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Abstract
We prove that for c > 0 a sufficiently small universal constant that a random set of cd2/ log4(d)
independent Gaussian random points in Rd lie on a common ellipsoid with high probability. This
nearly establishes a conjecture of Saunderson et al. (2012), within logarithmic factors. The latter
conjecture has attracted significant attention over the past decade, due to its connections to machine
learning and sum-of-squares lower bounds for certain statistical problems.

1. Introduction

In this paper, we study the following question: Given a multiset of m i.i.d. samples from the stan-
dard multivariate Gaussian on Rd, does there exist an origin-centered ellipsoid that passes through
all these points? That is, we ask whether a set of m random points has the so called ellipsoid fit-
ting property. Specifically, we are interested in understanding the largest value of m such that the
ellipsoid fitting property holds with high probability. Throughout this paper, the term “with high
probability” will be used to mean 1− od(1), where od(1) goes to 0 when d→∞.

Fitting an ellipsoid to random points is a natural probabilistic question that is interesting on its
own right. The question, first studied in Saunderson (2011); Saunderson et al. (2012), has attracted
significant attention over the past years, in part due to its connections to theoretical computer sci-
ence and machine learning. The early papers (Saunderson, 2011; Saunderson et al., 2012, 2013)
formulated a plausible conjecture on the optimal value of the parameter m, and made the first
progress towards proving this conjecture. In more detail, these works conjectured a phase transition
at m ≈ d2/4. Formally, the conjecture posits the following:

Conjecture [SCPW conjecture] For any universal constant c > 0, (i) for m ≤ (1 − c)d2/4 there
exists an origin-centered fitting ellipsoid with high probability, and (ii) for m ≥ (1 + c)d2/4, there
does not exist an origin-centered fitting ellipsoid with high probability.

As of now, the conjecture in its above precise form remains open. Before we describe prior
progress towards proving the SCPW conjecture, we briefly summarize some known motivation
from the perspectives of machine learning and theory of computation. For a detailed description,
the reader is referred to Potechin et al. (2022) (the first version of which motivated the current work).

. Author last names are in randomized order.
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Motivation from ML and TCS The motivation for the introduction of the SCPW conjecture in
the initial works (Saunderson, 2011; Saunderson et al., 2012, 2013) came from machine learning.
Specifically, they studied the algorithmic problem of decomposing a data matrix into a sum of a di-
agonal and a random low-rank matrix. It turns out that the validity of the SCPW conjecture (or even
a quantitatively weaker version thereof) suffices for the correctness analysis of a convex program-
ming formulation of this problem, which was proposed in these works. In a similar vein, Podosin-
nikova et al. (2019) established a connection between a closely related conjecture to overcomplete
Independent Component Analysis (ICA). Again, proving that modified conjecture would allow Po-
dosinnikova et al. (2019) to analyze a specific SDP for the ICA problem. Finally, there is a close
connection between the positive side of the SCPW Conjecture (i.e., part (i) above) and lower bounds
for Sums-of-Squares relaxations for certain statistical (average case) tasks, specifically in the con-
text of the works Ghosh et al. (2020); Hsieh and Kothari (2022). Roughly speaking, proving the
positive side of the SCPW Conjecture (or a weaker version thereof) suffices to prove that a certain
SDP arising in these statistical problems is feasible. Improved bounds on the positive part of the
SCPW conjecture (like the one established in the current work) have direct implications to these
problems.

Prior Work Towards Proving the SCPW Conjecture The negative part of the SCPW conjecture
(i.e., part (ii)) is easy to establish to within a factor of 2. As a result, most of the research has focuses
on proving the positive part for as large value of m as possible, which we now describe. The early
works that formulated the SCPW conjecture (Saunderson, 2011; Saunderson et al., 2013) showed a
bound of m = O(d6/5−c), for any constant c > 0. In Ghosh et al. (2020), this bound was improved
to m = O(d3/2−c), for any constant c > 0. Interestingly, the latter improvement was obtained
indirectly, in the context of proving SoS lower bounds for the Sherrington-Kirkpatrick Hamiltonian.
More recently, the first version of Potechin et al. (2022) claimed a bound of m = d2/polylog(d).
Unfortunately, there were issues with their proof and the first version of the paper was retracted.
The best correct bound, prior to our work, was the one obtained in Ghosh et al. (2020). After the
acceptance of this work, Aaron Potechin informed us that, while it was not explicitly stated in the
paper, the techniques of Ghosh et al. (2020) can actually be used to give a d2/polylog(d) bound
for degree-2 SoS. Therefore, the techniques of that work can be used to deduce the ellipsoid fitting
conjecture up to a polylogarithmic factor. That said, the pseudo-calibration construction analyzed
in Ghosh et al. (2020) has the significant drawback of being very complicated.

1.1. Our Result and Techniques

Main Result We establish a bound on the positive part of the SCPW conjecture that is near-
optimal, within polylogarithmic factors.

