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Abstract
Compared with learning each task independently, multi-task learning (MTL) is able to learn with
few training samples and achieves better prediction performance. Recently, Boursier et al. (2022)
study the estimation error bound for MTL with trace norm regularizer and a few observations per
task. However, their results rely on three assumptions: 1) The features are isotropic; 2) The task
diversity assumption is enforced to the parameters matrix; 3) The number of tasks is larger than the
features dimension. Whether it is possible to drop these three assumptions and improve the bounds
in Boursier et al. (2022) has remained unknown. This paper provides an affirmative answer to this

question. Specifically, we reduce their upper bounds from Õ(σ
√

rd2/m+rT
m +

√
rd2/m+rdT/m

m )

to O(σ
√

r+rd/T
m ) without three assumptions, where T is the number of tasks, d is the dimension

of the feature space, m is the number of observations per task, r is the rank of ground truth matrix,
σ is the standard deviation of the noise random variable. Moreover, we provide minimax lower
bounds showing our upper bounds are rate optimal if T = O(d).
Keywords: Multi-task learning; Trace norm regularization; High dimensional statistics

1. Introduction

Multi-task Learning (MTL) aims to simultaneously learn multiple related tasks and achieve better
performance than learning each task independently (Caruana, 1993; Ben-David and Schuller, 2003;
Bakker and Heskes, 2003; Ando and Zhang, 2005; Liu et al., 2017, 2019; Mao et al., 2020a). It has
achieved great success in various applications ranging from computer vision (Liu and Tsang, 2015,
2017; Kendall et al., 2018) to natural language processing (Xiao et al., 2018; Mao et al., 2020b,
2021).

The existing theoretical results (Rohde and Tsybakov, 2011) on MTL assume that the number
of observationsm per task is larger than the features dimension d (m > d). Recently, Boursier et al.
(2022) study the following problem of MTL, which plays a vital role in meta-learning and few-shot
learning (Vinyals et al., 2016; Finn et al., 2017) that aggregates knowledge among multiple tasks to
learn a shared representation:

How can we learn across multiple tasks with a very limited number of observations for
each of them?

Tripuraneni et al. (2021) present a theoretical result on this problem with the requirement of spher-
ically symmetric feature distribution. Without the assumption on the specific feature distributions,
Boursier et al. (2022) bound the estimation error of the trace norm regularized estimator with a few
observations per task (m < d). There are three main assumptions that behind the work of (Boursier
et al., 2022):
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1. The features are isotropic.

2. The task diversity assumption is enforced to the parameters matrix.

3. The number of tasks T is larger than the features dimension d (T > d).

It has remained unclear, however, whether it is possible to drop these three assumptions and improve
the bounds in Boursier et al. (2022). This paper makes progress on this question.

Contributions. This paper studies the theory of MTL with trace norm regularizer, and improves
the estimation error bounds of (Boursier et al., 2022) for the trace norm regularized estimator by
removing the assumptions of isotropic features, task diversity and T > d. Moreover, we establish
matching lower bounds on the minimax error, showing that our upper bounds cannot be improved
beyond constant factors under some mild conditions. The analysis of our upper bounds rely on
the restricted strong convexity (RSC) of the cost function and the dual norm bound (Wainwright,
2019). The main technical contribution of this paper is to prove that with high probability, a form of
the RSC condition and dual norm bound hold for MTL. Our lower bounds are based on the Fano’s
inequality.

Theorem 1 (Informal upper bounds) For any number of observations per task m, the trace norm
regularized estimator M̂ satisfies with high probability

||M̂−M∗||F ≤ O(σ

√
r(T + d)

mT
) (1)

where M∗ ∈ Rd×T is the ground truth matrix, r is its rank, σ is the standard deviation of the noise
random variable.

Note that we have derived our upper bounds by removing the assumptions behind the work

of (Boursier et al., 2022). Boursier et al. (2022) prove that ||M̂ −M∗||F ≤ Õ(σ

√
rd2/m+rT

m +√
rd2+rdT
m2 ) holds with high probability under the conditions of T > d and d > m, where Õ hides

logarithmic terms in d, m and T . We can see that our upper bound O(σ

√
r+rd/T
m ) is significantly

tighter than Õ(σ

√
rd2/m+rT

m +
√

rd2+rdT
m2 ), and thus we improve this estimation error bound by a

factor O(
√

rd2+rdT
m2 ) and a logarithmic term.

