds for Sparse Principal
Component Detection. In Conference on Learning Theory, pages 1046–1066, 2013.

Arnab Bhattacharyya, Sutanu Gayen, Eric Price, and NV Vinodchandran. Near-optimal learning
of tree-structured distributions by chow-liu. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, 2021.

Arnab Bhattacharyya, Clément L Canonne, and Qiping Yang. Independence testing
for bounded degree bayesian networks. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Informa-
tion Processing Systems, volume 35, pages 15027–15038. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/611252d40f23c8b57a8bc9ffb577419b-Paper-Conference.pdf.

Christopher M Bishop. Latent variable models. In Learning in graphical models, pages 371–403.
Springer, 1998.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

Enric Boix-Adsera, Guy Bresler, and Frederic Koehler. Chow-liu++: Optimal prediction-centric
learning of tree ising models. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 417–426. IEEE, 2022.

Matthew Brennan and Guy Bresler. Reducibility and statistical-computational gaps from secret
leakage. In Conference on Learning Theory, pages 648–847. PMLR, 2020.

Guy Bresler. Efficiently learning ising models on arbitrary graphs. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 771–782, 2015.

15

https://proceedings.neurips.cc/paper_files/paper/2022/file/611252d40f23c8b57a8bc9ffb577419b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/611252d40f23c8b57a8bc9ffb577419b-Paper-Conference.pdf

DAGAN DASKALAKIS KANDIROS CHOO

Guy Bresler and Mina Karzand. Learning a tree-structured ising model in order to make predictions.
The Annals of Statistics, 48(2):713–737, 2020.

Guy Bresler, Frederic Koehler, and Ankur Moitra. Learning restricted boltzmann machines via
influence maximization. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 828–839, 2019.

Johannes Brustle, Yang Cai, and Constantinos Daskalakis. Multi-item mechanisms without item-
independence: Learnability via robustness. In Proceedings of the 21st ACM Conference on
Economics and Computation, pages 715–761, 2020.

Clément L Canonne, Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Testing bayesian
networks. In Conference on Learning Theory, pages 370–448. PMLR, 2017.

Joseph T Chang. Full reconstruction of markov models on evolutionary trees: identifiability and
consistency. Mathematical biosciences, 137(1):51–73, 1996.

Davin Choo and Tommaso d’Orsi. The complexity of sparse tensor pca. Advances in Neural
Information Processing Systems, 34:7993–8005, 2021.

Benny Chor and Tamir Tuller. Maximum likelihood of evolutionary trees is hard. In Annual
International Conference on Research in Computational Molecular Biology, pages 296–310.
Springer, 2005.

C Chow and T Wagner. Consistency of an estimate of tree-dependent probability distributions
(corresp.). IEEE Transactions on Information Theory, 19(3):369–371, 1973.

CKCN Chow and Cong Liu. Approximating discrete probability distributions with dependence trees.
IEEE transactions on Information Theory, 14(3):462–467, 1968.

Mary Cryan, Leslie Ann Goldberg, and Paul W Goldberg. Evolutionary trees can be learned in
polynomial time in the two-state general markov model. SIAM Journal on Computing, 31(2):
375–397, 2001.

Miklós Csurös. Fast recovery of evolutionary trees with thousands of nodes. Journal of Computational
Biology, 9(2):277–297, 2002.

Yuval Dagan, Constantinos Daskalakis, Nishanth Dikkala, and Anthimos Vardis Kandiros. Learning
ising models from one or multiple samples. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 161–168, 2021.

Constantinos Daskalakis and Qinxuan Pan. Square hellinger subadditivity for bayesian networks and
its applications to identity testing. In Conference on Learning Theory, pages 697–703. PMLR,
2017.

Constantinos Daskalakis and Qinxuan Pan. Sample-optimal and efficient learning of tree ising
models. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
2021.

16

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Constantinos Daskalakis, Elchanan Mossel, and Sébastien Roch. Optimal phylogenetic reconstruction.
In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 159–
168, 2006.

Constantinos Daskalakis, Elchanan Mossel, and Sébastien Roch. Phylogenies without branch bounds:
Contracting the short, pruning the deep. In Annual International Conference on Research in
Computational Molecular Biology, pages 451–465. Springer, 2009.

Constantinos Daskalakis, Elchanan Mossel, and Sébastien Roch. Evolutionary trees and the ising
model on the bethe lattice: a proof of steel’s conjecture. Probability Theory and Related Fields,
149(1):149–189, 2011.

Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. Testing ising models. IEEE
Transactions on Information Theory, 65(11):6829–6852, 2019.

Constantinos Daskalakis, Yuval Dagan, and Anthimos-Vardis Kandiros. Where does em converge in
gaussian latent tree models? In Conference on Learning Theory (COLT), 2022.

Costis Daskalakis, Christos Tzamos, and Manolis Zampetakis. Bootstrapping em via power em and
convergence in the naive bayes model. In International Conference on Artificial Intelligence and
Statistics, pages 2056–2064. PMLR, 2018.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The minimax learning rates of normal and
ising undirected graphical models. Electronic Journal of Statistics, 14(1):2338–2361, 2020.

Mucong Ding, Constantinos Daskalakis, and Soheil Feizi. Gans with conditional independence
graphs: On subadditivity of probability divergences. In International Conference on Artificial
Intelligence and Statistics, pages 3709–3717. PMLR, 2021.

Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Subexponential-time
algorithms for sparse pca. Foundations of Computational Mathematics, pages 1–50, 2023.

Tommaso d’Orsi, Pravesh K Kothari, Gleb Novikov, and David Steurer. Sparse pca: algorithms,
adversarial perturbations and certificates. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 553–564. IEEE, 2020.

Péter L Erdős, Michael A Steel, László A Székely, and Tandy J Warnow. A few logs suffice to build
(almost) all trees (i). Random Structures & Algorithms, 14(2):153–184, 1999.

B Everett. An introduction to latent variable models. Springer Science & Business Media, 2013.

Joseph Felsenstein. Maximum-likelihood estimation of evolutionary trees from continuous characters.
American journal of human genetics, 25(5):471, 1973.

Joseph Felsenstein. Evolutionary trees from gene frequencies and quantitative characters: finding
maximum likelihood estimates. Evolution, pages 1229–1242, 1981.

17

DAGAN DASKALAKIS KANDIROS CHOO

Joseph Felsenstein. Inferring phylogenies, volume 2. Sinauer associates Sunderland, MA, 2004.

Surbhi Goel. Learning restricted boltzmann machines with arbitrary external fields. arXiv preprint
arXiv:1906.06595, 2019.

Surbhi Goel, Adam Klivans, and Frederic Koehler. From boltzmann machines to neural networks
and back again. Advances in Neural Information Processing Systems, 33:6354–6365, 2020.

Ilan Gronau, Shlomo Moran, and Sagi Snir. Fast and reliable reconstruction of phylogenetic trees
with very short edges. In SODA, volume 8, pages 379–388, 2008.

Linus Hamilton, Frederic Koehler, and Ankur Moitra. Information theoretic properties of markov
random fields, and their algorithmic applications. Advances in Neural Information Processing
Systems, 30, 2017.

Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil Schramm, and
David Steurer. The power of sum-of-squares for detecting hidden structures. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 720–731. IEEE, 2017.

Daniel H Huson, Scott M Nettles, and Tandy J Warnow. Disk-covering, a fast-converging method for
phylogenetic tree reconstruction. Journal of computational biology, 6(3-4):369–386, 1999.

Ali Jalali, Pradeep Ravikumar, Vishvas Vasuki, and Sujay Sanghavi. On learning discrete graphical
models using group-sparse regularization. In Proceedings of the fourteenth international confer-
ence on artificial intelligence and statistics, pages 378–387. JMLR Workshop and Conference
Proceedings, 2011.

Matthew G Jones, Alex Khodaverdian, Jeffrey J Quinn, Michelle M Chan, Jeffrey A Hussmann,
Robert Wang, Chenling Xu, Jonathan S Weissman, and Nir Yosef. Inference of single-cell
phylogenies from lineage tracing data using cassiopeia. Genome biology, 21(1):1–27, 2020.

Michael I Jordan. Graphical models. Statistical science, 19(1):140–155, 2004.

Vardis Kandiros, Yuval Dagan, Nishanth Dikkala, Surbhi Goel, and Constantinos Daskalakis. Statis-
tical estimation from dependent data. In International Conference on Machine Learning, pages
5269–5278. PMLR, 2021.

Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-based evolutionary tree.
In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, page 444.
SIAM, 2003.

Adam Klivans and Raghu Meka. Learning graphical models using multiplicative weights. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 343–354.
IEEE, 2017.

Frederic Koehler. A note on minimax learning of tree models. 2020.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

18

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational hardness
of hypothesis testing: Predictions using the low-degree likelihood ratio. In ISAAC Congress
(International Society for Analysis, its Applications and Computation), pages 1–50. Springer,
2019.

Steffen L Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.

Chunghau Lee, Sigal Blay, Arne Ø Mooers, Ambuj Singh, and Todd H Oakley. Comet: A mesquite
package for comparing models of continuous character evolution on phylogenies. Evolutionary
Bioinformatics, 2:117693430600200022, 2006.

Ankur Moitra, Elchanan Mossel, and Colin P Sandon. Learning to sample from censored markov
random fields. In Conference on Learning Theory, pages 3419–3451. PMLR, 2021.

Elchanan Mossel. Distorted metrics on trees and phylogenetic forests. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 4(1):108–116, 2007.

Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden markov models.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
366–375, 2005.

Mukund Narasimhan and Jeff A Bilmes. Pac-learning bounded tree-width graphical models. In Proc.
20th Ann. Conf. on Uncertainty in Artificial Intelligence (UAI), 2004.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
kaufmann, 1988.

Prasad Raghavendra, Tselil Schramm, and David Steurer. High dimensional estimation via sum-of-
squares proofs. In Proceedings of the International Congress of Mathematicians: Rio de Janeiro
2018, pages 3389–3423. World Scientific, 2018.

Pradeep Ravikumar, Martin J Wainwright, and John D Lafferty. High-dimensional ising model
selection using l 1-regularized logistic regression. The Annals of Statistics, 38(3):1287–1319,
2010.

Sebastien Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood is hard.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(1):92–94, 2006.

Sebastien Roch. Toward extracting all phylogenetic information from matrices of evolutionary
distances. Science, 327(5971):1376–1379, 2010.

Sebastien Roch and Allan Sly. Phase transition in the sample complexity of likelihood-based
phylogeny inference. Probability Theory and Related Fields, 169(1):3–62, 2017.

Narayana P Santhanam and Martin J Wainwright. Information-theoretic limits of selecting binary
graphical models in high dimensions. IEEE Transactions on Information Theory, 58(7):4117–4134,
2012.

Tselil Schramm and Alexander S Wein. Computational barriers to estimation from low-degree
polynomials. The Annals of Statistics, 50(3):1833–1858, 2022.

19

DAGAN DASKALAKIS KANDIROS CHOO

Alexandros Stamatakis. Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with
thousands of taxa and mixed models. Bioinformatics, 22(21):2688–2690, 2006.

Mike Steel. Phylogeny: discrete and random processes in evolution. SIAM, 2016.

Vincent YF Tan, Animashree Anandkumar, Lang Tong, and Alan S Willsky. A large-deviation
analysis of the maximum-likelihood learning of markov tree structures. IEEE Transactions on
Information Theory, 57(3):1714–1735, 2011.

Michael Truell, Jan-Christian Hütter, Chandler Squires, Piotr Zwiernik, and Caroline Uhler. Maxi-
mum likelihood estimation for brownian motion tree models based on one sample. arXiv preprint
arXiv:2112.00816, 2021.

Marc Vuffray, Sidhant Misra, Andrey Lokhov, and Michael Chertkov. Interaction screening: Efficient
and sample-optimal learning of ising models. Advances in neural information processing systems,
29, 2016.

Marc Vuffray, Sidhant Misra, and Andrey Y Lokhov. Efficient learning of discrete graphical models.
Journal of Statistical Mechanics: Theory and Experiment, 2021(12):124017, 2022.

Yi Wang and Nevin Lianwen Zhang. Severity of local maxima for the em algorithm: Experiences
with hierarchical latent class models. In Probabilistic Graphical Models, pages 301–308. Citeseer,
2006.

Ziheng Yang. Paml: a program package for phylogenetic analysis by maximum likelihood. Computer
applications in the biosciences, 13(5):555–556, 1997.

Yannis G Yatracos. Rates of convergence of minimum distance estimators and kolmogorov’s entropy.
The Annals of Statistics, 13(2):768–774, 1985.

Piotr Zwiernik, Caroline Uhler, and Donald Richards. Maximum likelihood estimation for linear
gaussian covariance models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(4):1269–1292, 2017.

20

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Appendix A. A formula for the leaf distribution from Bresler and Karzand (2020)

Suppose we have a tree Ising model T . We show how we can convert it into another Ising model
T ′, such that T ′ has latent nodes of degree exactly 3 and the leaf distributions of T and T ′ are the
same. Indeed, suppose i is a latent node of degree 2. Let u, v be the neighbors of i in T . Then, we
can delete i in T ′ and replace the edges (i, u), (i, v) with the edge (u, v) with θuv = θiuθiv. If xu, xv
and x′u, x

′
v denote the random variables of leaves u, v in T and T ′, respectively, then it is clear that

E[xuxv] = E[xux2ixv] = E[xuxixvxi] = E[xuxi]E[xvxi] = θuiθvi = E[x′ux′v]

Thus, the distribution of the pair xu, xv doesn’t change from this local change. By the Markov
property, this implies that the distribution of leaves also doesn’t change. We can apply this procedure
succesively to eliminate all nodes with degree 2.

Now, suppose there is a latent node r in T with degree k > 3. Let u1, . . . , uk be the neighbors
of i in T . We delete r and introduce two nodes s, t which are connected by an edge (s, t) with
θst = 1. We connect u1, u2 to s with the same edge weights as u1, u2 had with r. Lastly, we connect
u3, . . . , uk to t with same edge weights as before. Clearly, the topology is still a tree, and xs = xt
always, since θst = 1. Thus, xs, xt have the same value that xr had in T , and so the distribution of
the leaves does not change. Furthermore, xs has degree 3 and xt has degree k − 1. Thus, we can
apply this procedure successively until all nodes have degree 3. The final tree that we obtain is T ′,
and we just argued that it has the same leaf distribution and all latent nodes have degree 3. Thus,
from now on we will make the implicit assumption that all internal nodes have degree 3.

Next, we introduce some convenient notation. Let S be a subset of the leaves of even cardinality.
Then, there is a natural way to partition the leaves in S in |S|/2 pairs using the following criterion:
each leaf i in S is matched with its closest relative in S in the tree. Yet, to be more exact, we say
that a matching of S is a closest relative matching if for any two distinct pairs (i, j) and (k, ℓ) in the
matching, the path from i to j does not intersect the path from k to ℓ. An example of such a matching
is given in Figure 4. In the following proposition, we prove that there is a unique such matching, and
use this matching to find an expression to the leaf distribution of an Ising model:

Lemma 9 Let x1, . . . , xn denote the values over the n leaves of a tree T with pairwise correlations
α ∈ [−1, 1](

n
2). Then, the following holds:

• Any subset S ⊆ [n] of even cardinality has a unique closest relative matching.

