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Abstract
A fundamental question in reinforcement learning theory is: suppose the optimal value func-
tions are linear in given features, can we learn them efficiently? This problem’s counterpart in
supervised learning, linear regression, can be solved both statistically and computationally ef-
ficiently. Therefore, it was quite surprising when a recent work Kane et al. (2022) showed a
computational-statistical gap for linear reinforcement learning: even though there are polynomial
sample-complexity algorithms, unless NP = RP, there are no polynomial time algorithms for this
setting.

In this work, we build on their result to show a computational lower bound, which is expo-
nential in feature dimension and horizon, for linear reinforcement learning under the Randomized
Exponential Time Hypothesis. To prove this we build a round-based game where in each round the
learner is searching for an unknown vector in a unit hypercube. The rewards in this game are cho-
sen such that if the learner achieves large reward, then the learner’s actions can be used to simulate
solving a variant of 3-SAT, where (a) each variable shows up in a bounded number of clauses (b)
if an instance has no solutions then it also has no solutions that satisfy more than (1-ε)-fraction of
clauses. We use standard reductions to show this 3-SAT variant is approximately as hard as 3-SAT.
Finally, we also show a lower bound optimized for horizon dependence that almost matches the
best known upper bound of exp(

√
H).

© 2023 D. Kane, S. Liu, S. Lovett, G. Mahajan, C. Szepesvári & G. Weisz.
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1. Introduction

Efficiently exploring and planning in environments with large state spaces is a central problem in
reinforcement learning. Recently, there has been a lot of success in applying function approximation
to classical reinforcement learning algorithms leading to state-of-the-art results in various practical
applications.

This has also led to a growing interest of the reinforcement learning (RL) theory community to
design and analyze efficient algorithms for the large state space regime. In this regime, the goal is
to design algorithms whose complexity does not polynomially depend on the size of the state space.
Since, this is impossible when we do not make any assumptions about the environment, much
effort has been spent on finding minimal assumptions under which an optimal policy can be found
efficiently: State Aggregation (Li, 2009; Dong et al., 2020), Linear qπ (Du et al., 2020a; Lattimore
et al., 2020; Yin et al., 2022; Weisz et al., 2022a), Linear MDPs (Yang and Wang, 2019; Jin et al.,
2020), Linear Mixture MDPs (Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021), Reactive
POMDPs (Krishnamurthy et al., 2016), Block MDPs (Du et al., 2019), FLAMBE (Agarwal et al.,
2020), Reactive PSRs (Littman et al., 2001), Linear Bellman Complete (Munos, 2005; Zanette et al.,
2020), Bellman rank (Jiang et al., 2016), Witness rank (Sun et al., 2019), Bilinear Classes (Du et al.,
2021), Bellman Eluder (Jin et al., 2021) and Decision-Estimation Coefficient (Foster et al., 2021).

One such minimal assumption that came out of this line of work is RL with linear function
approximation: when the optimal value function (either Q∗, or V ∗, or both) can be obtained as the
linear combination of finitely many, known basis functions. When both the optimal value functions
Q∗ and V ∗ satisfy this assumption (called linear Q∗&V ∗ henceforth), there are two sample effi-
cient algorithms in the literature whose sample complexities are polynomial in the number of basis
functions d and horizon H . First, the algorithm by Du et al. (2021) additionally assumes that the
basis functions’ values can be known and pre-processed for the whole state-action space. Second,
TensorPlan (Weisz et al., 2021b, 2022b) replaces this with an implicit assumption that the number
of actions is a small constant (as its sample complexity is exponential in this number). Weisz et al.
(2021a, 2022b) showed sample complexity lower bounds exponential in min(d,H) that imply sta-
tistical hardness of finding a near-optimal policy when the number of actions is polynomial in d and
the values of basis functions are only revealed for the sampled states. This indicates that one of
the two aforementioned additional assumptions are required for a sample efficient algorithm. How-
ever, even when both additional assumptions are met, these works leave finding a computationally
efficient algorithm for this setting as an important open question.

A recent work (Kane et al., 2022) made progress on this question by showing a computational-
statistical gap in RL with linear function approximation: unless NP=RP, there is no polynomial time
algorithm even for the easiest setting of linear Q∗&V ∗, deterministic transition, stochastic rewards
and 2 actions. This is surprising because if we also assume that the rewards are deterministic, then
this problem can be solved in O(dH) time (Wen and Van Roy, 2017). Therefore, the result of
(Kane et al., 2022) showed that adding noise in rewards can lead to computational intractability
(similar transition happens for sample complexity if the number of actions is unrestricted Weisz
et al. (2021a, 2022b)). However, the lower bound of (Kane et al., 2022) is not tight: they showed
a quasi-polynomial lower bound in d whereas the best known upper bounds are exponential in
min(d,H) (Du et al., 2020b).
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2. Our Contributions

In this work, we provide almost matching exponential computational lower bounds for RL with
linear function approximation. Before stating our main results, we first need to state some key
definitions that we use throughout the paper.

