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Abstract
We introduce a simple and efficient algorithm for unconstrained zeroth-order stochastic convex
bandits and prove its regret is at most (1 + r/d)[d1.5

√
n + d3] polylog(n, d, r) where n is the

horizon, d the dimension and r is the radius of a known ball containing the minimiser of the loss.
Keywords: Bandits; zeroth-order convex optimisation.

1. Introduction

Let ‖ · ‖ be the standard Euclidean norm and f : Rd → R be a convex loss function and assume that

(a) f is Lipschitz: f(x)− f(y) ≤ ‖x− y‖ for all x, y ∈ Rd;

(b) there exists an x? ∈ Rd such that f(x?) = infx∈Rd f(x);

(c) the learner has access to a constant r ≥ 1 and initial point x◦ such that ‖x? − x◦‖ ≤ r.

A learner interacts with an environment over n rounds. In each round t the learner choosesXt ∈ Rd
and observes Yt = f(Xt) + εt where (εt)

n
t=1 is a sequence of conditionally zero mean subgaussian

random variables (precise condition given in Equation (1) below). As usual in bandit problems, Xt

is only allowed to depend on previous observationsX1, Y1, . . . , Xt−1, Yt−1 and possibly an external
source of randomness. Our focus is on the cumulative regret Regn =

∑n
t=1 f(Xt)− f(x?), that is,

how much more loss the algorithm suffers compared to the optimal action x? in n rounds. The main
contribution is the following regret guarantee for a simple algorithm for which the computation per
round is dominated by finding the eigendecomposition of a d× d matrix.

Theorem 1 With probability at least 1− 6/n, the regret of Algorithm 1 is upper bound by

Regn ≤ const
(

1 +
r

d

) [
d1.5√n+ d3

]
(1 + log max (n, d, r))4 ,

where const is a universal constant.

The best known bound in this setting is E[Regn] ≤ rd2.5√n polylog(n, d, r), which does not
come with an efficient algorithm (Lattimore, 2020). Our high-level idea is to combine online New-
ton step (Hazan et al., 2007) with randomised estimators of the gradient and Hessian of the surrogate
loss function used by Bubeck et al. (2017) and Lattimore and György (2021). Although our analysis
and algorithm are designed for the regret setting, an important consequence is an improved bound
for stochastic zeroth-order convex optimisation.
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Corollary 2 For ε > 0 and n ≥
⌈

const
(
d3

ε2
+ d3

ε

)(
1 + r

d

)2
(1 + log(max(1/ε, d, r)))8

⌉
,

P

(
f

(
1

n

n∑
t=1

Xt

)
≥ f(x?) + ε

)
≤ 6

n
,

where X1, . . . , Xn are the actions chosen by Algorithm 1.

Until now, the best known bound on the sample complexity of an efficient algorithm in this
setting was Õ(d

7.5

ε2
) by Belloni et al. (2015). Lattimore (2020) demonstrated the existence of a

procedure for which the sample complexity is at most Õ(d
5

ε2
), but the approach is non-constructive.

We emphasise that both of these works are intended for the harder constrained setting.

Related work There is an ever-growing literature on convex bandits in a variety of settings. Our
setup is unusual because there are no constraints on the domain of the function to be optimised.
Of course, algorithms that handle constraints can be used in our setup because of the assumption
that the minimum lies in a known ball. The other direction is not clear. We expect that suitable
modifications of our ideas will lead to algorithms for the constrained case, but not without effort,
ingenuity and possibly some dimension-dependent cost. More on this in the discussion.

The most natural idea to extend the standard machinery for stochastic gradient descent to the
zeroth-order bandit setting is to use importance-weighted gradient estimators of a smoothed approx-
imation of f , which was the approach taken by Kleinberg (2005), Flaxman et al. (2005) and Saha
and Tewari (2011). This leads to simple generalisations of gradient descent that are straightforward
to implement and analyse. Sadly this approach does not lead to

√
n regret without strong convexity.

In the stochastic setting it is possible to adapt tools from the classical zeroth-order optimisation
literature as was shown by Agarwal et al. (2013), who proved poly(d)

√
n regret for constrained

stochastic convex bandits without smoothness or strong convexity assumptions. These ideas were
improved by Lattimore and György (2021) leading to a better dimension dependence. Bubeck
et al. (2015) showed that

√
n regret is also possible without strong convexity/smoothness in the

adversarial setting when d = 1. Their approach non-constructively leveraged the information-
theoretic machinery of Russo and Van Roy (2014) and did not yield an algorithm. There followed
a flurry of results generalising this to higher dimensions and/or polynomial time algorithms (Hazan
and Li, 2016; Bubeck et al., 2017; Bubeck and Eldan, 2018; Lattimore, 2020). None of these
algorithms is particularly straightforward to implement.

What is missing in the literature is a simple algorithm with
√
n regret in any setting without

strong convexity. Interestingly, Hu et al. (2016) proved a negative result showing that any analysis
that uses gradient estimators must use more properties of these estimators than any naive bias-
variance decomposition that appeared in previous work (Kleinberg, 2005; Flaxman et al., 2005).
This negative result does not hold in the strongly convex setting, where gradient-based methods
give
√
n regret (Agarwal et al., 2010; Hazan and Levy, 2014; Ito, 2020; Luo et al., 2022). Finally,

Suggala et al. (2021) study the adversarial problem where the loss function is (nearly) quadratic.
They design a computationally efficient algorithm with d16√n polylog(n) regret. Like us, they
also use Hessian estimates to control a focus region. Because they study the adversarial setting the
situation is more subtle. If the adversary dramatically changes the minimiser the algorithm needs
to detect the change and restart or broaden the focus region. The current state of affairs is given in
Table 1.
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Authors Constrained Adversarial Lipschitz Smooth Strongly convex Regret ? Comp.

Flaxman et al. (2005) X X X
√
dn

3
4 O(d) †

Saha and Tewari (2011) X X X ν
1
3 d

2
3 n

2
3 O(d) †

Hazan and Levy (2014) X X X X d
√
νn O(d) †

Bubeck et al. (2017) X X d10.5
√
n poly(d, n)

Lattimore (2020) X X d2.5
√
n exp(d, n)

Lattimore and György (2021) X d4.5
√
n O(d) ‡

This work X d1.5
√
n O(d3)

? All regret bounds hold up to logarithmic factors for sufficiently large n and omit any dependence on r or the range of losses. The parameter ν is the self-concordance parameter
for a barrier on the constraint set, which is ν = 1 for the ball and information-theoretically never more than d. † These computation bounds assume the constraint set is a ball. ‡
The algorithm uses the ellipsoid method and needs logarithmically many updates ofO(d3) for the unconstrained case orO(d4) with a separation oracle on the constraint set.

Table 1: The current Pareto frontier for unconstrained zeroth-order bandit convex optimisation. Shaded cells
correspond to poor behaviour of the corresponding algorithm in relation to the property associated with the
cell. Algorithms that do not depend on a Lipschitz assumption assume the loss is bounded on the constraint
set. The best lower bound is still Ω(d

√
n) and uses linear functions (Dani et al., 2008). Algorithms for the

constrained setting can also be used in the unconstrained one but not a-priori the other way.

Notation The vector of all zeros is 0 and the identity matrix is 1, which will always be d-
dimensional. This should not be confused with the indicator function, denoted by 1(·). The density
(with respect to Lebesgue) of the Gaussian distribution with mean µ and covariance Σ is N (µ,Σ).
Given vector x and square matrix A, ‖x‖ is the standard Euclidean norm and ‖x‖2A = x>Ax. The
operator norm of a real matrix A is ‖A‖ = maxx 6=0 ‖Ax‖/‖x‖. For positive semidefinite matrices
A and B we write A ≤ B or B ≥ A to mean that B − A is positive semidefinite. For random
elements X and Y taking values in the same space we write X d

= Y if P(X ∈ A) = P(Y ∈ A)
for all measurable A. The complement of an event E is Ec. For a real random variable W and
k ∈ {1, 2}, let ‖W‖ψk = inf{t > 0 : E[exp(|W |k/tk)] ≤ 2}. A random variable is called sub-
gaussian if ‖W‖ψ2 <∞ and subexponential if ‖W‖ψ1 <∞. A simple corollary of the definitions
is that ‖W 2‖ψ1 = ‖W‖2ψ2

.

Constants The parameters of our algorithm are defined in terms of absolute constants. We let C
and c represent suitably large/small absolute positive constants and P = max(2, n, d, r)m where
m ≥ 1 is a suitably large absolute constant. One can always check in the proofs that an appropriate
choice of these constants is possible, by first choosing a small enough c, then a large enough C, and
finally a large enough exponent m.