• Define for any subset S ⊆ [n] of even cardinality

αS :=

|S|/2∏
k=1

αikjk

where (i1, j1), . . . , (i|S|/2−1, j|S|/2−1) are the pairs in the closest relative matching. Then, we
have

Pr[x1, . . . , xn] =

∑
even subsets S ⊆ [n] αS

∏
i∈S xi

2n
(7)

Proof Recall that we can assume that there are no nodes of degree 2 (otherwise, we can contract
maximal paths of degree-2 nodes and replace them by a single edge whose weight is the product

21

DAGAN DASKALAKIS KANDIROS CHOO

of all edges in the path. This does not change the leaf distribution.) We will prove both statements
together by induction. We will focus on the proof for the probability expression, and the uniqueness
of the matching will come as a by-product. The base case considers either 0, 1 or 2 leaves, and
follows trivially. For the induction step, suppose the claim is true for all trees having at most n− 1
leaves. Let T be a tree with n leaves. We are interested in the probability Pr[x1, . . . , xn] of the
leaves taking some specific values. First of all, since T is assumed to contain no nodes of degree 2,
we know that there exists at least one cherry, i.e. a pair of leaves that share their parent. Also, without
loss of generality, suppose that leaves n − 1 and n form a cherry and denote by p their common
parent in the tree. Lastly, denote by θ(p,n−1) and θ(p,n) the weights of the edges (p, n− 1) and (p, n)
respectively. Then, we know that xn, xn−1 are conditionally independent from the rest of the tree
conditioned on yp, where yp denotes the value of node p. Thus, we can write

Pr[x1, . . . , xn] = Pr[x1, . . . , xn−2, yp = 1]Pr[xn−1, xn | yp = 1]

+ Pr[x1, . . . , xn−2, yp = −1] Pr[xn−1, xn | yp = −1]

Now, notice that we can view the nodes 1, . . . , n − 2, p as the leaves of a tree T ′ which is simply
T after deleting leaves n − 1 and n and the edges (n − 1, p) and (n, p). Hence, we can apply
the induction hypothesis on the distribution of x1, . . . , xn−2, yp. Recall that the expression for the
probability distribution is a function of the expressions αS of all the even subsets S of the leaves.
Hence, we would like to compare the coefficients αS between the distribution over x1, . . . , xn and
the distribution over x1, . . . , xn−2, yp that is used for the induction hypothesis. In order for such a
comparison to be possible, we divide the collections of even subsets of the leaves of T and T ′ into
categories. We start with the leaves of tree T . Denote by S the set of all even subsets of the set of
leaves {1, . . . , n}. Clearly, we can partition S into 4 disjoint subsets:

S−− := {even subsets of [n] not containing neither n− 1 nor n}
S+− := {even subsets of [n] containing n− 1 but not containing n}
S−+ := {even subsets of [n] not containing n− 1 but containing n}
S++ := {even subsets of [n] containing both n− 1 and n}

Similarly, we define analogues to be applied on the distribution that is used in the induction hypothesis.
In particular, define byR the collection of all even subsets of [n− 2] ∪ {p}. We can also partitionR
into the following subsets:

R− := {even subsets of [n− 2] ∪ {p} not containing p}
R+ := {even subsets of [n− 2] ∪ {p} containing p}

While applying the induction hypothesis, once computing Pr[x1, . . . , xn] we will split the sum in (7)
into four sums over the different subsets of S that were defined above. Similarly, while computing
Pr[x1, . . . , xn−2, yp] we will split the sum into terms corresponding toR− andR+. In order to be
able to compare between these two sums, we will map each of the four subsets of S to a subset ofR.

First, note that S−− = R− since both equal the collection of even subsets of [n − 2]. Hence,
it follows by induction hypothesis that the sets S ∈ S−− have a unique closest relative matching.
Further, ∑

S∈S−−

∏
i∈S

xiαS =
∑

S∈R−

∏
i∈S

xiαS .

22

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Next, notice that there is a bijection between S++ and R−, which takes any S ∈ S++ to
S \ {n− 1, n}. We use this to prove that there exists a closest-relative matching for any S ∈ S++.
Indeed, we can match n− 1 with n and then match S \ {n− 1, n}. This is possible by induction
hypothesis. Further, this matching is unique. This is true because any such matching must match
n − 1 with n, and the matching in S \ {n − 1, n} is unique by induction hypothesis. Using this
bijection between the matchings of S++ andR−, we derive that∑

S∈S++

∏
i∈S

xiαS = xn−1xnαn−1,n

∑
S∈R−

∏
i∈S

xiαS .

Further, notice that there is a bijection between S+− and R+, which takes S ∈ S+− to S \
{n− 1} ∪ {p}. Further, to argue that each S ∈ S+− contains a unique closest-relative matching, it
is easy to see that there is a one-to-one correspondence between the closest-relative matchings of
S \ {n− 1} ∪ {p} and that of S. Indeed, for any closest-relative matching of S \ {n− 1} ∪ {p}, we
can obtain a closest relative matching of S by replacing p with n− 1, and vice versa. Notice that the
path from n− 1 to any other vertex can be obtained from the path from p to that vertex by adding the
edge (n− 1, p) in the beginning. Hence, for any leaf i we have αn−1,i = θn−1,pαp,i. In particular,
this implies that αS = θn−1,pαS\{n−1}∪{p}. Summing over S ∈ S+−, we get∑

S∈S+−

∏
i∈S

xiαS = xn−1θn−1,p

∑
S∈R+

∏
i∈S\{p}

xiαS .

Similarly, the sets S ∈ S−+ also have a unique closest-relative matching, and∑
S∈S−+

∏
i∈S

xiαS = xnθn,p
∑

S∈R+

∏
i∈S\{p}

xiαS .

Using the above expressions, we can complete the proof, using the induction hypothesis:

Pr[x1, . . . , xn] = Pr[x1, . . . , xn−2, yp = 1]Pr[xn−1, xn|yp = 1]

+ Pr[x1, . . . , xn−2, yp = −1] Pr[xn−1, xn|yp = −1]

=

∑
S∈R−

∏
i∈S xiαS +

∑
S∈R+

∏
i∈S\{p} xiαS

2n−1

1 + xnθn,p
2

1 + xn−1θn−1,p

2

+

∑
S∈R−

∏
i∈S xiαS −

∑
S∈R+

∏
i∈S\{p} xiαS

2n−1

1− xnθn,p
2

1− xn−1θn−1,p

2

=

∑
S∈R−

∏
i∈S xiαS + xnxn−1θn,pθn−1,p

∑
S∈R−

∏
i∈S xiαS

2n

+
xnθn,p

∑
S∈R+

∏
i∈S\{p} xiαS + xn−1θn−1,p

∑
S∈R+

∏
i∈S\{p} xiαS

2n

=

∑
S∈S−−

∏
i∈S xiαS +

∑
S∈S++

∏
i∈S xiαS +

∑
S∈S−+

∏
i∈S xiαS +

∑
S∈S+−

∏
i∈S xiαS

2n

=

∑
S∈S

∏
i∈S xiαS

2n

23

DAGAN DASKALAKIS KANDIROS CHOO

Appendix B. Proof of Theorem 1 (Same topology) and Theorem 3 (Known topology)

B.1. Proof of Theorem 1 (Same Topology)

In this Section, we provide the proof for bounding the TV distance between two models with the
same topology (Theorem 1). This argument immediately implies an algorithm for TV-learning using
O(n4/ε2) samples from the leaves.

We first restate Theorem 1 for the same topology with a bit more detail.

Theorem 10 Let T be a tree and α, α̂ ∈ [−1, 1](
n
2) be two tree metrics on T . Suppose ∥α−α̂∥∞ ≤ ε,

for some ε > 0. Let µ, µ̂ be the corresponding distribution on the leaves of T with metric α, α̂
respectively. Then,

TV (µ, µ̂) ≤ 2n2ε

To start, let T be a tree with n leaves. We will refer to the leaf set as [n], so each number
corresponds to one leaf. We define for each x ∈ {−1, 1}n and for each tree topology T a function
fT
x : [−1, 1](

n
2) 7→ R as

fT
x (α) :=

∑
even subsets S ⊆ [n] α

T
S

∏
i∈S xi

2n
(8)

Notice the similarity of this expression with the probability distribution of the leaves. However, this is
a multilinear function that is defined for any vector α ∈ [−1, 1](

n
2), which might not necessarily arise

from a tree metric on the leaves. This motivates the following definition. For a vector α ∈ [−1, 1](
n
2),

we say that α is induced by a metric in T if there exists an assignment θe of weights for each edge e
of T , such that for all leaves i, j

αij =
∏
e∈Pij

θe

In that case, we will refer to α as a tree metric on T . Now, bounding TV (µ, µ̂) essentially amounts
to bounding ∑

x∈{−1,1}n
|µ(x)− µ̂(x)| =

∑
x∈{−1,1}n

|fx(α)− fx(α̂)|

Thus, the problem amounts to bounding the Lipschitzness of fx. We will bound this quantity by
substituting one by one the coordinates of α with α̂. We first introduce some relevant definitions.
We will need a total ordering of the pairs (i, j) of leaves. The precise ordering doesn’t matter, but
for simplicity let’s say we pick the lexicographic order. This means that (i, j) < (k, l) if and only
if i < k or i = k and j < l. We use the notation (i, j) ≤ (k, l) as a substitute for (i, j) < (k, l) or
(i, j) = (k, l). Suppose we order all pairs of leaves in lexicographic order. Then, we denote the t-th
pair in this order as (it, jt). For each 0 ≤ t ≤

(
n
2

)
, we define the vector αt ∈ [−1, 1](

n
2) as

αt
kl =

{
α̂kl , if (k, l) ≤ (it, jt)
αkl , otherwise

For t = 0, the convention is that αt = α. Notice that α(
n
2) = α̂. Also, denote T \ {i, j} the topology

that is obtained from T if we remove all edges on the path Pij from T .
We first prove a Lemma about what happens to the expression of fT

x (α) if we change exactly
one coordinate of α. This is a purely combinatorial statement that relies on the structure of the
coefficients αS .

24

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Lemma 11 Let T be a tree and i, j two leaves of T . Also, let α, β ∈ [−1, 1](
n
2) such that αkl = βkl

if (k, l) ̸= (i, j). Let γ ∈ [−1, 1](
n
2) be defined as follows

γkl =

{
0 , if Pij and Pkl have common edges
αkl , otherwise

Then,
fT
x (α)− fT

x (β) = xixj(αij − βij)f
T\{i,j}
x (γ) (9)

Proof We have

fT
x (α)− fT

x (β) =

∑
even subsets S ⊆ [n]

(
αT
S − βT

S

)∏
i∈S xi

2n

We first notice that if {i, j} is not a subset of S, then αij , βij will not appear in αT
S , β

T
S respectively.

This means that αT
S = βT

S , since α, β agree on the rest of the coordinates. Hence, we focus on the
collection of subsets

S1 := {S ⊆ [n] : {i, j} ⊆ S and |S| even}

Suppose v0 = i, v1, . . . , vk = j is the path connecting i, j in T . Since each non-leaf node has degree
3, each one of the nodes v1, . . . , vk−1 has exactly one other neighbor outside of the path. We can
view this as each vi being the root of some subtree Ti that starts from the neighbor of vi that is outside
of the path. Let Ai be the set of leaves on subtree Ti. Notice that the sets Ai partition [n] \ {i, j}.
Figure 3 depicts these sets of leaves along the path.

v0

v0 = i

v1 v2 vk−1 vk

vk = j

. . .

A1 A2 Ak−1

T1 T2 Tk−1

. . .

Figure 3: The figure shows the path connecting i to j and the subtrees that will become connected
components if we remove this path from the graph.

We now want to determine which elements of the family S1 of subsets gives different coefficients
for α, β. We first show that if for some S ∈ S1 we have |S∩Ar| being odd for some 0 < r < k, then
αT
S = βT

S . The reason is the following: suppose there exists r0 with |S ∩Ar0 | being odd. Suppose
also without loss of generality that this is the smallest r for which this property holds. This means
that for r < r0 we have |S ∩Ar| is even. Thus, by the matching process described in Section A, it
is clear that for each r < r0, the leaves in S ∩ Ar will be matched in pairs inside the tree Tr and
not with some leaves outside of the tree. Also, since |S ∩Ar0 | is odd, the leaves in S ∩Ar0 will be
matched with each other, except one leaf, call it w, which will be left unmatched. Then, the matching
process dictates that w should be matched with i. Hence, i will not be matched with j for this subset
S. An example of this situation can be seen in Figure 4.

25

DAGAN DASKALAKIS KANDIROS CHOO

v2 jv1i

1 2 3

4 5

A1 A2

Figure 4: In this example, we have the subset S = {i, j, 1, 2, 3, 4}. Notice that |S ∩A1|, |S ∩A2|
are even. Clearly, the closest relative matching is (i, j), (1, 2), (3, 4). If we had the set
S′ = {i, 1, 3, j}, then the matching would be (i, 1), (3, j).

Hence, in αT
S we will have the factor αiw instead of αij . This means that αij does not appear in

αT
S and similarly βij does not appear in βT

S . But this implies that αT
S = βT

S , since α, β agree on all
the other coordinates. This proves our claim.

Hence, if we define the set

S2 := {{i, j} ∪
(
∪k−1
r=1Sr

)
: Sr ⊆ Ar, |Sr| even, for all r}

then
fT
x (α)− fT

x (β) =
1

2n

∑
S∈S2

(
αT
S − βT

S

)∏
i∈S

xi

Since Sr has an even number of leaves, they will be matched inside tree Tr, regardless of the topology
of the rest of the tree. This leaves i, j, which will be matched together. This enables us to write

αS = αij

k−1∏
r=1

αTr
Sr

, βS = βij

k−1∏
r=1

αTr
Sr

The reason we wrote αSr in the expression of βS is that α, β agree on all coordinates other than ij.
Hence,

fT
x (α)− fT

x (β) = (αij − βij)xixj


1

4

k−1∏
r=1

1

2|Ar|

∑
Sr⊆Ar,|Sr|even

αTr
Sr

∏
u∈Sr

xu︸ ︷︷ ︸
fTr
xAr

(α)


= (αij − βij)xixjf

T\{i,j}
x (γ)

26

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Let us explain the last equality. The r-th element in this product corresponds to the expression of the
probability distribution on the leaves Ar of the subtree Tr, with pairwise correlations that are given
by α (we are slightly abusing notation when we pass α as an argument in fTr

x , since it is the vector
of pairwise correlations for the whole tree). Hence, the product of these terms is the expression of a
product probability distribution over the subsets Ar and i, j being independent from everyone else
(this is the 1/4 term). This is exactly the expression of the distribution on T \ {i, j} with correlations
given by α, except for pairs of leaves that belong to different subtrees, which have correlation 0. This
is exactly how we defined γ, hence the result follows.

