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Abstract
We consider the randomized communication complexity of the distributed ℓp-regression problem
in the coordinator model, for p ∈ (0, 2]. In this problem, there is a coordinator and s servers. The
i-th server receives Ai ∈ {−M,−M +1, . . . ,M}n×d and bi ∈ {−M,−M +1, . . . ,M}n and the
coordinator would like to find a (1+ ε)-approximate solution to minx∈Rn ∥(

∑
i A

i)x− (
∑

i b
i)∥p.

Here M ≤ poly(nd) for convenience. This model, where the data is additively shared across
servers, is commonly referred to as the arbitrary partition model.

We obtain significantly improved bounds for this problem. For p = 2, i.e., least squares
regression, we give the first optimal bound of Θ̃(sd2 + sd/ϵ) bits.

For p ∈ (1, 2), we obtain an Õ(sd2/ε+ sd/poly(ε)) upper bound. Notably, for d sufficiently
large, our leading order term only depends linearly on 1/ϵ rather than quadratically. We also show
communication lower bounds of Ω(sd2 + sd/ε2) for p ∈ (0, 1] and Ω(sd2 + sd/ε) for p ∈ (1, 2].
Our bounds considerably improve previous bounds due to (Woodruff et al. COLT, 2013) and (Vem-
pala et al., SODA, 2020).

1. Introduction

Regression is a lightweight machine learning model used to capture linear dependencies between
variables in the presence of noise. In this problem there is a (sometimes implicit) matrix A ∈ Rn×d

and a vector b ∈ Rn and the goal is to find a hyperplane x ∈ Rd for which ∥Ax − b∥ is small for
some loss function ∥ · ∥, which throughout this paper will be a norm. Here A is known as the design
matrix, b the response vector, and x the model parameters. We focus on the over-constrained case,
when n ≫ d, which corresponds to having many more examples than features. Although more
sophisticated models can often achieve lower error, regression is often the most computationally
efficient and the first model of choice.

One of the most popular loss functions is the ℓp-norm, or equivalently its p-th power ∥y∥pp =∑n
i=1 |yi|p. When p = 2 this is least squares regression, which corresponds to the maximum

likelihood estimator (MLE) in the presence of Gaussian noise. When the noise is more heavy-tailed,
often p < 2 is chosen as the loss function since it is more robust to outliers. Indeed, since one is not
squaring the differences, the optimal solution pays less attention to large errors. For example, p = 1
gives the MLE for Laplacian noise. While p < 1 results in non-convex loss functions, heuristics are
still used given its robustness properties. When p > 2, the loss function is even more sensitive to
outliers; it turns out that such p cannot be solved without incurring a polynomial dependence on n
in the communication model we study, see below, and so our focus will be on p ≤ 2.
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It is often the case that data is either collected or distributed across multiple servers and then
a key bottleneck is the communication complexity, i.e., the number of bits transmitted between the
servers for solving a problem. We consider the standard coordinator model of communication, also
known as the message-passing model, in which there is a site designated as the coordinator who
has no input, together with s additional sites, each receiving an input. There is a communication
channel between the coordinator and each other server, and all communication goes through the
coordinator. This model is convenient since it captures arbitrary point-to-point communication up
to small factors, i.e., if server i wants to send a message to server j, server i can first send the
message to the coordinator and then have it forwarded to server j. We note that in addition to the
total communication, it is often desirable to minimize the time complexity on each server, and the
protocols in this paper will all be time-efficient.

A natural question in any communication model is how the input is distributed. We study the
arbitrary partition model of (Kannan et al., 2014; Boutsidis et al., 2016), which was studied for the
related task of low rank approximation. In this model, the i-th server receives Ai ∈ {−M,−M +
1, . . . ,M}n×d and bi ∈ {−M,−M +1, . . . ,M}n and the coordinator would like to find a (1+ ε)-
approximate solution to minx∈Rn ∥(

∑
iA

i)x − (
∑

i b
i)∥p. Here M ≤ poly(nd) for convenience.

Note that this model gives more flexibility than the so-called row partition model in which each
example and corresponding response variable is held on exactly one server, and which is a special
case of the arbitrary partition model. For example, if each row i of A corresponds to an item and
each column j to a user and an entry Ai,j corresponds to the number of times user i purchased item j,
then it might be that each server t is a different shop where the user could purchase the item, giving a
value At

i,j , and we are interested in
∑s

t=1A
t
i,j , i.e., the matrix which aggregates the purchases across

the shops. This communication model is also important for turnstile streaming where arbitrary
additive updates are allowed to an underlying vector (Muthukrishnan, 2005), as low-communication
protocols often translate to low memory streaming algorithms, while communication lower bounds
often give memory lower bounds in the streaming model. The number of communication rounds
often translates to the number of passes in a streaming algorithm. See, e.g., (Boutsidis et al., 2016),
as an example of this connection for low rank approximation. We note that for p > 2, there is an
Ω(n1−2/p) lower bound in the arbitrary partition model even for just estimating the norm of a vector
(Bar-Yossef et al., 2004; Gronemeier, 2009; Jayram, 2009), and so we focus on the p < 2 setting.

The communication complexity of approximate regression was first studied in the coordinator
model in the row partition model in (Woodruff and Zhang, 2013), though their protocols for 1 ≤
p < 2 use Õ(sd2+γ + d5 + d3+p/ε2) communication, where Õ(f) suppresses a poly(log(sdn/ε))
factor. These bounds were later improved in the coordinator model and in the row partition model
in (Vempala et al., 2020), though the bounds are still not optimal, i.e., their lower bounds do not
depend on ε, are suboptimal in terms of s, or hold only for deterministic algorithms. Their upper
bounds also crucially exploit the row partition model, and it is unclear how to extend them to the
arbitrary partition model. We will substantially improve upon these bounds.

Despite the previous work on understanding the communication complexity of a number of
machine learning models (see, e.g., (Vempala et al., 2020) and the references therein), perhaps
surprisingly for arguably the most basic task of regression, the optimal amount of communication
required was previously unknown.

Our Results We obtain a lower bound of Ω(sd2 + sd/ε2) for p ∈ (0, 1] and a lower bound of
Ω(sd2 + sd/ε) for p ∈ (1, 2], both of which improve the only known lower bound of Ω̃(d2 + sd)
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Communication
0 < p < 2 Upper Bound Õ(sd2/ε2) Folklore
p = 2 Upper Bound Õ(sd2/ε) (Clarkson and Woodruff, 2009)

0 < p ≤ 2 Lower Bound Ω(d2 + sd) (Vempala et al., 2020)
p = 1 Upper Bound∗ Õ(min(sd2 + d2

ε2
, sd

3

ε )) (Vempala et al., 2020)
p = 2 Upper Bound∗ Õ(sd2) (Vempala et al., 2020)

1 ≤ p < 2 Upper Bound∗ Õ(sd2+γ + d5 + d3+p/ε2) (Woodruff and Zhang, 2013)
0 < p ≤ 1 Lower Bound Ω(sd2 + sd/ε2) Theorem 13, 16
1 < p ≤ 2 Lower Bound Ω(sd2 + sd/ε) Theorem 13, 16
1 < p < 2 Upper Bound Õ(sd2/ε+ sd/poly(ε)) Theorem 20
p = 2 Upper Bound Õ(sd2 + sd/ε) Theorem 17

Table 1: Summary of the results for the distributed ℓp regression problem. ∗ denotes row partition
model. The upper bound in the first row uses a median sketch of the p-stable distribution,
which is time-inefficient (see, e.g. Backurs et al., 2015, Section F.1).

by (Vempala et al., 2020). We strengthen their d2 lower bound by a multiplicative factor of s and
incorporate the dependence on ε into their sd lower bound.

When p = 2, we obtain an upper bound of Õ(sd2+ sd/ε) bits, which matches our lower bound
up to logarithmic factors. The total runtime of the protocol is O(

∑
i nnz(A

i)+spoly(d/ε)), which
is optimal in terms of nnz(Ai). Here for a matrix A, nnz(A) denotes the number of non-zero entries
of A. Our results thus largely settle the problem in the case of p = 2.

When p ∈ (1, 2), we obtain an upper bound of Õ(sd2/ε + sd/poly(ε)) bits with a runtime
of O(

∑
i nnz(A

i)(d/εO(1)) + spoly(d/ε)). Note that if the Õ(sd2/ε) term dominates, then our
upper bound is optimal up to a 1/ε factor due to our lower bound. Interestingly, this beats a folklore
sketching algorithm for which each server sketches their input using a shared matrix of p-stable
random variables with Õ(d/ε2) rows, sends their sketch to the coordinator with Õ(sd2/ε2) total
communication, and has the coordinator add up the sketches and enumerate over all x to find the
best solution (see, e.g., Appendix F.1 of (Backurs et al., 2015) for a proof of this for p = 1).
Moreover, our algorithm is time-efficient, while the sketching algorithm is not. In fact, any sketch
that solves the harder problem of computing an ℓp-subspace embedding requires poly(d) distortion
(Wang and Woodruff, 2019) or has an exponential dependence on 1/ε (Li et al., 2021). We further
show that if the leverage scores of [A b] are uniformly small, namely, at most poly(ε)/d4/p, then
our runtime can be improved to O(

∑
i nnz(A

i) + spoly(d/ε)), which is now optimal in terms of
nnz(A), with the same amount of communication. Along the way we prove a result on embedding
d-dimensional subspaces in ℓnp to ℓr for 1 < r < p, which may be of independent interest.

Open Problems We leave several intriguing questions for future work.
First, it would be good to close the gap in our upper and lower bounds as a function of ε for

p < 2. For 1 < p < 2, if poly(1/ε) < d then our bounds are off by a 1/ε factor, namely, our upper
bound is Õ(sd2/ε), but our lower bound is Ω(sd2).