Sigma-algebras and noise sequence Let Ft = σ(X1, Y1, . . . , Xt, Yt) be the σ-algebra generated
by the action/loss sequence and let Et[·] = E[·|Ft] and Pt(·) = P(·|Ft). Occasionally we need to
specify the probability measure with respect to which an Orlicz norm is defined. Given a random
variable X defined on some measurable space (Ω,F ), we write ‖X‖P,ψk for the corresponding
Orlicz norm with respect to probability measure P on (Ω,F ). Very often P is Pt and for this we
make the abbreviation ‖X‖t,ψk = ‖X‖Pt,ψk . Our assumption on the noise sequence (εt)

n
t=1 is that

‖εt‖Pt−1(·|Xt),ψ2
≤ 1 and Et−1[εt|Xt] = 0 . (1)

That is, after conditioning on the past action/losses and the current action, the noise is subgaussian
and has mean zero. If the bound on the Orlicz norm in Equation (1) is replaced with the assumption
that ‖εt‖Pt−1(·|Xt),ψ2

≤ σ, then Theorem 1 continues to hold with 1 + r/d replaced with σ + r/d.
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2. Algorithm

Our algorithm, shown in Algorithm 1, is an instantiation of online Newton step (Hazan et al., 2007),
which is a second-order method designed for the full information setting. In the zeroth-order setting
considered here, the learner does not have access to the gradient or the Hessian. Nevertheless, our
algorithm uses online Newton step, replacing the exact gradient and Hessian with stochastic esti-
mates of a surrogate loss function rather than the actual loss function. Interestingly, online Newton
step with quadratic losses is equivalent to continuous exponential weights on the space of Gaus-
sian probability measures (van der Hoeven et al., 2018). In this sense our algorithm can be viewed
as a modification of the kernel-based method by Bubeck et al. (2017), with the kernel estimators
replaced by a quadratic approximation. This adaptation leads to enormous simplifications, both
algorithmically and analytically, thanks largely to the elegant collapse of continuous exponential
weights to online Newton step in the special case of unconstrained optimization with quadratic
losses and Gaussian distributions.

In the algorithm and its analysis, we use the following constants (recall that C and c are suitably
large/small absolute constants and P = max(2, n, d, r)m for a sufficiently large absolute constant
m):

Wmax =

√
8d log(4P)

3
, Dmax = 8

(
1 +

r

d

)√
log(4P) , η =

c
Dmax

min

(√
d

n
,

1

d
√

log(P)

)
,

Fmax = Cd2 log(P)3 , λ =
c√

Fmax log(P)
.

1 input n , r , x◦

2 l e t µ1 = µ2 = x◦ and Σ1 = Σ2 = r2

d2
1

3 sample X1 from N (µ1,Σ1) and o b s e r v e Y1 = f(X1) + ε1

4 f o r t = 2 to n

5 sample and p l a y Xt from N (µt,Σt) and o b s e r v e Yt = f(Xt) + εt

6 compute Wt = Σ
−1/2
t (Xt − µt)

7 compute Tt = 1(|Yt − Yt−1| ≤ Dmax and ‖Wt‖ ≤Wmax)

8 compute Dt = Tt(Yt − Yt−1)

9 gt = DtΣ
−1
t (Xt − µt) # gradient estimate

10 Ht = λDtΣ
−1/2
t

(
WtW

>
t − 1

)
Σ
−1/2
t # Hessian estimate

11 u p d a t e Σ−1
t+1 = Σ−1

t + 1
4ηHt and µt+1 = µt − ηΣt+1gt

12 end f o r

Algorithm 1

Let us make some remarks on the unusual features of the algorithm as well as computation and
parameter choices:
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(a) The algorithm uses the loss differences Yt−Yt−1 between consecutive rounds. This is a variance
reduction trick to replace the dependence on the magnitude of the losses (on which we made no
assumptions) to a dependence on the span of the losses over suitably sized balls. The latter is
controlled using our assumption that the loss is Lipschitz.

(b) The loss differences and the Wt vectors are truncated if they are large, which ever so slightly
biases the gradient and Hessian estimates. Algorithmically this is unnecessary as we prove the
truncation occurs with negligible probability. We leave it for convenience and because it simplifies
a little the analysis without impacting practical performance.

(c) The Hessian estimate Ht is symmetric but not positive definite. Despite this, the choices of η, λ
and the truncation levels Dmax and Wmax ensure that Σt (and its inverse) remain positive definite.

(d) The computational complexity is dominated by the eigendecomposition of Σt, which using
practical methods is O(d3) floating point operations. The space complexity is O(d2).

(e) The theoretically justified recommendations for η and λ contain universal constants that we
did not explicitly calculate. The reason is that the degree of the logarithmic term is excessively
conservative. We cautiously recommend dropping all the log factors and constants, which arise
from (presumably) conservative high probability bounds. This would give

Wmax =∞ , Dmax =∞ , η =
1

1 + r/d

√
d

n
, λ =

1

d
.

Brief experiments suggest the algorithm remains stable with these choices but if the algorithm even-
tually becomes useful, then either the theory can be fine-combed to optimise the constants or better
choices can be found empirically. Even better would be to find a crisper analysis that does not rely
on an inductive high probability argument.

3. Surrogate loss function

We start by reintroducing the surrogate loss function used by Bubeck et al. (2017) and Lattimore
and György (2021). Let µ ∈ Rd and Σ ∈ Rd×d be positive definite and p = N (µ,Σ). Given
λ ∈ (0, 1), define

s(z) =

∫
Rd

[(
1− 1

λ

)
f(x) +

1

λ
f((1− λ)x+ λz)

]
p(x) dx .

Lattimore and György (2021) noted that s is convex and s(x) ≤ f(x) for all x, both of which follow
almost immediately from convexity of f (Figure 1). Because s is defined by a convolution with a
Gaussian and f is Lipschitz, s is also infinitely differentiable. In general, s is a good approximation
of f when the latter is close to linear and a poor approximation when f has considerable curvature.
The next lemma collects a variety of properties of the surrogate loss (proof in Appendix A).

Lemma 3 Suppose that Z has law q = N (µ, β2Σ) with β2 = (2− λ)/λ and X has law p. Then
(a) s is convex and s(z) ≤ f(z) for all z ∈ Rd ;
(b) E[s(Z)] = E[f(X)] ;
(c) E[∇s(Z)] = E[f(X)Σ−1(X − µ)] ;
(d) E[∇2s(Z)] = λE[f(X)Σ−1((X − µ)(X − µ)>Σ−1 − 1)] ;
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(e) ‖∇2s(z)‖ ≤ ‖Σ−1/2‖ for all z ∈ Rd ;
(f) Suppose z, w ∈ Rd and ε = λ

1−λ(z − w) satisfies ‖ε‖2Σ−1 ≤ log(2)2

2 log(P) . Then

∇2s(z) ≤ 2∇2s(w) +
‖Σ−1/2‖

P
1 .

(g) E[〈∇s(Z), Z − µ〉] = β2E[tr(Σ∇2s(Z))].

Note that if f is twice differentiable, then (c) equals E[∇f(X)] and (d) equals E[∇2f(X)].

x (1− λ)x+ λz z

f(z)

(
1− 1

λ

)
f(x) + 1

λf((1− λ)x+ λz)

Figure 1: Given a fixed z and x, let y = (1 − λ)x + λz. A lower bound of f(z) can be found by
evaluating the second coordinate of the linear function through (x, f(x)) and (y, f(y)) at z, which
is (1− 1

λ)f(x) + 1
λf(y). Then s(z) is the average of this value over all x when x has law p.

4. Proof of Theorem 1

Assume without loss of generality that x? = 0, which means that the initialisation of the algorithm
x◦ satisfies ‖x◦‖ ≤ r. By construction the algorithm uses the first round to initialise the baseline
and does not update the iterate. Awkwardly this means we need to bound the regret in the first round
separately. Let

∆t = Et−1[f(Xt)− f(x?)] ,

which is the expected instantaneous expected regret. Since f is Lipschitz and by Jensen’s inequality,

∆1 = Et−1[f(X1)− f(0)] ≤ Et−1[‖X1‖] ≤
√

Et−1[‖X1‖2] =
√
‖x◦‖2 + tr(Σ1) ≤

√
2r . (2)

Bounding the regret for the last n − 1 rounds follows the classical analysis of mirror descent. Let
‖ · ‖t = ‖ · ‖Σ−1

t
. The main conceptual challenge is proving that with high probability

1

2
‖µt+1‖2t+1 ≤ Fmax − η

t∑
s=2

∆s (3)

holds for all t, Rearranging Equation (3) with t = n yields a bound on the regret. Just as important,
however, is that Equation (3) ensures that the optimal point x? = 0 lies in the focus region {ν ∈
Rd : 1

2‖ν − µt‖
2
t ≤ Fmax}, which is the region in which the surrogate loss function behaves more-

or-less like a quadratic. Essentially we prove Equation (3) holds with high probability by induction,
using in the inductive step that the optimal point lies in the focus region and hence the estimator is
well-behaved.
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Definition 4 Let Et be the event that

(a) Σt+1 ≤ 2Σ1 and Σt+1 ≤ 2Σt ;

(b) tr
(
Σ−1
t+1

)
≤ Σ−1

max ,
(
nd2

r2
+ dn2

4 + n
)2

;

(c) |Et[Yt+1]− Yt| ≤ 1
2Dmax .

Define a stopping time τ as the first round t where either Et does not hold or

1

2
‖µt+1‖2t+1 ≥ Fmax − η

t∑
s=1

∆s .