2.1. Preliminaries

Markov Decision Process (MDP). We begin by defining the framework for reinforcement learn-
ing, a Markov Decision Process (MDP). We define a deterministic transition MDP as a tuple
M = (S,A, R, P ), where S is the state space, A is the action space, R : S × A 7→ ∆([0, 1])
is the stochastic reward function,1 and P : S × A 7→ S is the deterministic transition function.
Such an MDPM gives rise to a discrete time sequential decision process where an agent starts from
a starting state S0 ∈ S. Then, at each time t, the agent at some current state St, takes action At,
receiving reward Rt ∼ R(St, At) and transitions to next state St+1 = P (St, At). This goes on until
the agent reaches the end state ⊥ ∈ S . In H-horizon problems each such trajectory/path from the
starting state s0 to an end state⊥ is of length of at mostH , and the sets of states St that are reachable
after t steps (taking any actions) are disjoint for 0 ≤ t ≤ H . The goal of the decision making agent
is to maximize the sum of the total expected rewards it receives along such a trajectory. As it turns
out, the total expected reward regardless the initial state is achievable by following a deterministic,
stationary policy, which is given by some map π : S 7→ A and following π means that in step t if the
state is St, the action taken is At = π(St). Given a policy π and a state-action pair (s, a) ∈ S ×A,
we let

V π(s) = E

[
τ−1∑
t=0

R(St, At) | S0 = s, π

]
, Qπ(s, a) = E

[
τ−1∑
t=0

R(St, At) | S0 = s,A0 = a, π

]

denote the total expected reward where S1, A1, . . . Sτ−1, Aτ−1 are obtained by executing policy π
in the MDP M and τ is the first time when policy π reaches the end state ⊥, that is Sτ = ⊥ where
it always holds that τ ≤ H . We use Q∗ and V ∗ to denote the optimal value functions

V ∗(s) = sup
π
V π(s) , Q∗(s, a) = sup

π
Qπ(s, a) , s ∈ S, a ∈ A

We say that the optimal value functions V ∗ and Q∗ can be written as a linear function of d-
dimensional features ψ : S t (S × A) → Rd if for all state s and action a, V ∗(s) = 〈θ, ψ(s)〉
and Q∗(s, a) = 〈θ, ψ(s, a)〉 for some fixed θ ∈ Rd independent of s and a.2 In our construc-
tion, linear V ∗ implies linear Q∗ for ψ(s, a) = ψ(P (s, a)) as (i) in deterministic transition MDPs,
Q∗(s, a) = r(s, a) + V ∗(P (s, a)), (ii) in our construction, rewards are 0 everywhere except at the
leaves and (iii) the reward at the leaves does not depend on the action.

Computational Problems. We next introduce 3-SAT, a satisfiability problem for 3-CNF formu-
las. In a 3-SAT problem, we are given as input, a 3-CNF formula ϕ with v variables and O(v)
clauses and our goal is to decide if ϕ is satisfiable.

1. ∆([0, 1]) denotes the set of all distributions over the interval [0, 1].
2. Above, t means taking the disjoint union of the arguments.
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Complexity problem 3-SAT

Input: A 3-CNF formula ϕ with v variables and O(v) clauses
Goal: Decide whether the formula is satisfiable.

The focus of this work is the computational RL problem, LINEAR-k-RL. In a LINEAR-k-
RL problem with feature dimension d, we are given access to a deterministic MDP M with k
actions and horizon H = O(d) such that the optimal value functions Q∗ and V ∗ can be written as
a linear function of the d-dimensional features ψ. Our goal is to output a good policy, which we
define as any policy π that satisfies V π > V ∗ − 1/8, where V π and V ∗ refers to the value of the
policy π and optimal policy, respectively, at a fixed starting state and is always in [0, H] 3. From
now on, we always assume that the number of actions is k = 3.

Complexity problem LINEAR-k-RL
Oracle: a deterministic MDP M with k actions, optimal value functions V ∗ and Q∗

linear in d dimensional features ψ, horizon H and state space of size at most
exp(poly(d)).

Goal: find policy π such that V π > V ∗ − 1/8.

We now describe how the algorithm interacts with the MDP. We assume that the algorithm has
access to the state and action spaces (which can be taken as subsets of integers), as well as random
access to the associated (i) reward function R, (ii) transition function P and (iii) features ψ. For
all these functions, the algorithm provides a state s and action a (if needed) and receives a random
sample from the distribution R(s, a) (for the reward function), the state P (s, a) (for the transition
function), features ψ(s) and ψ(s, a) (for the features). We assume that each call accrues constant
runtime and input/output for these functions are of size polynomial in feature dimension d.

We will often talk about randomized algorithm A solving a problem in time t with error proba-
bility p. By this we mean (i) A runs in time O(t); (ii) for satisfiability problems, it returns YES on
positive input instances with probability at least 1 − p and returns NO on negative input instances
with probability 1; and (iii) for an RL problem, it returns a good policy with probability at least
1− p.

2.2. Exponential lower bound for LINEAR-3-RL

In this paper, we present computational lower bound under a strengthening of the NP 6= RP conjec-
ture, the Randomized Exponential Time Hypothesis (rETH) (Dell et al., 2014), which asserts that
probabilistic algorithms can not decide if a given 3-SAT problem with v variables and O(v) clauses
is satisfiable in sub-exponential time.

Definition 1 (Randomized Exponential Time Hypothesis (rETH)) There is a constant c > 0
such that no randomized algorithm can decide 3-SAT with v variables in time 2cv with error prob-
ability 1/3.

3. In our constructions, we satisfy the more stringent condition that V ∗ ∈ [0, 1].
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The Randomized Exponential Time Hypothesis along with many variants motivated by the Ex-
ponential Time Hypothesis (Impagliazzo and Paturi, 2001) has been influential in discovering hard-
ness results for a variety of problems see, e.g. Cygan et al. (2015); Williams (2019). Under the
Randomized Exponential Time Hypothesis, our main result is an exponential computational lower
bound for learning good policies in deterministic MDPs with linear optimal value functions.

Theorem 1 (Exponential in horizon and dimension lower bound) Under rETH, there is no
randomized algorithm that solves LINEAR-3-RL with feature dimension d and horizon H in
time exp(Õ(min(d1/4, H1/4))) with probability at least 9/10, where Õ hides polylog(d) and
polylog(H) factors.