Second, the nnz term in our runtime in general has a multiplicative factor of d/poly(ε). This is
mainly due to the use of a dense matrix for the lopsided subspace embedding of ℓnp into ℓr, and it is
interesting to see whether there are sparse lopsided subspace embeddings of ℓnp into ℓr.
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1.1. Our Techniques

Lower Bounds We first demonstrate how to show an Ω(sd/ε2) lower bound for p ∈ (0, 1] and an
Ω(sd/ε) lower bound for p ∈ (1, 2].

Let us first consider the special case of d = 1. Consider the ℓp regression problem minx∈R ∥a ·
x − b∥p, where a and b are uniformly drawn from {−1, 1}n. The crucial observation is that the
solution x reveals the Hamming distance ∆(a, b). Specifically, when n = Θ(1/ε2), a (1 ± ε)-
solution when 0 < p ≤ 1 and (1 ± ε2)-solution when 1 < p ≤ 2 suffice for us to solve the Gap-
Hamming communication problem (GHD) of a and b (determining ∆(a, b) ≥ c

√
n or ∆(a, b) ≤

−c
√
n). The GHD problem has an Ω(n) information cost lower bound (Braverman et al., 2016),

which implies, by our choice of n, an Ω(1/ε2) lower bound for p ∈ (0, 1] and an Ω(1/ε) lower
bound for p ∈ (1, 2].

To gain the factor of s, we design a distributed version of GHD, the s-GAP problem, as follows.
There are 2s players. Each of the first s players holds a vector ai ∈ {−1, 1}n and each of the
remaining players holds a bi ∈ {−1, 1}n, with the guarantee that

∑
i a

i = a and
∑

i b
i = b. The 2s

players and the coordinator will collectively determine the two cases of ∆(a, b). Our goal is to show
an Ω(sn) lower bound for this communication problem. To this end, we employ the symmetrization
technique that was used in (Phillips et al., 2016). Specifically, Alice simulates a random player and
Bob the remaining s− 1 players. As such, Bob will immediately know the whole vector b and part
of the vector a (denote the set of these indices by I). As we will show in the proof, to determine the
distance ∆(a, b), Alice and Bob still need to approximately determine ∆(aIc , bIc), which requires
Ω(|Ic|) = Ω(n) communication. Note that the input distribution of each player is the same and
Alice is choosing a random player. Hence, Alice’s expected communication to Bob is at most
O(χ/s) bits if s-GAP can be solved using χ bits of communication, which yields a lower bound of
Ω(sn) bits for the s-GAP problem.

So far we have finished the proof for d = 1. To obtain a lower bound for general d, we use a
padding trick. Consider A = diag(a1, . . . , ad) and let b be the vertical concatenation of b1, . . . , bd,
where each pair (ai, bi) is drawn independently from the hard distribution for d = 1. One can imme-
diately observe that minx ∥Ax− b∥pp =

∑
iminxi ∥aixi− b∥pp and show that approximately solving

minx ∥Ax−b∥pp can approximately solve a constant fraction of the d subproblems minxi ∥aixi−b∥
p
p.

This further adds an O(d) factor to the lower bound.
Next we discuss the Ω(sd2) lower bound. We shall follow the idea of (Vempala et al., 2020) and

construct a set of matricesH ⊆ {−1, 1}d×d with a vector b ∈ Rd such that (i) A is non-singular for
all A ∈ H, (ii) A−1b ̸= B−1b for all A,B ∈ H and A ̸= B and (iii) |H| = 2Ω(d2). The conditions (i)
and (ii) mean that a constant-factor approximation to minx ∥Ax−b∥pp is exact, from which the index
of A in the setH can be inferred. Condition (iii) then implies an Ω(d2) lower bound for solving the
regression problem up to a constant factor. To gain a factor of s, we consider the communication
game where the i-th player receives a matrix Ai ⊆ {−1, 1}d×d with the guarantee that A =

∑
iA

i

is distributed inH uniformly. Then the s players with the coordinator want to recover the index of A
in H. We consider a similar symmetrization technique. However, the issue here is if Bob simulates
s − 1 players, he will immediately know roughly a 1

2 fraction of coordinates of A, which can help
him to get the index of A in H. To overcome this, we choose a different strategy where Alice
simulates two (randomly chosen) players and Bob simulates the remaining s − 2 players. In this
case Bob can only know a 1

4 -fraction of the coordinates without communication. However, one new
issue here is Bob will know partial information about the remaining coordinates. But, as we shall
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ℓp-REGRESSION IN THE ARBITRARY PARTITION MODEL OF COMMUNICATION

show in the proof, even when conditioned on Bob’s input on s − 2 players, with high probability
the entropy of the remaining coordinates is still Ω(d2). This implies that Alice still needs to send
Ω(d2) bits to Bob, which yields an Ω(sd2) lower bound for the original problem.

Upper Bounds For the ℓp-regression minx ∥Ax − b∥p, a classical “sketch-and-solve” approach
is to use a (1 + ε)-subspace embedding S for B = [A b] ∈ Rn×(d+1) and reduce the problem
to solving minx ∥SAx − Sb∥p, which is of much smaller size. The subspace embedding is non-
oblivious and obtained by subsampling Õ(d/ε2) rows of B with respect to the Lewis weights of
B (Cohen and Peng, 2015). More recently, it was shown that sampling Õ(d/ε) rows according to
the Lewis weights is sufficient for solving ℓp-regression (Musco et al., 2022; Chen et al., 2022),
instead of Õ(d/ε2) rows needed for an ℓp-subspace embedding. However, computing the Lewis
weights is expensive and would incur a communication cost as well as a runtime at least linear in n,
which is prohibitive in our setting.

Instead of embedding an ℓp-subspace into ℓp, we (1+ε)-embed an ℓp-subspace into ℓr for some
1 < r < p. Furthermore, since we are solving a regression problem, we do not need a conventional
subspace embedding but only a lopsided one; that is, the map S must not contract ∥Ax − b∥p for
all x simultaneously but it is required not to dilate ∥Ax∗ − b∥p for only the optimal solution x∗.
We show that an S of i.i.d. p-stable variables and O(d log d/poly(ε)) rows suffices (see Lemma 18
for the formal statement). Such a lopsided subspace embedding for embedding a subspace of ℓnp
into ℓr, to the best of our knowledge, has not appeared in the literature1 and may be of independent
interest. This lopsided subspace embedding reduces the ℓp regression problem to an ℓr-regression
problem of Õ(d/poly(ε)) rows. Importantly though, we do not need to ever explicitly communicate
these rows in their entirety. Namely, we can leave the regression problem in an implicit form and
now run a Lewis weight approximation algorithm, and since our effective n has been replaced with
d/poly(ε), we just need d/poly(ε) communication to iteratively update each of the weights in the
Lewis weight algorithm, rather than n communication.

For the ℓ2-regression problem, it is known that a (1+
√
ε)-subspace embedding can yield a (1+

ε)-approximate solution (see, (Bourgain and Nelson, 2013), also the [Woo14] reference therein) and
so the subspace embedding S needs only to have O(d(log d)/ε) rows. The servers then run gradient
descent on the sketched version minx ∥SAx − Sb∥2. To ensure fast convergence in O(log(1/ε))
iterations, the servers will instead solve minx ∥SARx−Sb∥2, where R is a pre-conditioner to make
SAR have a constant condition number. Putting these pieces together leads to our near-optimal
communication and runtime.

2. Preliminaries

ℓ2 Subspace Embeddings. For a matrix A ∈ Rn×d, we say a matrix S ∈ Rm×n is a (1 ± ε)-ℓ2
subspace embedding for the column span of A if (1 − ε)∥Ax∥2 ≤ ∥SAx∥2 ≤ (1 + ε)∥Ax∥2 for
all x ∈ Rd with probability at least 1 − δ. We summarize the subspace embeddings we use in this
paper below:

• Count-Sketch: m = O(d2/(δε2)) with s = 1 non-zero entry per column, with each non-
zero entry in {−1, 1} (Clarkson and Woodruff, 2017). Computing SA takes only O(nnz(A))
time.

1. We note that the works of (Pisier, 1983; Friedland and Guédon, 2011) consider embedding the entire space ℓnp into
ℓr instead of embedding a low-dimensional subspace of ℓnp into ℓr .
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• OSNAP: m = O((d log(d/δ))/ε2) and has s = O((log(d/δ))/ε) non-zeros per column,
with each non-zero entry in {−1, 1} (Nelson and Nguyên, 2013; Cohen, 2016). Computing
SA takes O(s · nnz(A)) = O(nnz(A)(log(d/δ)/ε)) time.

p-stable Distributions. Our protocol for distributed ℓp regression will use p-stable distributions,
which are defined below.

Definition 1 (Zolotarev (1986)) For 0 < p < 2, there exists a probability distribution Dp called
the p-stable distribution, which satisfies the following property. For any positive integer n and
vector x ∈ Rn, if Z1, . . . , , Zn ∼ Dp are independent, then

∑n
j=1 Zjxj ∼ ∥x∥pZ for Z ∼ Dp.

Lewis Weights. Below we recall some facts about Lewis weights. For more details, we refer the
readers to, e.g., (Clarkson et al., 2019, Section 3.3).

Definition 2 Given a matrix A ∈ Rn×d. The leverage score of a row Ai,∗ is defined to be τi(A) =
Ai,∗(A

TA)†(Ai,∗)
T .

Definition 3 (Cohen and Peng (2015)) For a matrix A ∈ Rn×d, its ℓp-Lewis weights {wi}ni=1 are
the unique weights such that wi = τi(W

1/2−1/pA) for each i ∈ [n]. Here τi is the leverage score of
the i-th row of a matrix and W is the diagonal matrix whose diagonal entries are w1, . . . , wn.

The Lewis weights are used in the construction of randomized ℓp-subspace embeddings. In
particular, the rescaled sampling matrix w.r.t. Lewis weights gives an ℓp-subspace embedding.

Definition 4 Given p1, . . . , pn ∈ [0, 1] and p ≥ 1, the rescaled sampling matrix S with respect
to p1, . . . , pn is a random matrix formed by deleting all zero rows from a random n × n diagonal
matrix D in which Di,i = p

−1/p
i with probability pi and Di,i = 0 with probability 1− pi.