Lemma 11 tells us how much fx changes when we change one coordinate, corresponding to
some pair (i, j). Hence, our efforts will now be focused on bounding the expression on the RHS
of (9). If this expression corresponds to a distribution on T \ {i, j}, then this term can easily be
bounded. However, as we will see, that will not always be the case and we need to be more careful.
The following Lemma contains the Lipschitzness property that we would like to prove.

Lemma 12 Let T be a tree and α, α̂ ∈ [−1, 1](
n
2), where α is a metric on T . Suppose that

∥α− α̂∥∞ ≤ ε/(2n2), where ε ∈ (0, 1). Then, for any t ≥ 1∑
x∈{−1,1}n

∣∣fT
x (α

t)− fT
x (α

t−1)
∣∣ ≤ ε

n2
(10)

Proof We will prove (10) via induction on t. First, we define for all s, t ≤
(
n
2

)
the vector

γt,skl =

{
0 , if Pitjt and Pkl have common edges
αs
kl , otherwise

The base case t = 1 corresponds to the pair of leaves (1, 2). Since α1 and α0 = α differ only in the
pair (1, 2), by Lemma 11 we have

∑
x∈{−1,1}n

∣∣fT
x (α

1)− fT
x (α)

∣∣ ≤ |α12 − α̂12|
∑

x∈{−1,1}n

∣∣∣fT\{1,2}
x (γ1,0)

∣∣∣
Now, we notice that fT\{1,2}

x (γ1,0) is actually the probability distribution on T that results from α if
we set θe = 0 for all e ∈ P12. Hence, we can remove the absolute value and get

∑
x∈{−1,1}n

∣∣fT
x (α

1)− fT
x (α)

∣∣ ≤ |α12 − α̂12|
∑

x∈{−1,1}n
fT\{1,2}
x (γ1,0) = |α12 − α̂12| ≤

ε

2n2

Hence, the base case of the induction is proven.
Now, suppose we have proved the claim for all t′ < t.
By applying Lemma 11, we again obtain∑

x∈{−1,1}n

∣∣fT
x (α

t)− fT
x (α

t−1)
∣∣ ≤ |αitjt − α̂itjt |

∑
x∈{−1,1}n

∣∣∣fT\{it,jt}
x (γt,t−1)

∣∣∣ (11)

27

DAGAN DASKALAKIS KANDIROS CHOO

Now, the problem is that γt,s contains some coordinates of α and some coordinates of α̂. As a result,
the expression fT

x (γ
t) is not necessarily a probability distribution anymore. We will try to relate this

quantity to a true distribution.
Essentially, γt,s is the same as αs, except for pairs of leaves that belong to different components

of T \ {it, jt}. Now, we can write

∑
x∈{−1,1}n

∣∣∣fT\{it,jt}
x (γt,s)

∣∣∣
≤

∑
x∈{−1,1}n

∣∣∣fT\{it,jt}
x (γt,0)

∣∣∣+ t−1∑
s=1

∑
x∈{−1,1}n

∣∣∣fT\{it,jt}
x (γt,s)− fT\{it,jt}

x (γt,s−1)
∣∣∣

First of all, we notice that the expression f
T\{it,jt}
x (γt,0) is the expression of a probability distribution

on T , which is obtained from α by setting θe = 0 for all edges e ∈ Pitjt . Hence, the first term of the
RHS sums up to 1. As for the second sum, each term of the outer sum has exactly the form of (10),
where the starting α is γt,0 and we have substituted at most t− 1 with α̂, since s ≤ t− 1. Hence, we
can apply the inductive assumption to get

t−1∑
s=1

∑
x∈{−1,1}n

∣∣∣fT\{it,jt}
x (γt,s)− fT\{it,jt}

x (γt,s−1)
∣∣∣ ≤ (t− 1)

ε

n2
≤ ε

since t ≤
(
n
2

)
≤ n2. Overall, this gives∑

x∈{−1,1}n

∣∣∣fT\{it,jt}
x (γt,s)

∣∣∣ ≤ 1 + ε

Now, plugging this in (11) gives us∑
x∈{−1,1}n

∣∣fT
x (α

t)− fT
x (α

t−1)
∣∣ ≤ |αitjt − α̂itjt |(1 + ε) ≤ ε

n2

since ε < 1. Thus, the inductive step is complete and the claim is proved.

We are now ready to prove Theorem 10.
Proof [Proof of Theorem 10] Let ε′ = 2n2ε. We divide into cases.

Case 1: Suppose ε′ < 1. Then, Lemma 12 applies and we get

TV (µ, µ̂) =
∑

x∈{−1,1}n

∣∣fT
x (α)− fT

x (α̂)
∣∣ ≤ (n2)∑

t=1

∑
x∈{−1,1}n

∣∣fT
x (α

t)− fT
x (α

t−1)
∣∣

≤
(n2)∑
t=1

ε′

n2
≤ ε′ = 2n2ε

28

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Case 2: Suppose ε′ ≥ 1. This means that

TV (µ, µ̂) ≤ 1 ≤ 2n2ε

so the claim is trivial in that case.

B.2. Proof of Theorem 3 (Known Topology)

We can now also conclude the proof of Theorem 3 for known topology, which we sketched in earlier
Sections.
Proof [Proof of Theorem 3 (Known topology)] Let α ∈ [−1, 1]n denote the vector of correlations of
leaves in the model we are trying to learn and µ denote the distribution on the leaves for this model.
Let us consider the sample mean obtained from m independent samples x(1), . . . , x(m).

α̂ij =

m∑
k=1

x
(k)
i x

(k)
j

m

By standard Chernoff bounds, we know that with probability at least 1− δ, for all leaves i, j

|αij − α̂ij | ≤
√

2 log(n2/δ)

m
:= η (12)

We run Algorithm 1 with this η parameter.
First, we claim that the LP that Algorithm 1 solves has a feasible solution for this choice of η. To

show that, we will construct a feasible solution of the program. If θ ∈ [−1, 1]|E| is the vector of the
edge weights of the model we are trying to learn, then for all leaves i, j

αij =
∏

(k,l)∈Pij

θkl

This implies that
|αij | =

∏
(k,l)∈Pij

|θkl|

Thus, if we set wkl = ln |θkl| for all edges (k, l), we have that

∑
(k,l)∈Pi,j

wkl = ln

 ∏
(k,l)∈Pij

|θkl|

 = log |αij |

We know that with probability at least 1− δ

||αij | − |α̂ij || ≤ |αij − α̂ij | ≤ η

which implies by the previous observations that

log(|α̂ij | − η) ≤
∑

(k,l)∈Pi,j

wkl ≤ log(|α̂ij |+ η)

29

DAGAN DASKALAKIS KANDIROS CHOO

Hence, the inequality constraint for feasibility is satisfied. Hence, this is a feasible solution for
the program.

Let θ̃kl be the edge weights that are returned by the LP and α̃ ∈ [0, 1](
n
2) be the pairwise

correlations that are induced by these weights. We need to figure out the correct signs for each θkl.
Let skl ∈ {−1, 1} be a sign variable for each edge (k, l). Also, let s(α)ij ∈ {−1, 1} be the sign of
αij and likewise define s(αij). If we find an assignment of the skl variables such that∏

(k,l)∈Pij

skl = s(αij)

for all pairs i, j, then it follows that∣∣∣∣∣∣
∏

(k,l)∈Pij

sklθ̃kl − αij

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∏

(k,l)∈Pij

skl
∏

(k,l)∈Pij

θ̃kl − s(αij)|αij |

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∏

(k,l)∈Pij

θ̃kl − |αij |

∣∣∣∣∣∣ ≤ η

(13)
Thus, we will now focus on finding such skl and the output of the algorithm will be θkl = sklθ̃kl.
First of all, we need a way to figure out s(αij) for all i, j. Let U = {(i, j) : |α̂ij | > η}. By the
approximation guarantee |αij − α̂ij | < η, we conclude that for all (i, j) ∈ U , s(αij) = s(α̂ij).
Hence, we build up the system of equations∏

(k,l)∈Pij

skl = s(α̂ij) for all (i, j) ∈ U (14)

This can be viewed as a system of linear equations in F2, which is the field with 2 elements. Hence,
we can use the standard Gaussian elimination algorithm to solve it. Since s(α̂ij) = s(αij) for all
(i, j) ∈ U , we know that this system has at least one solution, namely setting skl to be the sign of θkl
in the true model. Let s̃ be the solution that is returned by the Gaussian elimination algorithm. There
might be many solutions, since it’s possible that the system is underdetermined, which could be
cause by the absence of some equations for (i, j) /∈ U . But in any case, we know that s̃ satisfies (14).

Now, we set θkl = s̃klθ̃kl and let α ∈ [−1, 1](
n
2) be the correlations that are induced by θ,

namely αij = α̃ij
∏

(k,l)∈Pij
skl. If (i, j) ∈ U , then (14) holds, which means that by (13) we have

|αij − αij | ≤ η. If (i, j) /∈ U , then |α̂ij | ≤ η implies |αij | ≤ 2η and |α̃ij | = |αij | ≤ 2η. Thus,
|αij − αij | ≤ 4η.

Next, we argue about the TV distance between the distribution µ that is induced on the leaves by
the output α of the algorithm and µ. We just proved that for all i, j

|αij − αij | ≤ 4η

We can then apply Theorem 10, which gives

TV (µ, µ̃) ≤ 8n2η = 8n2

√
2 log(n2/δ)

m

To make this quantity smaller than ε, we need

m = Θ

(
n4 log(n/δ)

ε2

)
samples.

30

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Appendix C. Proof of Theorem 1 (Different topologies)

Let us start with some definitions. Let T be a tree with n leaves and where all non-leaf nodes have
degree 3. For a vector α ∈ [−1, 1](

n
2), we say that α is induced by a metric in T if there exists an

assignment θe ∈ [−1, 1] of weights for each edge e of T , such that for all leaves i, j

αij =
∏
e∈Pij

θe

If µ is the distribution of the leaves of T when the vector of pairwise distances between leaves is α,
we say that µ is specified by the pair (T, α). For an even subset S ⊆ [n], we denote αT

S the coefficient
of
∏

i∈S xi in the Fourier expansion of the probability distribution on a tree T . In this Section, we
prove the following Theorem, which is a restatement of Theorem 1 (different topologies).

Theorem 13 Let T, T̂ denote the topologies of two trees with n leaves, where each non-leaf node
has degree 3. Let α, α̂ ∈ [−1, 1](

n
2) denote vectors of pairwise distances that are induced by some

tree metric on T and T̂ , respectively. Let also µ̂ be the distribution that is induced on the leaves by
(T̂ , α̂) and µ the one induced by (T, α). Finally, let D be the minimum diameter of T, T̂ . Suppose
that for all leaves i ̸= j we have that |αij − α̂ij | ≤ ε. Then,

TV (µ, µ̂) ≤ Cn5Dε (15)

where C is an absolute constant.

For four leaves i, j, k, l, we will denote a quartet of leaves by {i, j, k, l} when we do not wish
to specify their relative placement. The following fact is folklore: if we contract all edges that do
not belong to some path between two leaves in the quartet, then we might end up with one of three
possible topologies. We call this the topology of the quartet {i, j, k, l}. The 3 topologies are shown
in Fig. 5. For example, if we are in the first topology, we write {(12)(34)} to denote that fact. We
might refer to the quartet as either {1, 2, 3, 4} of {(12)(34)}, depending on whether we want to
highlight the topology of the quartet or not.

1

2

3

4

1

3

2

4

1

4

2

3

Possibility 1: {(12)(34)} Possibility 2: {(13)(24)} Possibility 3: {(14)(23)}

Figure 5: The three possible topologies for a quartet. In Possibility 1, the path from 1 to 2 does not
intersect the path from 3 to 4. Further, α12α34 ≥ α13α24 = α14α23 (and similarly for
Possibilities 2 and 3).

As explained in Fig. 5, what distinguishes the topology is the relative order between the products
α12α34, α13α24, α14α23. When α is induced by some tree metric, then two of these products will

31

DAGAN DASKALAKIS KANDIROS CHOO

always be equal and the third will be larger or equal. Depending on which of the products is larger,
we get one of the tree possible topologies (if all products are equal then we will choose the topology
arbitrarily). Hence, if for some reason we cannot distinguish which of the three products is larger,
then we intuitively expect that it will be hard to find the correct topology for a quartet. We give the
relevant definitions below.

Definition 14 Let i, j, k, l be a quartet of four leaves of T . We define

∆ijkl(α) := max(αijαkl, αikαjl, αilαjk)−min(αijαkl, αikαjl, αilαjk)

Definition 15 Let i, j, k, l be a quartet of four leaves of T . We say that this is an ε-good quartet w.r.t.
some vector α if

∆ijkl(α) > ε

A quartet of leaves that is not an ε-good quartet is called an ε-bad quartet. Intuitively, if a quartet
is good, then it is easy for an algorithm to distinguish which is the correct topology of these four
leaves out of the three possibilities. If it is bad, then the topology is very close to being a star and so
all three possibilities are roughly equivalent. One thing to note is that if |α̂− α∗| ≤ ε, then

|∆ijkl(α̂)−∆ijkl(α
∗)| ≤ 2ε

for all i, j, k, l. Hence, it does not really make a difference whether a quartet is good or bad with
respect to α̂ or α∗, since there is only an O(ε)-additive error.

We now proceed with the proof of Theorem 13. First, we need to formally define some notions
of cutting and pasting nodes in different parts of the tree. This will prove useful in having a unified
vocabulary when describing the process of interpolating between two trees.

Definition 16 Let T = G(V,E) denote the topology of a tree where every node has degree at most
3. We define BINARY(T) to be the tree that is obtained from T by contracting all maximal paths of
nodes of degree 2 into a single edge. In other words, it is obtained if we succesively find a degree 2
node u with edges (u, v), (u,w) and replace it with edge (v, w), until we cannot find such a node.

Notice that the output of BINARY is also described in Definition 23. For an example of how
BINARY works, see Fig. 6. Clearly, BINARY(T) satisfies the property that every non-leaf node has
degree 3.

Definition 17 Let T = G(V,E) denote the topology of a tree and suppose (u, v) ∈ E. Let
(r, s) ∈ E be some other edge of T , where we might have {r, s} ∩ {u, v} ≠ ∅. The only requirement
is that r, s belong to a different component than u when we remove edge (u, v) from T . We define
CUTPASTE(T, u, v, (r, s)) to be the tree that is obtained from T as follows: we delete edges (u, v)
and (r, s), we add a node t and we add the edges (t, u), (t, r), (t, s). This produces a tree T ′. We set
CUTPASTE(T, u, v, (r, s)) = BINARY(T ′).

An example of applying CUTPASTE can be seen in Fig. 7.
Intuitively, CUTPASTE encodes the following process: we delete edge (u, v), we add a node t in

the middle of edge (r, s) and we attach u together with it’s connected component to t. This is why
the order of u, v as arguments of CUTPASTE is important, while the order of r, s is not.

32

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

T BINARY(T)

Figure 6: On the left we have the tree before the contraction. On the right, we have the tree after
applying BINARY. We have highlighted with similar colors the path that is contracted on
the left and the final edge on the right.

r sv

u

r t sv

u

r t s

uT T ′ CUTPASTE(T)

= BINARY(T ′)

Figure 7: The Figure shows the output of CUTPASTE(T, u, v, (r, s)). In the first step we cut u from
it’s place and paste it in the middle of edge (r, s). In the second step we contract paths of
degree 2 nodes.