A few remarks are in order. Firstly, min(·) is the correct complexity measure here. To see
this, we note that this problem can be solved in time exp(Õ(min(d,

√
H))) (we prove these upper

bounds in Appendix B) and therefore if either dimension d or horizon H is constant, we can solve
this problem efficiently in the other parameter. Secondly, this is the first exponential computational
lower bound for this setting as the previous best known result Kane et al. (2022) produces at best a
quasi-polynomial lower bound, even assuming rETH.

In terms of horizonH , there is still a gap between the exp(Ω̃(H1/4)) lower bound in Theorem 1
and the exp(Õ(

√
H)) upper bound. We next show a lower bound optimized for horizon H which

almost matches this upper bound.

Theorem 2 (Almost matching horizon lower bound) Under rETH, there is no randomized al-
gorithm that solves LINEAR-3-RL with horizon H and feature dimension d ≥ H logH in time
exp(Õ(

√
H)) with probability at least 9/10, where Õ hides polylog(H) factors.

We now discuss some open questions. Even though the lower bound in Theorem 2 almost
matches the upper bound in terms of horizonH , it requires the feature dimension to be at least quasi-
polynomial in H . We leave it as an open question if the above result also holds when d = poly(H).
Another important direction is understanding the complexity in terms of dimension d i.e. a lower
bound optimized for dimension d. Our proof for Theorem 1 can be modified to show exp(d) lower
bound for H = exp(d). Does the result also hold true for H = poly(d)?

Related Work. We already discussed the large body of work giving statistical efficient algorithms
for RL under various assumptions. Complementing them is work giving statistical lower bounds
for RL with linear function approximation when the number of actions grows. Concretely, the
works of Weisz et al. (2021a, 2022b); Wang et al. (2021) showed sample complexity lower bounds
exponential in min(d,H) that imply statistical hardness of finding a near-optimal policy, when
the number of actions grow with the number of basis functions and the values of basis functions
are only revealed for the sampled states. Furthermore, there are recent works (Golowich et al.,
2022a,b; Uehara et al., 2022) on designing quasipolynomial-time end-to-end algorithm for learning
in ”observable” POMDPs (our lower bound result refute existence of similar quasipolynomial-time
algorithms for linear Q∗ and V ∗ assumption.)

Remainder of this paper. In Section 3, we present a brief overview of the main technical ideas
in the lower bound construction. In Section 4, we describe in detail our exponential lower bound
constructions and prove our main theorems. In Appendix A we use standard reductions to show
that under the randomized Exponential Time Hypothesis, a gap version of SAT that we use in the
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reduction is computationally hard. In Appendix B we give algorithms for RL which are exponential
in min(d,

√
H), showing that our lower bound is close to optimal.

3. Proof Overview

The high-level idea of the previous lower bound of Kane et al. (2022) was the following. The
authors design an MDP that forces the learner to search for an unknown vector w∗ in {0, 1}v which
constitutes a satisfying solution of a given SAT formula φ. In particular, each state in the MDP
corresponds to an assignment and the learner at the state can flip one variable appearing in the first
unsatisfying clause of the formula (assuming some canonical ordering of the clauses). Rewards are
given when the learner either reaches a satisfying assignment or the end of the horizon. The rewards
are designed in such a way that (i) the learner is incentivized for finding w∗ quickly but (ii) unable
to exploit much information from the rewards to accelerate the searching process. As a result, the
task becomes as hard as solving the original SAT problem.

One bottleneck of the above approach is that the reward is only uninformative if the algorithm
plays the game for fewer than quasi-polynomially many times. After that, there is a decent chance
that the algorithm could obtain extra information from the reward structure which may significantly
simplify the task. We follow the same high level idea of embedding hard (variants of) SAT instances
into a linear-RL problem. Yet, we make significant modifications to the transition and reward struc-
ture of the MDP such that the algorithm can hardly obtain any useful information from the rewards
unless it plays the game for exponentially many times.

In essence, we ensure the rewards given at the end of the horizon are uninformative by making it
a Bernoulli variable with exponentially small mean. If so, the learner with high probability sees only
0 in the end unless it plays the game for a large number of times. As a warm-up, one could imagine
an MDP with actions and transitions identical to that from Kane et al. (2022). Yet, we modify the
reward to be exp(− number of steps thus far−dist(w,w∗)) at any terminal state w. This makes sure
the (expected) reward given at the end of the horizon is always exponentially small. Unfortunately,
the value function induced will be of the same exponential function, and hence cannot be written as
a linear function of some low-dimensional features depending only on the state.

Round Based Game. One way to fix this is by turning the game into a round based game. We
divide the search into rounds and in each round, the variables are shown sequentially for the learner
to decide whether to flip a variable it or not. Then, if the learner terminates at the n-th round, we
make the reward function roughly

∏n
i=1 gi(number of flips taken in round i) · gn+1(dist(w,w∗)) for

some carefully chosen low-degree and monotonically decreasing polynomials gi. Now, consider the
greedy policy which tries to decrease the distance to w∗ whenever possible. Since the greedy policy
can always reach w∗ within one (entire) round, the value function of such strategy at the beginning
of round i will be

∏
j<i gj(number of flips in round j) ∗ gi(dist(w,w∗)). Since only the last term

depends on w and w∗, we get that the value function is essentially a low-degree polynomial in w
and w∗, which can indeed be written as a linear function of some state-dependent low-dimensional
feature vectors. See Lemma 6 for details.

However, in order to ensure that this is the optimal strategy, we will need to define the gi very
precisely so that making a flip in the current round is always better than deferring it to future rounds.
Essentially this means that the logarithmic derivative of gj should be smaller than the logarithmic
derivative of gi for j > i. Ideally, we would like to make gi(x) = exp(−ci x) for some increasing
sequence of ci, which would then make the above property trivially true. However, since gi must be a
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Complexity problem (b, ε)- GAP-3-SAT

Input: A 3-CNF formula ϕ with v variables and O(v) clauses with the following
promise: (1) each variable is in at most b clauses, and (2) either ϕ is satisfi-
able or any assignment leaves at least ε-fraction of clauses unsatisfied.

