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Abstract
We prove that the continuous time version of the concentration bounds by Abbasi-Yadkori et al.
(2011) for adaptive linear regression cannot be improved in general, showing that there can be
a significant price for sequential design. This resolves the continuous time version of the COLT
open problem by Vakili et al. (2021b) on confidence intervals for kernel regression under sequential
design. Experimental evidence suggests that improved confidence bounds are also not possible in
discrete time.

1. Introduction

A statistician observes a stochastic process of covariates (xt)t∈[0,n] in Rd+1 and a process of cu-
mulative responses, which is a stochastic process (yt)t∈[0,n] satisfying the stochastic differential
equation

dyt = 〈xt, θ?〉 dt+ dBt , (1)

where (Bt)t is a standard Brownian and θ? ∈ Rd+1 is an unobserved random element. We assume
that (xt) is adapted to the filtration (Gt) with Gt = σ((xs, ys)s∈[0,t)) and that θ? is independent of
(Bt) and has law ξ for some probability measure ξ on Rd+1. The statistician’s job is to observe
the (xt, yt) process on the interval [0, n] and output an estimate E of 〈v, θ?〉 where v ∈ Rd+1 is a
prespecified nonzero vector. Mathematically, E is any Gn-measurable random variable. Note that
the prior measure ξ is known.

Performance measure To manage expectations, let us remind ourselves about what happens
when the covariates are chosen deterministically. Given a positive definite matrix A, let ‖x‖A =√
x>Ax and ‖ · ‖ be the standard euclidean norm. Suppose that the covariate process (xt) is de-

terministic and let Dn = λ1 +
∫ n
0 xtx

>
t dt be the regularised design matrix. When λ = 0 and Dn

is invertible, then the least squares estimator of θ? is θ̂n = D−1n
∫ n
0 xt dyt. Since Dn is determinis-

tic, the law of θ? is Gaussian with mean θ and covariance D−1n . Hence, by standard concentration
bounds for Gaussian random variables (Boucheron et al., 2013, p22), for any v ∈ Rd+1 with prob-
ability at least 1− δ,

|〈θ̂n − θ?, v〉| ≤ ‖v‖D−1
n

√
2 log(2/δ) .

On the other hand, when the covariate process is chosen adaptively, the bound by Abbasi-Yadkori
et al. (2011) shows that for any λ > 0, with probability at least 1− δ,

|〈θ̂n − θ?, v〉| ≤ ‖v‖D−1
n

[√
λ‖θ?‖+

√
2 log(1/δ) + log det

(
D−10 Dn

)]
, (2)
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where θ̂n = D−1n
∫ n
0 xt dyt is the ridge regression estimator. These bounds are typically stated

in discrete time, but the martingale arguments generalise without change to continuous processes
driven by Brownian motion as we consider here. Our contribution is to show that the bound above is
not improvable for a reasonably large class of problems with adaptively chosen covariates. In fact,
we prove that in certain circumstances no estimator E of 〈θ?, v〉 improves on the bound above. To
measure the price of adaptivity we compare our statisticians’ error relative to the above benchmark
by defining the risk of an estimator E by

Rn(E) = E

[
(E − 〈θ?, v〉)2

‖v‖2
D−1
n

]
.

The notation of the left-hand side hides the dependence on λ and the direction v, as well as the prior
and method of generating the covariates. Integrating the high probability bounds shows that when
the covariate process is deterministic, Rn(E) = O(1), while in the adaptive setting, integrating
Equation (2) only yields

Rn(E) = O(E[λ‖θ?‖2 + log det(D−10 Dn)]) . (3)

Our main construction shows that this worse bound cannot be improved in general, including in the
kernel regime where the log-determinant is large, which resolves a continuous-time analogue of the
open problem posed by Vakili et al. (2021b).

A note on the set-up We have used continuous time because it leads to a more elegant analysis
without (we believe) much loss in insight. As solace, the experiments use discrete time.

Motivation and related work Linear regression with adaptively chosen covariates arises natu-
rally when the experimenter wishes to adapt the design online using previously collected data. A
particular application where this is essential is in linear bandits, where the covariates need to be
chosen adaptively to minimise the regret. The simplest algorithms for linear bandits are based on
a combination of adaptive confidence intervals for the ridge regression estimator and the optimism
principle (Abbasi-Yadkori et al., 2011). These results are known to be suboptimal when the number
of actions is much less than exponential in the dimension. In this case more sophisticated algorithms
are needed, which introduce various gadgets to obtain the kind of independence needed for tighter
confidence bounds using classical methods (Auer, 2002; Valko et al., 2013; Li et al., 2019). Unfor-
tunately these modifications of the basic principle generally lead to worse performance empirically.
The example in the present work shows that any analysis of linear contextual bandits aimed at prov-
ing a similar result cannot completely decouple the concentration analysis and the algorithm. The
same is true for kernelised bandits where the dimension-dependence arising from loose confidence
bounds is especially pernicious and can be the difference between sublinear and linear regret (Vakili
et al., 2021a,b).

The new lower bound also shows that the self-normalised concentration bound by Abbasi-
Yadkori et al. (2011) has very little room for improvement. As a side effect, it shows that a law-of-
the-iterated logarithm result is not possible except in dimension one. Regrettably this contradicts
Theorem 8 by Lattimore and Szepesvári (2017), which has a mistake in the covering argument. The
main theorem in that work is still correct with some adjustments, or by using a different analysis
and algorithm (Degenne et al., 2020, for example). The same problem appears in the concentration
result of Tirinzoni et al. (2020).
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Of course there is a large literature on linear regression with sequential covariates, with early
work by Lai and Wei (1982). A more recent work, which also gives a nice survey of the litera-
ture, is by Khamaru et al. (2021). At a very high level, these works prove positive results (con-
sistency/asymptotic normality) when the process of covariates gives sufficient coverage, generally
expressed in terms of a condition on the spectrum of the design matrix. In some cases the assump-
tions are such that the least squares estimator gets the job done, while in others some modification
is needed (Zhang et al., 2021; Khamaru et al., 2021, for example). The continuous time model was
also considered by Liptser and Spokoiny (2000), who prove finite-time positive results under certain
conditioning assumptions on the covariates. Interestingly, the strongest positive results are just on
the boundary of what is necessary to obtain logarithmic regret for bandits with static action sets,
while for contextual bandits we do not see how they can be applied without making additional as-
sumptions. There also exist some negative results. Most relevant is the construction in Exercise 20.2
of the book by Lattimore and Szepesvári (2020), which shows that when E is the inner product be-
tween the least squares estimate and v, then there exist instances for which Rn(E) = Ω(d) with
n = Θ(d).