Theorem 1 (Main Result) There exists a universal constant c > 0 such that the following holds.
For any positive integer d and any m < cd2/ log4(d), if x(1), x(2), . . . , x(m) are i.i.d. samples from
N (0, Id), then with probability at least 1−od(1) there exists an origin-centered ellipsoid that passes
through all of the x(i)’s.

Overview of Techniques Our basic technique will be to use a so-called identity perturbation
construction. In particular, if x(1), x(2), . . . , x(m) are i.i.d. samples from N (0, (1/d)Id), then it
is our goal to show that with high probability there exists a positive-definite matrix N such that
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(x(i))>Nx(i) = 1, for all 1 ≤ i ≤ m. As a first observation, we note that (with high probability)
taking N = Id should nearly work for all i. We will thus attempt to construct an appropriate
positive-definite matrix N that is close to the identity.

In particular, we will take N = I +
∑m

i=1 δix
(i)(x(i))>, for some carefully chosen scalars

δ1, δ2, . . . , δm. Since we have m different δi’s to set in order to satisfy the m linear (in the δi)
equations (x(i))>Nx(i) = 1, we can generically expect for there to be a unique solution. This leaves
us with the issue of our other constraint, namely that N is positive-definite. For this it will help to
know that N is close to the identity, as it will be sufficient to show that

∥∥∑m
i=1 δix

(i)(x(i))>
∥∥
2
< 1.

To achieve this, we will need to first get a reasonable handle on the scalars δi. To that end, we
derive a formula that δ = M−1ε, where M is the matrix with entries Mi,j roughly (x(i) · x(j))2
and εi a function of ‖x(i)‖22 − 1. The first thing to note about M is that its diagonal entries will
be approximately 1, and its off-diagonal entries approximately 1/d. Thus, M can be written as
(1/d)11>+ (1− 1/d)I +A, for some matrix A whose entries can be thought of as relatively small
random noise. Our first major task will be to show that A has bounded operator norm. In particular,
we show that for m� d2/ log4(d) we have that ‖A‖2 < 1/2. The proof of this statement relies on
the method of moments, namely bounding E[At] for some appropriate even integer t. This bound
is particularly important, as it allows us to bound ‖M−1‖2, and in particular implies that δ is not
much bigger than ε.

This leaves us with the task of bounding the operator norm of R :=
∑m

i=1 δix
(i)(x(i))>. We

will establish this using a cover argument. In particular, it suffices to show (see Fact 3) that |u>Ru|
is small for all u in a cover of the unit sphere of Rd. This in turn means that it suffices to show that,
for any particular unit vector u, |u>Ru| is small with exponentially high probability. To show this,
we note that u>Ru is linear in δ, and thus linear in ε. We would thus like to be able to treat this
as a sum of independent random variables and apply some concentration bounds. Unfortunately, as
we have set things up, ε and M are not independent of each other. To address this issue, we need a
slight change in definitions. In particular, we let x(i) = (1 + εi)

−1/2v(i) for v(i) the unit vector in
the direction of x(i) and εi = 1/‖x(i)‖22 − 1. Now if we instead write N = I +

∑m
i=1 δiv

(i)(v(i))>,
we have that δ = M−1ε, where Mi,j = (v(i) · v(j))2. Since the v(i) and εi are all independent of
each other, εi is independent of M and u and this strategy can be made to work.

However, to implement the above approach, we run into the additional technical issue that |εi|
is unbounded. This can be fixed by showing that, with high probability, |εi| is reasonably small for
all i. Then conditioning on this event, the εi are independent and bounded random variables.

For the rest of the cover argument, we have that u>Ru = ε · (M−1β), where βi = (u · v(i))2.
If we have an `2 bound on β (and thus M−1β), we can apply a Hoeffding bound to get a high
probability upper bound on |u>Ru|. Unfortunately, ‖β‖2 is not quite small enough for our purposes
with exponentially high probability. This is because there is an inverse exponential probability
that any given entry of β will be constant sized. To deal with this, we need to show that with
exponentially high probability β can be divided into a heavy part — consisting of a small number
large coordinates, where we bound the contribution of these based on a high-probability `∞ bound
on δ — and a light part with `2-norm at most O(m/d2).

Independent Work Independent work by Potechin et al. (2022), using different techniques, es-
tablished a qualitatively similar bound of m = d2/polylog(d) on the positive part of the SCPW
conjecture. Roughly speaking, the proof given in Potechin et al. (2022) relies on the least squares
construction, taking N to be the matrix with (x(i))>Nx(i) = 1, for all i, that minimizes ‖N‖F .
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In contrast, our argument uses the identity perturbation construction, whereby N is taken to be a
perturbation of I obtained by solving a system of linear equations.

2. Preliminaries

Notation. For a vector u ∈ Rd, we use ‖u‖2 to denote its `2-norm. For vectors u, v ∈ Rd, we
denote their standard inner product by u · v. We will sometimes use (u)i for the ith coordinate of
vector u. We will use Id for the d× d identity matrix. If the dimension d is clear from the context,
we will omit the index and simply use I . For a square matrix A, we will use ‖A‖2 for its operator
(spectral) norm.