Goal: Decide whether the formula is satisfiable.

polynomial, we will instead make it a Taylor approximation to this exponential function around x =
0. As long as we can make the error in this Taylor approximation small relative to the difference in
logarithmic derivatives of exp(−ci ·x), it remains advantageous for the agent to take additional steps
in earlier rounds. Fortunately, this is indeed achievable using a low-degree Taylor approximation.
See Claim 17 and Lemma 18 for details of the argument.

Flips Enforcement. While the round-based game does ensure the linearity of the value function,
the reward given at the end of the horizon is not necessarily small. Since gi(x) is taken to be the
Taylor approximation of exp(−ci · x) around x = 0, gi(0) will be 1. Consequently, if the learner
chooses to flip nothing, it may receive a huge reward in the end, allowing the algorithm to extract
information from the reward structure.

To prevent this, we will offer the learner a bundle of variables in the first step of each round so
that it must flip one of the given variables. A caveat of doing so is that we want at least one variable
to be indeed erroneous so that flipping it results in the correct truth assignment to it and hence the
greedy policy is still well-defined and optimal. Fortunately, this is guaranteed if we simply give the
variables appearing in any of the unsatisfied clauses.

This allows us to force the algorithm to make at least one flip. In order to make the rewards
diminish at a faster rate, we take the idea further: we keep presenting the learner with unsatisfied
clauses involving variables that have not yet been flipped. Only after running out of such clauses,
we start to go through the rest of the variables and give the learner the choice to skip flips.

We would like to require that we can find many such clauses. Of course this is not possible to
guarantee in a general SAT instance. However, we show there is a special family of 3-SAT instances
so that finding assignments where one would quickly run out of such unsatisfied clauses is computa-
tionally hard. In particular, we use some standard reductions to show that 3-SAT is approximately as
hard as what we call GAP-3-SAT where (a) each variable shows up in a bounded number of clauses
(b) if there are no solutions then there are no solutions that satisfy a (1-ε)-fraction of clauses. Note
that (b) above implies that it is hard to find any assignment satisfying a (1-ε)-fraction of clauses,
and (a) says that flipping a variable can only remove a constant number of unsatisfied clauses from
consideration. In particular, if each variable appears in at most b clauses, then any computationally
efficient algorithm will never run out of unsatisfied clauses in the first ε∗(total number of clauses/b)
steps. This ensures that the reward at the horizon is exponentially small in the number of rounds.
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Figure 1: Example mechanics of the MDP for round i. The MDP consists of h consecutive rounds,
of which only round i is shown. Nodes are states with their assignment w labeled where it changes,
and edges are actions where the label represents the setting of some variable. The satisfiability
problem is (a ∨ ¬b ∨ c) ∧ (c ∨ d ∨ e) ∧ (a ∨ d ∨ e) ∧ (a ∨ ¬b ∨ ¬c) ∧ (a ∨ ¬b ∨ ¬e), for variables
a to e that have assignment of w(i) at the start of the round. For illustrative simplicity, note that
this problem does not belong to (b, ε)- GAP-3-SAT. The first two steps form Stage I as there is an
unsatisfied clause consisting of only free variables. The second stage allows to change any of the
remaining free variables one by one. Transitions are deterministic. Rewards are always zero except
for termination conditions A and B, where the reward is Bernoulli. A: the assignment satisfies at
least (1 − ε) fraction of clauses. B: only if i is the last round, the game is terminated at the end of
the round.

4. Lower Bound Construction

In this section, we will prove the following computational lower bound for LINEAR-3-RL under
rETH.

Proposition 2 Let v ∈ Z+ be sufficiently large. Suppose d,H ∈ Z+ satisfy either (i) d = v4 ·
polylog(v) and H = Θ(v4), or (ii) d = exp

(
log2 v · polyloglog(v)

)
and H = Θ(v2). Then,

under rETH, no randomized algorithm can solve LINEAR-3-RL with feature dimension d and time
horizon H in time exp(v/polylog(v)) with error probability 1/10.

Our main theorems, Theorem 1 and Theorem 2, follow from Proposition 2 by writing v as a function
of d and H .

4.1. From 3-CNF formulas to 3-action MDPs

Recall that in (b, ε)-GAP-3-SAT, we are given as input a 3-CNF formula ϕ on v variables where
(1) each variable is guaranteed to occur in at most b clauses and (2) the formula is either satisfiable

8
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or any assignment satisfies at most (1− ε)-fraction of the clauses (the formula is guaranteed to fall
in one of these two cases). Furthermore, we may assume that the number of clauses is at least v.
By Proposition 10, we know deciding whether ϕ is satisfiable must take time that is exponential
in v under rETH when b, ε are set to be two absolute constants. Our goal is to construct an MDP
parametrized by ϕ so that learning a near optimal policy for the MDP is as hard as solving (b, ε)-
GAP-3-SAT. When the formula is satisfiable, additionally the MDP will have an extra parameter
w∗ which is chosen to be an arbitrary satisfying assignment of the formula.

To consolidate the two results in Proposition 2, in our reduction, we construct the MDP with
two additional “degree parameters” p, q ∈ Z+. The MDP will have feature dimension d = 2 · v2p

and time horizon H = α · vq where α is a small enough absolute constant to be determined later.
In particular, the hard instance for the first result is obtained by setting p = 2, q = 4 and the hard
instance for the second result is obtained by setting p = 2 log v, q = 2.