33

DAGAN DASKALAKIS KANDIROS CHOO

Before describing the interpolation process between the two trees, we prove a lemma about
CUTPASTE. It shows what changes in the distribution if we change the tree according to CUTPASTE.
For a tree T and a quartet {w, z, y, u}, let’s denote by T \ {w, z, y, u} the graph that we get if we
remove all paths of the quartet {w, z, y, u} from T . An example is given in Fig. 1(b).

Lemma 18 Let T = (V,E) be a tree and α ∈ [−1, 1](
n
2). Let i, j be two nodes in V (leaf or

non-leaf) and denote i = v0, v1, . . . , vm = j to be the nodes in the path that connects them in the
tree, with m ≥ 3. Define T k = CUTPASTE(T, i, v1, (vk, vk+1)) for all 0 < k < m. Denote by Uk

the set of quartets where T k and T k+1 differ. Lastly, let’s define the vector αwzyu ∈ [−1, 1](
n
2) as

αwzyu
kl =

{
αkl , if the path Pkl has no common edges with any paths of the quartet {w, z, y, u}
0 , otherwise

Then,

fTk

x (α)− fTk+1

x (α) =
∑

(w,z,y,u)∈Uk

(
αTk

{w,z,y,u} − αTk+1

{w,z,y,u}

)
xwxzxyxu · fTk\{w,z,y,u}

x (αwzyu)

where fT
x (α) was defined in (2).

Proof Let Ii denote the subset of leaves that lie on the subtree where i belongs to if we delete edge
(i, v1) from the tree, and analogously we define Ij as the set of leaves of the subtree where j belongs
to after this removal. By definition, we have

fTk
x (α)− fTk+1

x (α) =
1

2n

∑
S⊆[n],|S|even

(αTk

S − αTk+1

S)
∏
u∈S

xu

=
1

2n

∑
S⊆[n],|S|even,S∩Ii ̸=∅

(αTk

S − αTk+1

S)
∏
u∈S

xu

The last equality follows because the relative topology of the leaves [n] \ Ii does not change, which
means the coefficients αS for S ⊆ [n] \ Ii also do not change. Now, for 0 < k < m let us define Sk

to be the subset of leaves on the connected component that vk belongs to, if we remove all edges
of the path Pij from the graph. Let’s also define Lk = ∪kq=1Sq, Rk = ∪m−1

q=k Sq ∪ Ij . We will
characterize the set of quartets Uk that change from Tk to Tk+1. An illustration of all these concepts
we just defined is given in Fig. 8.

First of all, notice that Ii, Ij , {Sq}m−1
q=1 partitions the set of leaves. It is straightforward to see that

Uk = {{w, z, y, u} : w ∈ Ii, z ∈ Lk, y ∈ Sk+1, u ∈ Rk+2}

Now let’s fix a quartet {w, z, y, u} ∈ Uk. We would like to characterize the even subsets S ⊃
{w, z, y, u} such that

αTk

S = αTk

{w,z,y,u}α
Tk

S\{w,z,y,u}

Denote by Sw,z,y,u this collection of subsets. Essentially, these are the subsets were the matchings
happen so that w, z and y, u are matched together. The reason we are interested in these subsets is
that these are exactly the subsets where αTk

S and αTk+1

S will be different (once we enumerate over all

34

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

v0

v0 = i

v1 v2

v2 = vk

v3 v4 v5

v5 = j

w z y u

v0 v0 v0

w w w

S0 = Ii S1 S2 S3 = Sk+1 S4 S5 = Ij

S0 S0 (in T k) S0 (in T k+1)

L2 = Lk R4 = Rk+2

Figure 8: This is an illustration of how CUTPASTE cuts i from a place and moves it along the path
to v5 = j, one step at a time. This is also exactly the same movement that is done by
Algorithm 3, where one move corresponds to moving v0 one step to the right. Note that
quartet {w, z, y, u} is changed when we move v0 from the left of v3 to the right of v3. For
illustration we denote k = 2 and we depict the movement from tree T k to T k+1.

35

DAGAN DASKALAKIS KANDIROS CHOO

quartets {w, z, y, u} in Uk) Our strategy to understand how these sets look like will be similar to the
one employed in the proof of Theorem 11. In particular, let us consider removing the paths of the
quartet {w, z, y, u} from T k. This leaves us with a collection of connected subtrees, each with a leaf
set Ar. Here, r ranges from 1 to l where l is the number of these components. The set of leaves can
be partitioned as

[n] = {w, z, y, u} ∪ (∪r≤lAr)

It should then be clear from the figure that S ∈ Sw,z,y,u if and only if |S ∩Ai| is even, for all i.
To justify that, let’s see what happens if for some r |S ∩Ar| was odd. Then, there would be a leaf
b ∈ Ar that would be left unmatched in Ar. As we can see from Fig. 9, there are 5 different possible
positions that b can lie in the relative topology of the quartet {w, z, y, u}. However, from these, only
4 are possible, since b cannot lie in the middle of the quartet. The reason is that by definition of
{w, z, y, u} there is no node in the middle edge of that quartet, so there is no subtree that is hanging
from there.

w

z

y

u

b

b b

b

b

(1)

(2) (3)

(4)

(5)

Figure 9: The 5 different placings of b relative to the quartet {w, z, y, u}. Notice that position (5) is
actually not possible, as there is no node in the middle of the quartet (see Fig. 8)

Hence, b should lie closer to one of the 4 leaves. Let’s assume w.l.o.g. that it lies closer to w.
Then, a similar argument as in Theorem 11 applies. In particular, we can also assume w.l.o.g. that b
is the closest leaf in w that is left unmatched by it’s subtree Ar (otherwise we consider the closest
one instead of b). Then, b has to be matched with w in αTk

S , which means that the term αwz will not
appear in that expression. This means that S /∈ Sw,z,y,u, a contradiction. Thus, we established that

Sw,z,y,u = {{w, z, y, u} ∪ (∪r≤lSr) : Sr ⊆ Ar, |Sr| even }

Note that the sets Sw,z,y,u are disjoint for different quartets {w, z, y, u}. Also, it is easy to see that
S ∈ Sw,z,y,u if and only if

αTk+1

S = αTk+1

{w,z,y,u}α
Tk

S\{w,z,y,u}

36

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Hence, the sets S such that αTk

S ̸= αTk+1

S are precisely the union ∪{w,z,y,u}∈Uk
Sw,z,y,u. Now, notice

that

1

2n

∑
S∈Sw,z,y,u

(αTk+1

S − αTk

S)
∏
c∈S

xu

=
(
αTk

{w,z,y,u} − αTk+1

{w,z,y,u}

)
xwxzxyxu

1

2n

∏
r

 ∑
S⊆Ar,|S|even

αS

∏
c∈S∩Ar

xc


︸ ︷︷ ︸

f
T\{w,z,y,u}
x (αwzyu)

The last equality is true, since it has the form of a product distribution over the subsets Ai, which
is exactly the distribution of the topology T \ {w, z, y, u}. The weights in each subtree remain the
same, but across subtrees the correlations are 0, which is why the argument is αwzyu now. Summing
over all {w, z, y, u} ∈ Uk gives us the desired claim.

We now describe the process of interpolating between T and T̂ . We first give the pseudocode,
which is Algorithm 3. We note that even though we call this process an algorithm, it will only be
used as part of the Analysis of the TV distance between two trees. Hence, we are not concerned with
its computational complexity.

The interpolation will be carried away in rounds. Each round corresponds to a run of the outer
While loop. In the first round (q = 1), we make sure that any two leaves that form a cherry in T̂
will also form a cherry in T . At the end of the first round, we update the set of leaves by removing
leaves that are cherries and adding their parents. Hence, in the second round, we make sure that
parents of leaves that are cherries in T̂ become also cherries in T and so on.

Let us now describe in a bit more detail what happens in each round. First of all, notice that
the L in the for loop condition is evaluated at the start of the loop. This means that if we change it
during the run of the loop, the number of iterations will not be affected. In the first round, this set L
corresponds to the leaf set [n]. We proceed to search for a pair i, j that is a cherry in T̂ but not in
T . If such a pair i, j is found, the we have to move one of them towards the other to make them a
cherry. This sequence of moves is called an epoch and corresponds to a run of the first If statement
inside the For. We include an extra If statement since we want to choose the weakest of i, j to
move (we will see why this is important later). To move i towards j, we use the fuction SEQUENCE.
This gives us all the intermediate topologies that are needed to move i to j. Each of these topologies
corresponds to a move. Hence, an epoch consists of moves. The movement is by cutting i from it’s
current placement and pasting it in all the edges of the path to j consecutively, similarly to what is
shown in Fig. 8. After this movement is made, T3 is updated to store the new topology.

We now explain the significance of the second If statement. If i, j was not a cherry in T but was
in T̂ , then the previous If fixed that. Now, the second If locates all these cherries that are common
in T3 and T̂ and removes them from the leaf set L, while adding their parent. This means that the
subtree rooted in the parent will not be changed after that point, since it has the same topology in
T3, T̂ and instead will be moved around with it’s parent in subsequent steps. Hence, in the second
round, L will contain some parents of leaves and possibly some leaves that were not matched into
cherries in the first round. We give an example run of Algorithm 3 in Fig. 10.

37

DAGAN DASKALAKIS KANDIROS CHOO

a b c d e f g h i a b f g i c d e h

a b c d e f g h i

a b c d f g e h i

a b c d f g e h i

a b c df g e h i

a b c df g e h i

Initial Final

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 10: Example run of Algorithm 3. In the first round, we have epoch 1. In epoch 1, e becomes
a cherry with h. In the second round, we have epochs number 2 and 3. In epoch 2, the
parent of f, g becomes a cherry with the parent of a, b. In epoch 3, the parent of c, d
becomes a cherry with the parent of e, h. After that, we have reached the final topology.

38

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Algorithm 3 Interpolation between two tree topologies

Input :Unweighted trees T = (V,E) and T̂ = (V̂ , Ê) with leaf labels {1, . . . , n}, leaf correlations
{αij}i,j∈{1,...,n}, i ̸=j of tree T , and leaf correlations {α̂ij}i,j∈{1,...,n}, i ̸=j of tree T̂

Output :List L of topologies generated during interpolation
1 T1 ← T
2 S ← {T1}
3 L← {1, . . . , n}
4 while |L| ≥ 4 do // a new round starts
5 for i, j ∈ L do
6 if CHERRY(i, j, T1) == FALSE and CHERRY(i, j, T̂) == TRUE then // new epoch

7 p← common neighbor of i, j in T̂

8 I ← set of leaves in the same component at i, if we remove (i, p) from T̂

9 J ← set of leaves in the same component at j, if we remove (j, p) from T̂
10 z ← argmaxu∈I α̂iu

11 w ← argmaxu∈J α̂ju

12 if α̂zp > α̂wp then
13 Switch i, j
14 end
15 k ←neighbor of i on the path Pij

16 l← neighbor of j on the path Pij

17 S2 ← SEQUENCE(T1, i, j); // sequence of moves
18 T1 ← CUTPASTE(T1, i, k, (j, l)) ; // make i, j a cherry
19 S ← S ∪ S2

20 end
21 if CHERRY(i, j, T̂) == TRUE then // remove cherries where T1, T̂ agree

22 p← common neighbor of i, j in T̂
23 L← (L \ {i, j}) ∪ {p}
24 end
25 end
26 end
27 return L

Let’s introduce a bit of notation about this process. Suppose q is a round, t is some epoch of
this round, and m is some move in epoch t. We denote (it, jt) the pair of leaves from L that is
selected during epoch t of the algorithm. Suppose the length of the path Pitjt is lt. Then, we denote
by vt0 = it, v

t
1, . . . , v

t
lt
= jt be the nodes in the path from it to jt, which has length lt. We denote

by Tm the topology that we get before move m and Tm+1 the one we get after the move. We also
define T 0 = T . Formally, if m′ is the first move of epoch t, we have,

Tm+1 = CUTPASTE(Tm′
, it, v

t
1, (v

t
m, vtm+1))

It is implied that in the definition of T qrs we do not delete the leaves that have already been fixed
into cherries. Note that it, jt might correspond to some internal nodes. Let It, Jt be the set of leaves
in the same component as it, jt respectively, if we remove all the edges in the path from it to jt.

39

DAGAN DASKALAKIS KANDIROS CHOO

Algorithm 4 SEQUENCE

Input :Tree T and two leaf indices i and j
Output :Modified tree S

1 S ← {T}
2 Let {v0, . . . , vm} be path from i to j ; // v0 = i, vm = j
3 for r ← 1 to m− 1 do
4 T2 ← CUTPASTE(T, i, v1, (vr, vr+1)) ; // a move happens here
5 S ← S ∪ {T2}
6 end
7 return S

Algorithm 5 CHERRY

Input :Tree T and two leaf indices i and j
Output :Boolean whether i and j form a cherry in T

1 if i, j have a common neighbor in T then
2 return TRUE

3 else
4 return FALSE

5 end

We collect here some observations about Algorithm 3 that will prove useful in the sequel.

Observation 1 The total number of epochs for a single run of Algorithm 3 is at most n.

Proof Each time an epoch is complete, we build a subtree of strictly larger size than before (size
stands for number of leaves here) which agrees with T̂ . Since there are at most n leaves, we need at
most n steps until we reach T̂ . Hence, there are at most n epochs in the whole process.

Observation 2 Any quartet {i, j, k, l} changes topology at most once per epoch.

Proof Follows by inspecting the set of quartets that change during a move, which was described in
Theorem 18. It is trivial to see that these sets are disjoint for different moves in a single epoch.

Observation 3 For any epoch t and any move m in t, the subtree induced by the leaves in It and Jt
is identical in Tm and in T̂ .

Proof This follows inductively by the construction of the Algorithm. When a node it is selected, it
is either a leaf or some node that was added in L after it’s two children it′ , jt′ became cherries in T1

during a previous epoch t′ < t. Inductively, the subtrees rooted in it′ , jt′ have the same topology in
T1 and T̂ . Since it′ , jt′ are siblings in T1 and in T ′ in epoch t, we conclude that the subtrees rooted
at it are also identical in T1 and T̂ for epoch t. Same reasoning applies for Jt.

Observation 4 At the end of the last M of Algorithm 3 we have TM+1 = T̂ .

40

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Proof Let us define the graph Ht as follows: it is obtained by running Algorithm 3 until epoch t
and each time t′ ≤ t we make a cherry with it′ , jt′ , we remove the subtrees It′ , Jt′ , so that it′ , jt′
become leaves. By Observation 3 we know that the subtrees we remove in each epoch have the
same topology as in T̂ . Obviously, the number of leaves in Ht shrink with each epoch, until we
have 3 leaves u, v, w, for which there is only one possible topology. At that point, topology TM+1 is
obtained by placing the subtrees for u, v, w back. By Observation 3, we know that these subtrees
have the topology of T̂ , hence TM+1 should also have the topology of T̂ .