If neither condition ever holds, then τ is defined to be n.

Note that Σt+1 and µt+1 are both Ft-measurable, so τ really is a stopping time with respect
to the filtration (Ft)

n
t=1. Properties (a) and (b) indicate that neither Σt+1 nor its inverse grows too

large. Property (c) indicates that the losses do not change dramatically from one round to the next.
In other words, properties (a)-(c) are indicators that the algorithm is stable. The following lemma,
proved in Appendix D, shows that the algorithm is stable with high probability.

Lemma 5 P(∩τt=1Et) ≥ 1− 4/n.

Let β2 = (2− λ)/λ and Zt be a random variable that is independent of Xt and under Pt−1 has
law N (µt, β

2Σt), and define the surrogate loss at time t as

st(z) = Et−1

[(
1− 1

λ

)
f(Xt) +

1

λ
f((1− λ)Xt + λz)

]
.

The truncation in the gradient and Hessian estimators introduces a small amount of bias that needs
to be controlled (proof in Appendix B).

Lemma 6 On {2 ≤ t ≤ τ} and for a positive definite matrix A,

(a)
∣∣∣Et−1 [〈gt, µt〉]− Et−1 [〈∇st(Zt), µt〉]

∣∣∣ ≤ λ

n
;

(b)
∣∣∣Et−1 [tr(AHt)]− Et−1

[
tr(A∇2st(Zt))

] ∣∣∣ ≤ tr(AΣ−1
t ) min

(
λ

2nFmax
,
λ

dn
,

1

nΣ−1
max

)
.

Step 1: High-level argument Expanding the square shows that

1

2
‖µt+1‖2t+1 −

1

2
‖µt‖2t = −η〈gt, µt〉+

η

8
‖µt‖2Ht

At

+
η2

2
‖gt‖2Σt+1

Bt

. (4)

At collects those terms that are linear in the learning rate and Bt those that are quadratic. The ex-
pectation of the linear term will be shown to be close to−η∆t (recall that ∆t = Et−1[f(X)]−f(0)
is the expected instantaneous regret). The lower order terms will be shown to be O(η2). Besides
technical complications, the result follows by dividing both sides by the learning rate, rearranging
and telescoping the potentials. The principle difficulty is that our bounds on At and Bt only hold
when 1

2‖µt‖
2
t is not too large, which has to be tracked through the analysis with induction and a

high probability argument.
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Step 2: Linear terms This step is the most fundamental. We show that the linear terms can be
controlled in terms of the regret and some small correction terms.

Lemma 7 With probability at least 1− 1/n,

τ∑
t=2

At ≤ −η
τ∑
t=2

∆t + ηβ2
τ∑
t=2

tr(ΣtHt) + 1100ηDmaxF1/2
max

√
n log(P) .

Proof Suppose that 2 ≤ t ≤ τ . Remember that Zt is a random element that under Pt−1 has law
N (µt, β

2Σt) and is independent from Xt. Then

Et−1[At] = Et−1

[
−η〈gt, µt〉+

η

8
‖µt‖2Ht

]
≤ Et−1

[
−η〈∇st(Zt), µt〉+

η

8
‖µt‖2∇2st(Zt)

]
+

2ηλ

n
Lemma 6ab

= Et−1

[
−η〈∇st(Zt), Zt〉+ η〈∇st(Zt), Zt − µt〉+

η

8
‖µt‖2∇2st(Zt)

]
+

2ηλ

n

= Et−1

[
−η〈∇st(Zt), Zt〉+ ηβ2 tr(Σt∇2st(Zt)) +

η

8
‖µt‖2∇2st(Zt)

]
+

2ηλ

n
Theorem 3g

≤ Et−1

[
−η〈∇st(Zt), Zt〉+ ηβ2 tr(ΣtHt) +

η

8
‖µt‖2∇2st(Zt)

]
+

4η

n
, Lemma 6b

where in the first inequality we used that tr(µµ>Σ−1
t ) ≤ 2Fmax since t ≤ τ and in the second we

used λ ≤ 1 and λβ2 = 2 − λ ≤ 2. To make progress on bounding the first term, recall that st is
infinitely differentiable. Hence, by Taylor’s theorem, for all z ∈ Rd there exists a ξz ∈ [0, z] =
{αz : α ∈ [0, 1]} such that

st(0) = st(z)− 〈∇st(z), z〉+
1

2
‖z‖2∇2st(ξz) .

We need a simple lemma (proof in Appendix C based on Lemma 3f) to bound∇2st(ξz).

Lemma 8 On {2 ≤ t ≤ τ},

(a) Et−1

[
‖Zt‖2∇2st(ξZt )

]
≥ 1

2Et−1

[
‖Zt‖2∇2st(µt)

]
− 1

n .

(b) Et−1

[
‖µt‖2∇2st(µt)

]
≥ 1

2Et−1

[
‖µt‖2∇2st(Zt)

]
− 1

n .

8
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Using Lemma 8,

Et−1[〈∇st(Zt), Zt〉] = Et−1

[
st(Zt)− st(0) +

1

2
‖Zt‖2∇2st(ξZt )

]
≥ Et−1

[
st(Zt)− st(0) +

1

4
‖Zt‖2∇2st(µt)

]
− 1

n
Lemma 8a

= Et−1

[
st(Zt)− st(0) +

β2

4
tr(Σt∇2st(µt)) +

1

4
‖µt‖2∇2st(µt)

]
− 1

n

≥ Et−1

[
st(Zt)− st(0) +

1

8
‖µt‖2∇2st(Zt)

]
− 2

n
Lemma 8b

≥ Et−1

[
f(Xt)− f(0) +

1

8
‖µt‖2∇2st(Zt)

]
− 2

n
Lemma 3ab

= ∆t +
1

8
Et−1

[
‖µt‖2∇2st(Zt)

]
− 2

n
, Definition of ∆t

where in the second equality we used the fact that Zt has law N (µt, β
2Σt) under Pt−1, and in the

second inequality that the matrices in the dropped term are positive semi-definite. Hence,

Et−1[At] ≤ −η∆t + ηβ2Et−1[tr(ΣtHt)] +
6η

n
.

This shows the connection between the linear component of the change in the potential and the
regret. The remainder of the proof of the lemma is devoted to a concentration analysis converting
the bound in expectation to something that holds with high probability. By the above display and
the definition of At,

τ∑
t=2

At ≤
τ∑
t=2

[At − Et−1[At]] + ηβ2
τ∑
t=2

(
Et−1[tr(ΣtHt)]− tr(ΣtHt)

)
+ ηβ2

τ∑
t=2

tr(ΣtHt)− η
τ∑
t=2

∆t + 6η .

The first two terms on the right-hand side are sums of martingale differences, which we now control
using concentration of measure. We need to show that the tails ofAt and tr(ΣtHt) are well-behaved
under Pt−1 whenever t ≤ τ . Assume that t ≤ τ . Then, since Dt ≤ Dmax and 1

2‖µt‖
2
t ≤ Fmax,

Fact 11a implies

‖η〈µt, gt〉‖t−1,ψ2 = ‖ηDt〈Σ−1/2
t µt,Wt〉‖t−1,ψ2 ≤ 2ηDmax‖µt‖t ≤ 3ηDmaxF1/2

max .

Lemma 2.7.7 in the book by Vershynin (2018) says that ‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 for any random
variables X and Y . By definition ‖1‖ψ2 = 1/

√
log(2). Combining these with the above display

shows that

‖η〈µt, gt〉‖t−1,ψ1 ≤ 4ηDmaxF1/2
max .

Next, using Fact 11b, ‖1‖ψ1 = 1/ log(2), and that λ ≤ F−1/2
max ,∥∥∥η

8
‖µt‖2Ht

∥∥∥
t−1,ψ1

=

∥∥∥∥ηλDt

8
‖Σ−1/2

t µt‖2WtW>t −1

∥∥∥∥
t−1,ψ1

≤ ηλDmax‖µt‖2t ≤ 2ηDmaxF1/2
max .

9
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Combining the above two displays with the triangle inequality implies that ‖At‖t−1,ψ1 ≤ 6ηDmaxF1/2
max.

Lastly, since λβ2 = 2− λ ≤ 2 and d ≤ F1/2
max ,∥∥ηβ2 tr(ΣtHt)

∥∥
t−1,ψ1

= ηλβ2
∥∥∥Dt tr(WtW

>
t − 1)

∥∥∥
t−1,ψ1

≤ 5ηλβ2dDmax ≤ 10ηDmaxF1/2
max .

The claim of the lemma now follows by Bernstein’s inequality (Lemma 13) and naively simplifying
the constants.

Step 3: Quadratic terms The next step is to bound the quadratic terms in Equation 4.

Lemma 9
τ∑
t=2

Bt ≤ nη2D2
maxW2

max.

Proof Suppose 2 ≤ t ≤ τ . Then,

Bt =
η2

2
‖gt‖2Σt+1

=
η2D2

t

2
‖Σ−1/2

t (Xt − µt)‖2
Σ
−1/2
t Σt+1Σ

−1/2
t

≤ η2D2
maxW2

max .

where in the final inequality we used that on {t ≤ τ}, Σt+1 ≤ 2Σt and Dt‖Wt‖ ≤ DmaxWmax.
The result follows because τ ≤ n by definition.