State Action Transition. The time steps are divided into h := H/v rounds where each round
consists of v steps. In each round, the MDP maintains a set of “used variables”, initialized to be the
empty set at the beginning of each round. We will call unused variables as “free variables”. One
round is further divided into two stages as follows:

1. In each step of the first stage, the agent is given one unsatisfied 3-SAT clause with only free
variables and asked which of the three variables should be flipped. Then, the variable chosen
by the algorithm will be added to the set of used variables. The first stage ends (and the
second stage starts) when we run out of unsatisfied clauses with only free variables.

2. In the second stage, the MDP presents each of the remaining free variables sequentially to the
agent and asks whether the variable should be flipped. After each step, regardless of whether
the algorithm decides to flip the variable or not, the variable presented will be added to the set
of used variables.

Note that each round has exactly v steps since there are v variables in the formula and each step
marks one of them as used.

Termination Condition. The MDP terminates if it reaches the last level, or if more than a (1−ε)-
fraction of the clauses are satisfied. We make a couple of observations related to the termination
conditions. First, if the MDP terminates before reaching the last level, the algorithm has essentially
solved the underlying GAP-3-SAT problem since this means there exists an assignment that satisfies
more than (1 − ε)-fraction of the clauses. Secondly, the termination condition ensures that, at the
beginning of each round, there are at least an ε-fraction of unsatisfied clauses. Since each variable
appears in at most b clauses, we will never run out of unsatisfied clauses with only free variables in
the first ε · (total number of clauses/b) steps.

Size of state space. The number of states necessary for a round and an assignment is at most
O(3v): the transitions within a round form a tree of branching factor at most 3 and height at most
v (see fig. 1). There are h = H/v rounds, the whole transition structure is a tree, hence the total
number of states is at most O((3v)h) = exp(poly(v,H)).

Rewards. Rewards are given only when the MDP terminates and are different depending on
whether the formula is satisfiable or not. When the formula is not satisfiable, the reward is 0
everywhere. In the rest of the discussion, we will think of assignments as vectors in {−1, 1}v.
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When the formula is satisfiable, we need to keep track of the assignment at the beginning of each
round and denote them as w(1), w(2) . . . , w(n) (note that the algorithm starts at the first state with
the assignment w(1)), on which the final reward depends. The reward depends only on the his-
tory w(1), w(2) . . . , w(n), the current assignment w and the optimal assignment w∗ and is given by
Ber(r(w(1), w(2) . . . , w(n), w)) where r(·) is the expected reward function and the Bernoulli distri-
bution Ber(ρ) is 1 with probability ρ and 0 with probability 1− ρ. Before specifying the expected
reward function r(·), we introduce the concept of an extended assignment.

Definition 3 (Extended Assignment) Let S be the set of free variables. Then, the extended as-
signment of w under S, denoted as ext(w, S) is given by ext(w, S)i = w∗i for i ∈ S and
ext(w, S)i = wi for i 6∈ S.

In plain language, the extended assignment is the assignment derived from w after correcting all the
free variables to agree with w∗. We note that dependence of the reward function on the extended
assignment is crucial to ensure that the value functions associated to the greedy policy are linear
functions, which will become relevant later. Now we are ready to define expected reward function
r(·) in terms of the historic assignments w(1), · · · , w(n) reached by the agent at the end of past
rounds, the current assignment w reached by the agent and the set of free variables S when the
MDP terminates.

Definition 4 (Expected Reward) Let p, q ∈ Z+ be the two degree parameters. Let Tp : R 7→ R+

be the degree-p Taylor approximation of the exponential function exp(·) at zero:

Tp(x) =

p∑
i=0

xi

i!
.

Then, we define expected reward function r(w(1), w(2) . . . , w(n), w, S) as(
n−1∏
i=1

gi(dist(w(i), w(i+1)))

)
· gn(dist(w(n), ext(w, S))) · gn+1(dist(ext(w, S), w∗)), (1)

where the polynomial gi : R 7→ R for round i is defined as

gi(x) = Tp

(
− x

vq−1 · (3− i/h)

)
. (2)

As noted in the proof overview, the polynomials gi are chosen to ensure that the optimal policy
prefers going towards w∗ as fast as possible and using a low degree Taylor approximation ensures
the value function for the optimal policy can be written as a linear function of low dimensional
features.

4.2. Linear Value Function

When the underlying formula is unsatisfiable, any policy is optimal since the reward is constantly
0. When the formula is satisfiable, we will show that the “greedy policy” is optimal.

Definition 5 (Greedy Policy) We say a policy is greedy if at every state it chooses any action that
decreases the distance to w∗ whenever possible. If not, it tries to not increase the distance to w∗.

10



EXPONENTIAL HARDNESS OF REINFORCEMENT LEARNING WITH LINEAR FUNCTION APPROXIMATION

Notice that based on our setup of the MDP greedy policies exist: in the first stage of a round,
the algorithm is given an unsatisfied clause so there is at least one variable in the clause that can
be flipped to decrease the distance from the current assignment to w∗; in the second stage, the
algorithm is given variables one at a time and it can always choose to not flip the variable if the
current assignment already agrees with w∗ on the variable.

We first discuss the value function V π associated to a greedy policy π. Given a state with current
assignment w and a set S of free variables, we define the following concepts that will be useful in
the discussion. Let m(S) ∈ {0, 1}v be the masking vector such that m(S)i = 1 if the i-th variable
is in S and m(S)i = 0 otherwise. Moreover, let 1 denote the all-one vector and ◦ the point-wise
multiplication operator. Then, we define

distS,free(w,w
∗) = dist(w ◦m(S), w∗ ◦m(S))

distS,used(w,w∗) = dist(w ◦ (1−m(S)), w∗ ◦ (1−m(S)))

In other words, distS,used(w,w∗) and distS,free(w,w
∗) are the number of used and free vari-

ables respectively where the current assignment differs from w∗. Note that distS,used(w,w∗) +
distS,free(w,w

∗) = dist(w,w∗).
Moreover, since the Hamming distance dist(a, b) for two vectors a, b ∈ {−1, 1}v is linear in

both a and b (as dist(a, b) = (v − 〈a, b〉)/2), this implies distS,free(w,w
∗) and distS,used(w,w∗) can

be written as a linear function of w∗ and some state specific parameters depending on the current
assignmentw and the set of free variables S only. This allows us to show that the value functions for
the greedy policy can also be written as linear functions of w∗ and some state specific parameters.