Observation 5 If D is the diameter of T̂ , there are at most ⌈D/2⌉ rounds when we run Algorithm 3.
Furthermore, each leaf is moved in at most one epoch per round.

Proof Consider the graph Ht that was defined in the proof of Observation 4. We will show that the
largest path in Ht shrinks by at least 2 edges in each round. It then follows that there will be at most
⌈D/2⌉ rounds in total.

Let u, v be two leaves of Ht such that Puv in Ht has length equal to the diameter D of Ht. Let p
be the only neighbor of u in Ht. Clearly, u is also part of the path Puv. Let w be the neighbor of
p that does not lie on the path Puv (since p has degree 3, such a neighbor should exist). We claim
that w should be a leaf, otherwise we could extend the path Pup into one with larger length than
Puv. Thus, u,w should be siblings, which means they will be selected in the current round to be
paired into a cherry, which will remove them from the graph and will leave p as a leaf. Thus, Puv

will shring by one edge on the side of u and for the same reason will also shring by one edge on the
side of v. This proves our claim.

For the second claim, any leaf u is moved only when some subtree with root it is moved and
u belongs in this subtree. Suppose that this happens during a round, resulting in it, jt becoming a
cherry. Then, we can see that Algorithm 3 then removes it, jt from the list of leaves L, which means
that it will not move again for the remainder of that round (it’s parent pt is not considered in the For
loop of the current round). Hence, u remains fixed for the remaining of that round.

We first argue that during this interpolation process, only bad quartets change topology. This is
crucial, since good quartets should be maintained if we wish to lose only a little in TV.

Lemma 19 Let T = G(V,E) and T̂ = G(V̂ , Ê) be two trees with tree metrics α, α̂ respectively.
We assume that ∥α−α̂∥∞ ≤ ε. Suppose we run the procedure 3 with input T, T̂ , α, α̂. Let Tm, Tm+1

be two arbitrary consecutive steps in this process. Let Um be the set of quartets where Tm, Tm+1

disagree. Then, for all (w, z, y, u) ∈ Um, we have that

∆w,z,y,u(α) ≤ 20nε

Proof We will denote by t the epoch where move m belongs to. We will prove the claim inductively
over t. We will prove that if a quartet {w, z, y, u} is changed during the t-th epoch, then

∆w,z,y,u(α) ≤ 20tε

This obviously implies the final claim since t ≤ n by Observation 1. Since the base case is the same
as the inductive step, we give the inductive step proof only.

41

DAGAN DASKALAKIS KANDIROS CHOO

Suppose we are at epoch t. First of all, we know that node it is selected to be moved towards jt,
where the intermediate nodes are vt0 = it, v

t
1, . . . , v

t
mt

= jt. Similarly to the proof of Theorem 18, let
It be the set of leaves on the same component with it if we remove edge (vt0, v

t
1), S

t
i the set of leaves

on the same component as vti , if we remove edges (vti−1, v
t
i), (v

t
i , v

t
i+1) from the tree, and Jt be the

set of leaves on the same component with jt if we remove edge (vtmt−1, v
t
mt

). Also, let us define
Lts = ∪k≤sS

t
k, Rts = ∪k≥sS

t
k ∪ Jt for all s ≤ mt. The situation is similar to the one presented in

Fig. 8.
Suppose Tm corresponds to node it being pasted in the middle of edge (vts, v

t
s+1) for some fixed

s. As we saw in the proof of Theorem 18, the set Um of quartets that differ in Tm, Tm+1 can be
written as

Um = {{w, z, y, u} : w ∈ It, z ∈ Lt
s, y ∈ St

s+1, u ∈ Rt
s+2}

Note that all the quartets in Um are considered to change at epoch t. Suppose there exists a quartet
{w, z, y, u} ∈ Um such that

∆w,z,y,u(α) > 20tε

First, we will assume that u ∈ ∪k≥sS
t
k. Afterwards, we will deal with the case u ∈ Jt, which will

actually prove to be easier. The first thing we observe is that we can assume without loss of generality
that the topology of {w, z, y, u} has not been altered in any previous epoch. The reason is that if it
was altered at some epoch t′ < t, then by the inductive assumption, we already have

∆w,z,y,u(α) ≤ 20t′ε < 20tε

and we have nothing to prove. Hence, we can assume w.l.o.g. that it is the first time that it is
changing topology. Note also that by Observation 2 a quartet changes topology at most once per
epoch. Since it has not changed topology before, it follows that it’s topology in T is {(wz)(yu)}. It
is straightforward to notice that

∆w,z,y,u(α) = ∆w,z,y,u(|α|)

where |α| is the vector of absolute values of α. This implies that

∆w,z,y,u(α) = |αwz||αyu| − |αzy||αwu| > 20tε

Our assumption about α, α̂ implies that

|αwz||αyu| − |α̂wz||α̂yu| ≤ 2ε , |αzy||αwu| − |α̂zy||α̂wu| ≤ 2ε

Hence, we have
|α̂wz||α̂yu| − |α̂zy||α̂wu| > 20tε− 4ε

Let pt be the common parent of it, jt in the tree T̂ . Now, by the construction of procedure 3(first If
statement), we know that

max
f∈Jt
|α̂f,pt | ≥ max

f∈It
|α̂f,pt | (16)

Now, we know by Observation 3 that the subtrees rooted at it and jt with leaf sets It and Jt
respectively have the same topology in Tm and T̂ . Since z, u /∈ It, we can write (see Fig. 11).

|α̂wz||α̂yu| − |α̂zy||α̂wu| = |α̂w,pt |(|α̂z,pt ||α̂yu| − |α̂zy||α̂u,pt |)

42

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

pt

it jt

z

u

w h

It Jt

T̂ , α̂

Figure 11: From the picture, it is clear that α̂wz = α̂wptα̂ptz

Let h = argmaxf∈Jt |α̂f,pt |. Then, by(16) we have

|α̂h,pt |(|α̂z,pt ||α̂yu| − |α̂zy||α̂u,pt |) ≥ |α̂w,pt |(|α̂z,pt ||α̂yu| − |α̂zy||α̂u,pt |)

Since we have assumed that z, u /∈ It, Fig. 11 implies that

|α̂hz||α̂yu| − |α̂zy||α̂hu| = |α̂h,pt |(|α̂z,pt ||α̂yu| − |α̂zy||α̂u,pt |)
≥ |α̂w,pt |(|α̂z,pt ||α̂yu| − |α̂zy||α̂u,pt |) > 20tε− 6ε

By the closeness of α, α̂, this in turn implies that

|αhz||αyu| − |αzy||αhu| > 20tε− 10ε > 20(t− 1)ε (17)

Clearly, leaves h, z, y, u do not change position during epoch t, hence the quartet {h, z, y, u} does
not change topology during epoch t. Now, there are two possibilities:

Case 1: Suppose {h, z, y, u} has changed topology at least once in some previous epoch t′ < t.
Then, by the inductive hypothesis, we should have

∆h,z,y,u(α) ≤ 20t′ε

Since t′ ≤ t− 1, this contradicts (17).
Case 2: Suppose {h, z, y, u} has not changed topology until epoch t. This means that the

topology of {h, z, y, u} in T is {(zy)(hu)}, since that is the topology in T qrs. This implies that

|αhz||αyu| − |αzy||αhu| < 0

which again contradicts (17).
Hence, in all cases we obtain a contradiction and the inductive step is proved. Now, let’s consider

the case u ∈ It. Then, we can assume w.l.o.g. that this is the first epoch where {w, z, y, u} changes
topology, otherwise the inductive step applies. This means that the topology of this quartet in T is
{(wz)(yu)}. Hence,

∆w,z,y,u(α) = |αwz||αyu| − |αzy||αwu|

43

DAGAN DASKALAKIS KANDIROS CHOO

Clearly, the topology of this quartet is {(zy)(wu)} in T̂ . This implies that

|α̂wz||α̂yu| − |α̂zy||α̂wu| < 0

In turn, this means
|αwz||αyu| − |αzy||αwu| < 4ε < 20tε

and this concludes the claim in that case as well.

We now formulate our main result, which bounds the Lipschitzness of the function fT
x in terms

of local changes in the topology of T . We will use it to relate the changes in TV to the changes of
quartet topologies along this interpolation process.

Lemma 20 Let T = G(V,E) and T̂ = G(V̂ , Ê) be two trees and suppose that the diameter of
T̂ is D. Let α be some tree metric induced by T . We assume that ∥α − α̂∥∞ ≤ ε/(40Dn5) for
some ε < 1. Suppose we run the procedure 3 with input T, T̂ , α, α̂. Let Tm, Tm+1 be two arbitrary
consecutive topologies in this process, corresponding to move m. Let Um be the set of quartets where
Tm, Tm+1 disagree. Then, ∑

x∈{−1,1}n

∣∣∣fTm+1

x (α)− fTm

x (α)
∣∣∣ ≤ |Um|ε

Dn4
(18)

Proof We are going to prove this inductively on the total number of moves m. Suppose we are in
the first move, m = 1 of round q = 1 and epoch t = 1. By applying Theorem 18, we have that

∑
x∈{−1,1}n

∣∣∣fT 1

x (α)− fT 0

x (α)
∣∣∣ = ∑

x∈{−1,1}n

∣∣∣∣∣∣
∑

{w,z,y,u}∈U1

xwxzxyxuf
T 1\{w,z,y,u}
x (α)

∣∣∣∣∣∣
≤

∑
{w,z,y,u}∈U111

∆w,z,y,u(α)
∑

x∈{−1,1}n

∣∣∣fT 1\{w,z,y,u}
x (α)

∣∣∣
Now, notice that since there have not been any other changes to the topology of T except for the
first move, T 0 = T and furthermore, the expression f

T 1\{w,z,y,u}
x (α) is actually the probability

distribution on the leaves of a tree that has edge weights that agree with α, except for edges that
belong to some path of the quartet {w, z, y, u}, which have weight 0. Hence, we can remove the
absolute value and this gives us∑

x∈{−1,1}n

∣∣∣fT 1

x (α)− fT 0

x (α)
∣∣∣ ≤ ∑

{w,z,y,u}∈U1

∆w,z,y,u(α)

Finally, by applying Theorem 19 we get∑
x∈{−1,1}n

∣∣∣fT 1

x (α)− fT 0

x (α)
∣∣∣ ≤ |U1|20n ·

ε

40Dn5
=

ε|U1|
2Dn4

hence the base case is true.

44

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Now suppose the claim holds for all moves m′ < m. First, we define the vector αwzyu ∈ [0, 1](
n
2)

as

αwzyu
kl =

{
αkl , if the path Pkl has no common edges with any paths of the quartet {w, z, y, u}
0 , otherwise

Clearly, αwzyu is also a metric on T , which is induced by the same weights as α, except that all edges
on paths of the quartet {w, z, y, u} have weight 0. By again applying Theorem 18 and Theorem 19,
we can get∑

x∈{−1,1}n

∣∣∣fTm+1

x (α)− fTm

x (α)
∣∣∣ ≤ ∑

{w,z,y,u}∈Um

∆w,z,y,u(α)
∑

x∈{−1,1}n

∣∣∣fTm\{w,z,y,u}
x (αwzyu)

∣∣∣
≤ ε

2Dn4

∑
{w,z,y,u}∈Um

∣∣∣fTm\{w,z,y,u}
x (αwzyu)

∣∣∣ (19)

Now, let’s fix a quartet {w, z, y, u} ∈ Uqrs. The graph Tm \ {w, z, y, u} is a tree where all edges
that belong to some path of the quartet {w, z, y, u} have been removed. The problem is that other
changes have happened in the topology of T before it reaches the current state Tm. Therefore, the
quantity f

Tm\{w,z,y,u}
x (αwzyu) is no longer a distribution over a tree, since αwzyu corresponds to the

initial tree metric on T , with some edges set to 0. Hence, we cannot get rid of the absolute value
and claim that this quantity sums up to 1. Instead, our strategy will be to relate this quantity to some
other quantity that is a probability distribution. To describe this probability distribution, consider the
collection of subtrees that are obtained from Tm by removing all paths of the quartet {w, z, y, u}.
These partition the set of leaves into subsets Si, one for each subtree. Let Gm be the forest that is
obtained by taking for each subset on leaves Si the subtree induced by T (when we say induced, it is
implicit that the function BINARY is applied to make the subtree have all non-leaves with degree
3). We will show how to relate f

Tm\{w,z,y,u}
x (αwzyu) with fGm

x (αwzyu). Notice that by definition,
αwzyu is clearly a metric induced from Gm and so the latter quantity is a probability distribution.

Our strategy for relating these two quantities will be to interpolate between Tm \ {w, z, y, u}
to Gm. The way to do this interpolation is using Algorithm 3. In particular, the following Lemma
shows that in order for Algorithm 3 to transform Gm to Tm \ {w, z, y, u}, it will need strictly less
moves than the ones needed to transform T to Tm+1.

Lemma 21 Let M be the number of moves needed for Algorithm 3 to transform T to Tm+1. Then,
it is possible to transform Gm to Tm \ {w, z, y, u} using a number of moves that is strictly smaller
than M .

Proof The idea of the proof is very simple and relies on the fact that we can simply "copy" the
moves made from T to Tm+1, except when these moves aim at making a cherry with two leaves that
belong to different subtrees of Gm, in which case no move is necessary. To be more formal, let R be
the number of epochs that Algorithm 3 needs to reach Tm+1 starting from T . Then, we will show
that we can reach Tm \{w, z, y, u} using a number of epochs R′ such that R′ < R. Furthermore, we
will argue that each of the R′ epochs has at most the same number of moves as the corresponding one
starting from R. We do this by examining one by one the R epochs from T to Tm+1 and deciding
how to potentially change it. First of all, let’s remember that at the start of each epoch t, Algorithm 3
chooses two nodes it, jt and makes them siblings with parent pt, thus making a larger subtree that

45

DAGAN DASKALAKIS KANDIROS CHOO

agrees with T̂ . The relative topology inside this subtree will never be altered by the algorithm again.
We call this process fixing the subtree with root pt. When we refer to the subtree of it and jt we
mean the connected component that results when we remove path Pitjt from the graph at epoch t.
We denote {it, jt}t the sequence of epochs produced from T to T qrs and {i′t, j′t}t the sequence of
epochs that transforms Gm to Tm \ {w, z, y, u}.

We will inductively prove that at any epoch in the sequence {it, jt}, if a subtree with root pt
has been fixed after that epoch and if this subtree is contained in some component of Gm, then
this subtree will also be fixed under sequence {i′t, j′t}. In proving the inductive step, we will also
describe how to define the sequence of epochs {i′t, j′t}. After proving this claim, we will explain why
it implies the statement of the Lemma.