Theorem 2 (Informal lower bounds) Let φ2 be the maximum diagonal entry of the covariance
matrix Σ. The following bound holds.

inf
M̂

sup
M∗∈{M∗∈Rd×T |rank(M∗)=r}

E||M̂−M∗||2F ≥ O
( σ2r(T + d)

mφ2(d− 1) ln(dT )

)
(2)

Theorem 2 shows that the upper bounds obtained in Theorem 1 are minimax-optimal up to
constant factors if T = O(d).
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2. Main Results

Let [n] := {1, . . . , n}. 〈·, ·〉 means the inner product both for vectors and matrices. We denote
vectors as lowercase bold letters and matrices as uppercase bold letters, respectively. We denote the
transpose of the vector/matrix by the superscript ′, and the logarithm to base e by ln, respectively.
|| · ||r represents the `r norm (r ≥ 1).

Assume there are T tasks. Let (i, t) ∈ [m] × [T ], each task has m samples (xti, y
t
i) ∈ Rd × R.

Given matrix M ∈ Rd×T , M(t) ∈ Rd denotes its t-th column, λi(M) its i-th largest singular value,
tr(M) its trace, ||M||∗ its trace norm, ||M||2 its spectral norm and ||M||F its Frobenius norm,
respectively. We consider the linear multi-task model

yti = 〈M∗(t),xti〉+ εti (3)

where M∗ ∈ Rd×T denotes the ground truth matrix, and εti are independent and identically dis-
tributed (i.i.d.) from Gaussian distribution N (0, σ2) with zero mean and standard deviation σ. Let
xti be drawn i.i.d. from a multivariate normal distribution N (0,Σ) with d-dimensional zero mean
vector and d × d covariance matrix Σ. This paper assumes rank(M∗) = r < min{T, d}. Bour-
sier et al. (2022) show that the trace norm is a natural choice when estimating low rank matrices,
since the trace norm is well-known to be a convex surrogate to the matrix rank. Trace norm based
methods have already been successfully used in numerous domains (Cheng et al., 2011; Harchaoui
et al., 2012), such as computer vision, collaborative filtering and matrix completion. Therefore,
Boursier et al. (2022) focus on the trace norm regularized estimator, and this paper aims to improve
the results of Boursier et al. (2022). In the future work, we will explore whether our results can be
further improved based on other regularization.

Given observations (xti, y
t
i) from model (3), this paper considers the following trace norm reg-

ularized estimator

M̂ = arg min
M∈Rd×T

1

mT

∑
(i,t)∈[m]×[T ]

(yti − 〈M(t),xti〉)2 + λ||M||∗ (4)

where λ > 0 is a user-defined regularization parameter.

2.1. Upper Bounds

We define a m× T matrix as L(M) := (〈M(t),xti〉)(i,t)∈[m]×[T ]. V ar represents the variance. Let
ρ2 := maxa∈Rd,||a||2=1 V ar〈a,xti〉. The following theorem provides the upper bounds for the error
of the estimator defined in (4).

Theorem 3 Assume
√

1/T −
√

1/m ≥ 3
4
√

2
, c1m ≥ 128Ttr(Σ)c2r, where c1 and c2 are two

positive constants satisfying that c1 < 1 < c2, any optimal solution to (4) satisfies the bound

||M̂−M∗||F ≤
√

18r

c1

(
32ρσ(

√
T + d

mT
+ δ)

)
(5)

with probability at least 1− e−mT/64

1−e−mT/64 − e
−mT/16 − 2e−4mTδ2 .

The upper bound shown in (Boursier et al., 2022) is cσ
√

rd2/m+rT
m + c

√
(Crd2+CrdT ) ln(dT/m)

m2

under the conditions of T > d and d > m. Theorem 3 shows that our upper bound is significantly
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sharper than that in (Boursier et al., 2022), and we improve their estimation error bound by a factor

O(
√

rd2+rdT
m2 ) and a logarithmic term without the assumptions of isotropic features, task diversity

and T > d.

2.2. Lower Bounds

To complement our upper bounds, this subsection lower bounds the minimax rates of the estimation
error over classes of matrices with rank r. Let φ2 be the maximum diagonal entry of the covariance
matrix Σ. Let

y : = (y1
1, . . . , y

1
m, . . . , y

T
1 , . . . , y

T
m)′ ∈ RmT

X : = (x1
1, . . . ,x

1
m, . . . ,x

T
1 , . . . ,x

T
m)′ ∈ RmT×d

Given the matrix classes Θ := {M∗ ∈ Rd×T |rank(M∗) = r}, we consider the following minimax
risk in Frobenius norm

M(Θ) := inf
M̂

sup
M∗∈Θ

E||M̂−M∗||2F

where the infimum is taken over all estimators M̂ that are measurable functions of samples.

