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Abstract
We consider a decision maker allocating one unit of renewable and divisible resource in each period
on a number of arms. The arms have unknown and random rewards whose means are proportional
to the allocated resource and whose variances are proportional to an order b of the allocated re-
source. In particular, if the decision maker allocates resource Ati ∈ [0, 1] to arm i ∈ [K] in period
t, then the reward Yti is Yti(Ati) = Atiµi + Ab

tiξti, where µi is the unknown mean, the noise ξti
is independent and sub-Gaussian, and b reflects the signal-to-noise (SNR) ratio. When the order
b ranges from 0 to 1, the framework smoothly bridges the standard stochastic multi-armed bandit
problem and online learning with full feedback.

Developing theories upon the framework, this paper makes the following contributions to the
literature. First, we develop two algorithms for the problem, inspired by the design principles of
successive elimination and ϵ-greedy algorithms, for the gap-independent and gap-dependent regret,
respectively. We show that the algorithms attain the optimal rate of gap-independent and gap-
dependent regret for b ∈ (0, 1). (See the following table for the regret rates.) The regret leads to
a number of interesting findings. (1) the regret displays completely different behavior for b ≤ 1/2
and b > 1/2 and thus phase transition at b = 1/2. (2) the gap-dependent regret is O(log T ) for
b ≤ 1/2 and finite for b > 1/2. For the gap-independent bound, a larger b > 1/2 reduces the
regret in terms of the order of K but not T . (3) the regret smoothly bridges that of SMAB for
small SNR (0 ≤ b ≤ 1/2) and that of online learning with full feedback for large SNR (b = 1).
Second, in the theoretical analysis, we establish a novel concentration inequality that bounds a
linear combination of sub-Gaussian random variables whose weights are fractional, adapted to the
filtration, and monotonic. The concentration result has not been discovered in the literature and
could be of independent interest. 1
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