Lemma 6 When ϕ is satisfiable, the greedy policy’s value at state s with round history
w(1), . . . , w(n), current assignment w and the set of free variables S, is given by

V π(s) =

n−1∏
i=1

gi(dist(w(i), w(i+1))) · gn(dist(w(n), w) + distS,free(w,w
∗)) · gn+1(distS,used(w,w∗)).

(3)

As a result, there exists features ψ(s), ψ(s, a) ∈ Rd with feature dimension d ≤ 2v2p depending
only on state s and action a; and θ ∈ Rd depending only on w∗ such that V π andQπ can be written
as a linear function of features ψ i.e. V π(s) = 〈θ, ψ(s)〉 and Qπ(s, a) = 〈θ, ψ(s, a)〉.

We present the proof in Appendix C. Using this we show the main structural result of this section:
the optimality of the greedy policy.

Lemma 7 Any greedy policy as defined in Definition 5 is optimal.

We present the proof in Appendix C.1.

4.3. RL algorithm to SAT algorithm

Following the approach taken in previous lower bound Kane et al. (2022), we now build a ran-
domized algorithm ASAT for 3-SAT using a randomized algorithm ARL for the RL problem. In
particular, we build an “approximate” simulator M̄ϕ for the MDP oracle Mϕ. The simulator M̄ϕ is
exactly the MDP Mϕ in terms of the transition function and features associated with the MDP Mϕ,
but differs in the reward function at the last layer which is always 0 for the simulator M̄ϕ. With the
purposed modification, we can execute each call to simulator M̄ϕ in time poly(d).
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Algorithm. On input 3-CNF formula ϕ, ASAT runs the algorithm ARL replacing each call to
MDP oracle Mϕ with the corresponding call to simulator M̄ϕ. Recall that the output for the RL
algorithm in our setting (deterministic transition MDP) is a sequence of actions. If the sequence
of actions returned by ARL ends on a state with an assignment w that satisfies more than (1 − ε)-
fraction of the clauses, ASAT terminates the simulation immediately and outputs YES. If ARL
throughout the simulation never finds any state associated with such an assignment, ASAT outputs
NO.

Correctness. To complete our reduction, we will show the following:

(i) If algorithmARL outputs a policy π such that V π > V ∗−1/8, thenASAT on 3-CNF formula
ϕ outputs YES if ϕ is satisfiable and NO otherwise.

(ii) If ARL with access to MDP oracle Mϕ outputs a policy π such that V π > V ∗ − 1/8 with
error probability 1/10, then ARL with access to simulator M̄ϕ outputs a policy π such that
V π > V ∗ − 1/8 with respect to Mϕ with error probability 1/8 (namely, even though ARL
is interacting with the simulator M̄ϕ, the returned policy is guaranteed to do well on the true
MDP Mϕ).

Recalling that if φ is not satisfiable, any policy is optimal, the above two claims establish thatASAT
solves GAP-3-SAT with error probability ≤ 1/8. We start by proving that if ARL succeeds on
MDP Mϕ, then ASAT succeeds on 3-CNF formula ϕ. This follows from the fact that any good
policy in the MDP Mϕ must reach a state with the assignment w∗, the satisfying assignment which
is arbitrarily chosen to construct Mϕ.

Proposition 8 Assume that α, b, ε are constants and that v is large enough. Then, if ϕ is satisfiable
andARL running onMϕ returns a policy π satisfying V π > V ∗−1/8 then π ends on an assignment
that satisfies at least a (1− ε)-fraction of clauses.

The detailed proof can be found in Appendix C.2. Next, we show that the behavior of ARL
is about the same even if it is run on the simulator M̄ϕ. In particular, given ARL runs in sub-
exponential time and succeeds on Mϕ, we could argue ARL will be provided about the same in-
formation when it is executed on M̄ϕ and on Mϕ and therefore would succeed on the outputs of
simulator M̄ϕ albeit with a smaller constant probability.

Proposition 9 Suppose ARL with access to MDP oracle Mϕ runs in time T and outputs a policy
π such that V π > V ∗ − 1/8 with error probability 1/10. Further, assume that the expected reward
at the last layer of Mϕ is upper bounded by 1/(5T ). Then ARL with access to simulator M̄ϕ, still
running in time T , outputs a policy π such that V π > V ∗ − 1/8 with respect to Mϕ with error
probability 1/8.

The detailed proof can be found in Appendix C.2. We next prove using standard reductions that
(b, ε)- GAP-3-SAT is approximately as hard as 3-SAT.

Proposition 10 Under rETH, there exists constants b, ε, c > 0 such that no randomized algorithm
can solve (b, ε)- GAP-3-SAT with v variables in time exp(cv/polylog(v)) with error probability
1/8.

12
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We provide a proof in Appendix A. Now, we are ready to prove our main result, Proposition 2. For
this, we demonstrate how one could reduce a (b, ε)- GAP-3-SAT instance into an MDP instance.
Proof [Proof of Proposition 2] Set p = 2, q = 4 or p = 2 log v and q = 2. For any v ∈ Z+,
suppose there exists an algorithm ARL which can solve LINEAR-3-RL with feature dimension
d = Θ

(
v2p
)

and H = Θ (vq) with error probability 1/10 and runs in time exp(c1 · v/polylog(v))
for c1 < min(1/2, c/2) where c is the constant from Proposition 10. Then, we claim we can build
another algorithm ASAT which can solve (b, ε)- GAP-3-SAT with error probability 1/8 in time
exp(cv/polylog(v)) . Note that this would contradict Proposition 10 under rETH and hence prove
our proposition.