Notation The indicator function of a set A is 1A. We use 0 to denote the vector that is zero in all
coordinates and the identity matrix is 1. In all cases we hope the reader can deduce the dimension
of the relevant quantity from the context. The Gaussian distribution with mean µ and covariance
Σ is N (µ,Σ). Given positive definite matrices A and B, let Breg(A,B) = log det(A−1B) +
tr(B−1(A − B)), which is the Bregman divergence with respect to the negative log determinant.
We will use this notation and definition even when A and B are infinite positive definite matrices
(i.e., positive self-adjoint operators). The determinant in this case is defined as the product of the
eigenvalues and will only ever be applied to operators of the form A = 1 + T where T is positive,
self adjoint and trace class, which ensures that the determinant as the product of the eigenvalues is
well defined. When Dn − λ1 has eigenvalues (λm)dm=1, then

Breg(D0, Dn) =
d∑

m=1

(
log

(
λ+ λm
λ

)
+

λ

λ+ λm
− 1

)
≤ log det(D−10 Dn) .

The inequality is close to an equality when the log determinant is dominated by the contribution of
eigenvalues λm with λm � λ.

2. Construction

Given any deterministic covariate process in Rd, we show that a simple adaptive lifting to Rd+1

dramatically increases the difficulty of estimation relative to the unlifted deterministic set-up. Note
that we allow d =∞. Let ξ = 1

2δ0 + 1
2N (µ,Σ), where δ0 is a Dirac on 0 ∈ Rd+1 and

µ = (1, 0, . . . , 0) ∈ Rd+1 Σ =

[
0 0>

0 1
λ1

]
∈ R(d+1)×(d+1) .

Let (Ω,F ,P) be a probability space carrying a random vector θ? : Ω→ Rd with law ξ and let (Bt)
be an independent Brownian motion adapted to a filtration (Ft)t≥0 satisfying the usual conditions.
Let v = (1, 0, . . . , 0), which means that 〈v, θ?〉 ∈ {0, 1}. Let (bt)t∈[0,n] be a deterministic function
in Rd andHt = λ1 +

∫ t
0 bsb

>
s ds ∈ Rd×d, which we assume exists and satisfies tr(Hn−λ1) <∞.
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In a moment we construct a stochastic process (at)t∈[0,n] and let xt = (at, bt) ∈ Rd+1 be the lifted
covariate process and yt be the response process defined by Equation (1). Note that in the lifted
process only the first coordinate is adaptive and is used to maximise the confusion of the statistician
about the inner product 〈v, θ?〉. The dynamics governing the process (at) are given by the stochastic
differential equation

S0 = 0 dSt = bt〈xt, θ?〉dt− atbt dt+ bt dBt at = −〈ϕ̂t, bt〉 ϕ̂t = H−1t St .

Existence and uniqueness of a strong solution is guaranteed by the classical results of Itô (Karatzas
and Shreve, 2012, Theorems 5.2.5 and 5.2.9). Note that dSt = bt dyt − atbt dt, which means that
(xt) is adapted to the filtration (Gt) as we assumed it must be. To build a little intuition, let ϕ be the
last d coordinates of θ? (all but the first when d =∞). Then ϕ̂t is the ridge regression estimator of
ϕ on the event {θ? 6= 0}. The process at is chosen adaptively so that 〈xt, (1, ϕ̂t)〉 = 0 = 〈xt,0〉,
which means the statistician has trouble gaining information about the event {θ? 6= 0}. Actually
we will show that the statistician cannot gain any information about {θ? 6= 0}. And since 〈v, θ?〉 =
1{θ? 6=0}, there is no better estimate of 〈v, θ?〉 than E = 1/2. The proof of our main theorem below
boils down to making the above intuition rigorous. What is nice about this construction and the use
of continuous time is that the exact optimal risk can be computed analytically.

Theorem 1 The optimal risk in the instance constructed above satisfies

R?
n , inf

E
Rn(E) =

λ+ Breg(H0, Hn)

4
,

where the infimum is over all random variables E : Ω→ R measurable with respect to the σ-algebra
generated by the processes (xt)0≤t≤n and (yt)0≤t≤n.

Before the proof, let us spend a moment to see under what conditions the lower bound in Theo-
rem 1 matches the upper bound obtained in Equation (3). The following lemma relates the spectrum
of the unlifted design matrix Hn and the lifted one Dn. Note that Hn is deterministic while Dn is a
random variable.

Lemma 2 E[log detD−10 Dn] ≥ log detH−10 Hn ≥
(

λ
λ+1

)
E[log detD−10 Dn].