We use od(1) to denote a quantity that goes to 0 as d goes to infinity. Throughout this paper,
we use the phrase “with high probability” to mean with probability 1− od(1), and the phrase “with
exponentially high probability” to mean with probability at least 1− 2−Cd, for C some sufficiently
large constant.

We will make use of some basic facts about the uniform distribution over the sphere in d-
dimensions. In particular, we will use the following basic lemma.

Lemma 2 If v is a uniform random point on the unit sphere and w another unit vector then the
following holds: E[v · w] = 0, E[(v · w)2] = 1/d, and for any constant k > 0, E[|v · w|k] =
Ok(d

−k/2). Furthermore, Pr(|v · w| > t) = exp(−Ω(dt2)).

Proof Most of these statements follow from the fact that x ∼ N (0, (1/d)Id) can be written as Lv
for L a scalar-valued random variable independent of v with L ∈ [1/2, 2] with high probability. The
second moment bound follows by extending w to an orthonormal basis w1, w2, . . . , wd of Rd and
noting that 1 = E

[∑d
i=1(v · wi)2

]
= d

∑d
i=1E[(v · w)2] by symmetry.

We also note that Theorem 1 is trivial for any constant value of d, and thus we assume through-
out that d is at least a sufficiently large constant. We will also assume as necessary that m =
Ω(d2/ log4(d)) as increasing the value of m only makes Theorem 1 harder.

3. Proof of Main Result

The basic outline of our proof is as follows: In Section 3.1, we lay out the overall structure of the
proof along with the basic definitions of M,N, ε, and δ. In Section 3.2, we prove the bound on
‖A‖2. In Section 3.3, we use this to prove some basic bounds on M, ε and δ. Finally, in Section 3.4,
we complete the details of the cover argument.

3.1. Proof Structure

To prove the theorem, we need to exhibit a positive definite matrixN such that, with high probability
over the x(i)’s, where x(i) ∼ N (0, (1/d)Id), we have that (x(i))>Nx(i) = 1 for all 1 ≤ i ≤ m. As
each of the terms (x(i))>Nx(i) will be close to 1 with high probability, our goal will be to letN be a
perturbation of the identity matrix. In particular, our plan will be to let N = I+

∑m
i=1 δix

(i)(x(i))>

for carefully chosen scalars δi. In particular, the constraints that (x(i))>Nx(i) = 1 for each i will
give us a system of linear equations that hopefully uniquely define the δi’s.
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For parts of this argument that will become relevant later, it will be useful for us to separate
out the direction of each vector x(i) from its length. To this end, we express each x(i) as x(i) =
(1 + εi)

−1/2v(i), where v(i) is a unit vector and εi ∈ (−1,∞) is a real number equal to εi :=
1/‖x(i)‖22 − 1. We note that this specific parameterization of the length (rather than selecting, e.g.,
x(i) equals (1 + εi)v

(i) or `iv(i)) is such that the resulting formula for the matrix N below will be
convenient for our purposes. In particular, if we letN := Id+

∑m
i=1 δiv

(i)(v(i))>, we will have that

(x(j))>Nx(j) = (x(j))>Ix(j) +
m∑
i=1

δi(x
(j) · v(i))2

= (1 + εj)
−1

(
1 +

m∑
i=1

(v(i) · v(j))2δi

)
. (1)

We will henceforth use the notation δ := (δ1, . . . , δm) and ε := (ε1, . . . , εm). By (1), we need a
choice of δ such that

∑m
i=1(v

(j) · v(i))2δi = εj for all j. Letting M be the m×m matrix given by

Mi,j := (v(i) · v(j))2 , (2)

the relationship we need to hold between δ and ε is equivalent to having that δ = M−1ε. Hence,
so long as the matrix M is invertible, taking this choice of δ will give us a matrix N such that
(x(i))>Nx(i) = 1 for all i.

It remains to show that the matrix N is positive definite. We will establish this by showing that
the matrix

K := N − I =

m∑
i=1

δiviv
>
i (3)

satisfies ‖K‖2 < 1. Towards this end, we will use an appropriate cover argument. In particular, we
will require the following standard fact.

Fact 3 (see, e.g., Vershynin (2018)) There exists a set C ⊆ Rd of 2O(d) unit vectors such that for
any symmetric matrix R we have ‖R‖2 < 2 maxu∈C |u>Ru| .

Thus, it suffices for us to show that with high probability over the choice of x(i)’s, that the following
holds:

1. M is invertible.

2. For each u ∈ C, we have that
∣∣∑m

i=1 δi(u · vi)2
∣∣ ≤ 1/2.

Our general strategy for proving the second result above will be a union bound over u’s. However,
our analysis will also need to depend on several events that are independent of the choice of u. Thus,
we will find some collection of events that imply the above conditions so that each event satisfies
the following:

• Either the event is independent of u and occurs with probability 1− od(1).