Lemma 5 (Lewis weight sampling, Cohen and Peng (2015)) Let A ∈ Rn×d and p ≥ 1. Choose
an oversampling parameter β = Θ(log(d/δ)/ε2) and sampling probabilities p1, . . . , pn such that
min{βwi(A), 1} ≤ pi ≤ 1 and let S be the rescaled sampling matrix with respect to p1, . . . , pn.
Then it holds with probability at least 1 − δ that (1 − ε)∥Ax∥p ≤ ∥SAx∥p ≤ (1 + ε)∥Ax∥p (i.e.,
S is an ε-subspace embedding for A in the ℓp-norm) and S has O(β

∑
iwi(A)) = O(βd) rows.

Cohen and Peng (2015) give an iterative algorithm (Algorithm 1) which computes the Lewis
weights time-efficiently for p < 4.

Lemma 6 (Cohen and Peng (2015)) Suppose that p < 4 and β = Θ(1). After T = log log(n)
iterations in Algorithm 1, w is a constant approximation to the ℓp Lewis weights.

3. Distributed ℓp-Regression Lower Bound

We consider the following variant of the Gap-Hamming problem (GHD).
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1. Initialize w = 1 ∈ Rn.
2. For t = 1, 2, . . . , T

(a) Let τ ∈ Rn be a β-approximation of the leverage scores of W 1/2−1/pA.
(b) Set wi ← (w

2/p−1
i τi)

p/2.
3. Return w.

Algorithm 1: Iterative Algorithm to Compute the ℓp Lewis Weights

Gap-Hamming Problem. In the Gap-Hamming problem (GHDn,c), Alice and Bob receive binary
strings x and y, respectively, which are uniformly sampled from {−1, 1}n. They wish to decide
which of the following two cases ∆(x, y) =

∑n
i=1 xiyi falls in: ∆(x, y) ≥ c

√
n or ∆(x, y) ≤

−c
√
n, where c is a constant. (If ∆(x, y) is between−c

√
n and c

√
n, an arbitrary output is allowed.)

Lemma 7 (Braverman et al. (2016)) If there is a protocol Π which solves GHDn,c with large
constant probability, then we have I(x, y; Π) = Ω(n), where I denotes mutual information and the
constant hidden in the Ω-notation depends on c.

3.1. s-GAP problem

In this section, we will define the s-GAP problem and then prove an Ω(sn) lower bound.

Definition 8 In the s-GAP problem, there are 2s players, where for the first s players, the i-th
player receives an n-bit string ai ∈ {−1, 1}n, and for the remaining s players, the i-th player
receives an n-bits string bi ∈ {−1, 1}n, with the guarantee that a =

∑
i a

i ∈ {−1, 1}n, b =∑
i b

i ∈ {−1, 1}n and ∆(a, b) ∈ [−c2
√
n, c2
√
n]. The 2s players want to determine if ∆(a, b) ≥

c1
√
n or ∆(a, b) ≤ −c1

√
n. Here c1 < c2 are both constants. (Similarly, if ∆(a, b) is between

−c1
√
n and c1

√
n, an arbitrary output is allowed).

To prove the Ω(sn) lower bound, we use a similar symmetrization augment as in (Phillips et al.,
2016) and reduce to the GHD problem. For the reduction, we consider s = 4t + 2 for simplicity,
and without loss of generality by padding, and consider the following distribution µ for the inputs
aji for players j = 1, 2, . . . , 2t + 1. Choose a uniformly random vector a ∈ {−1, 1}n. For each i,
if ai = 1, we place (t + 1) bits of 1 and t bits of −1 randomly among the 2t + 1 players in this
coordinate; if ai = −1, we place t bits of 1 and (t+1) bits of−1 randomly among the 2t+1 players.
We remark that under this distribution, each player’s inputs are drawn from the same distribution,
and each coordinate of each player is 1 with probability 1/2 and −1 with probability 1/2. The
distribution of bji is the same as that of aji for players j = 2t+ 2, . . . , 4t+ 2.

Theorem 9 Any protocol that solves the s-GAP problem with large constant probability requires
Ω(sn) bits of communication.

Proof We reduce the s-GAP problem to the GHD problem using a similar symmetrization argument
to that in (Phillips et al., 2016). Alice picks a random number i ∈ [2t+ 1] uniformly and simulates
the i-th player. Bob simulates the remaining s−1 players. We shall show that if there is an s-player
protocol solving the s-GAP problem, then the coordinator will be able to solve the GHD problem on
a constant fraction of the input vectors a and b, which requires Ω(n) bits of communication. Note
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that the input distribution of each player is the same and Alice is choosing a random player. Hence,
Alice’s expected communication to Bob is at most O(χ/s) bits if the s-GAP problem can be solved
using χ bits of communication, which yields a lower bound of Ω(sn) bits for the s-GAP problem.

We first consider Bob’s information when he simulates s−1 players. He knows each coordinate
of b directly. Consider a coordinate of a. If the sum of Bob’s s − 1 bits on this coordinate is 2
or −2, then he knows Alice’s bit on this coordinate immediately, as their sum should be 1 or −1;
while if Bob’s sum is 0, he has zero information about Alice’s bit on this coordinate. By a simple
computation, we obtain that Bob’s sum is 2 or −2 with probability t

2t+1 and is 0 with probability
t+1
2t+1 . From a Chernoff bound, we see that with probability at least 1 − e−Ω(n), Bob learns at most
3
5n coordinates of a. Let I denote the set of remaining indices. Then |I| ≥ 2n

5 . We will show that
Alice and Bob can solve GHD on aI and bI by simulating the protocol for the s-GAP problem.

Consider ∆(aJ , bJ) for J = [n] \ I . With probability at least 99/100, it will be contained in
[−c1

√
|J |, c1

√
|J |], where c1 is a sufficiently large absolute constant. Conditioned on this event, we

have that whether the distance ∆(aI , bI) ≥ c2
√
|I| or ∆(aI , bI) ≤ −c2

√
|I| will decide whether

∆(a, b) ≥ c3
√
n or ∆(a, b) ≤ −c3

√
n, where c2, c3 > 0 are appropriate constants (recall that

we have |I| ≥ 2
5n and |J | ≤ 3

5n). This means that, by simulating a 2s-player protocol for the
s-GAP problem, Alice and Bob can solve the GHD|I|,c2 problem on aI and bI , which requires
Ω(|I|) = Ω(n) bits of communication.

Corollary 10 Any protocol that solves m independent copies of the s-GAP problem with high con-
stant probability requires Ω(snm) bits of communication.

Proof Similar to the proof of Theorem 9, Alice and Bob in this case need to solve m independent
copies of GHD. The direct sum theorem (Chakrabarti et al., 2001; Bar-Yossef et al., 2004) states that
if the information cost of solving a communication problem with probability 2/3 is f , then the infor-
mation cost of solving m independent copies of the same communication problem simultaneously
with probability at least 2/3 is Ω(mf). Since the information cost implies a communication lower
bound, it follows from Lemma 7 and the direct sum theorem that Ω(knm) bits of communication
are required.

3.2. Ω(sd/ε2) and Ω(sd/ε) Lower Bounds

In this section, we will show an Ω(sd/ε2) lower bound for the ℓp-regression problem when 0 < p ≤
1 and an Ω(sd/ε) lower bound when 1 < p ≤ 2.

For simplicity, we first consider the case of d = 1 and will later extend the result to general d.
Consider the same input distribution as in Definition 8 with n = 1/ε2, and for which the 2s players
want to compute a (1 + ε)-approximate solution to the ℓp regression problem

argmin
x∈R

∥ax− b∥pp . (1)

In the lemma below, we shall show that using a (1 + ε)-approximate solution for the ℓp-
regression problem (1), the players can distinguish the two cases to the s-GAP problem for the
vectors a and b, which implies an Ω(s/ε2) lower bound. The proof, analogous to that of (Musco
et al., 2022, Theorem 12.2), analyzes an objective of the form r|1 − x|p + (n − r)|1 + x|p for
r = (n+∆(a, b))/2 and is postponed to Appendix A.
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Lemma 11 Suppose that p ∈ (0, 2], n = Θ(1/ε2), and a and b are the vectors drawn from the
distribution in Definition 8. Let η = ε when p ∈ (0, 1] and η = ε2 when p ∈ (1, 2]. Then, any x̃
such that ∥ax̃−b∥pp ≤ (1+η)minx∈R ∥ax−b∥pp can be used to distinguish whether ∆(a, b) ≥ c

√
n

or ∆(a, b) ≤ −c
√
n, where c is an absolute constant.

Combining this lemma with Theorem 9 yields the desired lower bound for the distributional
regression problem with d = 1.

Lemma 12 Suppose that d = 1 and ε > 0. Then any protocol that computes a (1+ε)-approximate
solution to the s-server distributional ℓp-regression problem in the message passing model with
high constant probability requires Ω(s/ε2) bits of communication for p ∈ (0, 1] and Ω(s/ε) bits of
communication for p ∈ (1, 2].

We now extend the lower bound to general d via a padding argument. Suppose that a1, a2, . . . , ad
and b1, b2, . . . , bd are d independent samples drawn from the same distribution as defined in Defini-
tion 8 with n = Θ(1/ε2). We form a matrix A ∈ RO(d/ε2)×d and a vector b ∈ RO(d/ε2) as

A =


a1

a2
. . .

ad

 , b =


b1
b2
...
bd

 .

It then follows that

min
x∈Rd

∥Ax− b∥pp =
d∑

i=1

min
xi∈R
∥aixi − bi∥pp.

We then make the following observation. If x ∈ Rd is a (1+ε)-approximate solution of minx ∥Ax−
b∥pp, then there must exist a constant fraction of the indices i ∈ [d] such that xi is a (1 + O(ε))-
approximate solution to the regression problem minxi∈R ∥aixi− bi∥pp (recall that we have the guar-
antee that ∆(ai, bi) ∈ [−c2

√
n, c2
√
n] for all i, and hence the objective values for each regression

problem are within a constant factor). This means that from the signs of these xi, we can solve a
constant fraction of the d independent copies of the s-GAP problem, which implies the following
theorem immediately.