The proof can be found in Appendix B. Suppose that the following hold:
(a) λ = Θ(1); and
(b) Breg(H0, Hn) = Ω(log detH−10 Hn); and
(c) log detH−10 Hn = Ω(d).
By Lemma 2 and Theorem 1, the risk in the construction above is lower bounded by

R?
n =

λ+ Breg(H0, Hn)

4
= Ω

(
λ+ log det(H−10 Hn)

4

)
by (b)

= Ω

(
λ+ λ

λ+1E[log detD−10 Dn]

4

)
by Lemma 2

= Ω(E[log detD−10 Dn]) . by (a)
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On the other hand, in the construction above we have E[‖θ?‖2] = O(d) and so the bound obtained by
integrating the self-normalised inequality in Equation (3) gives R?

n = O(d + E[log detD−10 Dn]).
By Lemma 2 and (c), E[log detD−10 Dn] ≥ log detH−10 Hn = Ω(d). Hence, under conditions
(a), (b) and (c) above, the lower and upper bounds match up to constant factors. The Bregman
divergence is upper bounded by the log determinant, so you should be skeptical about when (b)
might hold. Let (λm)dm=1 be the eigenvalues of

∫ n
0 btb

>
t dt. Then

log det(H−10 Hn) =
d∑

m=1

log

(
1 +

λm
λ

)
, Breg(H0, Hn) =

d∑
m=1

log

(
1 +

λm
λ

)
− λm
λ+ λm

.

In the low-dimensional case where n is large relative to d and the covariate process (bt)t∈[0,n] is
well conditioned, then λm = Ω(n) and the Bregman divergence and log determinant have the same
order. On the other hand, in the high-dimensional ‘kernel’ regime the situation is more nuanced. A
Taylor expansion shows that

log

(
1 +

λm
λ

)
=
λm
λ

+ o

(
λm
λ

)
, log

(
1 +

λm
λ

)
− λm
λ+ λm

=
λ2m
2λ2

+ o

(
λ2m
λ2

)
.

This shows that if the log determinant is dominated by eigenvalues with λm � λ, then the Bregman
divergence may be very small relative to the log determinant, while otherwise the two will have the
same order of magnitude.

Low-dimensional application Consider the case where λ = 1 and (bt)t∈[0,n] are chosen so that
each of the d standard basis vectors appears in equal proportion. Then Hn = (1 + n

d )1 and our
results show that

R?
n =

1 + d log(1 + n/d)− d+ d2

d+n

4
= Ω

(
d log

(n
d

))
.

This contradicts the law-of-the-iterated logarithm style confidence bounds for least-squares estima-
tors claimed by Lattimore and Szepesvári (2017) and Tirinzoni et al. (2020), both of which contain
errors in their covering arguments (details in Appendix E). Note that the covariates in our construc-
tion always live in a space of at least dimension two, which is why there is no contradiction with
the standard law-of-the-iterated logarithm.

Comments on infinite-dimensional case When d =∞, then (c) above does not hold and in this
case Equation (3) is vacuous because E[‖θ?‖2] = ∞ in our construction. The analysis is useful
nevertheless for analysing the behaviour of the ridge regression estimator in the kernel setting, as
we shall see in Sections 4 and 5, where we resolve the open problem of Vakili et al. (2021b). You
can also still use the analysis to bound the risk of any estimator in the kernel setting by applying
Theorem 1 with a finite dimensional approximation of the kernel and control the approximation
error in some other way, as done, for example, by Vakili et al. (2021a). This typically works when
d is chosen to have the same order as the effective dimension.
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3. Proof of Theorem 1

There are three steps. First we show that if the posterior distribution of 〈v, θ?〉 is almost surely
constant, then

R?
n =

1

4
E

[
1

‖v‖2
D−1
n

]
.

In the second step we show that indeed the posterior distribution of 〈v, θ?〉 is almost surely constant.
In the third step we complete the proof by evaluating the expectation in the above display.

Step 1: Bayesian optimal estimator and risk Let Gt be the σ-algebra generated by the processes
(xs)0≤s≤t and (ys)0≤s≤t. The Bayesian risk of estimator E is

Rn(E) = E

[
(E − 〈v, θ?〉)2

‖v‖2
D−1
n

]
= E

[
E
[
(E − 〈v, θ?〉)2|Gn

]
‖v‖2

D−1
n

]
.

which is minimised by E = E[〈v, θ?〉|Gn]. By construction of the prior ξ, 〈v, θ?〉 ∈ {0, 1} and hence
E = P(〈v, θ?〉 = 1|Gn) = P(θ? 6= 0|Gn). Therefore, if P(θ? 6= 0|Gn) = P(θ? = 0|Gn) = 1

2 almost
surely, then E = 1

2 almost surely and

R?
n = E

[
E[〈v, θ?〉2|Gn]− E[〈v, θ?〉|Gn]2

‖v‖2
D−1
n

]
=

1

4
E

[
1

‖v‖2
D−1
n

]
. (4)

Step 2: Evolution of posterior Let ν = N (0, 1λ1) be a Gaussian in Rd. By Girsanov’s theorem
(Karatzas and Shreve, 2012, Theorem 3.5.1) and a standard integral (complete the square in ϕ),

P(θ? 6= 0|Gt)
P(θ? = 0|Gt)

=

∫
Rd

exp

(
−1

2

∫ t

0
(as + 〈ϕ, bs〉)2 ds+

∫ t

0
(as + 〈ϕ, bs〉) dys

)
dν(ϕ)

= exp

(
1

2
‖St‖2H−1

t
− 1

2

∫ t

0
a2s ds+

∫ t

0
as dys −

1

2
log det(H−10 Ht)

)
, exp(Mt) ,

where the last equality serves as the definition of Mt. We will now show that dMt = 0, which
implies that the posterior belief that θ? = 0 does not change over time (almost surely). Note that
we are not arguing that the statistician gains no information from the data. Only that they do not
gain information about the event {θ? = 0}. The calculation above holds also in discrete time, but in
what follows we make full use of the continuous time model. In discrete time the lower-order terms
in the discrete derivative would need to be handled, leading to a messier computation. Taking the
derivative of Mt,

dMt = d
1

2
‖St‖2H−1

t
− 1

2
a2t dt+ at dyt − d

1

2
log detH−10 Ht . (5)
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A LOWER BOUND FOR LINEAR AND KERNEL REGRESSION