• Or the event depends on u and occurs with probability at least 1− 2−Cd for some sufficiently
large constant C > 0 assuming that all events of the first type hold.
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By a union bound, all events of the first type hold with probability 1 − od(1) and all events of the
second type hold for all u ∈ C, again with probability 1 − od(1). Thus, together these will imply
that the xi’s lie on an origin-centered ellipsoid with probability at least 1− od(1).

Perhaps the most significant of these events has to do with the behavior of the matrix M . First,
it is clear that E[(v(i) · v(j))2] is equal to 1 if i = j and equal to 1/d if i 6= j. Therefore, we have
that E[M ] = (1 − 1/d)I + (1/d)11>, where 1 = (1, 1, . . . , 1) is the vector with all entries equal
to 1. Let A be the difference, in particular, let

A = M − (1− 1/d)I − (1/d)11> .

Our most important claim is that with high probability A has small operator norm. Specifically, we
prove the following proposition.

Proposition 4 With probability 1− od(1) we have that ‖A‖2 < 1/2.

Note that this condition depends only on the v(i)’s (and in particular is independent of the εi’s).
We prove it in the next section.

3.2. Operator Norm Bounds: Proof of Proposition 4

The main goal of this section will be to prove Proposition 4. We begin by finding a new useful way
to express the matrix A. From the definition of A, it is easy to see that Ai,j is equal to 0 if i = j and
equal to (v(i) · v(j))2 − 1/d if i 6= j. We begin our analysis by introducing some new terminology
that allows us to put this in a simpler form. In particular, let S be the set of degree-2 polynomials on
Rd given by p(y) = yiyj for some 1 ≤ i < j ≤ d or p(y) = (y2i − 1/d)/

√
2 for some 1 ≤ i ≤ d.

We note that these are the Hermite polynomials of degree-2 on Rd. We have the following:

Claim 5 For i 6= j, it holds that Ai,j = 2
∑

p∈S p(v
(i))p(v(j)).

Proof For i 6= j, we have the following chain of equalities:

Ai,j = (v(i) · v(j))2 − 1/d =

(
d∑

k=1

v
(i)
k v

(j)
k

)2

− 1/d

=
d∑

k,`=1

v
(i)
k v

(i)
` v

(j)
k v

(j)
` − 1/d

= 2
∑

1≤k<`≤d
v
(i)
k v

(i)
` v

(j)
k v

(j)
` +

∑
1≤k≤d

(v
(i)
k )2(v

(j)
k )2 − 1/d

= 2
∑

p(y)=yky`,1≤k<`≤d

p(v(i))p(v(j)) +
∑

1≤k≤d
(v

(i)
k )2(v

(j)
k )2

− (1/d)
∑

1≤k≤d
(v

(i)
k )2 − (1/d)

∑
1≤k≤d

(v
(j)
k )2 + 1/d

= 2
∑

p(y)=yky`,1≤k<`≤d

p(v(i))p(v(j)) +
∑

1≤k≤d

(
(v

(i)
k )2 − 1/d

)(
(v

(j)
k )2 − 1/d

)
= 2

∑
p∈S

p(v(i))p(v(j)) .
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This completes the proof of the claim.

To proceed with our analysis, we will split S into two sets. Namely, S′ is the set of polynomials of
the form p(y) = yiyj for 1 ≤ i < j ≤ d, and S∗ the set of polynomials of the form (y2i − 1/d)/

√
2.

We can then write A = A′ +A∗, where for i 6= j we have that

A′i,j := 2
∑
p∈S′

p(v(i))p(v(j)) ,

and
A∗i,j := 2

∑
p∈S∗

p(v(i))p(v(j)) ,

and A′i,i = A∗i,i = 0. In order to bound the operator norm of A, we will bound the operator norms
of the matrices A′ and A∗ separately.

The case of A∗ turns out to be relatively simple. We show:

Lemma 6 With high probability, we have that ‖A∗‖2 ≤ 1/4.

Proof Let B be the m × d matrix defined as Bi,k = pk(v
(i)), where pk ∈ S∗ is given by pk(y) =

(y2k − 1/d)/
√

2. We note that A∗− 2BB> has 0 as its off-diagonal entries and has diagonal entries
equal to −

∑d
k=1((v

(i)
k )2 − 1/d)2.

Recalling that each x(i) ∼ N(0, Id/d), by its definition each v(i) is a uniform random point
in the unit sphere. Therefore, with high probability we have that |v(i)k | ≤ (log(d)/

√
d) for all

1 ≤ i ≤ m and 1 ≤ k ≤ d. If this event holds, then the entries of A∗− 2BB> are all O(log4(d)/d)
in magnitude, and thus for d sufficiently large, with high probability we have that ‖A∗−2BB>‖2 ≤
1/12. In order to bound ‖A∗‖2 from above, we thus need to prove an upper bound on ‖2BB>‖2 =
2‖B>B‖2.

To achieve this, we note that the (k, `)-entry of 2B>B is
m∑
i=1

((v
(i)
k )2 − 1/d)((v

(i)
` )2 − 1/d) .

