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Abstract
We consider the problem of evaluating forecasts of binary events whose predictions are consumed
by rational agents who take an action in response to a prediction, but whose utility is unknown to
the forecaster. We show that optimizing forecasts for a single scoring rule (e.g., the Brier score)
cannot guarantee low regret for all possible agents. In contrast, forecasts that are well-calibrated
guarantee that all agents incur sublinear regret. However, calibration is not a necessary criterion
here (it is possible for miscalibrated forecasts to provide good regret guarantees for all possible
agents), and calibrated forecasting procedures have provably worse convergence rates than fore-
casting procedures targeting a single scoring rule.

Motivated by this, we present a new metric for evaluating forecasts that we call U-calibration,
equal to the maximal regret of the sequence of forecasts when evaluated under any bounded scoring
rule. We show that sublinear U-calibration error is a necessary and sufficient condition for all
agents to achieve sublinear regret guarantees. We additionally demonstrate how to compute the
U-calibration error efficiently and provide an online algorithm that achieves O(√T ) U-calibration
error (on par with optimal rates for optimizing for a single scoring rule, and bypassing lower bounds
for the traditionally calibrated learning procedures). Finally, we discuss generalizations to the
multiclass prediction setting.1
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