Recall that dSt = bt(dyt − at dt) and dHt = btb
>
t dt and so dH−1t = −H−1t btb

>
t H

−1
t dt and by

Itô’s formula (Karatzas and Shreve, 2012, Theorem 3.3.6),

d
1

2
‖St‖2H−1

t
= 〈H−1t St, dSt〉 −

1

2
‖St‖2H−1

t btb
>
t H
−1
t

dt+
1

2
‖bt‖2H−1

t
dt

= 〈ϕ̂t,dSt〉 −
1

2
〈ϕ̂t, bt〉2 dt+

1

2
‖bt‖2H−1

t
dt

= 〈ϕ̂t, bt〉 dyt − at〈ϕ̂t, bt〉 dt−
1

2
〈ϕ̂t, bt〉2 dt+

1

2
‖bt‖2H−1

t
dt

= −at dyt +
1

2
a2t dt+

1

2
‖bt‖2H−1

t
dt , (6)

where in the first equality we used Itô’s formula (the last term arises from the second derivative).
The second equality is because ϕ̂t = H−1t St and the third by substituting the definition of dSt and
finally using that 〈ϕ̂t, b〉 = −at. Furthermore,

d
1

2
log detHt =

1

2
‖bt‖2H−1

t
(7)

Combining Equations (5) to (7) shows that dMt = 0, which means the posterior distribution about
whether or not θ? = 0 does not change: P(θ? = 0|Gt) = 1/2 a.s. for all 0 ≤ t ≤ n. Let
E0 = {θ? = 0}. By the above argument, P(E0|Gt) = 1/2 for all t almost surely. By Bayes’ law it
follows that the law of the process (xt, yt) is the same under all of P and P(·|E0) and P(·|Ec0).

Step 3: Law of design matrix Next we need to consider the law of ‖v‖2
D−1
n

. By construction,

Dn =

[
λ+

∫ n
0 〈bt, ϕ̂t〉

2 dt −
∫ n
0 〈bt, ϕ̂t〉b

>
t dt

−
∫ n
0 〈bt, ϕ̂t〉bt dt λ1 +

∫ n
0 btb

>
t dt

]
. (8)

Letting Gt =
∫ t
0 bsb

>
s ds and Ut =

∫ t
0 bsb

>
s H

−1
s Gs ds and Lt =

∫ s
0 bsb

>
s H

−1
s ds,

Ht − Ut = H0 +

∫ t

0
bsb
>
s (1−H−1s Gs) ds = H0 +

∫ t

0
bsb
>
s H

−1
s H0 dt = H0 +H0Lt . (9)

Using the definitions of ϕ̂t and Fact 7 in Appendix A,

E

[
1

‖v‖2
D−1
n

]
= E

[
1

(D−1n )1,1

∣∣∣∣∣Ec0
]

= λ+

[
E

[∫ n

0
〈bt, ϕ̂t〉2 dt

∣∣∣∣∣Ec0
]

(A)

−E

[∥∥∥∥∫ n

0
〈bt, ϕ̂t〉bt dt

∥∥∥∥2
H−1
n

∣∣∣∣∣Ec0
]

(B)

]
(10)
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By the standard posterior for Bayesian linear regression, P(ϕ = ·|Ec0,Gt) = N (ϕ̂t, Ht). Therefore,

(A) = E

[∫ n

0
〈bt, ϕ̂t〉2 dt

∣∣∣∣∣Ec0
]

= E

[∫ n

0
〈bt, ϕ̂t − ϕ〉2 dt−

∫ n

0
〈bt, ϕ〉2 dt+ 2

∫ n

0
〈bt, ϕ〉〈bt, ϕ̂t〉

∣∣∣∣∣Ec0
]

=

∫ n

0
‖bt‖2H−1

t
dt− tr(Gn)

λ
+

2

λ

∫ n

0
tr
(
btb
>
t H

−1
t Gt

)
dt

= log
(
det(H−10 Hn)

)
− tr(Gn)

λ
+

2 tr(Un)

λ
,

where the third equality follows from the covariance of ϕ given Gt and the definition of ϕ̂t. The last
inequality follow from the definition of Un. For the second term in Equation (10), expanding the
square, the Itô isometry and integrating by parts yields

(B) = E

[∥∥∥∥∫ n

0
〈bt, ϕ̂t〉bt dt

∥∥∥∥2
H−1
n

∣∣∣∣∣Ec0
]

= E

[∥∥∥∥∫ n

0
bt〈bt, H−1t Gtϕ〉 dt+

∫ n

0

∫ t

0
bt〈bt, H−1t bs〉 dBs dt

∥∥∥∥2
H−1
n

∣∣∣∣∣Ec0
]

=
1

λ
tr
(
UnH

−1
n Un

)
+

∫ n

0
‖(Ln − Ls)bs‖2H−1

n
ds

=
1

λ
tr
(
UnH

−1
n Un

)
− tr(LnH

−1
n LnH0)− 2 tr

(
LnH

−1
n H0

)
+ 2 tr

(
H−1n (Hn −H0)

)
.

Combining and simplifying by substituting H0 = λ1 and Equation (9) shows that

(A)− (B) = log det(H−10 Hn) + tr(H−1n (H0 −Hn)) = Breg(H0, Hn) .

The result follows by substituting this in Equation (10) and then Equation (4).

4. Ridge regression estimator

Theorem 1 bounds the risk for any estimator. For the classical ridge regression estimator we can
say a little more. Let

θ̂n = D−1n

∫ n

0
xt dyt . (11)

Let P0 be the law of (xt, yt)t∈[0,n] under P(·|E0) and let E0 be the corresponding expectation
operator. By the calculation in Step 2 in the proof of Theorem 1, the law of (xt, yt)t∈[0,n] under the
unconditioned measure P is in fact equal to P0.