Theorem 4 There is a universal numerical constant c0 > 0 such that

M(Θ) ≥ c0σ
2r(d+ T )

mφ2(1 + 32(d− 1) ln(dT ))
(6)

Let c3 > 0 be a positive constant. If T = O(d), Theorem 4 establishes that the upper bounds
obtained in Theorem 3 are minimax-optimal up to constant factors.

3. Proofs

In this section, we present the proofs of our main results.

3.1. Proof of Theorem 3

Our proof relies on Theorem 9.19 of Wainwright (2019) given the decomposability of regularizer,
the restricted strong convexity (RSC) of the cost function and the dual norm bound. Negahban et al.
(2009) have shown the decomposability of the trace norm regularizer. Showing both RSC condition
and dual norm bound hold with high probability are the main technical challenges of this proof.

Proposition 5 L(M) is drawn from the Σ̃(M)-Gaussian ensemble, with rows sampled i.i.d. from

a N (0, Σ̃(M)), where Σ̃(M) :=

M1′ΣM1

. . .
MT ′ΣMT


T×T

.

Proposition 6
√
tr(Σ̃(M)) = ||

√
ΣM||F .
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Proof

||
√

ΣM||F =

√
tr(M′

√
Σ
′√

ΣM) =
√
tr(M′ΣM) =

√
tr(Σ̃(M))

We define the first-order Taylor-series error as below.

ε(M) :=
1

mT

∑
(i,t)∈[m]×[T ]

(
(yti−〈M(t)+M∗(t),xti〉)2−(yti−〈M∗(t),xti〉)2 − 〈∇(yti−〈M∗(t),xti〉)2,M〉

)
=

1

mT

∑
(i,t)∈[m]×[T ]

〈M(t),xti〉)2 =
1

mT
||L(M)||2F

Our first step is to establish the restricted strong convexity condition for ε(M) with high probability.

Lemma 7 (RSC condition) Assume
√

1/T−
√

1/m ≥ 3
4
√

2
. Let L(M) be drawn from the Σ̃(M)-

Gaussian ensemble, there are positive constants c1 < 1 < c2 such that

ε(M) ≥ c1||
√

ΣM||2F −
c2Ttr(Σ)||M||2∗

m
, ∀M ∈ Rd×T (7)

with probability at least 1− e−mT/64

1−e−mT/64 .

Remark. Note that our RSC condition Lemma 7 is different from Lemma 1 of Boursier et al.
(2022) in the following two aspects. Firstly, Lemma 1 in Boursier et al. (2022) holds only for the
cone set of matrices, while our Lemma 7 holds for any matrices in Rd×T . Secondly, our Lemma 7 is
consistent with the RSC condition defined in Definition 9.15 of Wainwright (2019), while Lemma
1 of Boursier et al. (2022) does not follow Definition 9.15 of Wainwright (2019).
Proof By a rescaling argument, we consider Γ(Σ) := {M ∈ Rd×T |||

√
ΣM||F = 1}. Let g(t) :=

4
√

2Ttr(Σ)t√
m

and Φ := {xti, (i, t) ∈ [m]× [T ]| infM∈Γ(Σ)
||L(M)||F√

mT
≤ 1/4− 2g(||M||∗)}.

We first show that the lower bound (7) holds on the complementary set Φ. Given M ∈ Γ(Σ),
define a = 1/4, b = 2g(||M||∗), c = ||L(M)||F√

mT
, and we obtain c ≥ max{a − b, 0} on the event

Φ. We first show that c2 ≥ (1 − δ)2a2 − b2/δ2 for any 0 < δ < 1. If b/δ ≥ a, then the bound is
trivial. Assume b ≤ aδ. c ≥ a− b implies that c ≥ (1− δ)a, and c2 ≥ (1− δ)2a2 − b2/δ2. Setting
δ = 1/2, then the lower bound (7) holds. Then, we need to upper bounding the probability of Φ.

Let 0 ≤ r1 ≤ r2, we define the sets K(r1, r2) := {M ∈ Γ(Σ)|g(||M||∗) ∈ [r1, r2]},
Q(r1, r2) := {infM∈K(r1,r2)

||L(M)||F√
mT

≤ 1/2− r2}, and present the key lemma as below.