We first deal separately with the diagonal entries. If the high probability condition that each |v(i)k | <
log(d)/

√
d holds, then each diagonal entry is at most m log4(d)/d2 < 1/12. Thus, letting C be the

matrix obtained by zeroing out the diagonal entries of 2B>B, we have that with high probability
‖2B>B − C‖2 < 1/12. On the other hand, we have that ‖C‖2 ≤ ‖C‖F . The expected squared
Frobenius norm of C can be written as:

E[‖C‖2F ] =
∑
k 6=`

E

( m∑
i=1

((v
(i)
k )2 − 1/d)((v

(i)
` )2 − 1/d)

)2
 .

Note that for any fixed k and ` the ((v
(i)
k )2 − 1/d)((v

(i)
` )2 − 1/d) are i.i.d. random variables, and

thus the RHS above can be simplified as follows:

E

( m∑
i=1

((v
(i)
k )2 − 1/d)((v

(i)
` )2 − 1/d)

)2
 = m2E[(w2

k − 1/d)(w2
` − 1/d)]2

+mVar[(w2
k − 1/d)(w2

` − 1/d)] ,
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where w is a uniform random point on the unit sphere. To analyze this quantity, we can write:

0 = E

( d∑
k=1

(w2
k − 1/d)

)2


= d(d− 1)E[(w2
k − 1/d)(w2

` − 1/d)] + dE[(w2
k − 1/d)2]

= d(d− 1)E[(w2
k − 1/d)(w2

` − 1/d)] +O(1/d) .

Thus, we have that E[(w2
k − 1/d)(w2

` − 1/d)] = O(1/d3). It follows from Lemma 2 that
Var[(w2

k − 1/d)(w2
` − 1/d)] = O(1/d4). Combining with the above, we have that

E[‖C‖2F ] = O(d2(m2/d6 +m/d4)) = O((m/d2)2 + (m/d2)) = od(1) ,

where the last equation follows by our choice of m. Therefore, by the Markov inequality, with
probability 1− od(1) we have that ‖C‖2 ≤ ‖C‖F ≤ 1/12.

In summary, with high probability, we have that

‖A∗‖2 ≤ ‖A∗ − 2BB>‖2 + ‖2B>B − C‖2 + ‖C‖2 ≤ 1/12 + 1/12 + 1/12 = 1/4 .

This completes the proof of Lemma 6.

We next bound above ‖A′‖2.

Lemma 7 With probability at least 1− 1/d, we have that ‖A′‖2 ≤ 1/4.

As Lemma 7 is substantially the most technically difficult part of our proof, and the only part
where the requirement that m � d2/ log4(d) is required, we start by providing a few words on
our overall approach. Our high-level strategy is to use the method of moments. In particular, we
will bound E[tr((A′)t)] for some even integer t on the order of log(d), as this will allow us to
prove high probability bounds on ‖A′‖2. We do this by expanding the tr((A′)t) and noting that the
vast majority of the remaining terms have mean 0 and the ones that remain have easily-computable
expectations. We then use combinatorial techniques to bound the number of remaining terms and
get our final result.
Proof Note that A′i,j is equal to 0 if i = j, and otherwise is equal to

∑
1≤a6=b≤d v

(i)
a v

(i)
b v

(j)
a v

(j)
b .

Therefore, taking t to be a positive even integer, we have that

tr((A′)t) =
∑

i1,i2,...,it∈{1,2,...,m}
is 6=is+1

∑
a1,b1,a2,b2,...,at,bt

as 6=bs

t∏
s=1

v(is)as v
(is+1)
as v

(is)
bs

v
(is+1)
bs

,

where we use the convention that the indices are taken modulo t, namely that it+1 = i1, at+1 = a1,
and bt+1 = b1. Now we would like to bound the expectation of this quantity over the choice of
v(1), . . . , v(m) independent random unit vectors.

First, we claim that for any monomial p(v(1), v(2), . . . , v(m)) we have that

E[p(v(1), v(2), . . . , v(m))] ≤ E[p(x(1), x(2), . . . , x(m))] ,
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where the x(i) are independentN (0, (1/d)Id) random vectors. This holds because the distributions
on both the v’s and the x’s are symmetric in each coordinate, and thus both expectations are 0 un-
less p is even degree in each coordinate of each v(i) or x(i). We next recall that x(i) = Liv

(i),
for independent random variables Li with E[L2

i ] = 1. Since p is a monomial, we have that
p(x(1), . . . , x(m)) = p(v(1), . . . , v(m))Ld11 L

d2
2 · · ·Ldmm , where di is the degree of x(i) in p is a

non-negative even number. Since E[L2
i ] = 1, it follows that E[Ldii ] ≥ 1. Thus, we get that

E[p(v(1), v(2), . . . , v(m))] ≤ E[p(x(1), x(2), . . . , x(m))], as desired.
Hence, we have that

E[tr((A′)t)] ≤
∑

i1,i2,...,it∈{1,2,...,m}
is 6=is+1

∑
a1,b1,a2,b2,...,at,bt

as 6=bs

E

[
t∏

s=1

x(is)as x
(is+1)
as x

(is)
bs
x
(is+1)
bs

]
. (4)