Theorem 13 Suppose that ε > 1√
n

for p ∈ (0, 1] and ε > 1
n for p ∈ (1, 2]. Then any protocol that

computes a (1 + ε)-approximate solution to the s-server distributional ℓp-regression problem with
d columns in the message passing model with large constant probability requires Ω(sd/ε2) bits of
communication for p ∈ (0, 1] and Ω(sd/ε) bits of communication for p ∈ (1, 2].

3.3. Ω(sd2) Lower Bound for p ∈ (0, 2]

In this section, we present an Ω(sd2) lower bound for 0 < p ≤ 2. We first describe the intuition
behind our lower bound. Following (Vempala et al., 2020), we construct a set of matricesH ⊆ Rd×d

with a vector b ∈ Rd such that (i) T is non-singular for all T ∈ H, and (ii) S−1b ̸= T−1b for all
S, T ∈ H and S ̸= T . Then we uniformly sample a matrix A ∈ H and show that we can obtain
the index of A in the set H from a constant-factor approximate solution to the regression problem
min ∥Ax − b∥pp. This will imply an Ω(d2) lower bound even for s = 2. The construction of H is
given in the following lemma.

9
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Lemma 14 For every sufficiently large d, there exists a set of matrices H ⊆ {−1, 1}d×d with
|H| = Ω(20.49d

2
) such that (i) T is non-singular for all T ∈ H, and (ii) for all distinct S, T ∈ H,

S−1ed ̸= T−1ed, where ed is the d-th standard basis vector.

We remark that in (Vempala et al., 2020), Lemma 14 was only shown for the case where t > 1,
|H| = Ω(t1/6d

2
) and the matrix entries are integers in [−t, t]. However, using the singularity prob-

ability of random matrices in {−1,+1}d×d and following a similar argument to (Vempala et al.,
2020), we can obtain the desired bounds in Lemma 14. The detailed proof can be found in Ap-
pendix B. Note that the construction procedure of the set is close to random sampling – uniformly
sample Ω(20.49d

2
) matrices and remove a small fraction. This property will be crucial to our proof.

To achieve an Ω(sd2) lower bound for s players, we consider the same input distribution for the
s players in Lemma 7 and employ a similar symmetrization argument. After sampling matrices in
H, we construct the inputs of the s players to be matrices in {−1,+1}d×d with the sum being A.
However, if we follow the same argument and let Bob simulate s − 1 = 2t players, in expectation
he will know a t

2t+1 ≈
1
2 fraction of the entries of A, and from the construction of the set |H|

we know that there will be only O(1) matrices in H satisfying the conditions on such entries.
Hence, Alice only needs to send O(1) bits of information to Bob. To solve this issue, we make the
following modification. Instead, we let Alice simulate 2 players, and Bob simulates the remaining
s − 2 = 2t − 1 players. In this case, Bob will know roughly a 1/4-fraction of the entries directly;
however, for the remaining entries, he will know side information. Roughly speaking, for Aij , if
Bob’s sum over the s − 2 players is 1, with probability roughly 2/3, Aij is 1; if his sum over the
k − 2 players is −1, with probability roughly 2/3, Aij is −1. We shall show that even having such
side information, with high probability the conditional entropy of the remaining entries of A is still
Ω(d2), which implies that Alice still needs to send Bob Ω(d2) bits.

Lemma 15 Consider the following game of s = 2t + 1 players, where the i-th player receives a
d× d-matrix Ai such that Ai ⊆ {−1, 1}d×d with the guarantee that A =

∑
iA

i is distributed inH
uniformly. The s players want to determine collectively the index of the matrix A inH. Any protocol
which solves this problem with large constant probability requires Ω(sd2) bits of communication.

Proof We first describe the input distribution of each player. Suppose that matrix A has been
sampled from H. For each coordinate (i, j), if Aij = 1, we place (t+ 1) bits of 1 and t bits of −1
randomly among the 2t + 1 players’ inputs for coordinate j; if Aij = −1, we place t bits of 1 and
t + 1 bits of −1. Similarly, under this distribution, each player’s inputs are drawn from the same
distribution.

We then use symmetry and let Alice simulate two random players, and Bob simulates the re-
maining s− 2 = 2t− 1 players. Consider first Bob’s information when he simulates 2t− 1 players.
Via a simple computation we can get that for each coordinate, with probability t−1

4t+2 Bob’s sum will
be 3 or −3, in which case he will know Aij immediately. If Bob’s sum is 1, he will get that Aij = 1
with probability 2

3 and Aij = −1 with probability 1
3 ; if Bob’s sum is −1, he will get that Aij = −1

with probability 2
3 and Aij = 1 with probability 1

3 . It follows from a Chernoff bound that with
probability 1− exp(−d2), Bob obtains the exact information of at most 0.26d2 coordinates and has
partial information about the remaining coordinates. For the remainder of the proof we assume this
event happens.

Let S denote the subset of H which agrees on the above 0.26d2 coordinates. From the con-
struction of H we get that with at least constant probability |S| = Ω(20.2d

2
). Condition on this

10
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event. For simplicity, next we only consider the matrix in S and treat it as an ℓ-dimensional vector
after removing the known 0.26d2 coordinates, where ℓ = 0.74d2. Let Y denote Bob’s sum vec-
tor. We shall show that the conditional entropy H(A | Y ) remains Ω(d2), and hence by a standard
information-theoretic argument, Alice must still send Ω(d2) bits to Bob to identify the index of the
matrix in S. From this, we get an Ω(sd2) lower bound on the protocol for the original problem.

By a Chernoff bound, with probability 1− exp(−d2), the Hamming distance between A and Y
is within 1

3ℓ ± 0.01d2. We condition on this in the remainder of the proof. We now turn to bound
the number of matrices in S which have a Hamming distance of 1

3ℓ from Y . For each matrix B,
from the construction of H we know that each coordinate of B is the same as the corresponding
coordinate of A with probability 1/2. Hence, the probability that B has Hamming distance 2

3ℓ from
A is (using Stirling’s formula)(

ℓ
2
3ℓ

)
· 2−ℓ ≃ 1

ℓ
· 3ℓ

2
2
3
ℓ
· 2−ℓ =

3ℓ

ℓ 2
5
3
ℓ
.

Hence, the expected number of such B is

|S| · 3ℓ

ℓ2
5
3
ℓ
> 20.2d

2 · 3ℓ

ℓ2
5
3
ℓ
≥ (1.101)d

2
.

From a Chernoff bound we know that with probability at least 1− exp(−d2), the number of B ∈ S
for which B has a Hamming distance 1

3ℓ from Y is at least (1.10)d
2
.

We next turn to show that when conditioned on the event above, it is enough to show that the
conditional entropy H(A | Y ) satisfies H(A | Y ) = Ω(d2) given Bob’s vector Y . Let T be the
subset of H which agrees on the above 0.26d2 coordinates and having Hamming distance within
1
3ℓ ± 0.01d2. For each matrix T ∈ T , define a weight of the matrix T to be wT =

(
2
3

)ℓ−u (1
3

)u
=

(13)
ℓ2l−u, where u is the Hamming distance between T and Y . It follows from Bayes’ Theorem that

T is the correct matrix with probability

pT =
wT∑
i∈T wi

.

For the denominator, we have from the conditioned events that

S =
∑
i∈T

wi ≥ (1.10)d
2 ·
(
1

3

)ℓ

2
2
3
ℓ−0.01d2 ≥ (0.682)d

2
.

For the numerator, note that it holds for every i ∈ T that

wi ≤
(
1

3

)ℓ

2
2
3
ℓ+0.01d2 ≤ (0.629)d

2
.

It follows from the definition of the entropy that

H(A | Y ) =
∑
i∈T

pi log
1

pi
=
∑
i∈T

wi

S
log

S

wi
≥
∑
i∈T

wi

S
log

S

(0.629)d2
= log

S

(0.629)d2
= Ω

(
d2
)
,

which is exactly we need. The proof is complete.

The following theorem follows immediately from the preceding lemma.
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Theorem 16 Suppose that 0 < p ≤ 2. Any protocol that computes a constant-factor approximate
solution to the s-server distributional ℓp-regression problem with d columns in the message passing
model with large constant probability requires Ω(sd2) bits of communication.

4. ℓ2-Regression Upper Bound

In this section, we give an Õ(sd2 + sd/ε) communication protocol for the distributed ℓ2-regression
problem. We first describe the high-level intuition of our protocol, which is based on the sketching
algorithm in (Clarkson and Woodruff, 2009) and the sketching-based pre-conditioning algorithm
in (Clarkson and Woodruff, 2017).

• Let S1 ∈ RO(d log(d)/ε)×n be a (1 ±
√
ε)-subspace embedding. We compute Â = SA and

b̂ = Sb and then the problem is reduced to solving minx∈Rd ∥Âx− b̂∥22.
• Let S2 ∈ RO(d log d)×O(d log(d)/ε) be a (1 ± 1/2) subspace embedding of SA. We compute

a QR-decomposition of SÂ = QR−1. Then the regression problem is equivalent to solving
minx∈Rd ∥ÂRx− b̂∥22.

• Run a gradient descent algorithm for T = O(log(1/ε)) iterations. In the t-th iteration, com-
pute the gradient of the objective function at the current solution xt and perform the update
xt+1 = xt − (ÂR)T (ÂRxt − b̂).

• Output RxT as the solution.

The protocol is presented in Algorithm 2. Initially, each server computes Âi = Π2Π1A
i, then

computes Π3Â
i and sends it to the coordinator. Note that Π1 is a Count-Sketch matrix and hence

we can compute Π1A
i in nnz(Ai) time and then compute Π2Π1A

i in nnz(Ai) + poly(d/ε) time.
The coordinator then computes a QR-decomposition of Π3Â =

∑
iΠ3Â

i. The point is that ÂR will
be well-conditioned, which will greatly improve the convergence rate of gradient descent. Then each
server will help compute the gradient at the current solution xt and the coordinator will perform the
corresponding update. The following is our theorem. We defer the proof to Appendix C.