Step 4: Bounding the regret By Lemma 5, Lemma 7 and Lemma 9, with probability least 1 −
5/n,

⋂τ
t=1Et holds and

τ∑
t=2

1

2
‖µt+1‖2t+1 −

1

2
‖µt‖2t =

τ∑
t=2

(At +Bt)

≤ 1100ηDmaxF1/2
max

√
n log(P) + nη2D2

maxW2
max + ηβ2

τ∑
t=2

tr(ΣtHt)− η
τ∑
t=2

∆t

≤ 1100cF1/2
max

√
d log(P) + c2dW2

max + ηβ2
τ∑
t=2

tr(ΣtHt)− η
τ∑
t=2

∆t ,

where the second equality follows from the definition of η. Using that x ≤ 2 log(1+x) for x ∈ [0, 1]
it follows that for any positive definite matrix X with ‖X‖ ≤ 1, tr(X) ≤ 2 log det(1 + X).
Therefore, on the event ∩τt=1Et,

ηβ2
τ∑
t=2

tr(ΣtHt) ≤ 8β2
τ∑
t=2

log det
(
1+

η

4
ΣtHt

)
= 8β2 log

(
det
(
Σ1Σ−1

τ+1

))
≤ 16d

λ
log

(
tr
(
Σ1Σ−1

τ+1

)
d

)
Jensen’s inequality

≤ 16dF1/2
max log(P)3/2

c
,

10
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where the equality holds because ΣtΣ
−1
t+1 = 1 + η

4ΣtHt by the update for Σ−1
t+1, in the second

inequality we used β2 = (2−λ)/λ ≤ 2/λ, and the last inequality holds because tr(Σ−1
τ+1) ≤ Σ−1

max

by Definition 4b, the definition of Σ1, and by choosing P large enough. Therefore with probability
at least 1− 5/n, Eτ holds and

1

2
‖µτ+1‖2τ+1 ≤

1

2
‖µ1‖21 +

16dF1/2
max

c
log(P)3/2 + 1100cF1/2

max

√
d log(P) + c2dW2

max − η
τ∑
t=2

∆t

< Fmax − η
τ∑
t=2

∆t ,

where in the second inequality we used the definition of Fmax and by choosing C suitably large and
the fact that 1

2‖µ1‖21 ≤ d2/2. Since {1
2‖µτ+1‖2τ+1 ≤ Fmax − η

∑τ
t=2 ∆t} ∩Eτ implies that τ = n,

it follows by rearranging the above display that

P

(
n∑
t=2

∆t ≤
Fmax

η
and τ = n

)
≥ 1− 5

n
. (5)

The last step is to bound the actual regret in terms
∑n

t=1 ∆t. By Lemma 15a, on {2 ≤ t ≤ τ},

‖f(Xt)− Et−1[f(Xt)]‖t−1,ψ2 ≤ 2‖Σt‖1/2 ≤
3r

d
.

Therefore by Lemma 13, with probability at least 1− 1/n,

τ∑
t=1

f(Xt)− f(0) ≤
τ∑
t=1

∆t +
200r

d

√
n log(n) .

Combining the above with Equation (2) and Equation (5) implies that with probability at least
1− 6/n,

n∑
t=1

f(Xt)− f(0) ≤ Fmax

η
+

200r

d

√
n log(n) +

√
2r .

Theorem 1 now follows from the definitions of η and Fmax.

5. Discussion

There are a few outstanding issues.

Handling constraints Our algorithm cannot handle constraints on the domain of f . The principle
problem is that the algorithm samples its actions from a Gaussian distribution, and when the losses
have low curvature the covariance of this Gaussian could be large enough that the algorithm plays
outside the constraint set with some non-negligible probability. There are several ideas one may try.
For example, by estimating some kind of extension of f or regularising to prevent the focus region
from leaving the domain. It would surprise us if nothing can be made to work, possibly at the price
of a worse dimension-dependence.

11
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Adversarial setting Algorithms based on elimination or focus regions cannot handle the adver-
sarial setting without some sort of correction. Bubeck et al. (2017) and Suggala et al. (2021) both
use restarts, which may also be usable in our setting. Note that in the adversarial version of the
problem the centering of the gradient/Hessian estimators using the loss from the previous round no
longer makes sense and the dependence on d in front of the diameter should be expected to increase
slightly.

Dependence on various quantities A natural question is whether or not there is scope to improve
the bound. With these techniques, it feels like there is limited room for improvement. In particular
the bounds on the stability and variance of the algorithm seem to be tight. There is still no lower
bound that is superlinear in the dimension. Maybe the true dimension dependence is linear in d,
but fundamentally new ideas seem to be needed for such a result. One may also wonder about the
dependence on r. The quantity r/d is effectively the range of the observed losses. Because our
setting is unconstrained, we cannot assume the losses are globally bounded in [0, 1] as is standard
in the constrained setting. Our expectation is that once the analysis is applied to the constrained
case, the quantity r/d will be replaced by 1. In fact, we believe that even in the current setting the
r/d term can be moved to a lower-order term by exploiting the fact that eventually the loss function
must be very flat on the focus region, since otherwise the regret would not be sublinear.

Sample complexity Theorem 2 shows that 1
n

∑n
t=1Xt is near-optimal with high probability for

suitably large n. Using convexity one can easily show that 1
n

∑n
t=1 µt is also near-optimal with the

same sample complexity and is unsurprisingly empirically superior.

Acknowledgments

Thanks to Tim van Erven, Wouter Koolen, Dirk van der Hoeven, Jack Mayo and Hidde Fokkema
for pointing out that our analysis could be simplified by using Σt+1 in the update rather than Σt that
appeared in an earlier version.

References

A. Agarwal, O. Dekel, and L. Xiao. Optimal algorithms for online convex optimization with multi-
point bandit feedback. In Colt, pages 28–40. Citeseer, 2010.

A. Agarwal, D. P. Foster, D. Hsu, S. M. Kakade, and A. Rakhlin. Stochastic convex optimization
with bandit feedback. SIAM Journal on Optimization, 23(1):213–240, 2013.

A. Belloni, T. Liang, H. Narayanan, and A. Rakhlin. Escaping the local minima via simulated
annealing: Optimization of approximately convex functions. In Conference on Learning Theory,
pages 240–265, 2015.

S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A nonasymptotic theory of
independence. OUP Oxford, 2013.

S. Bubeck and R. Eldan. Exploratory distributions for convex functions. Mathematical Statistics
and Learning, 1(1):73–100, 2018.

12



A SECOND-ORDER METHOD FOR STOCHASTIC BANDIT CONVEX OPTIMISATION

S. Bubeck, O. Dekel, T. Koren, and Y. Peres. Bandit convex optimization:
√
T regret in one

dimension. In Proceedings of the 28th Conference on Learning Theory, pages 266–278, Paris,
France, 2015. JMLR.org.

S. Bubeck, Y.T. Lee, and R. Eldan. Kernel-based methods for bandit convex optimization. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
pages 72–85, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4528-6.

V. Dani, T. P. Hayes, and S. M. Kakade. Stochastic linear optimization under bandit feedback. In
Proceedings of the 21st Conference on Learning Theory, pages 355–366, 2008.
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Appendix A. Proof of Lemma 3

The proof is complicated slightly because we have not assumed that f is differentiable. For δ > 0
let pδ = N (0, δ1) and fδ(x) =

∫
Rd f(x+ y)pδ(y) dy be the convolution of f and the Gaussian pδ.

Note that fδ is infinitely differentiable and inherits convexity and Lipshitzness from f (all immediate
from definitions and a good exercise). Further, fδ converges uniformly to f0 , f as δ → 0. For any
δ ≥ 0, let

sδ(z) = E
[(

1− 1

λ

)
fδ(X) +

1

λ
fδ((1− λ)X + λz)

]
,

which is the surrogate loss function associated with fδ. By a change of variable, u = x+ λ
1−λz,

sδ(z) =
1

λ

∫
Rd
fδ((1− λ)x+ λz)p(x) dx =

1

λ

∫
Rd
fδ((1− λ)u)p

(
u− λ

1− λ
z

)
du .

Therefore, by exchanging derivatives and integrals and reversing the change of measure,

∇sδ(z) =
1

1− λ

∫
Rd
fδ((1− λ)u)Σ−1

(
u− λ

1− λ
z − µ

)
p

(
u− λ

1− λ
z

)
du

=
1

1− λ

∫
Rd
fδ((1− λ)x+ λz)Σ−1(x− µ)p(x) dx .

Using the uniform convergence of fδ to f as δ → 0 yields limδ→0 ‖∇sδ(z) − ∇s(z)‖ = 0 for all
z ∈ Rd. For the Hessian,

∇2sδ(z) =
λ

(1− λ)2
E
[
fδ((1− λ)X + λz)Σ−1((X − µ)(X − µ)>Σ−1 − 1)

]
.