Suppose the claim holds for all epochs prior to t(for t = 1 the claim is trivial). Suppose then
that at epoch t it and jt become cherries with parent pt. Let T t be the topology at the start of the
epoch and let Gt

m be the corresponding topology at the start of epoch t under the sequence {i′t, j′t}.
Suppose first that the subtrees of it, jt belong to the same component of T qrs. Then, inductively, we
know that it, jt exist also in Gt

m and their subtrees have already been fixed by the sequence {i′t, j′t}.
In that case, we set i′t = it, j

′
t = jt and set the movement of i′t to j′t to be the same as the one from it

to jt, but on the induced component of Gt
m that it, jt belong to. We call this a true epoch. Since the

paths in an induced subtree can only stay the same or become smaller than the ones in the original
tree (after applying operation BINARY), the number of moves required to move i′t to j′t is at most
the number of moves required to move it to jt. Once we move i′t to become sibling with j′t, the new
subtree with root p′t has also been fixed for the sequence {i′t, j′t}, proving the inductive hypothersis
in that case. Now, suppose that it, jt belong in different subtrees of Gm. There are two cases: either
both it, jt exists as nodes in Gt

m, or at least one of them does not exist. If they both exist, then again
by the inductive hypothesis, it follows that the subtrees it, jt have also been fixed in Gt

m. In that
case, it must be the case that the entire component of it in Gt

m is equal to that subtree (otherwise we
would be able to connect it to some other sibling and enlarge it). Hence, in that case no movement
takes place and we trivially set i′t = j′t = it to denote that this is not a true epoch. The point is that
there is no need to move them again until we reach Tm \ {w, z, y, u}, so our choice not to move
them is correct. Now, let’s examine the case that either it or jt does not exist in Gt

m. Suppose it does
not exist w.l.o.g. Then, this means that it is a parent of two subtrees that do not belong to the same
component of Gt

m. Thus, this means that there is no reason to connect these subtrees, hence we also
trivially set i′t = j′t = it. We call this epoch fake. The inductive step is now complete.

The induction we just proved shows that the sequence {i′t, j′t} leads to Tm \ {w, z, y, u} when
started from Gm. Also, it is clear that the true number of epochs in {i′t, j′t} at any given time is at
most the ones in {it, jt}, since some epochs might be fake. In fact, if {it, jt} reaches Tm+1 at epoch
R, the number of true epochs R′ in {i′t, j′t} should be strictly smaller than R. The reason is that at
epoch R, iR and jR belong to different components of T qrs \ {w, z, y, u} by definition (since we
remove the path from w to u). Hence, the last epoch R will not be a true epoch for {i′t, j′t}. Since we
have also argued that the number of moves in epochs of {i′t, j′t} is at most the corresponding number
for epochs in {it, jt},this concludes the proof of the Lemma.

Let M be the total number of moves required by Algorithm 3 to transform T to Tm+1 and M ′

the moves to transform Gm to Tm \ {w, z, y, u}. The point of Theorem 21 is that M ′ < M . Let
Gm = G0

m, G1
m, . . . , GM ′

m = Tm \ {w, z, y, u} be the sequence of graphs in the interpolation. By

46

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

triangle inequality, we have

∣∣∣fTm\{w,z,y,u}
x (αwzyu)

∣∣∣ ≤ ∣∣∣fG0
m

x (αwzyu)
∣∣∣+ M ′∑

s=1

∣∣∣fGs
m

x (α)− fGs−1
m

x (α)
∣∣∣

As we have already explained, the first term on the right hand side corresponds to a distribution,
hence we can remove the absolute values. The remaining terms have the form of the left hand
side of (18), which is what we want to bound in general. However, these differences are applied to
graphs that are obtained after at most M ′ moves of Algorithm 3. Hence, we can apply the inductive
hypothesis (18). If U ′

s is the set of quartets that change from Gs−1
m to Gs

m, then,

∑
x∈{−1,1}n

M ′∑
s=1

∣∣∣fGs
m

x (α)− fGs−1
m

x (α)
∣∣∣ ≤ ε

Dn4

M ′∑
s=1

|U ′
s|

It remains to bound the sum
∑M ′

s=1 |U ′
s|. This is equal to the total number of quartets that have

changed topology until move M ′, starting from Gm (if a quartet has changed multiple times, we
count the number of times it has changed in this sum). We argue that

M ′∑
s=1

|U ′
s| ≤ Dn4

The reason is the following: there is a total of
(
n
4

)
quartets, so it suffices to bound the number of times

that any specific quartet {w, z, y, u} changes topology. First of all, we have already argued that a
quartet changes topology at most once every epoch. In order for a quartet to change topology during
some epoch, at least one of it’s leaves should be moved to some different position. By Observation 5
we know that a leaf is moved at most ⌈D/2⌉ times in total. Hence, a quartet changes topology at
most 4⌈D/2⌉ times in total. Hence,

M ′∑
s=1

|Us| ≤
(
n

4

)
2D ≤ Dn4

Combining everything together, we get∑
x∈{−1,1}n

∣∣∣fTm\{w,z,y,u}
x (αwzyu)

∣∣∣ ≤ ∑
x∈{−1,1}n

fG0
m

x (αwzyu) +
ε

Dn4
Dn4 = 1 + ε

This holds for all {w, z, y, u} ∈ Um. Hence, by using (19) we get∑
x∈{−1,1}n

∣∣∣fTm+1

x (α)− fTm

x (α)
∣∣∣ ≤ ε

2Dn4

∑
{w,z,y,u}∈Um

∣∣∣fTm\{w,z,y,u}
x (αwzyu)

∣∣∣
≤ ε

2Dn4
|Um|(1 + ε) ≤ |Um|ε

Dn4

since ε ≤ 1. This is the inductive claim that we wanted to prove.

47

DAGAN DASKALAKIS KANDIROS CHOO

We are now ready to conclude the proof of Theorem 13. To do it, we simply use Theorem 20 to
transition from T to T̂ . Then, we use the bound for the fixed topology to change α to α̂.
Proof [Proof of Theorem 13] We can assume without loss of generality that T̂ has a smaller diameter
than T , otherwise we just reverse the roles of T, T̂ . We run Algorithm 3 with input T, T̂ , α, which
produces a sequence T = T 0, T 2, . . . , TM = T̂ , where each element of the sequence corresponds to
some move. We have that

TV (µ, µ̂) =
∑

x∈{−1,1}n

∣∣∣fT
x (α)− f T̂

x (α̂)
∣∣∣

≤
∑

x∈{−1,1}n

∣∣∣fT
x (α)− f T̂

x (α)
∣∣∣+ ∑

x∈{−1,1}n

∣∣∣f T̂
x (α)− f T̂

x (α̂)
∣∣∣ (20)

Define ε′ = 40Dn5ε. Let us divide into cases.
Case 1: Suppose ε′ < 1. Then, the first term of the RHS of (20) can be bounded using the

successive steps of the interpolation process. In particular, since ε = ε′/(40Dn5), we can apply
Theorem 20 to get

∑
x∈{−1,1}n

∣∣∣fT
x (α)− f T̂

x (α)
∣∣∣ ≤ M∑

m=1

∑
x∈{−1,1}n

∣∣∣fTm

x (α)− fTm−1

x (α)
∣∣∣ ≤ M∑

m=1

|Um|ε′

Dn4

By the proof of Theorem 20, this implies that

∑
x∈{−1,1}n

∣∣∣fT
x (α)− f T̂

x (α)
∣∣∣ ≤ ε′

Dn4
Dn4 = ε′ = 40Dn5ε

As for the second term of the RHS of (20), it is essentially the difference when we substitute α̂ with
α in the fixed topology T̂ . Hence, we can directly apply Theorem 10 to get

∑
x∈{−1,1}n

∣∣∣f T̂
x (α)− f T̂

x (α̂)
∣∣∣ ≤ 2n2ε

Overall, this gives us

TV (µ, µ̂) ≤ 42Dn5ε

which proves inequality (15) in that case.
Case 2: Assume ε′ ≥ 1. Then,

TV (µ, µ̂) ≤ 1 ≤ 40Dn5ε

which means that (15) trivially holds in that case too. The proof is now complete.

48

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Appendix D. Proof of Theorem 3 (unknown topology)

D.1. Outline

In this section, we will present an algorithm that takes samples from the leaves of some tree Ising
model with tree T ∗ and weight θ∗ and estimates a topology T̂ together with weights on the edges, so
that the distributions on the leaves of T and T̂ are ε-close in TV distance. The number of samples
will be polynomial in n and 1/ε.

We will use the results in Daskalakis et al. (2009) about learning phylogenetic trees without
assuming any upper/lower bounds on the edge weights. We will show how we can use the guarantees
of this prior work to obtain an algorithm for finding a good enough topology. Before explaining the
result formally, we first want to give an intuition. We discuss how the output might be different from
the original tree. Firstly, without sufficient samples, it is impossible to determine the existence of
edges that are far away from leaves. In such cases, the algorithm of Daskalakis et al. (2009) will
omit those edges and output a forest, as shown in Fig. 12.

To compare with Cryan et al. (2001), they employ a similar process of splitting the tree into
subtrees. However, they then rely on learning the weights within in each subtree accurately. This
yields a bound in total variation between the learned and true distribution within each tree. The
difference between these approaches is that we learn in total variation only the leaf distribution
within each subtree, while their analysis relies on learning the distribution on both the leaves and the
internal nodes of each subtree. This requires them to cut the original tree into significantly smaller
subtrees, which harms the complexity.

1 2 3 4 5 6 7 8

Figure 12: A forest that is created by deleting edges: the true tree contains all the solid and dashed
edges. Yet, the algorithm of Daskalakis et al. (2009) might not be able to identify some of
the edges because they do not sufficiently correlate with the leaves, and so it will return a
forest. In the example here, the forest is obtained from the original tree by removing the
dashed edges. The three connected components of the output forest are colored red, blue
and green.

Secondly, the algorithm may fail to split the tree in a topologically sensible way. This means that
it will return a forest, yet, in contrast with the example in Fig. 12, it is impossible to obtain this forest
by cutting some edges in the ground truth tree. Still, the topology within each connected component

49

DAGAN DASKALAKIS KANDIROS CHOO

in this forest is preserved, as illustrated in Fig. 13 (a)-(b). After splitting the tree into two subtrees,
those subtrees might contain some internal nodes of degree 2. Such nodes cannot be identified from
the leaves, and they will be contracted, as shown in Fig. 13 (c).

1 2 3 4 5 6 7 8

a

1 2 3

b

c

5

d

e

4

f

6 7 8

1 2 3 5 4 6 7 8

(a)

(b-1) (b-2)

(c-1) (c-2)

Figure 13: Splitting a tree into subtrees in a more complicated fashion: In (a), the true tree contains
both the solid and dashed edges. Yet, the algorithm might not identify completely
the topology. Instead it will return two subtrees. Yet, the subtrees are not topologically
sensible: one tree will contain the leaves {1, 2, 3, 5} and the other will contain {4, 6, 7, 8}.
The red edges correspond to the first tree, the blue edges to the second tree, while the
dashed edges are shared by both trees. In figure (b), we split the original tree into the two
subtrees, one containing the red and dashed edges and the other the blue and dashed edges.
Notice that in Figure (b), the nodes labeled a-f have degree 2. Information theoretically,
it is impossible to identify hidden nodes of degree 2. Indeed, the same leaf distribution
is obtained by removing each of these nodes, connecting its neighbors, and adjusting
the weight of the new edges. Hence, the output of the algorithm will not have degree-2
nodes: instead, the transformation described above, that removes degree-2 nodes, will be
performed. In (c) we demonstrate the result of removing such degree-2 nodes.

50

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

The two transformations that are applied to a tree in Fig. 12 and Fig. 13 can be viewed as a single
transformation: separating the tree into subtrees, while preserving the topology within each subtree.
This can be seen in Fig. 14.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(a)

(b)

Figure 14: Separating a tree into multiple subtrees: In (a), the original tree contains all solid, dashed
and dotted edges. It is split by the algorithm to three subtrees. The first subtree contains
leaves {1, 2, 3} and the red and dashed edges. The second subtree contains {4, 5, 6} and
the blue and dashed edges. The third contains {7, 8} and the green edges. Notice that the
dashed purple edge is contained in two trees, while the dotted black edge is contained
in no tree. Notice that the first and second subtrees intersect while the third subtree is
disjoint from the other subtrees. In (b) we see the output of the algorithm.

Yet, the algorithm of Daskalakis et al. (2009) might not be able to tell the exact topology within
each subtree. In this case, the output will just contract some of the internal edges of this subtree. See
Fig. 15 (a)-(c) for an example of a contracted subtree. In Fig. 15 (d) we depict some of the possible
topologies that the algorithm could have confused between, which led to contracting a specific edge.

51

DAGAN DASKALAKIS KANDIROS CHOO

a

1 2 3 4

b

5 6 7 8

a

1 2 3 4

b

5 6 7 8

1 2 3 4 5 6 7 8

1 2

(a)

(b)

(c)

(d)

Option 1 3 4 5 6

Option 2 3 6 4 5

Option 3 5 6 3 4

Figure 15: An example of edge contraction. In (a), we see the original tree. In (b), the algorithm
splits the tree into two subtrees. Yet, the algorithm could not figure exactly the topology
of the left subtree. Instead, it contracts the dashed edge, and the result is shown in (c).
The reason for the contraction is: the algorithm could not tell the true topology. In (d), we
show multiple topologies that the algorithm might confuse between, leading it to contract
the edge. These are labeled Option 1-3.

52

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Before we give the formal proof, let us give an imprecise intuition of the approach. In particular,
we show how to compare between the output of the algorithm and the true topology. For the simple
case where the output is obtained from the true tree by only deleting edges, these edges are “distant”
from the leaves, and so they cannot influence the leaf distribution significantly. Thus, it suffices to
study the more complicated case where the subtrees are not obtained by simply cutting edges from
the true tree. Here, we first compare the true tree to a tree where all edges that appear in two different
subtrees have been contracted, as shown in Fig. 16 (b). In the next step, each edge corresponds only
to one subtree, and we can detach the different subtrees, as shown in Fig. 16 (c). Lastly, we can
reconstruct the edges that were previously contracted, as shown in Fig. 16 (d).

53

DAGAN DASKALAKIS KANDIROS CHOO

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 5 6 3 4 7 8

1 2 5 6 3 4 7 8

(a)

(b)

(c)

(d)

Figure 16: Analyzing the difference between the true topology and the output of the algorithm. In
(a), the true tree contains the union of solid and dashed lines. Yet, the algorithm splits
the tree into two subtrees, with leaves {1, 2, 5, 6} and {3, 4, 7, 8}. In (d), we can see the
output of the algorithm. In order to compare between the true and output topologies, we
construct two auxiliary forests: In (b), we contract all the edges that are shared between
the two subtree. In this example, this amounts to contracting the dashed edge. Then, in
(c), we split the different subtrees. In (d), we reconstruct the edge that was previously
contracted. Yet, we reconstruct this edge separately for each subtree.

54

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

We can bound the total variation distance for each of these steps using the following guarantees:
(1) edges that appear in multiple subtrees have weight close to 1. Hence, contracting them, which is
equivalent to changing their weight to 1, does not influence significantly the total variation distance.
(2) Leaves of different trees have a small correlation. Hence, detaching the different subtrees does
not incur a high cost in total variation.