Theorem 17 The protocol in Algorithm 2 returns a (1±ε)-approximate solution to the ℓ2-regression
problem with large constant probability, and the communication complexity is Õ(sd2+sd/ε). More-
over, the total runtime of all servers of the protocol is O(

∑
i nnz(A

i) + s · poly(d/ε)).

5. ℓp-Regression Upper Bound

In this section, we give an Õ(sd2/ε + sd/εO(1)) communication protocol for the distributed ℓp-
regression problem when 1 < p < 2. We first describe the high-level intuition of our protocol.

• Let T ∈ RO(d(log d)/εO(1))×n be a sketch matrix whose entries are scaled i.i.d. p-stable random
variables. We compute Â = TA and b̂ = Tb and then the problem is reduced to solving
minx∈Rd ∥Âx− b̂∥r.

• Run Algorithm 1 to obtain a constant approximation of the ℓr Lewis weights w of [Â b̂].
• Sample O(d/ε) rows of Â and b̂ proportional to w, and form the new matrix A′ and b′.
• Solve x = argminx∈Rd ∥A′x− b′∥r and output x.

The protocol is shown in Algorithm 3. To show its correctness, we first analyze ℓp-to-ℓr embed-
dings and the algorithm for solving the ℓp-regression problem using Lewis weight sampling.

12
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1. Each Server Pi initializes the same Count-Sketch matrix Π1 ∈ RO(d2/ε)×n and OSNAP
matrices Π2 ∈ RO(d(log d)/ε)×O(d2/ε), and Π3 ∈ RO(d log d)×O(d(log d)/ε).

2. Each Server Pi computes Âi = Π2Π1A
i and b̂i = Π2Π1b̂

i.
3. Each Server Pi computes Π3Â

i and sends it to the coordinator.
4. The coordinator computes a QR decomposition of Π3Â =

∑
iΠ3Â

i = QR−1 and sends
R̃ to each server Pi, where R̃ satisfies that (i) every entry of R̃ is an integer multiple of
1/poly(nd), (ii) every entry of R̃ − R is in [−1/ poly(nd), 1/poly(nd)] and (iii) R̃ is
invertible.

5. Each server initializes x1 = 0d. For t = 1, 2, . . . , T = O(log(1/ε))
(a) Each server computes ÂiR̃xt − b̂i and sends it to the coordinator.
(b) The coordinator computes yt = ÂR̃xt − b̂ =

∑
i(Â

iR̃xt − b̂i) and sends it to each
server.

(c) Each server computes (Âi)T y, and sends it to the coordinator. The coordinator
computes gt = BT y =

∑
i(Â

i)T y, and makes the update xt+1 = xt − gt, then
sends xt+1 to each server.

(d) The coordinator computes R̃xT as the solution.

Algorithm 2: Protocol for ℓ2 regression in the message passing model

p-stable distribution. The best known (1 ± ε) ℓp subspace embeddings require an exponential
number of rows for a p-stable sketch. However, as we will show in the following lemma, for
1 < r < p, Õ(d/εO(1)) rows are enough to give a (1 ± ε) (lopsided) embedding from ℓp to ℓr,
which is sufficient for the regression problem. The proof of the lemma is postponed to Appendix D.

Lemma 18 Suppose that p > r > 1 are constants, and T ∈ Rm×n is a matrix whose entries are
i.i.d. p-stable random variables scaled by 1/(m1/r · αp,r), where αp,r is a constant depending on
p and r only. For m = d log d/εC(ε,r), where C(ε, r) is a constant depending on p and r only, it
holds for any given matrix A ∈ Rn×d that

1. (dilation) for each x ∈ Rd, ∥TAx∥r ≤ (1 + ε)∥Ax∥p with large constant probability.
2. (contraction) ∥TAx∥r ≥ (1− ε)∥Ax∥p for all x ∈ Rd simultaneously with high probability.

Furthermore, the entries of T can be rounded to the nearest integer multiples of 1/ poly(nd) and
the same guarantees still hold.

Lewis Weight Sampling. It is known that sampling Õ(d/ε2) rows with respect to the ℓp Lewis
weights gives an ℓp subspace embedding with large constant probability when p ∈ [1, 2] (Cohen
and Peng, 2015). In the following lemma, we shall show that for ℓp-regression, sampling Õ(d/ε)
rows is enough.

Lemma 19 Let A ∈ Rn×d, b ∈ Rn and p ∈ (1, 2). Suppose that S is a rescaled sampling
matrix according to wi([A b]) with oversampling factor β = Θ(ε−1 log2 d log n log(1/δ)) and
x̃ = argminx∈Rd ∥SAx − Sb∥p. With probability at least 1 − δ, it holds that ∥Ax̃ − z∥p ≤ (1 +
ε)minx∈Rd ∥Ax− z∥p and the number of rows that S samples is O

(
ε−1d log2 d log n log(1/δ)

)
.

The proof of the lemma closely follows the proof in (Chen et al., 2022) and is postponed to
Appendix E. We are now ready to prove our theorem for distributed ℓp-regression. Its proof is
postponed to Appendix F.
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1. Each server initializes the same p-stable variable matrix T ∈ Rlog(d)/εO(1)×n, OSNAP
matrix S ∈ Rd log(d)×d log(d)/εO(1)

and Gaussian matrix G ∈ R(d+1)×log(d/ε). The entries
of T and G are rounded to the nearest integer multiples of 1/ poly(nd).

2. Each server Pi computes Âi = TAi and b̂i = Tbi, and forms Bi = [Âi b̂i].
3. Each server initializes w = 1d/ε

O(1)
. For j = 1, 2, . . . , t = O(log log(d/ε))

(a) Each server Pi computes StW̃
1/2−1/rBi (where W = diag(w) and W̃ 1/2−1/r is a

rounded version of W 1/2−1/r) and then sends it to the coordinator.
(b) The coordinator computes the QR-decomposition of SW̃ 1/2−1/rB = QR−1.

It then sends R̃ to each server, where R̃ satisfies that (i) every entry of
R̃ is an integer multiple of 1/poly(nd), (ii) every entry of R̃ − R is in
[−1/poly(nd), 1/ poly(nd)] and (iii) R̃ is invertible.

(c) Each server computes BiR̃G and sends it to the coordinator.
(d) The coordinator computes the square of the ℓ2 norm of the rows in BR̃G as a vector

τ ∈ Rd/εO(1)
.

(e) The coordinator performs wi ← (w2/r−1τi)
r/2 and sends the new w to all servers,

after rounding each coordinate of w to the nearest integer multiple of 1/ poly(nd).
4. The coordinator samples the i-th row of Â and b̂ with probability qi ≥ β·wi·log3(d/ε)/ε,

where β is a sufficiently large constant. Suppose that S is the set of indices of the sampled
rows. Each server sends the rows in S to the coordinator.

5. The coordinator forms the matrix A′ and b′ using the rows in S and each sampled row
with a re-scaling factor of 1/q1/ri .

6. The coordinator solves x = argminx∈Rd ∥A′x− b′∥r and returns the solution x.

Algorithm 3: Protocol for ℓp regression in the message passing model

Theorem 20 The protocol described in Figure 3 returns a (1± ε)-approximate solution to the ℓp-
regression problem with large constant probability. The communication complexity is Õ(sd2/ε +
sd/εO(1)) and the total runtime of all servers is O((

∑
i nnz(A

i)) · (d/εO(1)) + s · poly(d/ε)).

We remark that when all leverage scores of [A b] are poly(ε)/d4/p, the servers can first uni-
formly sample O(poly(ε)/d · n) rows of A using the public random bits, rescale the sampled rows
and obtain an A′. The servers can then run the protocol on A′. This modified protocol will still
produce a (1 + ε)-approximate solution to the ℓp-regression problem and has the same communi-
cation complexity because uniform sampling does not require communication. The runtime is now
reduced to O(

∑
i nnz(A

i) + s · poly(d/ε)), which is optimal in terms of nnz(Ai). The details,
including the formal statement, can be found in Appendix G.
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Appendix A. Proof of Lemma 11

We follow the analysis of a similar objective function in (Musco et al., 2022, Theorem 12.2). Sup-
pose that ai = bi for r coordinates i and ai ̸= bi for n − r coordinates i. The objective function
∥ax− b∥pp can be rewritten as

r · |1− x|p + (n− r) · |1 + x|p .
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Case p ∈ (0, 1). The first observation is that the optimal solution x∗ should lie in [−1, 1],
otherwise x = 1 or x = −1 will give a lower cost. Next, without loss of generality, we can
assume that ∆(a, b) ≥ c

√
n, which means that r ≥ n

2 + c
2

√
n. Following a similar analysis

to that in (Musco et al., 2022, Theorem 12.2), we can now obtain that the optimal solution x∗

satisfies x∗ > 0 and every x < 0 will lead to ∥ax − b∥pp ≥ (1 + ε)∥ax∗ − b∥pp. The case where
∆(a, b) ≤ −c

√
n is similar, where the optimal solution x∗ satisfies x∗ < 0 and every x > 0

will lead to ∥ax − b∥pp ≥ (1 + ε)∥ax∗ − b∥pp. Hence, using the sign of x and the fact that x is a
(1 + ε)-approximate solution, we can distinguish the two cases of ∆(a, b).

Case p = 1. The objective can now be rewritten as

r · |1− x|+ (n− r) · |1 + x| .

Without loss of generality, we assume that ∆(a, b) ≥ c
√
n which means that r ≥ n

2 + c
2

√
n. The

only thing we have to show is that ∥ax− b∥pp ≥ (1 + ε)∥ax∗ − b∥pp for all x < 0. On the one hand,
we have that ∥ax∗ − b∥pp ≤ ∥a · 1 − b∥pp ≤ n − c

√
n. On the other hand, when x < 0, noting that

r > n − r, we have that ∥ax − b∥pp ≥ ∥a · 0 − b∥pp = n ≥ (1 + ε)(n − c
√
n). The last inequality

follows from our choice of n = Θ(1/ε2). To conclude, when p = 1, we can also distinguish the
two cases from the sign of x.