Hence, limδ→0 ‖∇2sδ(z)−∇2s(z)‖ = 0.
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(a) Convexity of s and s(z) ≤ f(z) for all z ∈ Rd follow from the definition of s and the convexity
of f , as was noted already by Lattimore and György (2021), with the intuition given in Figure 1.

(b) By definition (1− λ)X + λZ has the same law as X . Therefore,

E[s(Z)] = E
[(

1− 1

λ

)
f(X) +

1

λ
f((1− λ)X + λZ)

]
= E [f(X)] .

(c) By exchanging the integral and derivative, for any δ > 0,

E [∇sδ(Z)] = E [∇fδ((1− λ)X + λZ)] = E [∇fδ(X)] = E
[
fδ(X)Σ−1(X − µ)

]
.

Taking the limit as δ → 0 establishes the part.1

(d) As above,

E
[
∇2sδ(Z)

]
= λE

[
∇2fδ((1− λ)X + λZ)

]
= λE

[
∇2fδ(X)

]
= λE

[
fδ(X)Σ−1((X − µ)(X − µ)>Σ−1 − 1)

]
.

Taking the limit again completes the part.

(e) This is a consequence of the Lipschitzness of f : Let u ∈ Rd have ‖u‖ = 1. Since f is Lipschitz,
so is fδ, which means that ‖∇fδ(w)‖ ≤ 1 and |〈u,∇fδ(w)〉| ≤ 1 for any w ∈ Rd. Therefore, for
any z ∈ Rd,

u>∇2sδ(z)u =
λ

1− λ
E
[
〈u,∇fδ((1− λ)X + λz)〉〈u,Σ−1(X − µ)〉

]
≤ λ

1− λ
E
[∣∣〈u,Σ−1(X − µ)〉

∣∣]
≤ λ

1− λ
√

E [〈u,Σ−1(X − µ)〉2]

=
λ

1− λ

√
‖u‖2

Σ−1

≤ λ

1− λ
‖Σ−1/2‖ .

Therefore ‖∇2sδ(z)‖ ≤ λ
1−λ‖Σ

−1/2‖ ≤ ‖Σ−1/2‖ for all δ and the result follows again by taking
the limit as δ → 0.

(f) Recall that ε = λ
1−λ(z − w) and define the event E = {x ∈ Rd : 〈x − µ,Σ−1ε〉 ≤ log(2)}.

Then,

∇2sδ(z) = λ

∫
Rd
∇2fδ((1− λ)x+ λz)p(x) dx

= λ

∫
Rd
∇2fδ((1− λ)x+ λw)p (x− ε) dx

= λ

∫
E
∇2fδ((1− λ)x+ λw)

p(x− ε)
p(x)

p(x) dx

A

+λ

∫
Ec
∇2fδ((1− λ)x+ λw)p(x− ε) dx

B

.

1. Taking the limit with respect to δ is needed because unlike fδ for δ > 0, f may not be differentiable.

15



LATTIMORE GYÖRGY

The first term is upper bounded as

A = λ

∫
E
∇2fδ((1− λ)x+ λw)

p(x− ε)
p(x)

p(x) dx

= λ

∫
E
∇2fδ((1− λ)x+ λw) exp

(
−1

2
‖ε‖2Σ−1 + 〈x− µ,Σ−1ε〉

)
p(x) dx

≤ 2λ

∫
E
∇2fδ((1− λ)x+ λw)p(x) dx Definition of E

≤ 2λ

∫
Rd
∇2fδ((1− λ)x+ λw)p(x) dx Convexity of f

= 2∇2sδ(w) .

To bound B, similarly to the calculations in part (e), we have

‖B‖ = λ sup
u:‖u‖≤1

tr

(
uu>

∫
Ec
∇2fδ((1− λ)x+ λw)p(x− ε) dx

)
=

λ

1− λ
sup

u:‖u‖≤1

∫
Ec
〈u,∇fδ((1− λ)x+ λw)〉〈u,Σ−1(x− µ− ε)〉p(x− ε) dx

≤ λ

1− λ
sup

u:‖u‖≤1

∫
Ec

∣∣〈u,Σ−1(x− µ− ε)〉
∣∣ p(x− ε) dx

≤ λ

1− λ
sup

u:‖u‖≤1

√∫
Ec
p(x− ε) dx ·

∫
Rd
〈u,Σ−1(x− µ− ε)〉2p(x− ε) dx

=
λ

1− λ
sup

u:‖u‖≤1

√∫
Ec
p(x− ε) dx · ‖u‖2

Σ−1

≤ λ

1− λ
‖Σ−1/2‖

√∫
Ec
p(x− ε) dx

=
λ

1− λ
‖Σ−1/2‖

√
P (〈X + ε− µ,Σ−1ε〉 ≥ log(2)) ,

where the second inequality holds by Cauchy-Schwartz, and the non-negativity of the terms in the
second integral. Note that 〈X − µ,Σ−1ε〉 has law N (0, ‖ε‖2Σ−1). Hence, by standard Gaussian
concentration (Boucheron et al., 2013, §2.2), if

P
(
〈X − µ,Σ−1ε〉+ ‖ε‖2Σ−1 ≥ log(2)

)
≤ exp

(
−
(
log(2)− ‖ε‖2Σ−1

)2
2‖ε‖2

Σ−1

)
≤ 1

P
,

where in the final inequality we used the assumption that ‖ε‖2Σ−1 ≤ log(2)2

2 log(P) , which also implies
‖ε‖2Σ−1 ≤ log(2) as P ≥ 2, which is necessary for the application of the concentration inequality.
The result follows since λ/(1− λ) ≤ 1.

(g) No particular properties of s are needed here beyond twice differentiability and that s is Lip-
schitz, which ensures that limt→∞

∫
Rd:‖z‖≥t s(z)q(z) dz = 0. By definition and integrating by
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parts,

E[〈∇s(Z), Z − µ〉] = tr

(∫
Rd
∇s(z)(z − µ)>q(z) dz

)
= −β2 tr

(
Σ

∫
Rd
∇s(z)∇q(z) dz

)
= β2 tr

(
Σ

∫
Rd
∇2s(z)q(z) dz

)
= β2E

[
tr(Σ∇2s(Z))

]
,

where in the second equality we used the fact that ∇q(z) = −β−2Σ−1(z − µ)q(z) and the cyclic
property of the trace. The third equality follows using integrating by parts.

Appendix B. Proof of Lemma 6

The conceptual part of this proof is straightforward and important for understanding the main ideas.
Sadly there is also a tedious part, which involves handling the truncation used in the gradient and
Hessian estimates.

Conceptual part Let It = 1− Tt. By definition,

Et−1[gt] = Et−1[DtΣ
−1
t (Xt − µt)]

= Et−1[(Yt − Yt−1)Σ−1
t (Xt − µt)]− Et−1[(Yt − Yt−1)ItΣ

−1
t (Xt − µt)]

E1

The second (error) term is intuitively small because It = 0 with overwhelming probability. Care-
fully bounding this is the tedious part. The first term satisfies

Et−1[(Yt − Yt−1)Σ−1
t (Xt − µt)] = Et−1[YtΣ

−1
t (Xt − µt)]

= Et−1[f(Xt)Σ
−1
t (Xt − µt)]

= Et−1[∇st(Zt)] ,

where in the first equality we used that Yt−1 and Σt are Ft−1-measurable and Et−1[Xt] = µt. In
the second equality we substituted the definition of Yt = f(Xt) + εt and used the assumption that
the noise is conditionally zero mean. The last follows from Lemma 3c. Part (a) follows by showing
that |〈µt, E1〉| ≤ λ/n, which we do in the next step. Moving now to the Hessian, the same reasoning
yields

Et−1[Ht] = λEt−1[(Yt − Yt−1)Σ
−1/2
t (WtW

>
t − 1)Σ

−1/2
t ]

− λEt−1[It(Yt − Yt−1)Σ
−1/2
t (WtW

>
t − 1)Σ

−1/2
t ]

E2

.

Repeating again the argument above with the first term,

λEt−1[(Yt − Yt−1)Σ
−1/2
t (WtW

>
t − 1)Σ

−1/2
t ] = λEt−1[f(Xt)Σ

−1/2
t (WtW

>
t − 1)Σ

−1/2
t ]

= Et−1[∇2st(Zt)] ,

where we used Lemma 3d. Part (b) follows by bounding | tr(AE2)|.
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Tedious part Now we handle the error terms E1 and E2. On {2 ≤ t ≤ τ}, by Definition 4a,
Σt ≤ 2Σ1 = 2r2

d2
1. Therefore

Dmax

2
≥
(

1 + 2‖Σt‖1/2
)√

log(4P) . (6)

Using Definition Theorem 4c, |Et−1[Yt]− Yt−1| ≤ Dmax
2 . Therefore, by Lemma 15b, Fact 11c and

Theorem 12a,

Pt−1(It) ≤ Pt−1(|Yt − Yt−1| ≥ Dmax) + Pt−1(‖Wt‖ ≥Wmax)

≤ Pt−1 (|Yt − Et−1[Yt]| ≥ Dmax/2) + Pt−1(‖Wt‖ ≥Wmax)

≤ Pt−1

(
|Yt − Et−1[Yt]| ≥

(
1 + 2‖Σt‖1/2

)√
log(4P)

)
+ Pt−1(‖Wt‖ ≥Wmax)

≤ 1

P
.