Theorem 3 With the same set-up as in Theorem 1,

E0

[
〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
≥ Breg(Hn, H0)

2

λ+ Breg(Hn, H0)
.
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The bound is slightly weaker than the result of Theorem 1 because it only applies to the ridge
regression estimator and the risk lower bound is slightly smaller. The advantage is that it holds
for θ? = 0. Note that some kind of bad dependence on λ is essential since the risk of the ridge
regression estimator for θ? = 0 obviously vanishes as λ→∞.
Proof By the definition of v,

E0

[
〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
= E0

[
(θ̂n)21

(D−1n )1,1

]
.

Using the definition of Dn and the inversion formula for block matrices (Fact 7),

(θ̂n)1 = (D−1n )1,1

[∫ n

0
at dBt −

〈∫ n

0
atbt dt,H−1n

∫ n

0
bt dBt

〉
(A)

]
.

Therefore, by Jensen’s inequality and the convexity of (x, y) 7→ x2/y on R× (0,∞),

E0

[
(θ̂n)21

(D−1n )1,1

]
= E0

[
(A)2

1/(D−1n )1,1

]
≥ E0[(A)]2

E0[1/(D−1n )1,1]
.

By the last remark in the second step of the proof of Theorem 1 and by the third step of the same,

E0[1/(D−1n )1,1] = E[1/(D−1n )1,1] = λ+ Breg(H0, Hn) .

Evaluating E0[(A)] is another exercise in Itô calculus:

E0[(A)] = E0

[∫ n

0
at dBt −

∫ n

0
atbt dtH−1n

∫ n

0
bt dBt

]
= E0

[∫ n

0
〈ϕ̂t, bt〉bt dtH−1n

∫ n

0
bt dBt

]
.

Let St =
∫ t
0 bt(yt−at) dt and recall that at = −〈bt, ϕ̂t〉 = −〈bt, H−1t St〉. Therefore, since yt dt =

dBt, dSt = bt dBt + btb
>
t H

−1
t St dt, which has a unique strong solution of St = Ht

∫ t
0 H

−1
s bs dBs

and hence

E0[(A)] = E0

[∫ n

0
S>t H

−1
t btb

>
t dtH−1n

∫ n

0
bt dBt

]
= E0

[∫ n

0

∫ t

0
b>s H

−1
s dBsbtb

>
t dtH−1n

∫ n

0
bt dBt

]
= E0

[∫ n

0
b>s H

−1
s dBs

∫ n

s
btb
>
t dt dBsH

−1
n

∫ n

0
bt dBt

]
= E0

[∫ n

0
b>s H

−1
s (Hn −Hs) dBsH

−1
n

∫ n

0
bt dBt

]
= E0

[∫ n

0
b>s H

−1
s dBs

∫ n

0
bt dBt −

∫ n

0
b>s dBsH

−1
n

∫ n

0
bt dBt

]
= log det(H−10 Hn)− tr((Hn −H0)H

−1
n ) = Breg(H0, Hn) .

9
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Combining the parts completes the proof.

The only missing ingredient in Theorem 3 is that the process (at) is not uniformly bounded
almost surely, which we need in order to formally resolve the continuous-time version of the open
problem by Vakili et al. (2021b). To prove such a bound, define a stopping time

τ = min

{
t ∈ [0, n] : a2t ≥

2‖bt‖2

λ

(
8 +

2

λ
+ 5 log det(H−10 Hn)

)}
, (12)

where the minimum of the empty set is defined to be n.

Theorem 4 Under the same conditions as Theorem 3,

E0

[
〈θ̂τ − θ?, v〉2

‖v‖2
D−1
τ

]
≥ Breg(H0, Hn)2

λ+ Breg(H0, Hn)
− 1 .

The proof is based on Theorem 3 in combination with a concentration of measure argument
showing that τ = n with suitably large probability. Details are available in Appendix C.

Corollary 5 Let (bt)t∈[0,n] be a process in Rd and at = −〈ϕ̂t, bt〉 as in Section 2. With τ as in
Equation (12), define a process of covariates (xt)t∈[0,n] in Rd+1 by xt = (at, , bt) for t ≤ τ and
xt = 0 otherwise. Then with θ̂n the ridge regression estimator in Equation (11) and θ? = 0,

E0

[
〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
≥ Breg(H0, Hn)2

λ+ Breg(H0, Hn)
− 1 .

Proof Simply note that θ̂n = θ̂τ and apply Theorem 4.

5. Open problem of Vakili et al. (2021b)

Vakili et al. (2021b) ask whether or not the kernel version of the self-normalised inequality in Equa-
tion (2) is tight. Our lower bound answers this question positively in certain instances. Let X be a
compact metric space and k : X ×X → R be a kernel of Mercer type, which means there exists an
orthonormal basis (em)∞m=1 for L2(X ) and eigenvalues (αm)∞m=1 such that k(x, y) = 〈φ(x), φ(y)〉,
where φ(x) = (

√
α1e1(x),

√
α2e2(x), . . .) and the RKHS associated with the kernel is H =

{
∑∞

m=1wm
√
αmem : w ∈ `2} with norms ‖f‖ = min{‖w‖ : w ∈ `2,

∑∞
m=1wm

√
αmem = f}.

In the continuous time kernel regression problem there is a covariate process (xt)t∈[0,n] in X
and the learner observes the covariates and responses (yt)t∈[0,n], which is a process satisfying
dyt = 〈θ?, φ(xt)〉dt+ dBt. The self-normalised inequality of Abbasi-Yadkori et al. (2011)1 shows
that if Dn = λ1 +

∫ n
0 φ(xt)φ(xt)

> dt and

θ̂n = D−1n

∫ n

0
φ(xt) dyt (13)

1. More precisely, the infinite-dimensional generalisation of the self-normalised inequality, which appears in the thesis
of Abbasi-Yadkori (2013).