Case p ∈ (1, 2). The case of 1 < p < 2 was shown in (Musco et al., 2022, Theorem 12.4). Similar
to their analysis, we can get that (i) when ∆(a, b) ≥ c

√
n, the optimal solution x∗ satisfies x∗ > 0

and any x < 0 will yield ∥ax − b∥pp ≥ (1 + 2ε2)∥ax∗ − b∥pp; (ii) when ∆(a, b) ≤ −c
√
n, the

optimal solution x∗ satisfies x∗ < 0 and any x > 0 will yield ∥ax − b∥pp ≥ (1 + 2ε2)∥ax∗ − b∥pp.
Hence, we can deduce the sign of x in the two cases, and can distinguish the two cases when x is a
(1 + ε2)-approximate solution.

Case p = 2. The optimal solution is x∗ =
∑

i aibi∑
i a

2
i

=
∑

i aibi
n and the corresponding objective value

is n− (
∑

i aibi)
2

n . When ∆(a, b) ≥ c
√
n, the optimal solution x∗ > 0 and ∥ax∗−b∥22 ≤ n−c2, while

for all x < 0, from the property of the quadratic function, we get that ∥ax∗−b∥22 ≥ ∥a · (0)−b∥22 =
n ≥ (1 + 2ε2)(n− c2) (recall that n ≤ c/(2ε2)). A similar analysis works when ∆(a, b) ≤ −c

√
n

and the proof is complete.

Appendix B. Proof of Lemma 14

We need the following theorem on the singularity probability of random sign matrices.

Theorem 21 (Tikhomirov (2020)) Let Mn ∈ Rn×n be a random matrix whose entries are i.i.d.
Rademacher random variables. It holds that

Pr [Mn is singular] ≤ (
1

2
+ on(1))

n .

The proof of the following lemma follows directly from the proof in Vempala et al. (2020) with
only minor modifications.

Lemma 22 For sufficiently large d, there exists a set of matrices T ⊆ {−1, 1}d×d with |T | =
Ω(20.49d

2
) such that

18



ℓp-REGRESSION IN THE ARBITRARY PARTITION MODEL OF COMMUNICATION

1. For any T ∈ T , rank(T ) = d;

2. For any S, T ∈ T such that S ̸= T , span([Sd−1 Td−1]) = Rd, where Sd−1 denotes the first
d− 1 column of S.

Proof We use the probabilistic method to prove the existence. Let t = 2−ε, where ε is a sufficiently
small constant. We use Bad ⊂ Rd×(d−1) to denote the set

Bad = {B ∈ Rd×(d−1) | Pr[X ∈ span(B)] ≥ c · t−d or rank(B) < d− 1},

where X ∈ Rd is a vector whose entries are i.i.d. Rademacher variables and c is an absolute con-
stant.

Consider a random matrix A ∈ Rd×(d−1) with i.i.d. Rademacher entries. Then

Pr[A ∈ Bad] ≤ 1

c
, (2)

since otherwise, if we use X ∈ Rd to denote a vector with i.i.d. Rademacher coordinates, we have

Pr[rank([A X]) < d]

≥Pr[rank([A X]) < d | A ∈ Bad] · Pr[A ∈ Bad]

>t−d,

which violates Theorem 21.
For any fixed A ∈ Rd×(d−1) \ Bad, consider a random matrix B ∈ Rd×(d−1) whose entries are

i.i.d. Rademacher variables,

Pr[span([A B]) = Rd] ≥ 1− Pr

[
d−1⋂
i=1

Bi ∈ span(A)

]
≥ 1− cdt−d(d−1), (3)

which follows from the definition of Bad and the independence of the columns of B.
Now we construct a multiset S of c−dtd(d−1)/2 matrices, chosen uniformly with replacement

from {−1, 1}d×d. By (2) and linearity of expectation, we have

E[|S ∩ SBad|] ≤ c−dtd(d−1)/2 · 1
c
,

where SBad denotes the set of the matrices M such that the first d− 1 columns of M is in Bad. Let
E1 denote the event that

|S ∩ SBad| ≤ 4E[|S ∩ SBad|] ≤ 4c−(d+1)td(d−1)/2,

which holds with probability at least 3/4 by Markov’s inequality.
Let Srank denote the set of d × d matrices that are not of full rank. By (2) and linearity of

expectation, we have
E[|S ∩ Srank|] ≤ c−dtd(d−1)/2 · t−d,

Let E2 denote the event that

|S ∩ Srank| ≤ 4E[|S ∩ Srank|] ≤ 4c−dtd(d−1)/2 · t−d,
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which holds with probability at least 3/4 by Markov’s inequality.
Let E3 denote the event that

∀S ∈ S \ SBad,∀T ∈ S \ {S}, span([Sd−1 Td−1]) = Rd.

Using a union bound and (3),

Pr(E3) ≥ 1− |S|2cdt−d(d−1) = 1− od(1).

Thus by a union bound, the probability that all E1, E2 and E3 hold is strictly larger than zero,
which implies there exists a set S such that E1 E2, and E3 hold simultaneously. Now we consider
T = S \ (SBad ∪ Srank). Since E1 and E2 hold, we have |T | ≥ Ω(c−2dtd(d−1)/2) = Ω(20.49d

2
),

provided that d is sufficiently large and ε is sufficiently small. The event E3 implies that all elements
in T are distinct, and furthermore, it holds for any S, T ∈ T with S ̸= T that span([Sd−1 Td−1]) =
Rd.

Suppose that T satisfies the conditions in Lemma 22. For each T ∈ T , we add T T into H.
Now suppose there exist S, T ∈ H such that S ̸= T and S−1ed = T−1ed, which means there
exists x ∈ Rd such that Sx = ed and Tx = ed. This implies that xT (ST )d−1 = xT (T T )d−1 = 0.
The construction of T guarantees that span([(ST )d−1 (T T )d−1]) = Rd and it must thus hold that
x = 0, which would result in Sx = Tx = 0 ̸= ed. Therefore, for any S, T ∈ H with S ̸= T ,
S−1ed ̸= T−1ed.

Appendix C. Proof of Theorem 17

To prove the correctness of Algorithm 2, we need the following lemmas. The reader can find more
detail in (Woodruff, 2014).

Lemma 23 Suppose that S is a (1 ±
√
ε)-subspace embedding and x′ = argminx∈Rd ∥S(Ax −

b)∥2. Then it holds with large constant probability that

∥Ax′ − b∥2 ≤ (1 + ε)∥Ax− b∥2 .

Further suppose that xc is a (1 + ε)-approximate solution to minx∈Rd ∥S(Ax− b)∥2, it then holds
that

∥S(Axc − b)∥2 ≤ (1 + ε)∥Ax− b∥2 .

We remark that the case where xc is the minimizer was shown by Clarkson and Woodruff (2009)
and the case where xc is a (1 + ε)-approximate solution was recently shown by Mahankali et al.
(2022).

Lemma 24 Suppose that S is a (1± ε0)-subspace embedding and consider the iterative algorithm
above, then

∥ÂRxt+1 − x∗∥2 = εm0 · ∥ÂRxt − x∗∥2 .

As a corollary, when t = Ω(log(1/ε)), it holds that ∥ÂRxt − b̂∥22 ≤ (1 + ε)∥ÂRx∗ − b̂∥22.
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Now we are ready to prove Theorem 17.
Proof [of Theorem 17] Since Π1 has O(d2/ε) rows and Π2 has O(d log(d)/ε) columns, from
Section 2 we get that with probability at least 99/100, both Π1 and Π2 are (1 ± O(

√
ε)) subspace

embeddings, which means Π2Π1 is a (1 +
√
ε)-subspace embedding.

Let Â = Π2Π1A and b̂ = Π2Π1b. From Lemma 23, we see that it suffices to solve minx∈Rd ∥Âx−
b̂∥2. Conditioned on these events, it follows immediately from Lemma 24 that xT is a (1 ± ε)-
approximate solution to minx∈Rd ∥Âx − b̂∥2, provided that each server uses R instead of R̃. To
show that R̃ works here, note that an initial step in the proof of Lemma 24 is that ∥SÂRx∥2 = 1
for all unit vectors x, which implies that ∥ÂRx∥2 ∈ [1− ε0, 1 + ε0]. For R̃, we have that

∥SÂRx∥2 − ∥SÂR̃x∥2 ≤ ∥SÂ(R− R̃)x∥2 ≤ 2∥Â∥2∥(R− R̃)x∥2 ≤ 1/ poly(nd) .

The last inequality is due to the fact that each entry of R − R̃ is O(1/poly(nd)) and each entry of
Â is O(poly(nd)). Hence, ∥ARx∥ ∈ [1 − 1.1ε0, 1 + 1.1ε0] will still hold and a similar argument
will go through, yielding that xT is a (1± ε)-approximate solution.

We next analyze the communication complexity of the protocol. For Step 3, since Π3Â
i is

an O(d log d) × d matrix, each server Pi sends Õ(d2) entries. Each entry of Ai has magnitude
[1/nc, nc], and thus each entry of Π1A

i is contained in [1/nc, nc+1], each entry of Âi = Π2Π1A
i

is contained in [ε/nc+2, nc+3/ε] and each entry of Π3Â
i is contained in [ε2/nc+4, nc+5/ε2], which

implies that each entry of Π3Â
i can be described using O(log(n/ε)) bits and thus a total commu-

nication of O(sd2) bits for Step 3. In Step 4, since R̃ is a d× d matrix and each entry is an integer
multiple of 1/ poly(nd), the coordinator sends R̃ to each server using Õ(sd2) bits in total. In each
iteration of Step 5, we note that yt is an O(d/ε)-dimensional vector and gt is a d-dimensional vector,
and each of their entries has O(log(nd)) precision. Hence, the total communication of each iteration
is Õ(sd/ε). Putting everything together, we conclude that the total amount of the communication is
Õ(sd2 + log(1/ε) · (sd/ε)) = Õ(sd2 + sd/ε) bits.