Lemma 8 Given 0 ≤ r1 ≤ r2, we have

P(Q(r1, r2)) ≤ e−mT/32e−mTr
2
2/8, (8)

for µ = 1/4, we have

Φ ⊆ Q(0, µ) ∪ (

∞⋃
i=1

Q(2i−1µ, 2iµ)). (9)

5
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Combining (9) and the union bound, we have

P(Φ) ≤ P(Q(0, µ)) +
∞∑
i=1

P(Q(2i−1µ, 2iµ))) ≤ e−mT/32(
∞∑
i=0

e−mT22iµ2/8)

Since µ = 1/4 and 22i ≥ 2i, we obtain

P(Φ) ≤ e−mT/32(

∞∑
i=0

e−mT22iµ2/8) ≤ e−mT/32(
∞∑
i=0

(e−mTµ
2/4)i) ≤ e−mT/64

1− e−mT/64

Thus, the lower bound (7) holds with probability at least 1 − e−m/64

1−e−m/64 . The rest part is devoted to
prove Lemma 8.

Let M ∈ Γ(Σ) certify Φ. Then, it must belong either to the setK(0, µ) or to a setK(2i−1µ, 2iµ)
for some i = 1, 2, . . .. First suppose that M ∈ K(0, µ), so g(||M||∗) ≤ µ = 1/4. Since M certifies
the event Φ, we have ||L(M)||F√

mT
≤ 1/4 − 2g(||M||∗) ≤ 1/4 = 1/2 − µ, showing that the event

Q(0, µ) must happen. Otherwise, we must have M ∈ K(2i−1µ, 2iµ) for some i = 1, 2, . . ., and
we have ||L(M)||F√

mT
≤ 1/4 − 2g(||M||∗) ≤ 1/4 − 22i−1µ ≤ 1/2 − 2iµ, showing that the event

Q(2i−1µ, 2iµ) must happen. Thus, (9) holds.
The following content shows that (8) holds. We consider the random variable Υ(r1, r2) :=

− infM∈K(r1,r2)
||L(M)||F√

mT
, and the class of matrices Λm,T := {N ∈ Rm×T |rank(N) = 1, ||N||F =

1}. The spectral norm of matrix L(M) has the variational representation ||L(M)||2 = supN∈Λm,T 〈L(M),N〉.
Let W ∈ Rm×T be the standard Gaussian ensemble with i.i.d. N (0, 1) entries. L(M) can be writ-

ten as L(M) = W
√

Σ̃(M). We have

Υ(r1, r2) = − inf
M∈K(r1,r2)

||L(M)||F√
mT

≤ − inf
M∈K(r1,r2)

||L(M)||2√
mT

= − inf
M∈K(r1,r2)

sup
N∈Λm,T

〈L(M),N〉√
mT

= sup
M∈K(r1,r2)

inf
N∈Λm,T

〈W
√

Σ̃(M),N〉
√
mT

= sup
M∈K(r1,r2)

inf
N∈Λm,T

〈
W,N

√
Σ̃(M)

〉
√
mT

(10)

The following Gordon’s inequality (Vershynin, 2018) plays the key role in the remainder of our
proof.

Lemma 9 (Gordon’s inequality) Let Zu,v and Yu,v be two zero-mean Gaussian processes indexed
by pairs of points (u, v) in a product set T = U × V . Suppose that E(Zu,v − Zŭ,v̆)2 ≤ E(Yu,v −
Yŭ,v̆)

2 for all pairs (u, v) ∈ T and (ŭ, v̆) ∈ T, and this inequality holds with equality whenever
v = v̆. Then we have

E sup
v∈V

inf
u∈U

Zu,v ≤ E sup
v∈V

inf
u∈U

Yu,v

6
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Let (M,N) and (M̆, N̆) be any two pairs in K(r1, r2) × Λm,T . The zero-mean Gaussian process

is defined as ZM,N :=
〈
W,N

√
Σ̃(M)

〉
. We find that

E(ZM,N − ZM̆,N̆)2 = E
(〈

W,N

√
Σ̃(M)− N̆

√
Σ̃(M̆)

〉)2

=
∣∣∣∣∣∣N√Σ̃(M)− N̆

√
Σ̃(M̆)

∣∣∣∣∣∣2
F

=
∣∣∣∣∣∣N(√Σ̃(M)−

√
Σ̃(M̆)

)
+
(
N− N̆

)√
Σ̃(M̆)