10
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is the regularised least-squares estimator of θ?, then with probability at least 1− δ,

|〈θ̂n − θ?, v〉| ≤ ‖v‖D−1
n

[
‖θ?‖
√
λ+

√
2 log(1/δ) + log det(D−10 Dn)

]
.

The log determinant is data-dependent, but is often naively upper bounded by a quantity called the
information gain, which is

γn(φ;λ) = sup
(xt)∈X [0,n]

log det

(
1 +

1

λ

∫ n

0
φ(xt)φ(xt)

> dt

)
.

Substituting this into the self-normalised bound and integrating shows that

E

[
〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
= O

(
λ‖θ?‖2 + γn(φ;λ)

)
. (14)

Corollary 5 will show that for certain kernels and data generating processes this bound leaves little
room for improvement.

Augmented Fourier kernels We now give an explicit calculation using a kernel that is the sum
of the euclidean kernel and a Fourier kernel. Given x ∈ R, let [x]2π be the y ∈ [0, 2π] such
that y + 2πk = x for some integer k. Let M > 0 be a constant to be chosen later and X =
[−M,M ] × [0, 2π]. Define a sequence of reals (αm)∞m=1 and a sequence of functions (em)∞m=1

from R to R by αm = 1/m2 and em(x) = cos(mx). Next, let φ be the feature map given by

φ(x) = (x1,
√
α1e1(x2),

√
α2e2(x2), . . .) . (15)

The associated kernel is k(x, y) = 〈φ(x), φ(y)〉 with the inner product taken in `2. We also let
φ◦(x) = (

√
α1e1(x2),

√
α2e2(x2), . . .). As a reminder, we are interested in the behaviour of the

ridge regression estimator when (xt)t∈[0,n] is a process in X and (yt)t∈[0,n] is the solution to the
stochastic differential equation

dyt = 〈θ?, φ(xt)〉dt+ dBt . (16)

The covariate process is chosen using the construction in the proof of Theorem 1. Let bt = [t]2π be
a process in [0, 2π] and at = −〈ϕ̂t, φ◦(bt)〉, where ϕ̂t = H−1t St with

Ht = λ1 +

∫ t

0
φ◦(bs)φ◦(bs)

> ds St =

∫ t

0
φ◦(bs) dys −

∫ t

0
φ◦(bs)as ds .

Let τ = min{t : a2t ≥M2} with M2 = 2
λ(8 + 2/λ+ 5 log det(H−10 Hn)) and

xt =

{
(at, bt) if t ≤ τ
(0, π/2) otherwise .

(17)

Theorem 6 The following hold:
(a) The information gain for the feature map φ in Equation (15) satisfies

γn(φ;λ) = O
(√

n/λ log(poly(n, 1/λ))
)
.

11
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(b) When the covariate process (xt)t∈[0,n] is chosen according to Equation (17) and the response
process (yt)t∈[0,n] satisfies Equation (16). Then, provided that λ = O(n1/3),

E0

[
〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
= Ω

(√
n/λ

)
,

where θ̂n is the ridge regression estimator in Equation (13).

The proof is given in Appendix D with (a) following from an explicit calculation and (b) by
using Corollary 5. By substituting (a) into Equation (14) you can see that the lower bound on the
risk in (b) matches the upper bound obtained from the self-normalised inequality up to logarith-
mic factors. That is, the self-normalised inequality of Abbasi-Yadkori et al. (2011) is tight up to
logarithmic factors in non-trivial kernel regimes and there can be a considerable price for adaptive
design.

6. Experiments

We evaluate the ridge regression estimator in the natural discrete time approximation of the con-
tinuous time construction. Let (ηt)

n
t=1 be a sequence of independent standard Gaussian random

variables and (bt)
n
t=1 be a deterministic sequence of vectors in Rd. We define a sequence of

random covariates (xt)
n
t=1 with xt = (at, bt) where at ∈ R is random (and adaptive). For the

experiments we only consider the case where θ? = 0 so the response is always yt = ηt. De-
fine Ht = λ1 +

∑t
s=1 bsb

>
s and St =

∑t
s=1 bs(ys − as) where at = −〈bt, ϕ̂t−1〉 with ϕ̂t =

H−1t
∑t

s=1 bs(ys − as). We evaluate the performance of the ridge regression estimator with λ = 1
in two experiments. The first where d = 1 and bt = 1 for all t. The results and more details are in
Figure 1. In the second experiment we use the augmented Fourier kernel from the previous section.
The results and more details are in Figure 2. All histograms are plotted using data from N = 103

independent runs. The headline summary of both experiments is that the continuous-time theory
also holds in discrete time.

0 5 10 15
0

20
40
60
80

Normalised Risk, (θ̂n)21/‖v‖2D−1
n

0 1 2
0

50

100

(θ̂n)1

0 1 2 3
0

50
100
150

maxt∈[n] |at|

Figure 1: The histograms summarise the performance of the least-squares estimator on the simple
2-dimensional problem with d = 1 and bt = 1 for all t and n = 105. On the left is the histogram
of the normalised risk (blue) and the bound on the normalised risk obtained from Equation (2) with
λ = 1 and δ = 1/2 (red). The middle plot shows the histogram of the first coordinate of the
estimated parameter, which is is concentrated around 1 (actual value 0). The last histogram shows
the maximum magnitude of the adaptive part of the covariate, which just shows there is no funny
business going on.
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n
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Figure 2: The plots summarise the performance of the least-squares estimator on the truncation of
the kernel setting explained before. Let n = 103 and (zt)

n
t=1 be a sequence of random variables

uniformly distributed in [0, 2π] and bt = (
√
α1e1(zt),

√
α2e2(zt), . . . ,

√
αded(zt)), where the or-

thonormal functions (em)dm=1 were introduced in Section 5 and d = 50. The upper bound given
by the self-normalised bound is very tightly concentrated about 60 for this data. On the middle plot
you can see the histogram of the first coordinate of the estimated parameter. As in Figure 1, the
estimator is not concentrating about the truth. And also like in Figure 1, the maximum magnitude
of the adaptive component of the covariate is well concentrated and small.