We now consider the runtime of the protocol. To compute Π2Π1A
i, notice that Π1 is a Count-

Sketch matrix, and hence each server takes nnz(Ai) time to compute Π1A
i and then use poly(d/ε)

time to compute Π2(Π1A
i). Hence, Step 2 takes O(

∑
i nnz(A

i)) time. For the remaining steps,
one can verify that each step takes poly(d/ε) time on a single server or on the coordinator. The
total runtime is therefore O(

∑
i nnz(A

i) + s · poly(d/ε)).

Appendix D. Proof of Lemma 18

To prove the lemma, we need the following results.

Lemma 25 (see, e.g., Friedland and Guédon (2011)) Suppose that α ∈ Rd and θ ∈ Rd is a
vector whose entries are i.i.d. p-stable variables. Then it holds that(

E

∣∣∣∣∣∑
i

αiθi

∣∣∣∣∣
r)1/r

= αp,r

(∑
i

|αi|p
)1/p

where αp,r is a constant that only depends on p and r.

Proposition 26 Suppose that r, s ≥ 1 and X is a random variable with E |X|rs < ∞. It holds
that

E ||X|r − E |X|r|s ≤ 2s E |X|rs .
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Proof We have that

E ||X|r − E |X|r|s ≤ 2s−1 E (||X|r|s + (E |X|r)s)
≤ 2s−1(E |X|rs + (E |X|r)s)
≤ 2s−1(E |X|rs + E |X|rs)
= 2s E |X|rs .

Lemma 27 (von Bahr and Esseen (1965, Theorem 2)) Suppose that 1 ≤ r ≤ 2. Let X1, . . . , Xn

be independent zero mean random variables with E[|Xi|r] <∞. Then we have that

E

[(
n∑

i=1

|Xi|

)r]
≤ 2

n∑
i=1

E [|Xi|r] .

Lemma 28 Suppose that p ∈ (1, 2) is a constant and T ∈ Rm×n is a matrix whose entries are
i.i.d. p-stable entries scaled by 1/(αp · m1/p). For m = d log d/εO(1), given any A ∈ Rn×d, it
holds with large constant probability that for all x ∈ Rd

∥TAx∥p ≤ poly(d)∥Ax∥p .

We note that Lemma 28 was shown in Sohler and Woodruff (2011) for p = 1. For 1 < p < 2,
a similar argument still goes through after replacing the ℓ1 well-conditioned basis with an ℓp well-
conditioned basis.
Proof [of Lemma 18] First we consider the original T without rounding the entries.

Now we show (1). Let y = Ax. From properties of p-stable random variables, we get that
each (Ty)i follows the same distribution. From Lemma 25 we have that for every i, E |(Ty)i|r =
αr
p,r

αr
p,r·m
∥y∥rp = 1

m∥y∥
r
p. To get concentration, we pick an r′ ∈ (r, p) and consider the r′/r-moment

of (Ty)ri .
Similar to Lemma 25, we have that E[|(Ty)|r′i ] =

βp,r,r′

mr′/r ∥y∥r
′

p is bounded, where βp,r,r′ is a
constant depending on p, r, r′ only. Let S =

∑
i |(Ty)i|r and we have that E[S] = ∥y∥rp. Consider

the (r/r′)-th moment of S. We then have

E
[
(S − E[S])r

′/r
]
= E

(∑
i

(
|(Ty)i|r −

1

m
∥y∥rp

))r′/r


≤ 2

(∑
i

E
[
|(Ty)i|r −

1

m
∥y∥rp|

]r′/r)
(Lemma 27)

≤ 2r
′/r+1

(∑
i

E |(Ty)i|r
′

)
(Proposition 26)

≤ C

(∑
i

1

mr′/r
∥y∥r′p

)
= C∥y∥r′p /mr′/r−1 ,
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where C is a constant that depends only on r, r′, and p. By Markov’s inequality, we have that

Pr [|S − E[S]| ≥ εE[S]] ≤ Pr
[
|S − E[S]|r′/r ≥ (εE[S])r

′/r
]

≤
E
[
(S − E[S])r

′/r
]

εr′/r∥y∥r′p

≤
Cr′/r

εr′/rmr′/r−1
.

Hence, we can see that when m = Ω(1/ε
r′

r′−r ) = 1/εΩ(1), |∥Ty∥r − ∥y∥p| ≤ ε∥y∥p holds with
large constant probability.

We next prove (2). We first show that for every x ∈ Rd, ∥Ty∥rr ≥ (1 − ε)∥y∥rp holds with
probability at least 1 − exp(−d log(d)/εO(1)). Recall that we have that we have that E |(Ty)i|r =
1
m∥y∥

r
p for every i. Fix k = 1/εO(1). Let

si = |(Ty)(i−1)k+1|r + |(Ty)(i−1)k+2|r + · · ·+ |(Ty)ik|r (1 ≤ i ≤ m/k) .

We then have ∥Ty∥rr =
∑

i si. Similar to (1), one can show that for each i, with large constant
probability ∣∣∣∣si − k

m
∥y∥rp

∣∣∣∣ ≤ ε
k

m
∥y∥rp (4)

By a Chernoff bound, with probability at least 1− exp(−d/εΩ(1)), at least a (1− ε)-fraction of the
si satisfy (4). Conditioned on this event, it holds that

∥Ty∥rr =
∑
i

si ≥
m

k
(1− ε)

k

m
∥y∥rp = (1− ε)∥y∥rp ,

which is what we need.
The next is a standard net-argument. Let S = {Ax : x ∈ Rd, ∥Ax∥p = 1} be the unit ℓp-ball

and N be a γ-net with γ = poly(ε/d) under the ℓp distance. It is a standard fact that the size of
N can be (poly(d/ε))d. By a union bound, we have that ∥TAx∥r ≥ (1 − ε)∥Ax∥p = (1 − ε)
for all Ax ∈ N simultaneously with probability at least 9/10. From Lemma 28, we have that with
probability at least 9/10, ∥TAx∥p ≤ poly(d)∥Ax∥p for all x ∈ Rd. Conditioned on these events,
we then have for all x ∈ Rd,

∥TAx∥r ≤ m1/r−1/p∥TAx∥p ≤ poly(d/ε)∥Ax∥p .

Then, for each y = Ax ∈ S, we choose a sequence of points y0, y1, · · · ∈ S as follows.

• Choose y0 ∈ S such that ∥y − y0∥p ≤ γ and let α0 = 1;

• After choosing y0, y1, . . . , yi, we choose yi+1 such that∥∥∥∥y − α0y0 − α1y1 − · · · − αiyi
αi+1

− yi+1

∥∥∥∥
p

≤ γ,

where αi+1 = ∥y − α0y0 − α1y1 − · · · − αiyi∥p.
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The choice of yi+1 means that

αi+2 = ∥y − α0y0 − α1y1 − · · · − αiyi − αi+1yi+1∥p ≤ αi+1γ.

A simple induction yields that αi ≤ γi. Hence

y = y0 +
∑
i≥1

αiyi, |αi| ≤ γi .

Suppose that yi = Axi. We have

∥TAx∥r ≥ ∥TAx0∥p −
∑
i≥1

γi∥TAxi∥p ≥ (1− ε)−
∑
i≥1

γi · (poly(d/ε)) = 1−O(ε).

Rescaling ε, we obtain that ∥TAx∥rr ≥ (1− ε)∥Ax∥rp for all x ∈ Rd simultaneously.
This completes the proof of the two guarantees for the original T , without rounding the entries.

To show that the guarantees continue to hold after rounding the entries, We only need to notice that∣∣∣∥T̃Ax∥r − ∥TAx∥r∣∣∣ ≤ ∥(T̃ − T )Ax∥r ≤ m
1
r
− 1

2 ∥(T̃ − T )Ax∥2

≤ m
1
r
− 1

2 ∥T̃ − T∥2∥Ax∥2

≤ 1

poly(nd)
∥Ax∥p .

Appendix E. Proof of Lemma 19

The proof of the lemma closely follows that in Chen et al. (2022). The proof is a bootstrapping
argument based on the following two lemmas. For simplicity of notation, we define R(A, b) =
minx ∥Ax− b∥p.

Lemma 29 ((Musco et al., 2022, Theorem 3.18)) There exists an absolute constant c ∈ (0, 1]
such that the following holds for all A ∈ Rn×d, b ∈ Rn and γ ∈ (0, 1). Let x∗ = argminx∈Rd ∥Ax−
b∥p. Whenever x ∈ Rd satisfies ∥Ax − b∥p ≤ (1 + cγ)R(A, b), we have that ∥Ax∗ − Ax∥p ≤√
γR(A, b).

Lemma 30 Let A ∈ Rn×d, b ∈ Rn and 0 < γ < 1. Let S be the rescaled sampling matrix with
respect to {pi}(i) such that pi = min{βwi([A b]), 1} and β = Θ( γ

ε2
log2 d log n log 1

δ ). Suppose
that x̃ = argminx∈Rd ∥SAx− Sb∥p and ∥Ax̃−Ax∗∥p ≤

√
γR(A, b). It holds that

∥Ax̃− b∥p ≤ (1 + Cε)R(A, b)

with probability at least 0.99− δ, where C is an absolute constant.
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Assuming these two lemmas, the proof of Lemma 19 is nearly identical to that in the proof
of (Chen et al., 2022, Theorem 5.6) and is thus omitted. The proof is simpler because we do not
need an argument to first show that sketching by S gives a (1 + O(

√
ε))-approximate solution,

which follows immediately from the fact that S is a (1 +
√
ε)-subspace-embedding with large

constant probability.
In the remainder of this section, we discuss the proof of Lemma 30. The proof is similar to that

of (Chen et al., 2022, Lemma 5.4), which converts the bound on the target dimension obtained from
an iterative argument in Musco et al. (2022) to a moment bound using the framework in Cohen and
Peng (2015).