Let ϕ be the 3-CNF formula of a (b, ε)- GAP-3-SAT instance containing v variables and at
least v clauses. Then, by definition, each variable appears in at most b clauses. Furthermore, ϕ is
guaranteed to either be satisfiable or that at least an ε-fraction of the clauses are not satisfiable under
any assignment. To decide between the two cases, we first build an MDP Mϕ (parameterized by
the two positive integers p, q) as described in Section 4.1. In particular, the MDP is designed to
have αvq−1 rounds and the polynomials gi will be a degree-p Taylor approximations as specified in
Equation (2). As α, b, ε are absolute constants, we ignore the dependence on them below.

We will proceed to bound the time horizon and the feature dimension of Mϕ respectively. Since
each round consists of v steps, the horizon is H = Θ(vq). Furthermore, by Lemma 6, the value
function for the greedy policy can be written as a linear function of a feature vector of size Θ

(
v2p
)
.

By Lemma 18, the greedy policy is optimal. Hence, the feature dimension of the MDP is d =
Θ
(
v2p
)
.

Next, as noted in the proof of Proposition 8, for any policy π which terminates on the last level,
the expected reward is always upper bounded by exp(−v). Let M̄ϕ be the MDP that differs from
Mϕ only with respect to the rewards received at the end of the horizon (the rewards of M̄ϕ are
consistently 0). Then, by Proposition 9 and small exp(−v) reward noted above, we know ARL,
when ran for at most exp(c1 · v/polylog(v)) time (as c1 < 1/2) on the simulator of M̄ϕ, will still
output a good policy π̃ with respect to Mϕ with probability at least 7/8.

By Proposition 8, if ARL succeeds and ϕ is satisfiable, then the policy π̃ will terminate on a
satisfying assignment. Hence, we can just check the path obtained by running policy π̃ to decide
whether ϕ is satisfiable, which takes at most poly(v) time.

Hence, the existence of such an algorithm ARL which runs in time at most exp(c1 ·
v/polylog(v)) time implies the existence of another algorithm which can solve the (b, ε)- GAP-
3-SAT problem in time exp(c1v/polylog(v)) + poly(v) ≤ exp(cv/polylog(v)).
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Appendix A. Hardness of Approximate SAT with gap and few clauses

In this section, we prove the following:

Proposition 11 Under rETH, there exists constants b, ε, c > 0 such that no randomized algorithm
can solve (b, ε)- GAP-3-SAT with v variables in time exp(cv/polylog(v)) with error probability
1/8.

To prove this, we will look at another problem: ε- GAP-3-SAT. This is similar to (b, ε)- GAP-
3-SAT except it does not put any constraints on how many clauses a variable can be in. Through
standard technique, one can show that ε- GAP-3-SAT is also hard. In particular, its hardness is
shown in Moshkovitz and Raz (2008) and relies on a certain version of the Probabilistic Checkable
Proof (PCP) theorem.

Complexity problem ε- GAP-3-SAT

Input: A gap parameter ε > 0 and a 3-CNF formula ϕ with v variables and O(v)
clauses such that the either (i) ϕ is satisfiable or (ii) any assignment leaves at
least an ε-fraction of the clauses unsatisfied where ε > 0.

Goal: Decide whether the formula is satisfiable.
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Theorem 3 (Reduction from 3-SAT to GAP-3-SAT) Solving 3-SAT on inputs of size n can be
reduced to distinguishing between the case that a 3-CNF formula of size n·polylog(n) is satisfiable
and the case that only 1− ε fraction of its clauses are satisfiable for some constant ε > 0.

For completeness, we provide a proof for the above theorem. We first review some basic concepts
about the PCP theorem. Given a statement (for example, whether a SAT instance is satisfiable), a
PCP verifier is granted query access to a proof constructed for the statement over an alphabet Σ and
asked to decide whether the statement is true. A PCP verifier has several important parameters.

• Completeness c: The minimal probability that the verifier accepts a correct proof.

• Soundness ε: The maximal probability that the verifier accepts a proof for an incorrect theo-
rem.

• Queries q: The number of queries made by the verifier to the proof.

• Size m: The length of the proof.

• Randomness r: The number of random bits used by the verifier.

• Alphabet Σ: The alphabet used by the proof.

We denote by PCPc,ε[r, q]Σ the class of languages that have a PCP verifier with completeness c,
soundness s, randomness r, and q queries to a proof over alphabet Σ. Moreover, the PCP verifier
is only allowed to do a two query projection test. In a two query-projection test, the verifier is
only allowed to make two queries. Upon seeing the answer to the first query, the verifier either
immediately rejects, or it has uniquely determined answer to the second query on which it accepts.
Our starting point is the following theorem from Moshkovitz and Raz (2008).

Theorem 4 (Theorem 7 from Moshkovitz and Raz (2008)) There exists a constant ε > 0 and an
alphabet Σ of constant size, such that 3-SAT ∈ PCP1,1−ε[log n+O(log log n), 2]Σ.

Proof [Proof of Theorem 3] Given a 3-CNF formula ψ with size n, the goal is to use the verifier in
the above theorem to construct a different 3-SAT instance φ with size O(n polylog n) such that (i)
φ is satisfiable if ψ is satisfiable; and (ii) at least an ε fraction of the clauses in φ are not satisfiable
under any assignment if ψ is not satisfiable.