We also need a crude bound on the moments of Yt−Yt−1. Again, using Definition 4c, Theorem 15b,
and Equation (6) noting that P ≥ 3, we obtain

‖Yt − Yt−1‖t−1,ψ2 ≤ ‖Yt − Et−1[Yt]‖t−1,ψ2 +
Dmax

2
√

log(2)

≤ 1 + 2‖Σt‖1/2 +
Dmax

2
√

log(2)

≤ Dmax

2
√

log(2P)
+

Dmax

2
√

log(2)

≤ Dmax .

Therefore, by Lemma 12c,

Et−1[(Yt − Yt−1)4]1/4 ≤ 6Dmax .

Two applications of the Cauchy-Schwarz inequality yield

|〈µt, E1〉| =
∣∣Et−1[It〈µt, (Yt − Yt−1)Σ−1

t (Xt − µt)〉]
∣∣

≤ Pt−1(It)
1/4Et−1[(Yt − Yt−1)4]1/4Et−1[〈µt,Σ−1

t (Xt − µt)〉2]1/2

≤ 6Dmax‖µt‖t
P1/4

≤ 6DmaxF1/2
max

P1/4

≤ λ

n
. By choosing P large enough
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This completes the proof of part (a). Repeating the Cauchy-Schwarz from the last step and letting
B = Σ

−1/2
t AΣ

−1/2
t and using Lemma 16c,

| tr(AE2)| = λ
∣∣∣Et−1

[
It(Yt − Yt−1) tr

(
Σ
−1/2
t AΣ

−1/2
t (WtW

>
t − 1)

)]∣∣∣
≤

6λDmax

√
(d2 + 2d− 1) tr(B2)

P1/4

≤ 6λDmax(d+ 1) tr(B)

P1/4

=
6λDmax(d+ 1) tr(Σ−1

t A)

P1/4

≤ tr(Σ−1
t A) min

(
λ

2nFmax
,
λ

dn
,

1

nΣ−1
max

)
,

where in the final inequality we chose P large enough.

Appendix C. Proof of Lemma 8

Since ξz ∈ [0, z] = {αz : α ∈ [0, 1]}, it follows from convexity that

‖ξz − µt‖Σ−1
t
≤ max

(
‖z − µt‖Σ−1

t
, ‖µt‖t

)
.

By assumption t ≤ τ , which implies that 1
2‖µt‖

2
t ≤ Fmax. Then, using the definition of λ,

λ

1− λ
‖µt‖t ≤

λ

1− λ
√

2Fmax ≤
log(2)√
2 log(P)

.

Recall that Zt has law N (µt, β
2Σt) under Pt−1. By Lemma 16de,

Et−1[‖Zt‖2] = ‖µt‖2 + β2 tr(Σt) and Et−1[‖Zt‖4] ≤ 3
(
Et−1[‖Zt‖2]

)2
. (7)

By Fact 11c and Lemma 12a, with probability at least 1− 1/P,

λ

1− λ
‖Zt − µt‖Σ−1

t
≤ 2λβ

1− λ
√
d log(2P)

=
2

1− λ
√
λ(2− λ)d log(2P) Since β2 = (2− λ)/λ

≤ log(2)√
2 log(2P)

,

where the second inequality follows by choosing c in the definition of λ small enough. This shows
that

Pt−1(Zt 6∈ E) ≤ 1/P (8)

for

E =

{
z ∈ Rd :

λ

1− λ
‖z − µt‖Σ−1

t
≤ log(2)√

2 log(P)

}
.
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By Lemma 3f, for z ∈ E we have

∇2st(ξz) ≥
1

2
∇2st(µt)−

‖Σ−1/2
t ‖
2P

1 .

Therefore,

Et−1

[
‖Zt‖2∇2st(ξZt )

]
≥ 1

2
Et−1

[
1(Zt ∈ E)‖Zt‖2∇2st(µt)

]
− ‖Σ

−1/2
t ‖
2P

E[‖Zt‖2]

=
1

2
Et−1

[
‖Zt‖2∇2st(µt)

]
− 1

2
Et−1

[
1(Zt 6∈ E)‖Zt‖2∇2st(µt)

]
− ‖Σ

−1/2
t ‖
2P

E[‖Zt‖2] . (9)

The last term in Equation (9) is bounded using Equation (7):

Et−1[‖Zt‖2]‖Σ−1/2
t ‖

2P
≤ Et−1[‖Zt‖2]

√
Σ−1

max

2P

=

(
‖µt‖2 + β2 tr(Σt)

)√
Σ−1

max

2P

≤
(
2‖Σ1‖Fmax + 2β2 tr(Σ1)

)√
Σ−1

max

2P

≤ 1

2n
, (10)

where the last inequality follows by choosing P large enough and in the first and second inequalities
we used the facts that on {2 ≤ t ≤ τ},

‖Σ−1/2
t ‖ ≤

√
tr(Σ−1

t ) ≤
√

Σ−1
max and ‖µt‖2 ≤ ‖Σt‖‖µt‖2t ≤ 2‖Σ1‖Fmax .

For the second to last term in Equation (9), Theorem 3e, Equation (7) and Equation (8) imply

1

2
Et−1

[
1(Zt 6∈ E)‖Zt‖2∇2st(µt)

]
≤ 1

2
‖Σ−1/2

t ‖Et−1

[
1(Zt 6∈ E)‖Zt‖2

]
≤ 1

2
‖Σ−1/2

t ‖
√
Pt−1(Zt 6∈ E)Et−1 [‖Zt‖4]

≤ Et−1

[
‖Zt‖2

]
‖Σ−1/2

t ‖
√

3

4P

≤ 1

2n
,

where the last inequality follows the same way as Equation (10), again making sure that P is chosen
large enough. Therefore,

Et−1

[
‖Zt‖2∇2st(ξZt )

]
≥ 1

2
Et−1

[
‖Zt‖2∇2st(µt)

]
− 1

n
.
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Part (b) follows along the same lines. Using Theorem 3ef,

1

2
Et−1

[
‖µt‖2∇2st(Zt)

]
=

1

2
Et−1

[
1(Zt ∈ E)‖µt‖2∇2st(Zt)

]
+

1

2
Et−1

[
1(Zt 6∈ E)‖µt‖2∇2st(Zt)

]
≤ Et−1

[
‖µt‖2∇2st(µt)

]
+
‖Σ−1/2

t ‖
2P

Et−1

[
‖µt‖2

]
+
‖Σ−1/2

t ‖
2

Et−1

[
1(Zt 6∈ E)‖µt‖2

]
≤ Et−1

[
‖µt‖2∇2st(µt)

]
+
‖Σ−1/2

t ‖‖Σt‖Fmax

P

≤ Et−1

[
‖µt‖2∇2st(µt)

]
+

1

n
,

where in the the second to last inequality we used the independence of Zt and µt under Pt−1 and
Equation (8), while the final inequality we again used that on {2 ≤ t ≤ τ} both ‖Σ−1/2

t ‖ and ‖Σt‖
are bounded by polynomials in d, n and r.

Appendix D. Proof of Theorem 5

By definition Et = E
(a)
t ∩ E

(b)
t ∩ E

(c)
t , where

E
(a)
t = {Σt+1 ≤ 2Σ1,Σt+1 ≤ 2Σt} ,

E
(b)
t = {tr(Σ−1

t+1) ≤ Σ−1
max} ,

E
(c)
t = {|Et[Yt+1]− Yt| ≤ Dmax/2} .

The plan is to show that all of these events occur with high probability; then a naive application of
the union bound finishes the proof.

Step 1: Stability We start by showing that the mean and covariance change slowly, which is a
consequence of the truncation in the algorithm and the choice of parameters. For every t ≥ 2,

Σ−1
t+1 = Σ−1

t +
η

4
Ht = Σ

−1/2
t

(
1 +

η

4
Σ

1/2
t HtΣ

1/2
t

)
Σ
−1/2
t . (11)

By the definition of Ht, ∥∥∥η
4

Σ
1/2
t HtΣ

1/2
t

∥∥∥ =

∥∥∥∥ηλDt

4
(WtW

>
t − 1)

∥∥∥∥ (12)

≤ ηλDmax(1 + W2
max)

4
(13)

≤ 1

2d
, Definitions of η and λ

where the last inequality follows by choosing c, C and P sufficiently small, large and large, respec-
tively. Note that this implies that Σt+1 ≤ 2Σt for all 1 ≤ t ≤ n. Moving now to the mean, on the
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event {2 ≤ t ≤ τ} we have

‖µt+1 − µt‖ = η‖Σt+1gt‖
= η‖DtΣt+1Σ−1

t (Xt − µt)‖

≤ ηDmaxWmax‖Σt+1Σ
−1/2
t ‖

≤
√

2ηDmaxWmax‖Σ1/2
t+1‖

≤ 2ηDmaxWmax‖Σ1/2
1 ‖

≤ r

d
. (14)

Step 2: Baseline quality The plan in this step is to show that on {2 ≤ t ≤ τ},

Pt−1

(
|Et[Yt+1]− Yt| ≤

Dmax

2

)
≤ 1

n2
. (15)

and then use a union bound to establish that P(∩τt=1E
(c)
t ) ≥ 1 − 1/n. There are two parts to

establishing Equation (15):

(1) Showing that Yt is close to Et−1[Yt], which follows from concentration for Lipschitz functions
and the definition of the noise model.