7. Discussion

Our results show that there can be a considerable price for handling adaptive design when con-
structing confidence intervals. In particular, the well-loved upper bounds based on self-normalised
martingale methods are not improvable in general. We finish with a few remarks.

Discrete time The use of continuous time allowed for a rather clean analysis of the counter-
example with an exact optimal risk calculation. We believe all calculations will hold approximately
in discrete time, which is supported by the experimental evidence. Regrettably we were not able
to find a standard result in the literature that would yield the desired result as a corollary of our
analysis. Though it must be admitted that such a result may exist and even be well known to experts
on numerical approximation of stochastic differential equations.

Implications for bandits Our results suggest that optimal regret may not be obtainable with a
completely decoupled analysis of LinUCB. For the non-contextual case we suspect that the design
matrix may by close to deterministic and by carefully controlling the sample path of the algorithm
it might be possible to prove optimal regret. The contextual setting is more challenging, especially
when contexts are adversarial. In that case we are more hesitant to speculate about whether or not
LinUCB is optimal at all. Perhaps a lower bound can be established showing that some mechanism
for introducing independence is indeed essential.

Regularisation Although it is a little orthogonal to our work, staring at the confidence bound
for kernel linear regression, the regularisation term appears both in the effective dimension and in
front of the parameter norm. As far as we know there has been very little work trying to balance
these terms. In the (low-dimensional) linear bandit there is little to be gained from any optimisation
because the effective dimension in that case depends only weakly on the regularisation. As we
have seen, however, in the kernel setting the effective dimension can heavily depend on the level of
regularisation. A deeper investigation may be justified.
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Appendix A. Technical Lemmas

Fact 7 Suppose that G is a square matrix of the form

G =

[
A B
C D

]
,

with D and A−BD−1C both invertible. The following hold:

(a) G−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.

(b) log detG = log detA+ log det(D − CA−1B).

Lemma 8 Suppose that X is a random variable with P(|X| ≥ 2 log(1/δ)) ≤ δ. Then, E[X2] ≤ 8.

Proof E[X2] =

∫ ∞
0

P(X2 ≥ t) dt =

∫ ∞
0

P(X ≥
√
t) dt ≤

∫ ∞
0

exp

(
−
√
t

2

)
dt = 8 .

Appendix B. Proof of Lemma 2

By the formula for the determinant of a block matrix, the analysis in Step 3 of the proof of Theorem 1
and Jensen’s inequality,

E[log detD−10 Dn] = log detH−10 Hn + E

log

1 +

∫ n
0 a

2
t dt−

∥∥∫ n
0 atbt

∥∥2
H−1
n

dt

λ


≤ log detH−10 Hn + log

(
1 +

1

λ
E

[∫ n

0
a2t dt−

∥∥∥∥∫ n

0
atbt

∥∥∥∥2
H−1
n

dt

])

= log detH−10 Hn + log

(
1 +

1

λ
Breg(H0, Hn)

)
≤ log detH−10 Hn + log

(
1 +

1

λ
log det(H−10 Hn)

)
≤
(

1 +
1

λ

)
log det(H−10 Hn) .
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Appendix C. Proof of Theorem 4

We start with a simple proposition:

Proposition 9 With probability at least 1− δ,

P
(

exists t ∈ [0, n] : a2t ≥
2‖bt‖2

λ

(
log(1/δ) + log det(H−10 Ht)

))
≤ δ .

Proof By the second step of the proof of Theorem 1, the measure of (ϕ̂t) under P and P0 are the
same. Under P0, we have

St =

∫ s

0
bs(dys − as ds) =

∫ s

0
bs dBs +

∫ s

0
H−1s Ss ds .

Therefore, dSt = bt dBt + St dt, which has a strong solution of St = Ht

∫ s
0 H

−1
s bs dBs and

ϕ̂t =

∫ t

0
H−1s bs dBs .

Let Qt = H−10 +
∫ t
0 H

−1
s bsb

>
s H

−1
s ds = 2H−10 − H−1t . By the self-normalised inequality, with

probability at least 1− δ for all t it holds that

‖ϕ̂t‖2Q−1
t
≤ 2 log

(
1

δ

)
+ log det

(
21−H0H

−1
t

)
.

On the event that the above inequality holds for all t,

a2t = 〈bt, ϕt〉2 ≤ ‖bt‖2Qt‖ϕt‖
2
Q−1
t
≤ 2‖bt‖2

λ

(
2 log

(
1

δ

)
+ log det

(
21−H0H

−1
t

))
.

The result follows because

log det(21−H0H
−1
t ) ≤ tr(1−H0H

−1
t ) = tr(H−1t (Ht −H0))

= −Breg(Ht, H0) + log det(H−10 Ht) ≤ log det(H−10 Ht) .

Moving now to the proof of Theorem 4. Note that θ̂n = θ̂τ . Therefore,

E

[
〈θ̂τ − θ?, v〉2

‖v‖2
D−1
τ

]
≥ E

[
1τ=n

〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]

≥ E

[
〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
− E

[
1τ<n

〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]

≥ Breg(H0, Hn)2

λ+ Breg(H0, Hn)
− E

[
1τ<n

〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
.
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The negative term is upper bounded by

E

[
1τ<n

〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
≤

√√√√P(τ < n)E

[
〈θ̂n − θ?, v〉4
‖v‖4

D−1
n

]
.

Let ∆2 = 〈θ̂n, v〉2/‖v‖2D−1
n

. By the self-normalised inequality Equation (2),

P
(
∆2 − log det(D−10 Dn) ≥ 2 log(1/δ)

)
≤ δ .