Let us consider the expectation inside the sum. This is a monomial of a Gaussian. Note that if y is
the concatenation of the x(i)’s, it is distributed as N (0, (1/d)Imd), and we have that E

[∏md
i=1 y

di
i

]
is 0 unless all of the di’s are even, and otherwise is equal to d−

∑md
i=1 di/2

∏md
i=1(di − 1)!!. Note

that if D =
∑md

i=1 di and we rewrite the above monomial as E
[∏D

j=1 ycj

]
, where i occurs as a

value of cj exactly di times, then the expectation is equal to d−D/2 times the number of pairings of
{1, 2, . . . , D} such that j is paired with j′ only if cj = cj′ . This is because the number of ways to
pair the j’s so that cj = i is (di − 1)!!, if di is even, and 0 otherwise.

Therefore, the inner expectation in (4),

E

[
t∏

s=1

x(is)as x
(is+1)
as x

(is)
bs
x
(is+1)
bs

]
,

equals d−2t times the number of pairings on the 4t formal symbols x(is)as , x
(is+1)
as , x

(is)
bs
, x

(is+1)
bs

, for

1 ≤ s ≤ t, such that if x(is)αs′ is paired with x(ir)βr′
then is = ir, and αs′ = βr′ .

Note that any such pairing on these formal symbols will partition the is-terms into some αmany
equivalence classes for some α, and the as, bs terms into some β many equivalence classes. We note
that if is is equivalent to is+1 or as is equivalent to bs for some s, then this pairing will never show
up for any setting of the i’s, a’s, and b’s. Otherwise, there will be at most mαdβ settings of these
variables consistent with this pairing. Call a pairing for which no is is equivalent to is+1 or as
equivalent to bs valid.

We have that

E[tr((A′)t)] ≤
∑

i1,i2,...,it∈{1,2,...,m}
is 6=is+1

∑
a1,b1,a2,b2,...,at,bt

as 6=bs

d−2t

· [Number of valid pairings consistent with the choice of i’s, a’s, b’s]

≤ d−2t
∑

valid pairings

mαdβ.

To bound this sum, we need the following claim:

Claim 8 For t any positive integer and for any valid pairing, we have that mαdβ ≤ mt/2+1dt.

9
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Proof We prove this by induction on t. As a base case we consider t ≤ 2. For t = 1, there
is no valid pairing since i1 = i2. For t = 2, we have that α ≤ 2. Since x(is)as cannot be paired
with x(is+1)

as and x(is)bs
cannot be paired with x(is+1)

bs
(as the pairing would be invalid), each as, bs

must be in an equivalence class of size at least 2, and thus β ≤ 2t/2 = t. Thus, we have that
mαdβ ≤ m2d2 = mt/2+1dt.

For our inductive step, suppose that we have t > 2 and that our bound on mαdβ holds for any
valid pairing with a smaller value of t. Given our valid pairing of size t, we consider two cases
based on whether or not any is is in an equivalence class all by itself.

If no is is in its own equivalence class, then there are at most t/2 equivalence classes among the
is’s and so (as β is still at most t), we have that mαdβ ≤ mt/2dt.

Otherwise, suppose without loss of generality that it is in an equivalence class by itself. If so,
the four terms x(it)at , x

(it)
bt
, x

(it)
at−1 , x

(it)
bt−1

must be paired with each other. Since at and bt cannot be

equivalent, x(it)at must pair with x(it)at−1 or x(it)bt−1
. Without loss of generality, we assume that x(it)at is

paired with x(it)at−1 , and x(it)bt
is paired with x(it)bt−1

.
Here we further subdivide into subcases based on whether it−1 is equivalent to i1 under our

pairing. If they are not equivalent, we construct a new pairing of size t− 1 by maintaining all of the
pairs that do not contain an it, at, or bt term and pairing x(i1)at−1 and x(i1)bt−1

with whatever x(i1)at and

x
(i1)
bt

were previously paired with. We note that this preserves the equivalence relations on the i’s
and a/b’s, producing a new valid pairing with α−1 equivalence classes on the i’s and β equivalence
classes on the a/b’s. By the inductive hypothesis, we have that mα−1dβ ≤ m(t−1)/2+1dt−1. Thus,
we obtain that mαdβ ≤ mt/2+1dt(m/d2)1/2 < mt/2+1dt. This completes the inductive step in this
case.

If our pairing makes i1 equivalent to it−1, the above construction does not work, as the pair-
ing produced is not valid (since two adjacent i’s would be equivalent). In this case, we instead
construct a smaller valid pairing of size t − 2. This is done by removing any pairs involving
it, at, bt, it−1, at−1, bt−1 and

1. Pairing x(i1)at−2 and x(i1)bt−2
with whatever was previously paired with x(it−1)

at−2 and x(it−1)
bt−2

, respectively

2. Pairing whatever was previously paired with x(it−1)
at−1 with whatever was previously paired with

x
(i1)
at

3. Pairing whatever was previously paired with x(it−1)
bt−1

with whatever was previously paired with

x
(i1)
bt

.