(2) Showing that Et−1[Yt] is close to Et[Yt+1], which is a consequence of the stability of the
algorithm that was shown in the previous step.

We start with the second. By Lemma 10ab and using that 1
4η‖Σ

1/2
t HtΣ

1/2
t ‖ ≤ 1

2d ,

2d− 1

2d
Σ−1
t ≤ Σ−1

t+1 ≤
2d+ 1

2d
Σ−1
t and so

2d

2d+ 1
Σt ≤ Σt+1 ≤

2d

2d− 1
Σt .

Because f is Lipschitz, if the mean and covariance matrices change slowly from one round to the
next, then the mean loss should also change slowly. This phenomenon is captured by Lemma 14,
which yields

|Et[Yt+1]− Et−1[Yt]| ≤

√
‖µt+1 − µt‖2 + tr

(
Σt + Σt+1 − 2

(
Σ

1/2
t Σt+1Σ

1/2
t

)1/2
)

≤
√
r2

d2
+ tr

(
(1−

√
1− 1/(2d))Σt + (1−

√
1− 1/(2d))Σt+1

)
≤
√
r2

d2
+

1

2d
tr (Σt + Σt+1)

≤ 3r

d
,

where the second inequality follows by Equation (14)-Equation (12) and standard monotonicity
properties of the trace.

On {2 ≤ t ≤ τ}, E(a)
t−1 holds and so ‖Σt‖ ≤ 2‖Σ1‖ = 2r2

d2
and by Theorem 15b and Theo-

rem 12a,

Pt−1

(
|Yt − Et−1[Yt]| ≥

(
1 +

2r

d

)√
2 log(2n2)

)
≤ 1

n2
.
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Hence, combining the above two displayed inequalities, it follows that with Pt−1-probability at least
1− 1/n2,

|Et[Yt+1]− Yt| ≤ |Et[Yt+1]− Et−1[Yt]|+ |Et−1[Yt]− Yt| ≤
(

1 +
5r

d

)√
2 log(2n2) ≤ Dmax

2
,

where the last inequality follows by choosing the constants in the definition of Dmax large enough.
By a union bound it now follows that P(∩τt=1E

(c)
t ) ≥ 1− 1/n.

Step 3: Lower bound on covariance In this step we show that with probability at least 1− 1/n

tr
(
Σ−1
τ+1

)
< Σ−1

max ,

which implies that P(∩τt=1E
(b)
t ) = P

(
tr(Σ−1

τ+1

)
≤ Σ−1

max) ≥ 1 − 1/n. Since Σ−1
t is positive

definite for all t, by Markov’s inequality,

P
(
tr(Σ−1

τ+1) ≥ Σ−1
max

)
≤ 1

Σ−1
max

E
[
tr(Σ−1

τ+1)
]

=
1

Σ−1
max

(
tr(Σ−1

1 ) +
η

4
E

[
n∑
t=2

tr(Ht)1τ≥t

])

≤ 1

Σ−1
max

(
d3

r2
+
η

4
E

[
n∑
t=2

tr(∇2st(Zt))1τ≥t

]
+
η

4

)
Theorem 6b

≤ 1

Σ−1
max

(
d3

r2
+
ηnd

√
Σ−1

max

4
+
η

4

)
Theorem 3e

≤ 1√
Σ−1

max

(
d2

r2
+
nd

4
+ 1

)
≤ 1

n
,

where the second to last inequality follows by naive simplification and the last using the definition
of Σ−1

max in Theorem 4b.

Step 4: Upper bound on covariance It remains to show that Στ+1 ≤ 2Σ1 with high probability,
which we do by showing that Σ−1

t+1 is unlikely to decrease too much. The sphere embedded in Rd
is denoted by Sd−1 = {x ∈ Rd : ‖x‖ = 1} and let x ∈ Sd−1 be an arbitrary unit vector. The update
of Ht guarantees that, for any s ≤ τ ,

‖x‖2s+1 = ‖x‖22 +
s∑
t=2

1

4
η‖x‖2Ht ,

where you should note that ‖x‖22 = ‖x‖2
Σ−1

1

is not the 2-norm. Therefore,

log

(‖x‖2τ+1

‖x‖22

)
=

τ∑
t=2

log

(
1 +

1
4η‖x‖

2
Ht

‖x‖2t

)
.
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Next we lower bound the terms in the sum. Fix some t ≤ τ . By Fact 11b and simplifying,∥∥∥∥∥ 1
4η‖x‖

2
Ht

‖x‖2t

∥∥∥∥∥
t−1,ψ1

=
ηλ

4‖x‖2t

∥∥∥Dt‖Σ−1/2
t x‖2

WtW>t −1

∥∥∥
t−1,ψ1

≤ 5

4
ηλDmax .

Since Et−1[Ht] is very close to the Hessian of a convex function, we should expect that Et−1[‖x‖2Ht ]
is nearly positive. Indeed, by Lemma 6b,

Et−1

[
1
4η‖x‖

2
Ht

‖x‖2t

]
≥

Et−1

[
‖x‖2∇2s(Zt)

]
‖x‖2t

− λ

dn
≥ − 1

10n
.

Let C ⊂ Sd−1 be a finite cover of the sphere such that for all y ∈ Sd−1 there exists an x ∈ C with
‖x− y‖ ≤ 1/P. By Corollary 4.2.13 of Vershynin (2018), the cover can be chosen so that

|C| ≤ (2P + 1)d .

Next, by Bernstein’s inequality (Lemma 13), with probability at least 1− 1/n, for all x ∈ C,

τ∑
t=2

1
4η‖x‖

2
Ht

‖x‖2t
≥ −83ηλDmax

√
n log(n|C|)− 1

10
.

Furthermore, by Lemma 12b, with probability at least 1− 1/n, for all x ∈ C and t ≤ τ ,∣∣∣∣∣ 1
4η‖x‖

2
Ht

‖x‖2t

∣∣∣∣∣ ≤ ηλDmax log(2n2|C|) ≤ 1 .

Therefore, using log(1 + x) ≥ x− x2 for x ≥ −1, we obtain

log

(‖x‖2τ+1

‖x‖22

)
=

τ∑
t=2

log

(
1 +

1
4η‖x‖

2
Ht

‖x‖2t

)

≥
τ∑
t=2

 1
4η‖x‖

2
Ht

‖x‖2t
−

(
1
4η‖x‖

2
Ht

‖x‖2t

)2


≥ −83ηλDmax

√
n log(n|C|)− nη2λ2D2

max log2(2n2|C|)− 1

10

≥ − 1

20
> − log(4/3) .

Combining the above calculations with the analysis in the previous step and a union bound shows
that with probability at least 1− 3/n it holds that ‖Σ−1

τ+1‖ ≤ Σ−1
max and for all x ∈ C,

‖x‖2τ+1 ≥
3‖x‖22

4
=

3

4
‖x‖2

Σ−1
1

=
3d2

4r2
.
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On this event,

min
y∈Sd−1

‖y‖τ+1 = min
y∈Sd−1

max
x∈C
‖y − x+ x‖τ+1

≥ min
y∈Sd−1

max
x∈C

(‖x‖τ+1 − ‖x− y‖τ+1)

≥ min
y∈Sd−1

(
min
x∈C
‖x‖τ+1 −min

x∈C
‖Σ−1

τ+1‖‖x− y‖
)

≥ min
x∈C
‖x‖τ+1 −

‖Σ−1
τ+1‖
P

≥
√

3d2

4r2
− Σ−1

max

P

≥
√

d2

2r2
,

where the last inequality holds for P large enough. Therefore with probability at least 1 − 3/n,
Σ−1
τ+1 ≥ Σ−1

1 /2, which implies that Στ+1 ≤ 2Σ1 and so, combined with the fact that Σt+1 ≤ 2Σt

holds for all t,

P

(
τ⋂
t=1

(
E

(a)
t ∩ E

(b)
t

))
= P

(
Στ+1 ≤ 2Σ1 and tr(Σ−1

τ+1) ≤ Σ−1
max and Σt+1 ≤ 2Σt for 1 ≤ t ≤ n

)
≥ 1− 3/n .

Appendix E. Technical lemmas

Lemma 10 Suppose that A, B and C are square matrices with A and B positive definite, C
symmetric and ‖C‖ ≤ ε ≤ 1. Then

(a) A1/2(1+ C)A1/2 ≥ (1− ε)A and A1/2(1 + C)A1/2 ≤ (1 + ε)A.

(b) If A ≤ B, then B−1 ≤ A−1.

Appendix F. Concentration bounds

None of the results in this section are novel in any way. In some cases we needed to include explicit
constants where published results simplify with unspecified universal constants. We are expedient
in our calculation of these constants. In case you wanted a truly refined analysis, then the Orlicz-
norm style analysis should be replaced with the kind of analysis that relies on moment-generating
functions.