The difference is that here we can choose the weights to be the Lewis weights of [Ab], while in
(Chen et al., 2022, Lemma 5.4), it considers minx ∥Ax− z∥p with ∥z∥p ≤ R(A, b) and it samples
the rows according to the Lewis weights of A. Specifically, let R = R(A, b), x′ = x − x∗ and
b′ = b−Ax∗. We have, as in the proof of (Chen et al., 2022, Lemma 5.4), that

∥Ax̃− b∥pp − ∥Ax∗ − b∥pp = ∥Ax̃− b∥pp − ∥SAx̃− Sb∥pp + ∥SAx̃− Sb∥pp − ∥SAx∗ − Sz∥pp
+ ∥SAx∗ − Sb∥pp − ∥Ax∗ − b∥pp

≤ ∥Ax̃− b∥pp − ∥SAx̃− Sb∥pp + ∥SAx∗ − Sb∥pp − ∥Ax∗ − b∥pp
≤
∥∥Ax′ − b′

∥∥p
p
−
∥∥SAx′ − Sb′

∥∥p
p
+
∥∥Sb′∥∥p

p
−
∥∥b′∥∥p

p

=
∥∥Ax′ − b′

∥∥p
p
−
∥∥∥Ax′ − b

′
∥∥∥p
p
−
∥∥∥b′ − b

′
∥∥∥p
p

−
(∥∥SAx′ − Sb′

∥∥p
p
−
∥∥∥SAx′ − Sb

′
∥∥∥p
p
−
∥∥∥Sz′ − Sb

′
∥∥∥p
p

)
−
(∥∥∥SAx′ − Sb

′
∥∥∥p
p
−
∥∥∥Ax′ − b

′
∥∥∥p
p
+
∥∥∥b′∥∥∥p

p
−
∥∥∥Sb′∥∥∥p

p

)
=: E1 − E2 − E3,

where b is the vector obtained from b by removing all coordinates bi such that |bi| ≥ wi
ε R. Note that

∥b′∥p ≤ ∥b′∥p = R and ∥Ax′∥p ≤
√
γR. The first term can be controlled using (Musco et al., 2022,

Lemma 3.5), except that the sampling probabilities are Lewis weights of [A b] instead of A, but the
proof still goes through because it also holds that |(Ax)i|p ≤ ∥Ax∥pspi ([A b]), where si([A b]) is
the ℓp-sensitivity of [A b]. The second term can be controlled by (Musco et al., 2022, Lemma 3.6),
yielding that |E2| ≤ εRp with probability at least 0.99. The last term can be controlled as in (Chen
et al., 2022, Lemma 5.3), where the Lewis weights of [A b] do not affect the proof.

Appendix F. Proof of Theorem 20

By Lemma 18(1), it holds with high constant probability that

min
x∈Rd

∥T (Ax− b)∥r ≤ (1 + ε) min
x∈Rd

∥Ax− b∥p .

Suppose that x′ ∈ Rd is a (1 + ε)-approximate solution to minx∈Rd ∥T (Ax− b)∥r, i.e.,

∥T (Ax′ − b)∥r ≤ (1 + ε) min
x∈Rd

∥T (Ax− b)∥r .
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It follows from Lemma 18(2) that

∥Ax′ − b∥p ≤
1

1− ε
∥T (Ax′ − b)∥r ≤ (1 +O(ε)) min

x∈Rd
∥Ax− b∥p .

Hence, the problem is reduced to obtaining a (1 + ε)-approximate solution to minx∈Rd ∥T (Ax −
b)∥r = minx∈Rd ∥Âx− b̂∥r.

Consider the iteration in Step 3. A standard analysis (see, e.g. Woodruff, 2014, Section 2.4)
yields that in each iteration, with probability at least 1−1/ poly(d), τ is a constant approximation to
the leverage score of W 1/p−1/2B. Taking a union bound, we get that with high constant probability,
for all iterations it holds. Conditioned on this event happening, from Lemma 6 we get that after
t iterations, w is a constant approximation to the ℓr Lewis weights of B (in each iteration we
round w; however, notice that if the Lewis weight wi is not 0, it should be larger than 1/poly(nd)
as the non-zero entries of the matrix B are at least 1/ poly(nd)2 , and hence the rounding will
not affect the approximation ratio guarantee in each iteration). From Lemma 19, the solution to
minx∈Rd ∥A′x − b′∥r is a (1 + ε)-approximate solution to minx∈Rd ∥T (Ax − b)∥r, and is thus a
(1±O(ε))-approximate solution to the original problem minx∈Rd ∥Ax− b∥p.

We next analyze the communication complexity of the protocol. For Step 3(a), StW̃
1/2−1/pBi

is a d log(d) × (d + 1) matrix and the entries of StW̃
1/2−1/pBi are in poly(nd)-precision as the

entries of St, W̃
1/2−1/p, and Bi are both in poly(nd)-precision. Hence, the total communication

of all servers is Õ(sd2). For Step 3(b), R̃ is a (d + 1) × (d + 1) matrix and hence the total
communication cost is Õ(sd2). For 3(c), BiR̃G is a d/εO(1)×O(log d) matrix, and hence similarly
we get that the total communication cost is O(sd/εO(1)). For 3(e), since w is a d/εO(1) vector, the
total communication cost of this step is O(sd/εO(1)). In Step 5, since the sum of Lewis weights
is O(d), with high constant probability the server samples at most Õ(d/ε) rows, and hence the
communication cost of this step is O(sd2/ε). Putting everything together, we get that the total
communication cost is

Õ
(
log log(d/ε) · (sd2 + sd/εO(1)) + sd2/ε

)
= Õ(sd2/ε+ sd/εO(1)) .

We now consider the runtime of the protocol. To compute TAi, notice that T has d/εO(1)

rows, which means it takes O(nnz(Ai) · (d/εO(1))) times to compute TAi. Hence Step 2 takes time
O((
∑

i nnz(A
i))·(d/εO(1))). For the remaining steps, one can verify that each step takes poly(d/ε)

time on a single server or on the coordinator. The total runtime is therefore O(
∑

i nnz(A
i) ·

(d/εO(1)) + s · poly(d/ε)).

Appendix G. Faster Runtime for Distributed ℓp-Regression

We need the following auxiliary results.

Proposition 31 Suppose that 1 ≤ p < 2 and A ∈ Rn×d. The ℓp-sensitivity scores of A are defined
as

ℓ
(p)
i (A) = sup

x:Ax ̸=0

|⟨ai, x⟩|p

∥Ax∥pp
,

2. It is easy to see that the ℓr sensitivities, defined in Proposition 31 in Section G, are at least Ω(1/ poly(nd)) in our
setting if the corresponding rows are nonzero as if we take x = ai, we can get that the ℓ

(r)
i (A) ≥ ∥ai∥2p/∥Aai∥pp

where the denominator is at most poly(nd) as each entry of A is in poly(nd). From Lemma 2.5 in Musco et al.
(2022), we know that the ℓr Lewis weights are larger than the ℓr sensitivities when r < 2.
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where ai is the i-th row of A. It holds that ℓ(p)i (A) ≤ (τi(A))p/2 for all i.

Proof Suppose that A has full column rank, otherwise we can find an invertible matrix T such that
AT = [A′ 0], where A′ has full column rank, and consider ℓ(p)i (A′) and τi(A

′) instead. It is not
difficult to verify that ℓ(p)i (A′) = ℓ

(p)
i (A) and τi(A

′) = τi(A).
Write A = UR, where U ∈ Rn×d has orthonormal columns and R ∈ Rd×d is invertible. Then

ℓ
(p)
i (A) = sup

y ̸=0

|⟨Ui, y⟩|p

∥Uy∥pp
≤ sup

y ̸=0

∥Ui∥p2∥y∥
p
2

∥Uy∥p2
= ∥Ui∥p2 = (τi(A))p/2,

as advertised.

Lemma 32 ((Li et al., 2023, Lemma 5.5)) Let A ∈ Rn×d and 1 ≤ p < ∞. The matrix A′ is
a submatrix of A such that the rescaled i-th row p

−1/p
i ai is included in A′ with probability pi ≥

min(βsi(A), 1). Then, there is a constant c such that when β ≥ cε−2d log(1/ε), the matrix A′ is a
(1± ε)-subspace embedding of A with probability at least 9/10.

As an immediate corollary of the auxiliary results above, we have that when A ∈ Rn×d has
uniformly small leverage scores, uniformly sampling its rows can give an ℓp-subspace-embedding
(after rescaling).

Corollary 33 Suppose that 1 ≤ p < 2 and the matrix A ∈ Rn×d satisfies that τi(A) ≤ (cε2γ/(d log(1/ε)))2/p

for all i, where γ ≤ ε2/(Cd log(1/ε)). Let A′ be a matrix formed from A by retaining each row with
probability γ independently and then rescaling by 1/γ1/p. It holds with large constant probability
that

(1− ε)∥Ax∥pp ≤ ∥A′x∥pp ≤ (1 + ε)∥Ax∥pp
for all x ∈ Rd simultaneously, and that A′ has O(γn) rows.

Proof
By Proposition 31, ℓ(p)i (A) ≤ (τi(A))

p/2 = cε2γ/(d log(1/ε)), so the sampling probability

γ ≥ Cd log(1/ε)

ε2
· ℓ(p)i (A)

satisfies the condition in Lemma 32. The conclusion follows immediately.

Hence, if A has uniformly small leverage scores, all sites can agree on the O(γn) uniformly
sampled rows using the public random bits and run the protocol in Algorithm 3 on the induced A′.
By Markov’s inequality, nnz(A′) = O(γnnz(A)) with large constant probability and we finally
conclude with the following theorem.

Theorem 34 Suppose that A ∈ Rn×d and b ∈ Rd satisfies that the leverage scores of [A b] are
all bounded by poly(ε)/d4/p. There is a protocol which outputs a (1 ± ε)-approximate solution
to the ℓp-regression problem with large constant probability, using Õ(sd2/ε + sd/εO(1)) bits of
communication and running in total time (over all servers) O(

∑
i nnz(A

i) + s · poly(d/ε)).
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