Therefore,

E
[
∆4
]

= E
[
(∆2 − log det(D−10 Dn) + log det(D−10 Dn))2

]
≤ 2E

[
(∆2 − log det(D−10 Dn))2 + log det(D−10 Dn)2

]
≤ 16 + 2E

[
log det(D−10 Dn)2

]
Lemma 8

= 16 + 2E

(log det(H−10 Hn) + log

(
1 +

1

λ

(∫ n

0
a2t −

∥∥∥∥∫ n

0
atbt

∥∥∥∥2
H−1
n

)))2


≤ 16 + 4
(
log det(H−10 Hn)

)2
+ 2E

(log

(
1 +

1

λ

(∫ n

0
a2t −

∥∥∥∥∫ n

0
atbt

∥∥∥∥2
H−1
n

)))2


≤ 16 + 4
(
log det(H−10 Hn)

)2
+ 2 log

(
3 +

1

λ
E

[∫ n

0
a2t −

∥∥∥∥∫ n

0
atbt

∥∥∥∥2
H−1
n

])2

= 16 + 4
(
log det(H−10 Hn)

)2
+ 2 log

(
3 +

1

λ
Breg(H0, Hn)

)2

≤ 24 + 4

(
1 +

1

λ

)(
log det(H−10 Hn)

)2
.

Combining everything shows that

E[∆τ ] ≥ Breg(H0, Hn)2

λ+ Breg(H0, Hn)
−
√

P(τ < n)
(

24 + 4 (1 + 1/λ)
(
log det(H−10 Hn)

)2)
≥ Breg(H0, Hn)2

λ+ Breg(H0, Hn)
− 1 .

Appendix D. Proof of Theorem 6

There are two steps. In the first step we apply Corollary 5 to bound the risk in terms of the Bregman
divergences. In the second step we control the Bregman divergence and information gain.

Step 1: Bounding the risk in terms of Bregman divergences By Corollary 5 and the choice of
M ,

E0

[
〈θ̂n − θ?, v〉2

‖v‖2
D−1
n

]
≥ Breg(H0, Hn)2

λ+ Breg(H0, Hn)
− 1 .
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Step 2: Bounding the information gain The information gain is

γn(φ;λ) = sup
(xt)t∈[0,n]

log

(
det

(
1+

1

λ

∫ n

0
φ(xt)φ(xt)

>
))

.

Let (xt) ∈ X [0,n] be arbitrary and (λm)dm=1 be a decreasing sequence of the eigenvalues of
∫ n
0 φ(xt)φ(xt)

> dt
and An and Bn be matrices such that

D−10 Dn =

[
1 + 1

λAn B>n
Bn 1 + 1

λCn

]
,

where An ∈ R(1+p)×(1+p) for some p to be tuned later. By the Courant-Fischer-Weyl min-max
principle,

∞∑
m=p+1

λm ≤ tr(Cn) =

∫ n

0

∞∑
m=p

αmem(xt)
2 dt ≤ n

∞∑
m=p

αm = O(n/p) .

On the other hand,

p∑
m=1

log

(
1 +

λm
λ

)
≤ p log

(
1 +

p∑
m=1

λm
pλ

)

≤ p log

(
1 +

tr(An)

pλ

)
≤ p log

(
1 +

nM2 + n
∑∞

m=1 αm
pλ

)
= O

(
p log

(
1 +

nM2

pλ

))
.

Therefore, letting p =
⌈√

n/λ
⌉

, and using the fact that log(1 + x) ≤ x,

log det(D−10 Dn) =

∞∑
m=1

log

(
1 +

λm
λ

)

≤
p∑

m=1

log

(
1 +

λm
λ

)
+

∞∑
m=p+1

λm
λ

= O

(
p log

(
1 +

nM2

pλ

)
+

n

pλ

)
= O

(√
n/λ

(
1 + log

(
1 +M2

√
n

λ

)))
.

Since this holds for any (xt) ∈ X [0,n], it follows that

γn(φ;λ) = O

(√
n/λ

(
1 + log

(
1 +M2

√
n

λ

)))
.
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The Bregman divergence satisfies

Breg(H0, Hn) = log det(H−10 Hn) + tr(H−1n (H0 −Hn))

=

∞∑
m=1

(
log
(

1 +
nαm
2πλ

)
− 1 +

1

1 + nαm
2πλ

)
= Ω(

√
n/λ) ,

where we used the fact that x 7→ log(1 + x)− 1 + 1/(1 + x) is non-negative for x ≥ 0 and larger
than 0.19 for x ≥ 1. Therefore, using that x 7→ x2/(λ+ x) is increasing for positive x and λ,

E

[
〈θ̂ − θ?, v〉2

‖v‖2
D−1
n

]
≥ Breg(H0, Hn)2

λ+ Breg(H0, Hn)
− 1 = Ω

(
n/λ

λ+
√
n/λ

)

So, by Theorem 3, whenever λ = O(n1/3) the (normalised) risk of the ridge regression estimator
satisfies for θ? = 0,

E

[
〈θ̂ − θ?, v〉2

‖v‖2
D−1
n

]
= Ω(

√
n/λ) = Ω

(
γn(φ;λ)

log poly(n, 1/λ)

)
.

Appendix E. Covering arguments

Let us explain briefly the errors in the covering arguments by Lattimore and Szepesvári (2017)
and Tirinzoni et al. (2020). Both works erroneously assume that if x, y ∈ Rd satisfy |x| ≤ |y|
coordinate-wise, then ‖x‖V ≤ ‖y‖V for some positive-definite matrix V . Lattimore and Szepesvári
(2017) use this implicitly when they argue the existence of a particular cover in the proof of their
Theorem 8. Tirinzoni et al. (2020) use it explicitly in inequality (d) on page 49.
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