Fact 11 Let W d
= N (0,1). Then

(a) ‖〈x,W 〉‖ψ2 = 2
√

2/3‖x‖ ≤ 2‖x‖ for any x ∈ Rd;

(b) ‖ tr(AWW>)‖ψ1 ≤ 3 tr(A) for any positive semidefinite A ∈ Rd×d;

(c)
∥∥‖W‖∥∥2

ψ2
=
∥∥‖W‖2∥∥

ψ1
≤ 8d/3;

(d)
∥∥‖WW> − 1‖

∥∥
ψ1
≤ 5d.
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Proof All results follow from explicit calculation using the Gaussian density:

(a) Since ‖〈x,W 〉‖ψ2 = ‖x‖
∥∥〈x,W 〉/‖x‖∥∥

ψ2
, we may assume without loss of generality that

‖x‖ = 1 so that 〈x,W 〉 d= N (0, 1). Then

E[exp(〈x,W 〉2/t2)] =
1√
2π

∫ ∞
−∞

exp(−z2/2 + z2/t2) dz = 1/
√

1− 2/t2 .

The right-hand side is less than 2 for t ≥ 2
√

2/3 ≈ 1.63.

(b) Let A = U−1ΛU for orthonormal U and Λ a diagonal matrix with eigenvalues λ1, . . . , λd.
By rotational invariance UW and W have the same distribution and therefore so do tr(AWW>)
and ‖W‖2Λ. Therefore ‖ tr(AWW>)‖ψ1 = ‖

∑d
m=1 λmW

2
m‖ψ1 ≤

∑d
m=1 λm‖W 2

m‖ψ1 . The result
follows since, by part (a), ‖W 2

m‖ψ1 = ‖Wm‖2ψ2
= 8/3 ≤ 3.

(c) Using (b),
∥∥‖W‖∥∥2

ψ2
=
∥∥‖W‖2∥∥

ψ1
= ‖ tr(1WW>)‖ψ1 ≤ 8d/3.

(d) Using (b),
∥∥‖WW> − 1‖

∥∥
ψ1
≤
∥∥1 + ‖WW>‖

∥∥
ψ1

= log(2) + ‖ tr(WW>)‖ψ1 ≤ 5d.

Lemma 12 (Proposition 2.5.2, Proposition 2.7.1, Vershynin 2018) LetX be a real random vari-
able. Then for all t ≥ 0,

(a) P(|X| ≥ t) ≤ 2 exp
(
−t2/‖X‖2ψ2

)
;

(b) P(|X| ≥ t) ≤ 2 exp (−t/‖X‖ψ1);

(c) E[|X|p]1/p ≤ 3
√
p‖X‖ψ2 for all p ≥ 1;

Lemma 13 Let (Ω,F ,P) be a probability space and X1, . . . , Xn be a sequence of random vari-
ables adapted to a filtration (Ft)

n
t=1 and let ‖Xt‖t−1,ψ1 be the ‖ · ‖ψ1 norm of Xt with respect to

P(·|Ft−1). Suppose that τ is a stopping time with respect to (Ft)
n
t=1 and ‖Xt‖t−1,ψ1 ≤ α almost

surely on {t− 1 < τ}. Then for any δ ∈ (0, 1),

P

(
τ∑
t=1

Xt − E[Xt|Ft−1] ≥ 66 max
[
α
√
n log(1/δ) , α log(1/δ)

])
≤ δ .

Proof Repeat the proof of the standard Bernstein inequality to the sequence (Yt)
n
t=1 with Yt =

Xt1(t ≤ τ) (Vershynin, 2018, Theorem 2.8.1).

Lemma 14 Let X d
= N (µ1,Σ1) and Y d

= N (µ2,Σ2) and f : Rd → R be Lipschitz. Then

|E[f(X)]− E[f(Y )]| ≤

√
‖µ1 − µ2‖2 + tr

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
.
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Proof Let Wk(p, q) be the k-Wasserstein distance between probability measures p and q for k ∈
{1, 2}. Since f is Lipschitz, |E[f(X)]−E[f(Y )]| ≤W1(N (µ1,Σ1),N (µ2,Σ2)) and by convexity
W1 ≤

√
W2. Therefore using the closed form of W2 between Gaussians by Dowson and Landau

(1982) yields

|E[f(X)]− E[f(Y )]| ≤
√
W2(N (µ1,Σ1),N (µ2,Σ2))

=

√
‖µ1 − µ2‖2 + tr

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
.

Lemma 15 Suppose that X has lawN (µ,Σ) and ‖ε‖P(·|X),ψ2
≤ 1. Then with Y = f(X) + ε and

any δ ∈ (0, 1),

(a) ‖f(X)− E[f(X)]‖ψ2 ≤ 2‖Σ‖1/2; and

(b) ‖Y − E[Y ]‖ψ2 ≤ 1 + 2‖Σ‖1/2.

Proof Let W have law N (0,1) and h(w) = f(Σ1/2w + µ). Since f is Lipschitz, h(u)− h(v) ≤
‖Σ1/2(u − v)‖ ≤ ‖Σ‖1/2‖u − v‖. Since this holds for all u and v, h is ‖Σ‖1/2-Lipschitz with
respect to the Euclidean norm. By Theorem 5.6 of Boucheron et al. (2013),

P (|f(X)− E[f(X)]| ≥ t) ≤ 2 exp

(
− t2

2‖Σ‖

)
.

Therefore, by Proposition 2.5.2 of Vershynin (2018), ‖f(X) − E[f(X)]‖ψ2 ≤ 2‖Σ‖1/2, which
establishes (a). By the triangle inequality,

‖Y − E[Y ]‖ψ2 = ‖f(X) + ε− E[f(X)]‖ψ2 ≤ 2‖Σ‖1/2 + 1 ,

which yields (b).

Lemma 16 Let W have law N (0,1) and A be positive definite and Z have law N (µ,Σ). Then
the following hold:

(a) E[‖W‖2A] = tr(A) and E[‖W‖4A] = tr(A)2 + 2 tr(A2).

(b) E[tr(A(WW> − 1)A(WW> − 1))] = tr(A)2 + tr(A2).

(c) E[tr(A(WW> − 1)(WW> − 1)A)] = (d2 + 2d− 1) tr(A2).

(d) E[‖Z‖2] = tr(Σ) + ‖µ‖2.

(e) E[‖Z‖4] = tr(Σ)2 + 2 tr(Σ2) + ‖µ‖2Σ + ‖µ‖4 + 2 tr(Σ)‖µ‖2 ≤ 3(E[‖Z‖2])2.

Proof By rotational invariance of the Gaussian and because A is diagonalised by a rotation matrix
it suffices to consider the case that A is diagonal with eigenvalues (λm)dm=1. Then

E[‖W‖2A] = E

[
d∑

m=1

λmW
2
m

]
=

d∑
m=1

λm = tr(A) .
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Furthermore, denoting the eigenvalues of A by λ1, . . . , λd, we have

E[‖W‖4A] = E

( d∑
m=1

λmW
2
m

)2
 = tr(A)2 +

d∑
m=1

λ2
m(E[W 4

m]− 1) = tr(A)2 + 2 tr(A2) ,

where in the final equality we used the fact that the fourth moment of a standard Gaussian is
E[W 4

m] = 3. For (b),

E[tr(A(WW> − 1)A(WW> − 1))] = E[‖W‖4A − 2 tr(AWW>A) + tr(A2)]

= E[‖W‖4A]− tr(A2)

= tr(A)2 + tr(A2) ,

where in the final equality we used part (a). Part (c) follows similarly:

E[tr(A(WW> − 1)(WW> − 1)A)] = E[‖W‖4 tr(A2)− 2 tr(AWW>A) + tr(A2)]

= (d2 + 2d− 1) tr(A2) ,

where we used the second statement of part (a) in the last step. Parts (d) and (e) follow by noting
that Z and Σ1/2W + µ have the same law and using parts (a) and (b). In particular,

E[‖Z‖2] = E[‖Σ1/2W + µ‖2] = E[‖W‖2Σ] + ‖µ‖2 = tr(Σ) + ‖µ‖2 .

Furthermore,

E[‖Z‖4] = E
[(

(W>Σ1/2 + µ>)(Σ1/2W + µ)
)2
]

= E
[(
‖W‖2Σ + 2W>Σ1/2µ+ ‖µ‖2

)2
]

= E
[
‖W‖4Σ + µ>Σ1/2WW>Σ1/2µ+ ‖µ‖4 + 2‖W‖2Σ‖µ‖2

]
= tr(Σ)2 + 2 tr(Σ2) + ‖µ‖2Σ + ‖µ‖4 + 2 tr(Σ)‖µ‖2

≤ tr(Σ)2 + 2 tr(Σ2) + ‖µ‖4 + 3 tr(Σ)‖µ‖2

≤ 1.5(tr(Σ) + ‖µ‖2)2 + 1.5 tr(Σ)2

≤ 3(E[‖Z‖2])2,

where in the last step we used part (d).
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