∣∣∣∣∣∣2
F

≤ 2||N||2F
∣∣∣∣∣∣√Σ̃(M)−

√
Σ̃(M̆)

∣∣∣∣∣∣2
F

+ 2||N− N̆||2F
∣∣∣∣∣∣√Σ̃(M̆)

∣∣∣∣∣∣2
F

= 2
∣∣∣∣∣∣√Σ̃(M)−

√
Σ̃(M̆)

∣∣∣∣∣∣2
F

+ 2||N− N̆||2F

(11)

where the last step follows from the definition of Λm,T , K(r1, r2) and Proposition 6:

∣∣∣∣∣∣√Σ̃(M̆)
∣∣∣∣∣∣2
F

= tr(Σ̃(M̆)) = ||
√

ΣM̆||2F = 1

Motivated by (11), we define the zero-mean Gaussian processes YM,N :=
√

2
〈
W1,

√
Σ̃(M)

〉
+

√
2〈W2,N〉, where W1 ∈ RT×T and W2 ∈ Rm×T are both standard Gaussian ensemble with

i.i.d. N (0, 1) entries. We have E(YM,N − YM̆,N̆)2 = 2
∣∣∣∣∣∣√Σ̃(M)−

√
Σ̃(M̆)

∣∣∣∣∣∣2
F

+ 2||N− N̆||2F .
Using Lemma 9, we find that

EΥ(r1, r2) ≤ E
(

sup
M∈K(r1,r2)

inf
N∈Λm,T

ZM,N√
mT

)
≤ E

(
sup

M∈K(r1,r2)
inf

N∈Λm,T

YM,N√
mT

)

=
√

2E
(

sup
M∈K(r1,r2)

〈
W1,

√
Σ̃(M)

〉
√
mT

)
+
√

2E
(

inf
N∈Λm,T

〈W2,N〉√
mT

)
(12)

Lemma 10 Consider a standard Gaussian ensemble W ∈ Rm×T generated with i.i.d. N (0, 1)
entries. The expectation of the maximum singular value σmax(W) and minimum singular value
σmin(W) satisfy the following upper and lower bounds:

Eσmax(W) ≤
√
m+

√
T

Eσmin(W) ≥
√
m−

√
T

7
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The proof details of Lemma 10 can be found in the Appendix A. Combining Hölder’s inequality,
Proposition 6 and Lemma 10 imply that

E
(

sup
M∈K(r1,r2)

〈
W1,

√
Σ̃(M)

〉
√
mT

)
≤ E

(
sup

M∈K(r1,r2)

||W1||2
∣∣∣∣∣∣√Σ̃(M)

∣∣∣∣∣∣
∗√

mT

)
(Hölder’s inequality)

≤ 2
√
T√

mT
sup

M∈K(r1,r2)

∣∣∣∣∣∣√Σ̃(M)
∣∣∣∣∣∣
∗

(Lemma 10)

≤ 2√
m

sup
M∈K(r1,r2)

T∑
i=1

√
Mi′ΣMi

≤ 2√
m

sup
M∈K(r1,r2)

√
T

√√√√ T∑
i=1

Mi′ΣMi

≤ 2
√
T√
m

sup
M∈K(r1,r2)

||
√

ΣM||F (Proposition 6)

≤ 2
√
T√
m

sup
M∈K(r1,r2)

||
√

Σ||F ||M||∗

≤ r2

2
√

2
(definition of K(r1, r2))

(13)

Lemma 10 also implies that

E
(

inf
N∈Λm,T

〈W2,N〉√
mT

)
= −E

(
sup

N∈Λm,T

〈W2,N〉√
mT

)
= −E ||W2||2√

mT
≤
√
T −
√
m√

mT
(14)

(12), (13) and (14) show that

EΥ(r1, r2) ≤ (
√
T −
√
m)
√

2√
mT

+
r2

2
(15)

(10) shows that the random variable
√
mTΥ(r1, r2) is a 1-Lipschitz function of the standard Gaus-

sian matrix W. Theorem 2.26 in Wainwright (2019) implies that

P(Υ(r1, r2) ≥ EΥ(r1, r2) + t) ≤ e−mTt2/2,∀t > 0 (16)

Assume
√

1/T −
√

1/m ≥ 3
4
√

2
. Then the constant C = (−

√
T+
√
m)
√

2√
mT

− 1/2 ≥ 1/4. Setting
t = C + r2

2 , (15) and (16) show that

P(Υ(r1, r2) ≥ −1/2 + r2) ≤ e−mTC2/2e−mTr
2
2/8 ≤ e−mT/32e−mTr

2
2/8 (17)

Thus, (8) holds.