D.2. Definitions and probabilistic lemmas

We begin with some notations that are specific for this section: given a tree T = (V,E) with weights
θe on the edges e ∈ E, denote the resulting distribution over the values x = (x1, . . . , xn) on the
leaves by PrT,θ[x]. The total variation distance between two leaf-distributions of two models, (T, θ)
and (T ′, θ′) is denoted by TV(PrT,θ[x],PrT ′,θ′ [x]). The values on the internal nodes are denoted by
yv for each internal node v ∈ V , and PrT,θ[x, y] denotes the joint distribution over the leaves and
internal nodes. We continue with some definitions:

Definition 22 (Edge contraction) Given a graph G = (V,E) and an edge e = {u, v} in the graph,
we say that a graph G′ = (V ′, E′) is obtained from G by contracting e if G′ is the result of removing
e from the graph and identifying u and v as a single vertex. Namely, if the new vertex is denoted z,
then

V ′ = (V \ {u, v}) ∪ {z}

and

E′ =
(
E \

{
{y, w} ∈ E : y = {u, v} ∧ w ∈ V

})
∪
{
{z, w} : {u,w} ∈ E ∨ {v, w} ∈ E

}
.

For an example of an edge-contraction, see Fig. 15 (b)-(c): The dashed edge in (b) is contracted,
resulting in the graph shown in (c).

We now define the contraction of all degree-2 nodes:

Definition 23 Given a graph G = (V,E), we say that G′ = (V ′, E′) is obtained from G by
contracting all the degree-2 nodes, if G′ is obtained from G using the following process:

• G′ ← G.

• While G′ contains a node w of degree 2:

– Contract one of the edges incident with w.

For an example of a contraction of degree-2 nodes, see Fig. 13, (b)-(c): In (b), there are some nodes
of degree 2, labeled a-f . In (c), we can see the result of contracting these nodes.

Definition 24 (Subtrees induced by a set of leaves) Given a tree T and a subset S of the leaves
of T , the subtree of T induced by S is the tree that is obtained from T by removing all the edges and
all the nodes that are not in any path between two leaves i, j ∈ S.

In other words, the subtree of T induced by S is the minimal subtree of T that contains S. For an
example, in Fig. 13 (a), a tree is depicted, and its subtrees induced by {1, 2, 3, 5} and {4, 6, 7, 8} are
depicted in Fig. 13 (b-1) and (b-2), respectively.

55

DAGAN DASKALAKIS KANDIROS CHOO

Throughout the proof, we will modify graphs by contracting edges. Whenever we contract an
edge, we identify its two endpoints as a single vertex. If we contract multiple edges, the resulting
graph may identify even more than two edges of the original as one edge. If a graph T ′ is the result of
multiple edge-contractions applied on a graph T , then, for each vertex v′ of T ′, the set of preimages of
v′ under the transformation from T to T ′ is defined as the set of all vertices of T that were identified
into v′. To be more formal, we provide the following definition:

Definition 25 Let T ′ = (V ′, E′) be obtained from T = (V,E) via a sequence of edge contractions.
For any vertex v′ ∈ T ′, the set of preimages of v under the transformation from T to T ′ is defined as
the following set, which we denote here by Av′:

• Start with the tree T , and define Av = {v} for each v ∈ V .

• For any contraction of an edge (u, v) into a single vertex w:

– Define Aw = Au ∪Av.

• Return Av′ for each vertex v′ ∈ V ′.

Lastly, notice that if we contract edges then some of the nodes might change names. Hence, an
edge that was connecting between two nodes (u, v) in the original tree, might connect two other
nodes in the contracted tree. Yet, the edge’s function remain the same. Hence, we define the analogue
of an edge e in the contracted graph:

Definition 26 Let T ′ be a tree that results from another tree T via a sequence of edge contractions.
Let (u, v) be an edge in T that is not contracted. Then, the analogue of (u, v) in T ′ is the obtained
from (u, v) in the following fashion:

• Set e′ ← (u, v).

• For any contraction of edge (z, w) into a node q that T undergoes:

– If u ∈ {z, w} then e′ ← (q, v).

– Otherwise, if v ∈ {z, w} then e′ ← (u, q),

• Return e′.

We continue with presenting some auxiliary lemmas that will be used for the proof.

Lemma 27 Let T = (V,E) and let (θe)e∈E denote some weight-vector on the edges. Let θ′ denote
a weight vector that differs only on one edge e′. Then, TV(PrT,θ[x],PrT,θ′ [x]) ≤ |θ′e′ − θe′ |/2.

Proof Due to the equivalent definition of total variation in terms of coupling, it is sufficient to
produce a coupling between x ∼ PrT,θ and x′ ∼ PrT ′,θ′ such that Pr[x ̸= x′] ≤ |θ′e′ − θe′ |/2. While
x and x′ denote the values of the leaves, we will use y and y′ to denote the values on the internal
nodes, such that (x, y) and (x′, y′) are jointly sampled from PrT,θ and PrT ′,θ′ , respectively. We will
produce a coupling between (x, y) and (x′, y′) such that Pr[(x, y) ̸= (x′, y′)] ≤ |θ′e′ − θe′ |/2 and
this suffices to conclude the proof.

Let e′ = (u, v) denote the single edge where θ and θ′ differ. We produce the coupling as follows:

56

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

• We start by sampling yu uniformly from {−1, 1} and y′u = yu

• Then, we sample yv such that Pr[yv = yu] = (1 + θe)/2. Similarly, we sample y′v such that
Pr[y′v = y′u] = Pr[y′v = yu] = (1 + θ′e)/2. Note that we can couple yv and y′v such that
Pr[yv ̸= y′v] = TV(yv | yu, y′v | yu) = |θe − θ′e|/2.

• Next, we will sample the remaining values of x, y conditioned on yu and yv, and the remaining
values of x′, y′ conditioned on y′u and y′v. If yu = y′u and yv = y′v, then these two conditional
distributions are the same, hence, we can sample such that (x, y) = (x′, y′). Otherwise, we
will sample x, y, x′ and y′ arbitrarily.

Notice that with probability 1− |θe′ − θ′e′ |/2, yu = y′u and yv = y′v. Hence, Pr[(x, y) = (x′, y′)] ≥
1− |θe′ − θ′e′ |/2, as required to complete the proof.

Lemma 28 Let T be a tree and θ a weight-function on its edges. Let T ′ be obtained from T by
contracting an edge e with θe = 1 and let θ′ denote the restriction of θ to the edges of T ′. Then, for
any values x = (x1, . . . , xn) on the leaves, PrT,θ[x] = PrT ′,θ′ [x].

Proof Notice that by contracting the edge, the pairwise correlations αij between any two leaves do
not change, hence the leaf distributions are identical (this is a known fact and it also follows directly
from Lemma 9).

D.3. Proof body

We are ready to present the results of Daskalakis et al. (2009). They are written in a slightly different
way than was originally present, but we translate their guarantees to our notation. (See Section D.5
for translating their guarantees).

Theorem 29 There is a polynomial-time algorithm, for learning some unknown tree T ∗ = (V ∗, E∗),
whose properties are presented below. Its inputs are:

• Approximate correlations, α̂ij , for any two leaves i, j ∈ [n]. These satisfy the guarantee that
there exists an Ising model PrT ∗,θ∗ , whose correlations α∗

ij satisfy: |α∗
ij − α̂ij | ≤ η, for any

two leaves i, j and for some η ∈ (0, 1/2].

• Parameters ξ, δ > 0 such that ξδ ≥ η.

The algorithm outputs a forest, whose connected components are trees, T̃1 = (Ṽ1, Ẽ1), . . . , T̃R =
(ṼR, ẼR) with the following guarantees: (below, C > 0 is a universal constant)

• Let Sr denote the set of leaves of T̃r for any r ∈ [R]. Then, {S1, . . . , SR} is a partition of the
set of leaves of T ∗.

• For all r = 1, . . . , R, denote by Tr = (Vr, Er) the subtree of T ∗ induced by Sr, as defined in
Definition 24. Then, each tree T̃r is obtained from Tr using the following operations:

– Contract a subset of the edges. Only edges e of weight θ∗e ≥ 1− Cξ can be contracted.

57

DAGAN DASKALAKIS KANDIROS CHOO

– Contract all the nodes of degree-2 from the resulting tree.

• Any edge e that is common to more than one of the trees {T1, . . . , TR}, satisfies θ∗e ≥ 1− Cξ.

• Any leaves i, j that belongs to different sets from {S1, . . . , SR}, satisfy |α∗
ij | ≤ C

√
δ.

For example, in Fig. 15 (a) a tree is depicted, whereas the output of the algorithm is given in
Fig. 15 (c). Since the dashed edge e connecting nodes a and b is contracted in the output, its weight
must satisfy θ∗e ≥ 1− Ω(ξ). Further, since nodes 1 and 7 reside in different subtrees in the output of
the algorithm, their correlation must satisfy |α∗

17| ≤ O(
√
δ). For another example, see Fig. 13: in

(a), the original tree is depicted, whereas, the output is the forest in (c). The induced trees T1 and T2

are shown in (b). Since the dashed edges in (a) are shared by both induced subtrees, their weight
satisfies θ∗e ≥ 1− Ω(ξ).

Below, we will prove the following central Lemma:

Lemma 30 Let η > 0 be a parameter and T ∗ be an unknown tree with weight vector θ∗ and
pairwise correlations α∗ between the leaves. Suppose we execute Algorithm 2 with the following
inputs:

• Pairwise correlations α̂ij that satisfy |α̂ij − α∗
ij | ≤ η.

• Parameters δ, ξ such that ξδ ≥ η and ξ = C1/n, for some universal constant C1 > 0.

• Parameter η̂ that satisfies η̂ = C2nξ + η, for some universal constant C2 > 0.

Recall that the algorithm outputs a weighted forest, and denote the forest by F̃ and the weights by θ̂.
Then, TV(PrT ∗,θ∗ [x],PrF̃ ,θ̃[x]) ∈ O(n3ξ + n2

√
δ + η). (We note that an Ising model over a forest

is defined by taking the different tree components to be independent.)

The remainder of this section is dedicated to the proof of Lemma 30. In Section D.4 we conclude
the proof of Theorem 3 (unknown topology), by substituting the parameters ξ, δ and η appropriately
using the finite-sample estimates.

To analyze the algorithm, we will create auxiliary trees T (i) = (V (i), E(i)) with weight function
θ(i) and pairwise correlations α(i)

ij (for i = {1, 2, 3}) that interpolate between the true parameters
T ∗, θ∗, and the Algorithm 2’s output (F̃ , θ̃). To bound the total variation distance between (T ∗, θ∗)
and (F̃ , θ̃), we apply triangle inequality after individually bounding the total variation of the leaf
distributions (i) between (T ∗, θ∗) and (T (1), θ(1)), (ii) between (T (1), θ(1)) and (T (2), θ(2)), (iii)
between (T (2), θ(2)) and (T (3), θ(3)), and (iv) between (T (3), θ(3)) and (F̃ , θ̃).

Before defining the first intermediate distribution, (T (1), θ(1)), we recall some definitions. First,
recall that the algorithm of Daskalakis et al. (2009) returns a forest whose connected components are
(T̃1, . . . , T̃R). Each T̃r is a modification of Tr, which is defined as the subtree of T ∗ that is induced
by the set of leaves of T̃r. As an intermediate step, we start by modifying T ∗ according to the induced
subtrees T1, . . . , TR. Note that initially, we consider Tr instead of T̃r, as Tr is closer to T ∗ than T̃r.

We start by defining T (1) as the tree that is obtained from T ∗ by contracting all the edges that
appear in more than one induced tree Tr Further, the edge-weight for θ(1) equals θ∗ on all the
remaining (non-contracted) edges. Note that T (1) still has a single connected component. (For
example, in Fig. 17, we contract the purple-dashed lines in (a) because they appear both in the
induces red and blue trees. This results in the tree depicted in (b).)

58

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

1 2 3 4 5 6 7 8 9 10 11

a

c d

1 2 3 4

e

5 6 7 8

b

9 10 11

a1

c1

c

51 2

a2

d2

d

6

e2

e

3 4 7 8

b3

9 10 11

a b

(a)

(b)

(c)

Figure 17: A depiction of the intermediate trees, T (1), T (2) and T (3) in the analysis of the algorithm.
The original tree T ∗ contains all the edges in (a). The output forest partitions the
leaves into three connected components: S1 = {1, 2, 5}, S2 = {3, 4, 6, 7, 8} and S3 =
{9, 10, 11}. The tree T1, which is the subtree of T ∗ induced by S1, contains the red and
purple-dashed edged. The tree T2 contains the blue and purple-dashed edges. And T3

contains the green edges. In (b), we depict T (2), which is obtained by contracting all
the edges that are shared among multiple subtrees Tr, for r = 1, 2, 3. In this example,
those are the purple-dashed edges. In (c), we depict T (2), which is obtained from T (2) by
adding auxiliary nodes: for each internal node v and each subtree Tr that it touches, we
create a new node vr, connect it with v with an edge of weight 1, and further, connect to
vr all the edges in Tr that were incident with v in T (1). The forest T (3) is obtained from
T (2) by removing all the edges that are incident with the nodes a, b, c, d, e. These are the
dashed edges.

59

DAGAN DASKALAKIS KANDIROS CHOO

We would like to bound the total variation distance between PrT ∗,θ∗ [x] and PrT (1),θ(1) [x]. Notice
that for each contracted edge e, we have from Theorem 29 that θe ≥ 1 − Cξ for some univer-
sal constant C > 0. Contracting each such edge e is equivalent to modifying θe to equal 1,
as argued in Lemma 28. Hence, the total variation distance for each contraction is bounded by
Cξ/2 from Lemma 27. By the triangle inequality, since we contract at most O(n) edges, then
TV(PrT ∗,θ∗ [x],PrT (1),θ(1) [x]) ≤ O(nξ).

Next, we continue to present the second intermediate model, parameterized by T (2) = (V (2), E(2))
and θ(2). To obtain T (2) = (V (2), E(2)) and θ(2), recall that each vertex of T (1) = (V (1), E(1)) may
correspond to multiple vertices of T ∗ since T (1) was obtained by contracting edges in T ∗. For any
v ∈ V (1), we denote by Av the set of preimages of v under the transformation from T ∗ to T (1) (see
Definition 25 and the paragraph above this definition). In other words, Av is the set of nodes of
T ∗ that were contracted into v. Denote by ρ(v) the set of indices r ∈ {1, . . . , R} of trees Tr that
intersect a node that was contracted into v. In other words, ρ(v) is the set of indices r such that
Av ∩ Vr ̸= ∅, where Vr is the set of vertices of the subtree Tr. Intuitively, for the construction of
T (2), we would like to make ρ(v) copies of node v, each for a subtree that contains v. To be precise,
T (2) is constructed as follows:

• The set of vertices V (2) of T (2) is obtained from V (1) by adding a new vertex vr, for each v
and r such that r ∈ ρ(v).

• For any v ∈ V (1) and r ∈ ρ(v), define an edge (v, vr) of weight θ(2)(v, vr) = 1.

• For any edge (u, v) ∈ E(1), define a new edge in E(2) according to the following considera-
tions:

– If |ρ(u) ∩ ρ(v)| = 1, denote {r} = ρ(u) ∩ ρ(v) and add an edge (ur, vr) in E(2), with
weight θ(2)(ur,vr) = θ

(1)
(u,v). This replaces the edge (u, v).