It is easy to check that this produces a pairing on all 2(t − 2) terms that does not introduce any
equivalences that were not in the original pairing, while losing the equivalence class of it, and
possibly the equivalence classes of at and bt. Thus, this new valid pairing has α − 1 equivalence
classes on the i’s and at most β − 2 equivalence classes on the a/b’s. Thus, by our inductive
hypotheses, it follows that mα−1dβ−2 ≤ m(t−2)/2+1dt−2, and thus that mαdβ ≤ mt/2+1dt. This
completes our inductive step, establishing Claim 8.

With this bound on mαdβ , we have that

E[tr((A′)t)] ≤ d−2t
∑

valid pairings

mt/2+1dt .

10
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The number of valid pairings is at most the number of pairings on a set of size 4t, or (4t − 1)!! ≤
(4t)2t. Therefore, we have that

E[tr((A′)t)] ≤ m(m(4t)4/d2)t/2 .

If t is the nearest even integer to log(d), we note that m is still at most a small constant times
(d2/(4t)4). Thus, we have that

E[‖A′‖t2] ≤ E[tr((A′)t)] ≤ (1/4)t/d .

Therefore, by the Markov bound, with probability at least 1− 1/d we have that ‖A′‖2 ≤ 1/4.
This complete the proof of Lemma 7.

Combining the above bounds on ‖A∗‖2 and ‖A′‖2, we have that with probability 1− od(1) that
‖A‖2 ≤ 1/2, proving Proposition 4.

3.3. Some High Probability Bounds on M, ε, and δ

In this section, we prove some facts about M, ε and δ and introduce some high-probability condi-
tions on them. In particular, we will need to prove operator norm bounds on M−1 and `∞ bounds
on δ and ε.

To begin with, by Proposition 4, we have that with high probability ‖A‖2 < 1/2. Call this event
E1. Since M � (1− 1/d)I − A, this implies M � I/3. Note that E1 implies that M is invertible
and in particular that ‖M−1‖2 ≤ 3.

We would next like to get a better understanding of εi. We note that

εi = 1/‖x(i)‖22−1 =
1

1 + (‖x(i)‖22 − 1)
−1 = −(‖x(i)‖22−1)+(‖x(i)‖22−1)2+O(‖x(i)‖22−1)3 .

We note that (‖x(i)‖22−1) is 1/d times a sum of d independent copies ofG2−1, whereG ∼ N(0, 1).
Thus, we have that with high probability |‖x(i)‖22 − 1| < log(d)/

√
d for all 1 ≤ i ≤ m. Call

this event E2. Furthermore, conditioned on E2, (‖x(i)‖22 − 1) has superpolynomially small mean
and has variance O(1/d). Thus, conditioned on E2, we have that |εi| = O(log(d)/

√
d) for all i,

E[εi] = O(1/d), and E[ε2i ] = O(1/d).
Finally, we note that δi is the inner product of the ith row of M−1 with ε. Let L be this ith row.

Note that L and ε are independent. Conditioned on E1, we have that ‖L‖2 ≤ ‖M−1‖2 ≤ 3. Note
that for L fixed, conditioned on E2, we have that

δi =
m∑
j=1

Ljεj .

By the Hoeffding Inequality, we have that

Pr

(∣∣∣∣∣δi −
m∑
i=1

LiE[εi]

∣∣∣∣∣ > t

)
< 2 exp

(
− 2t2

4
∑m

j=1 L
2
j‖εj‖2∞

)

≤ 2 exp

(
−Ω(t2)

‖L‖22 log2(d)/d

)
.

11
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Taking t = log2(d)/
√
d, we have for d sufficiently large that with high probability |δi −

∑m
i=1 LiE[εi]| <

log2(d)/
√
d for all 1 ≤ i ≤ m.

Furthermore, we can write

m∑
i=1

LiE[εi] = O(1/d)1 · L = O(1/d)1>M−1ei = O(1/d)e>i M
−11 .

Now, conditioned onE1, we have thatM = 11>/d+O(Im). Thus, the vectorM((d/m)1) is 1 plus
a vector of `2-norm at most O(d/

√
m). Consequently, M−11 is (d/m)1 plus M−1 times a vector

of `2-norm O(d/
√
m). Since ‖M−1‖2 = O(1), we have that ‖M−11 − (d/m)1‖2 = O(d/

√
m).

Hence, we get that
m∑
j=1

LjE[εj ] = O(1/
√
m) .

Therefore, with high probability, we have that |δi| < log2(d)/
√
d for all 1 ≤ i ≤ m. We call this

event E3.
Let E be the event that events E1, E2, E3 all hold. We note that this happens with probabil-

ity 1 − od(1). We next need to show that for any u ∈ C that, conditioned on E, it holds that∣∣∑m
i=1 δi(u · vi)2

∣∣ ≤ 1/2 with probability at least 1 − 2−Cd, for some sufficiently large universal
constant C.