Let LmT (M∗) := 1
mT

∑
(i,t)∈[m]×[T ](y

t
i −〈M∗(t),xti〉)2. The following Lemma shows the dual

norm bound holds with high probability.

8
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Lemma 11 (Dual norm bound) With probability at least 1− e−mT/16 − 2e−4mTδ2 , we have

||∇LmT (M∗)||2 ≤ 16ρσ(

√
T + d

mT
+ δ)

Proof

∇LmT (M∗) =
−2

mT
[
∑
i∈[m]

(y1
i − 〈M∗(1),x1

i 〉)x1
i , . . . ,

∑
i∈[m]

(yTi − 〈M∗(T ),xTi 〉)xTi ]d×T

=
−2

mT
[
∑
i∈[m]

ε1ix
1
i , . . . ,

∑
i∈[m]

εTi xTi ]d×T

Based on the event E := { ||(ε
t
i)(i,t)∈[m]×[T ]||2F

mT ≤ 2σ2}, we have

P(||∇LmT (M∗)||2 ≥ λmT /2) ≤ P(E ) + P(||∇LmT (M∗)||2 ≥ λmT /2|E ) (18)

Since εti are drawn i.i.d. from Gaussian distribution N (0, σ2), Exercise 2.6 in Wainwright (2019)
implies that P(E ) ≤ e−mT/16. It remains to upper bound P(||∇LmT (M∗)||2 ≥ λmT /2|E ).

Let {a1, . . . ,aI} and {b1, . . . ,bJ} be 1/4-covers in Euclidean norm of the spheres ST−1 and
Sd−1 respectively. Lemma 5.7 in Wainwright (2019) implies that I ≤ 9T and J ≤ 9d. For any
b ∈ Sd−1, we can write b = bj + c for some vector c with `2 distance at most 1/4, and we have

||∇LmT (M∗)||2 = ||∇LmT (M∗)′||2
= sup

b∈Sd−1

||∇LmT (M∗)′b||2

≤ 1/4||∇LmT (M∗)′||2 + max
j∈[J ]
||∇LmT (M∗)′bj ||2

(19)

Based on the cover of ST−1, we use the similar argument and obtain that

||∇LmT (M∗)′bj ||2 ≤ 1/4||∇LmT (M∗)′||2 + max
i∈[I]
〈ai,LmT (M∗)′bj〉 (20)

(19) and (20) imply that ||∇LmT (M∗)′||2 ≤ 2 maxj∈[J ] maxi∈[I] |ϑi,j |, where ϑi,j = 〈ai,LmT (M∗)′bj〉.
Fix some index pair (i, j, k), using the definition of ρ2, we have

V ar〈ai, [ε1kx1′
k bj , . . . , εTk xT

′
k bj ]′〉 = V ar(

T∑
z=1

aizε
z
kx

z′
k bj)

= E(
T∑
z=1

(aiz)
2(εzk)

2(xz
′
k bj)2)

≤ ρ2E(
T∑
z=1

(εzk)
2) (definition of ρ2)

(21)

9
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Conditioning on event E and using (21), we have

V ar(ϑi,j |E ) =
4

m2T 2

m∑
k=1

V ar(〈ai, [ε1kx1′
k bj , . . . , εTk xT

′
k bj ]′〉|E )

≤ 4ρ2

m2T 2
E(

m∑
k=1

T∑
z=1

(εzk)
2|E )

≤ 8ρ2σ2

mT
(22)

(22) shows that ϑi,j is zero-mean Gaussian with variance at most 8ρ2σ2

mT conditioning on event E ,
and implies that

P(||∇LmT (M∗)||2 ≥ λmT /2|E ) ≤
∑
j∈[J ]

∑
i∈[I]

P(|ϑi,j | ≥ λmT /4|E ) (union bound)

≤ 2e
−mTλ

2
mT

162ρ2σ2
+ln I+ln J

(sub-Gaussian tail bounds)

≤ 2e
−mTλ

2
mT

162ρ2σ2
+(T+d) ln 9

(23)

Setting λmT = 32ρσ(
√

T+d
mT + δ), (18) and (23) show that

P(||∇LmT (M∗)||2 ≥ 16ρσ(

√
T + d

mT
+ δ)) ≤ e−mT/16 + 2e−4mTδ2

Combining Theorem 9.19 of Wainwright (2019), Lemma 7 and Lemma 11, we obtain Theorem 3.