– If |ρ(u) ∩ ρ(v)| = ∅, add an edge (u, v) to E(2) with weight θ(2)(u,v) = θ
(1)
(u,v)

– It is impossible that |ρ(u) ∩ ρ(v)| > 1, otherwise, (u, v) would have been contracted.

(See Fig. 17 for an example of a tree T (2).) We note that T (1) can be obtained from T (2) by
contracting all the edges (v, vr) for v ∈ V (1) and r ∈ ρ(v). Hence, from Lemma 28, PrT (2),θ(2) [x] =
PrT (1),θ(1) [x] for all values x on the leaves. In particular,

TV

(
Pr

T (2),θ(2)
[x], Pr

T (1),θ(1)
[x]

)
= 0.

Next, we define T (3) and θ(3). Recall that the vertices of T (2) are of two types: (1) vertices that
are copies of those in V (1); and (2) vertices vr for v ∈ V (1) and r ∈ ρ(v). Then, T (3) is obtained
from T (2) by removing all the edges incident to the vertices of category (1), as depicted in Fig. 17 (c).
This creates a forest, and we remove from this forest each connected component that is disconnected
from the leaves. We prove the following lemma:

Lemma 31 There are R connected components in T (3), and the sets of leaves of the connected
components are exactly the sets of leaves of T1, . . . , TR. Namely, for each Tr there exists one
connected component of T (3) that has the same leaf-set as Tr.

60

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

Proof First, we argue that any two leaves that are in the same tree Tr, are also in the same connected
component of T (3). Let i, j be two leaves of Tr and consider the edges on the path P between them
in Tr. For any such edge (u, v), there are two possibilities: (1) This edge was contracted at some
point, and there is some w ∈ T (1) such that u, v ∈ Aw. (2) This edge was not contracted, and there
exist some (w, z) in E(1) that is the analogue of (u, v) in T (1) (see Definition 26 and its preceding
discussion). By definition of T (2), this edge is moved in T (2) to connect (wr, zr). In particular, the
path from i to j in T (2) contains only vertices of the form qr. Hence, this path is not disconnected in
T (3) from the graph.

Next, we argue why two leaves i, j in two different trees Tr and Ts, respectively, cannot be
connected in T (3). Indeed, the parent of leaf i in T (2) must be of the form vr while the parent of j
must be of the form vs. Notice that in T (3) there is no edge connecting a vertex from vr with a vertex
from v3, hence, these two leaves are necessarily disconnected.

We would like to use Theorem 1 to bound the total variation distance between PrT (2),θ(2) [x] and
PrT (3),θ(3) [x], by analyzing the change in the pairwise correlations. To do so, we use the fact that
the pairwise correlations that have changed are only those between leaves i, j of different trees Tr

and Ts, respectively, and by Theorem 29 we have that in T ∗ those have correlation |α∗
ij | ≤ C

√
δ

where δ is defined in Theorem 29 and C > 0 is a universal constant. Notice that, though, the
correlation between two leaves in T (2) can be greater than their correlation in T ∗. As argued above,
the correlation in T (2) equals that in T (1). To compare between the correlations in T (1) and T ∗,
recall that T (1) is obtained from T by contracting edges. Yet, any contracted edge has weight at least
1− Cξ, hence, contracting the edge can increase the correlation by at most 1/(1− Cξ). Since any
path between two leaves can contain at most n edges, the contraction can increase the correlation by
at most 1/(1− Cξ)n. By assumption, ξ ≤ 1/(Cn), hence this factor is at most a constant. Under
that assumption, the correlation in T (2) between any two leaves of different subtrees Tr is bounded
by O(

√
δ). Since in T (3) their correlation becomes 0, this implies that the pairwise correlations

change by at most O(
√
δ).

Hence, for any i, j, |α(2)
ij − α

(3)
ij | ≤ O(

√
δ). Since T (2) and T (3) both share the same underlying

graph (as removing edges can be done by just replacing the weight with 0), it follows from Theorem 1
that the total variation distance between the leaf distributions of T (2) and T (3) is bounded by
O(n2

√
δ).

Next, we would like to bound the total variation distance between the leaf distribution of T (3)

and the output of the algorithm. Since T (3) and F̃ have the same connected components, the leaf
distributions of both factorize the same. In particular, the leaf-sets S1, . . . , SR of T1, . . . , Tr are
independent in these product distributions. To bound the total variation distance between the leaf
distributions of T (3) and F̃ , it suffices to bound the total variation distance with respect to each
connected component separately, and then sum the bounds for each component. Hence, we will
fix some r ∈ {1, . . . , R}. For this end, let us analyze the weights θ̃e given by Algorithm 2 on the
tree T̃r. Recall that the last step of this algorithm is to use Algorithm 1 on the tree T̃r with some
parameter η′ > 0 and correlations α̂ij that were estmated from samples of the original tree T ∗.
Further, recall that Algorithm 1 is guaranteed to return some weights θ̃e on the edges, such that the
pairwise correlations between the leaves, which we denote by α̃ij , are η′-close to the correlations α̂ij

that were given to it as input, namely, |α̃ij − α̂ij | ≤ η for any pair i, j of leaves. Yet, Algorithm 1

61

DAGAN DASKALAKIS KANDIROS CHOO

will succeed only if there exist such weights θ̃e that satisfy the above constraint. To that end, we
claim the following:

Lemma 32 Fix r ∈ {1, . . . , R}. Then, there exist weights θ′ij to the edges of T̃r such that the
corresponding pairwise correlations, α′

ij satisfy |α′
ij − α̂ij | ≤ η +O(nξ) for any leaves i, j ∈ Sr.

Proof Notice that it is sufficient to find weights θ′e such that |α′
ij−α∗

ij | ≤ O(nξ), since |α̂ij−α∗
ij | ≤

η, by the assumption in Lemma 30. Since Tr is the subtree induced by the set of leaves Sr, our goal
is to show that α′

ij is O(nξ)-close to the pairwise correlation of i and j accross Tr. Hence, this is
what we will do. As a first solution, we propose to set for each edge e its weight θ′e to equal its
corresponding weight θ∗e in Tr. Recall, though, that in the process of transforming Ti to T̃i, there are
two modifications, which implies that we cannot exactly match the edges of T̃i with those of Ti. We
elaborate below on the transformations and how to set θ′e given these transformations.

• The first transformation is obtained by contracting some edges of weight θe ≥ 1−O(ξ). For
these contracted edges, we will not define θ′e. Contracting these edges changes the pairwise
correlations between the leaves by at most O(nξ), since there can be at most O(n) edges along
each path.

• The second transformation is a contraction of some nodes of degree 2. Yet, for each such
contraction, there is an easy way to modify the weights such that the pairwise correlations over
the leaves does not change. In particular, if u is a node and v, w are its neighbors, then u is
being deleted from the graph and v, w are being connected. If we set the weight of the new
edge as a multiplication of the weights of the two old edges, then the pairwise correlations
between the leaves do not change. In particular, we will define θ′ under this logic: we will
track the changes from Ti to T̃i, and whenever a degree-2 node is being contracted, we modify
the weights accordingly: if edges e and e′ were contracted to e′′, we set the weight of e′′ to
equal the multiplication of weights of e and e′.

Using the above definition of θ′e and the above analysis, it follows that |α′
ij − α∗

ij | ≤ O(nξ). This
suffices to complete the proof, as explained above.

It follows from Lemma 32 that the execution of Algorithm 1 succeeds, if it is run with η′ = Cnξ + η
and a sufficiently large C > 0. This implies that for any i, j ∈ Sr, |α̃ij − α̂ij | ≤ η′ ≤ η + O(nξ).
By the triangle inequality, |α̃ij − α∗

ij | ≤ 2η +O(nξ). Lastly, following the analysis above, it is easy

to show that also |α(3)
ij −α∗

ij | ≤ O(nξ). Indeed, the only modification from T to T (3) that affects the
pairwise correlation between i, j ∈ Sr is the contraction of edges of θ∗e ≥ 1−O(ξ). This affects the
pairwise correlation by O(nξ). By the triangle inequality, we derive that |α̃ij − α

(3)
ij | ≤ O(nξ + η).

The last step would be to apply Theorem 1 (same topology) to compare between the distribution over
T̃i and its corresponding connected component in T (3). Yet, this theorem would apply only if the
two components have the same topology. While they do not, we note that both trees are contractions
of the same tree Tr. Hence, we can view both distributions as defined over the tree Tr, where the
contracted edges have weight 1. By Theorem 1 (same topology) we derive that the total variation
distance between the two distributions over Sr is bounded by O(nξ|Sr|2). By summing over all r,
we derive that

TV

(
Pr

T (3),θ(3)
[x], Pr

F̃ ,θ̃
[x]

)
≤ O

(
nξ

r∑
r=1

|Sr|2
)
≤ O(n3ξ).

62

LEARNING AND TESTING LATENT-TREE ISING MODELS EFFICIENTLY

By summing up the total variation distances between the auxiliary distributions parameterized by
T (i), this concludes the proof of Lemma 30.

D.4. Concluding the proof of Theorem 3 (unknown topology)

We use Lemma 30. First of all, let us optimize ξ and δ for a fixed value of η. This can be achieved
by selecting δ = η2/3n2/3 and ξ = η1/3n−2/3. We note that the requirement ξ ≤ O(1/n) if
η ≤ O(1/n). The final bound is O(n7/3η1/3). To get this below ε, we have to set η ≤ O(ε3/n7).
This requires a sample of size n ≥ Ω(log(n/δ)/η2) = Ω(n14 log(n/δ)/ε6).

D.5. Translating the notation of Daskalakis et al. (2009)

We note that Daskalakis et al. (2009) uses a different notation. For convenience, we explain the
translation in the Ferromagnetic setting where αij , θkl ≥ 0, however, in order to transition to the
non-Ferromagnetic setting one would simply have to replace these quantities with their absolute
values, |αij | and |θkl|, respectively.

Instead of edge weight θ(k,ℓ), Daskalakis et al. (2009) use the metric dk,ℓ = − log θ(k,ℓ). Instead
of αi,j they use the metric di,j = − logαi,j . They denote the true (underlying) metric by d,
whereas they assume that the algorithm receives a (τ,M)-distorted metric on the leaves, denoted
d̂. This means that |d̂i,j − di,j | ≤ τ whenever di,j ≤ M . Using our notation, this means that
| log α̂ij − logα∗

i,j | ≤ τ whenever α∗
ij ≥ e−M . Equivalently,

−τ ≤ log α̂ij − logα∗
i,j ≤ τ whenever α∗

ij ≥ e−M

which is equivalent to

e−τ ≤ α̂ij/α
∗
i,j ≤ eτ whenever α∗

ij ≥ e−M . (21)

We will show how their guarantees can be implied from our guarantees. First, notice that in order for
(21) to hold, it is sufficient to assume that τ ≤ 1 and

(1− τ/2) ≤ α̂ij/α
∗
i,j ≤ (1 + τ/2) whenever α∗

ij ≥ e−M .

If we substitute ξ = τ/2 and δ = e−M , the last inequality substitutes to

α∗
i,j − ξα∗

ij ≤ α̂ij ≤ α∗
i,j + ξα∗

ij whenever α∗
ij ≥ δ ,

which is equivalent to
|α̂ij − α∗

i,j | ≤ ξα∗
ij whenever α∗

ij ≥ δ . (22)

Eq. 22 is guaranteed to hold if |α̂i,j−α∗
i,j | ≤ ξδ. Since in Theorem 29 we assume that |α̂i,j−α∗

i,j | ≤ η,
it suffices to assume that η ≤ ξδ in order to imply (22), which in turn implies the conditions in the
paper of Daskalakis et al. (2009).

Appendix E. Information theoretic bound

Upper bound. While the result below was known, we prove it for completeness.

63

DAGAN DASKALAKIS KANDIROS CHOO

Theorem 33 There is an algorithm that, given m samples from the leaf-marginal of some tree
structured Ising model with n leaves, returns another tree structured Ising model whose total variation
distance to the original model is bounded by ε, with sample complexity m = O(n log(n/ε)/ε2).

While it is apparent that the family of tree-structured Ising models is infinite, we will select a
finite set which is an ε-cover in total variation, and then we will use the following result to learn in
total variation distance over a finite set:

Theorem 34 (Yatracos (1985)) Let ε, δ > 0. Given a finite family C of distributions and m samples
from some arbitrary distribution µ, there exists an algorithm such that, with probability 1− δ, returns
a distribution µ̂ ∈ C that satisfies:

TV(µ, µ̂) ≤ 3 inf
ν∈C

TV(µ, ν) + ε,

with sample complexity m = O(log(|C|/δ)/ε2).

In order to apply Theorem 34, we will construct an ε-cover to the set of tree structured Ising
models.

Lemma 35 For any ε > 0, there exists a family C of tree-structured Ising models of log cardinality
log |C| ≤ O(n log(n/ε)), such that for any tree structured Ising model, there exists some model from
C such that the total variation distance between these the two leaf distributions of these models is
bounded by ε.

Proof For completeness, we prove this lemma using Theorem 1, yet, there are more direct ways to
prove this lemma.

Each element of C will be parameterized by the following:

• A tree topology, with n leaves labeled 1, . . . , n. There can be at most nO(n) distinct trees.

• For each edge of the tree, its weight θe is one of {0, 1/M, 2/M, . . . , 1}, where M = Θ(n3/ε).
There can be at most MO(n) possibilities to select the weights.

We derive that |C| ≤ (n/ε)O(n).
Given some tree T and weight θ, we will find an element of C that approximates it. In particular,

we will take the element from C that has the same structure and additionally, each of its weights are
1/M close to θ. It is easy to see from (1) that the pairwise correlations between the leaves αij , are
O(n/M)-close in absolute value between the two models. Hence, by Theorem 1 (fixed topology),
the two models are O(n3/M) ≤ ε close in total variation between the leaf distributions, provided
that M ≥ Ω(n3/ε).

To conclude the proof, we use the algorithm of Theorem 34, applying it on an ε/4-cover using
the construction in Lemma 35.

Lower bound In order to learn latent tree-structured Ising models, when the topology is unknown,
the sample complexity is lower bounded by Ω(n log(n)/ε2). This follows from Koehler (2020): they
prove that the number of samples that are required to learn a full tree from samples is Ω(n log(n)/ε2),
yet, this proof extends directly to the setting of latent nodes.

64

	Introduction
	Results

	Related Work
	Technical Contributions – Proof Sketch
	Preliminaries
	An expression for the probability distribution on the leaves from Bresler and Karzand, 2020
	Technical tools for the tensorization of Theorem 1 (same topology)
	Technical Tools for the tensorization of Theorem 1 (different topologies)

	Algorithm
	A formula for the leaf distribution from Bresler and Karzand, 2020
	Proof of Theorem 1 (Same topology) and Theorem 3 (Known topology)
	Proof of Theorem 1 (Same Topology)
	Proof of Theorem 3 (Known Topology)

	Proof of Theorem 1 (Different topologies)
	Proof of Theorem 3 (unknown topology)
	Outline
	Definitions and probabilistic lemmas
	Proof body
	Concluding the proof of Theorem 3 (unknown topology)
	Translating the notation of Daskalakis et al. (2009)

	Information theoretic bound