3.4. Cover Argument: Completing the Proof

Here we will show that for any unit vector u that conditioned onE with probability at least 1−2−Cd

over the choice of v(i), εi that
∣∣∑m

i=1 δi(u · v(i))2
∣∣ ≤ 1/2. Applying a union bound over all u ∈ C

will complete our proof of Theorem 1.
Let β be the vector with entries βi = (u · v(i))2 for 1 ≤ i ≤ m. We would like to prove

a high probability bound on the `2 norm of β. Unfortunately, there is a decently large (i.e. only
exponentially small in d) chance that individual entries of β will have size Ω(1), so we will have
to deal with these entries separately. In particular, note that |βi| < d−1/4 except with probability
exp(−Ω(d3/4)) by Lemma 2. As these events are independent for each i, except for with exponen-
tially small probability we have that |βi| > d−1/4 for at most O(d1/4) many different values of i.
Call these the heavy coordinates.

Next, we attempt to show a high probability bound for the `2 norm of β over the light coordi-
nates. In particular, we do this by bounding

E[exp(α‖βlight‖22)]

where α = d9/8, and βlight is β restricted to its non-heavy coordinates. This is at most

m∏
i=1

E[exp(min(αβ2i , α/d
1/2))] .

To evaluate the expectation, we note that

E[exp(min(dβ2i , α/d
1/2))] = 1 +

∫ eα/
√
d

1
Pr(exp(αβ2i ) > t)dt.

12
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The probability in question comes down to the probability that βi >
√

log(t)/α. However, Lemma
2 implies that Pr(βi > x) = exp(−Ω(dx)). Thus, we have that

E[exp(min(αβ2i , α/d
1/2))] = 1 +

∫ eα/
√
d

1
exp(−Ω(d

√
log(t)/α))dt.

We evaluate this integral separately on the ranges [1, 2] and [2, e
√
d]. For t ∈ [1, 2] we have that

log(t) = Θ(t− 1) and thus, letting x = t− 1, the integral is∫ 1

0
exp(−Ω(d

√
x/α))dx = α/d2

∫ d2/α

0
exp(−Ω(

√
y))dy = O(α/d2).

To evaluate the integral between 2 and eα/
√
d, we let s = log(t) and get∫ α/

√
d

log(2)
exp(−Ω(d

√
s/α) + s)ds.

The integrand here is at most 1/d2, and so the integral is O(α/d2). Thus, we have that

E[exp(α‖βlight‖22)] = (1 +O(α/d2))m = exp(O(αm/d2)).

Thus, by the Markov bound, except with probability exp(−Ω(m/d7/8)), we have that α‖βlight‖22 =
O(αm/d2) or ‖βlight‖22 = O(m/d2).

So with exponentially high probability we can write β = βheavy+βlight, where βheavy has support
size O(d1/4) and entries at most 1 and βlight has squared `2-norm at most O(m/d2). We wish to
bound |δ · β|. We begin by noting that

|δ · βheavy| ≤ ‖δ‖∞‖βheavy‖1 .

Event E implies that ‖δ‖∞ ≤ log2(d)/
√
d, and as shown above, with high probability ‖βheavy‖1 =

O(d1/4). Thus, conditioned on E, with exponentially high probability, we have that |δ · βheavy| =
O(log2(d)/d1/4).

Next we bound |δ · βlight|. This can be rewritten as follows:

δ · βlight = (M−1ε) · βlight = ε · (M−1βlight) .

Condition E1 implies that M−1 has constant operator norm and we know that with high probability
it holds that ‖βlight‖22 = O(m/d2). Thus, conditioned on E1, with exponentially high probability
we have that γ := M−1βlight satisfies ‖γ‖22 = O(m/d2).

Note though that γ depends only on u and the vi, and is thus independent of ε (even conditioned
on E1). We thus have that conditioned on E1 and E2 that γ · ε =

∑m
i=1 γiεi is a sum of independent

random variables. By an application of Hoeffding’s Inequality, we obtain:

Pr

(∣∣∣∣∣γ · ε−
m∑
i=1

γiE[εi]

∣∣∣∣∣ > 1/6

)
< 2 exp

(
− 1/18∑m

j=1 γ
2
j (2‖εj‖∞)2

)

≤ 2 exp

(
−Ω(1)

m log2(d)/d3

)
.

13
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Thus, with exponentially high probability, we have that∣∣∣∣∣γlight · ε−
m∑
i=1

γiE[εi]

∣∣∣∣∣ < 1/6 .

This leaves us to bound ∣∣∣∣∣
m∑
i=1

γiE[εi]

∣∣∣∣∣ = O(1/d)γ · 1

≤ O(1/d)‖γ‖2‖1‖2
= O(1/d)O(

√
m/d)

√
m

= O(m/d2) < 1/6 .

Combining with the above, we find that conditioned on E with exponentially high probability over
the choice of v(i) and εi that |δ · β| < 1/2.

This completes the proof of Theorem 1.
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