3.2. Proof of Theorem 4

Our proof is based on a standard reduction from lower bounding the probability of error to anN -ary
hypothesis testing problem (Hasminskii, 1979; Yang and Barron, 1999) over a packing set of matrix
pairs.

In particular, suppose that {M1, · · · ,MN} is a 2%-separated set contained in Θ, meaning a
collection of elements ||Mi −Mj ||F ≥ 2% for all i 6= j. Let PMi be the distribution that links to
each Mi. Given a class of distributions {PMi , i ∈ [N ]}, a random matrix Z := (X,y) is generated
from the following procedure:(1) Sample a random integer B from the uniform distribution over
the index set [N ]. (2) Given B = i, sample Z from PMi . In this way, the observation follows the
mixture distribution Q := 1/N

∑N
i=1 PMi . We define a mapping function ψ : I → [N ]. Our goal

is to identify the index B of the probability distribution from which a given sample has been drawn.
Proposition 15.1 in Wainwright (2019) implies that

M(Θ) ≥ %2 inf
ψ

P(ψ(X,y) 6= B) (24)

10
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The remainder of the proof is devoted to low bounding P(ψ(X,y) 6= B).

Conditioning on a particular instantiation X := (x1
1, . . . ,x

1
m, . . . ,x

T
1 , . . . ,x

T
m)′, we derive the

following lower bound by using a form of Fano’s inequality that involves the mutual information
IX(y;B) between the random vector y and the random index B with fixed X.

P(ψ(X,y) 6= B|X) ≥ 1− IX(y;B) + ln 2

lnN
(25)

By taking averages over X, we obtain lower bound on P(ψ(X,y) 6= B) that involve the quan-
tity EX(IX(y;B)). ||M||∞ := maxj∈[d] maxk∈[T ] |Mjk| denotes the element-wise maximum of
matrix M. We first present the following Lemma from Agarwal et al. (2011).

Lemma 12 For d, T ≥ 10, % > 0, and for each r = 1, . . . ,min{T, d}, there exists a set of d× T -

dimensional matrices {M1, · · · ,MN} with cardinality N ≥ 1/4e
r(d+T )

128 such that each matrix has
rank r, and moreover

||Mi||F = 2% for all i = 1, . . . , N

||Mi −Mj ||F ≥ 2% for all i 6= j

||Mi||∞ ≤ 2%

√
32 ln dT

dT
for all i = 1, . . . , N (26)

Lemma 12 shows that ||Mi −Mj ||F ≤ 4% for all i 6= j. Let ImT×mT be the mT ×mT identity

matrix. We define ℵ := 2%
√

32 ln dT
dT . Let PMi denote the distribution of y given ground truth matrix

Mi and X. Under PMi , our model (3) shows that y follows a distributionN (ξMi , σ2ImT×mT ) with
mT -dimensional mean vector

ξMi = (〈Mi(1),x1
1〉, . . . , 〈Mi(1),x1

m〉, . . . , 〈Mi(T ),xT1 〉, . . . , 〈Mi(T ),xTm〉)′ ∈ RmT

and mT × mT covariance matrix σ2ImT×mT . Let D(PMi ||PMj ) denote the Kullback-Leibler
divergence between the distributions of PMi and PMj .

A simple upper bound on the mutual information can be derived by using the convexity of the
Kullback-Leibler divergence: IX(y;B) ≤ 1/N2

∑
i,j D(PMi ||PMj ). Let 4

(i,j)
M := Mi −Mj .

Exercise 15.13 in Wainwright (2019) ensures that

D(PMi ||PMj ) =
1

2σ2
||ξMi − ξMj ||22

=
1

2σ2
||(〈 4

(i,j)
M(1),x1

1〉, . . . , 〈 4
(i,j)

M(1),x1
m〉, . . . , 〈 4

(i,j)
M(T ),xT1 〉, . . . , 〈 4

(i,j)
M(T ),xTm〉)||22

11
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Using Lemma 12, we have

EX(IX(y;B)) ≤ 1/N2
∑
i,j

EX(D(PMi ||PMj ))

=
1

2N2σ2

∑
i,j

EX(〈 4
(i,j)

M(1),x1
1〉2 + . . .+ 〈 4

(i,j)
M(1),x1

m〉2 + . . .+ 〈 4
(i,j)

M(T ),xTm〉2)

≤ 1

2N2σ2

∑
i,j

(
mφ2

( d∑
k=1

4
(i,j)

M
(1)
k +

∑
k 6=l
4

(i,j)
M

(1)
k 4

(i,j)
M

(1)
l

)
+ . . .

+mφ2
( d∑
k=1

4
(i,j)

M
(T )
k +

∑
k 6=l
4

(i,j)
M

(T )
k 4

(i,j)
M

(T )
l

))
≤ 1

2N2σ2

∑
i,j

(mφ2|| 4
(i,j)

M||2F + 4mφ2Td(d− 1)ℵ2)

≤ 1

2N2σ2

∑
i,j

(16mφ2%2 + 4mφ2Td(d− 1)ℵ2)

≤ 1

2σ2
(16mφ2%2 + 4mφ2Td(d− 1)ℵ2)

(27)

Assume that r(d+ T ) > 512 ln 4. We obtain

P(ψ(X,y) 6= B) = EX(P(ψ(X,y) 6= B|X))

≥ 1− EX(IX(y;B)) + ln 2

lnN
(25)

≥ 1−
1

2σ2 (16mφ2%2 + 4mφ2Td(d− 1)ℵ2) + ln 2
r(d+T )

128 − ln 4
(27) and Lemma 12

≥ 1−
256
2σ2 (16mφ2%2 + 4mφ2Td(d− 1)ℵ2) + 256 ln 2

r(d+ T )
r(d+ T ) > 512 ln 4

(28)

Setting %2 = σ2r(d+T )
8192mφ2(1+32(d−1) ln(dT ))

, (28) implies that

P(ψ(X,y) 6= B) ≥ 1−
r(d+T )

4 + 256 ln 2

r(d+ T )
≥ 1

2
(29)

The claim follows from (24) and (29).

4. Conclusion

In this work, we establish a sharper estimation error bound for MTL with trace norm regularizer.

We improve the estimation error bound in Boursier et al. (2022) by a factor O(

√
rd2/m+rdT/m

m )
and a logarithmic term without three assumptions. Moreover, we establish matching lower bounds
on the minimax error, showing that our upper bounds cannot be improved beyond constant factors
under some mild conditions.

12
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Appendix A. Proof of Lemma 10

The proof of Lemma 10 is based on Sudakov-Fernique Theorem (Vershynin, 2018) and Gordons
inequality Lemma 9. Let Sd−1 be the Euclidean unit sphere in Rd.

σmax(W) = sup
v∈ST−1

||Wv||2 = sup
v∈ST−1

sup
u∈Sm−1

tr(u′Wv)

= sup
v∈ST−1

sup
u∈Sm−1

tr(Wvu′) = sup
v∈ST−1

sup
u∈Sm−1

〈W,uv′〉
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Let (u,v) and (ŭ, v̆) be any two pairs in Sm−1×ST−1. The zero-mean Gaussian process is defined
as Zu,v := 〈W,uv′〉.

E(Zu,v − Zŭ,v̆)2 = E(〈W,uv′ − ŭv̆′〉)2 = ||uv′ − ŭv̆′||2F = ||u(v − v̆)′ + (u− ŭ)v̆′||2F
= ||u(v − v̆)′||2F + ||(u− ŭ)v̆′||2F + 2〈u(v − v̆)′, (u− ŭ)v̆′〉
≤ ||u||22||v − v̆||22 + ||u− ŭ||22||v̆||22 + 2(||u||22 − 〈u, ŭ〉)(〈v, v̆〉 − ||v||22)

≤ ||v − v̆||22 + ||(u− ŭ)||22

The zero-mean Gaussian processes is defined as Yu,v := 〈w1,u〉 + 〈w2,v〉, where w1 ∈ Rm and
w2 ∈ RT are both standard Gaussian random vectors with i.i.d. N (0, 1) entries. E(Yu,v−Yŭ,v̆)2 =
||u− ŭ||22 + ||v − v̆||22. The Sudakov-Fernique Theorem implies that

Eσmax(W) ≤ E sup
v∈ST−1

sup
u∈Sm−1

(〈w1,u〉+ 〈w2,v〉) ≤ E sup
v∈ST−1

〈w2,v〉+ E sup
u∈Sm−1

〈w1,u〉

= E||w2||2 + E||w1||2 ≤
√
m+

√
T

where the last step follows from the Jensen’s inequality. The lower bound on the expectation of the
minimum singular value is based on a similar argument with Gordons inequality Lemma 9.
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