Notice that we can without loss of generality assume the verifier is deterministic if we assume it
also takes r := log n+O(log log n) random bits as input. Fix a random bit string, the verifier reads
at most 2 characters from the proof. Since there are at most 2r = n polylog n different random bit
strings, we can without loss of generality assume the proof is of size at most T := 2n polylog n. The
first step of the construction is to create T variables {x1, x2, · · · , xT } where xi ∈ Σ represent the
queries responses given to the verifier. We will create a SAT formula for each of the 2r random bit
strings and the final construction will be simply the concatenation of all the SAT formulas with the
“AND” logical operator. Fix an arbitrary random string q ∈ {0, 1}r. We can then compute the first
position the verifier will read. We can denote it as l1(q). There will be a subset of values R(q) ⊆ Σ
that the verifier will reject immediately xl1(q) ∈ R(q). If the verifier does not reject immediately,
the verifier could branch off to do different things based on the value of xl1(q). Suppose, xl1(q) =
σ ∈ Σ\R(q). We can then compute the second position the verifier will read, which we denote as
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l2(q, σ), and the “right” character the verifier is expecting, which we denote as f(q, σ). Then, we
know that the verifier will accept if and only if the proof, represented by x1, · · · , xT satisfies that⋃

σ∈Σ\R

(
xl1(q) = σ

)
∧
(
xl2(q,σ) = f(q, σ)

)
.

Since Σ is of constant size, it is easy to see that one can use a binary encoding for Σ and
convert the above statement into a 3-CNF formula of constant size. In addition, there are at most
n polylog n binary strings q. Hence, the overall 3-CNF formula φ is of size O(n polylog n). We
know that the verifier would reject with probability at least ε if the original sat instance ψ is not
satisfiable. Hence, at least an ε fraction of the sub-formulas of φ will not be satisfied under any
assignment (which can be interpreted as the binary encoding of the given proof). On the other hand,
if ψ is satisfiable, it then holds every sub-formula of φ is satisfiable since the verifier always accepts
under the “correct” proof.

If one has an algorithm which can distinguish between the cases that ε-fraction of φ cannot be
satisfied under any assignment versus φ is satisfiable, one can then decide the satisfiability of ψ.

We are interested in (b, ε)− GAP-3-SAT, which is a restricted version of ε- GAP-3-SAT, where
each variable is promised to appear in at most b clauses for some constant b. One can show that
approximating (b, ε)− GAP-3-SAT is also hard through a reduction given in Papadimitriou and
Yannakakis (1991).

Proposition 12 (Adapted from Proof of Theorem 2 in Papadimitriou and Yannakakis (1991))
For some constant integer b = O(1), there is a polynomial time transformation which maps a

3-CNF formula φ to another 3-CNF formula ψ over the same set of variables such that

1. Each variable appears in at most b clauses in ψ.

2. If φ is satisfiable, then ψ is also satisfiable.

3. Let |φ|, |ψ| denotes the number of clauses in φ, ψ respectively. Then, |φ| ≤ |ψ| ≤ O(1) · |φ|.

4. Let max(φ),max(ψ) denote the maximum number of clauses satisfiable in φ and ψ respec-
tively. It holds max(ψ) ≤ max(φ) + |ψ| − |φ|.

Proof [Proof of Proposition 11] Proposition 12 states there is an efficient algorithm translating an
ε- GAP-3-SAT instance consisting of m clauses into an (b, α · ε)- GAP-3-SAT instance for some
constant α ∈ (0, 1). Hence, if there is no sub-exponential algorithm for the computational problem
ε1- GAP-3-SAT for some constant ε1 ∈ (0, 1), there is no sub-exponential algorithm for (b, ε2)-
GAP-3-SAT either for some constant b and ε2 ∈ (0, ε1). Combining Theorem 3 and Proposition 12
proves our claim.

Appendix B. Upper Bounds

In both of the upper bounds, the final policy computed by our algorithms is of the following form:
at the state s, we have some estimations Q̃(s, a) for each a ∈ A such that |Q̃(s, a)−Q∗(s, a)| ≤ ε
and the policy always chooses the action a = argmaxa Q̃(s, a). We claim the policy induced is
nearly optimal as long as ε is sufficiently small. The formal statement is given below.
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Lemma 13 For any state action pair (s, a), let Q̃(s, a) be an approximation of Q∗(s, a) satisfying
|Q̃(s, a) − Q∗(s, a)| ≤ ε/(2H). Then, consider the policy π such that at the state s, it always
chooses the action a = argmaxa Q̃(s, a). Then, it holds V π(s) ≥ V ∗(s)− ε for any state.

Proof We claim π is a policy satisfying that V π(s) ≥ V ∗(s) − ε · h/H for any state s in the
MDP such that there are still h steps remaining. We show this via induction on the number of
steps remaining. Suppose s is a state right before the last step. Then, V ∗(s) = Q∗(s, a∗) for
a∗ = argmaxaQ

∗(s, a∗) and V π(s) = Q∗(s, a′) for a′ = argmaxa Q̃(s, a). By our assumption, we
have V π(s) ≥ Q̃(s, a′)− ε/(2H) and since a′ = argmaxa Q̃(s, a), we then further have

V π(s) ≥ Q̃(s, a∗)− ε/(2H) ≥ Q∗(s, a∗)− ε/H = V ∗(s)− ε/H.

Now, consider a state s such that there are (h+ 1) steps remaining. Still, let a′ = argmaxa Q̃(s, a)
and a∗ = argmaxaQ

∗(s, a∗). Furthermore, let s′ = P (s, a′) be the next state after applying a′. We
then have V ∗(s) = Q∗(s, a∗) and V π(s) = E [R(s, a′)] + V π(s′). We then have

V π(s) = E
[
R(s, a′)

]
+ V π(s′) (Definition of the policy π)

≥ E
[
R(s, a′)

]
+ V ∗(s′)− εh/H (Inductive Hypothesis)

= Q∗(s, a′)− εh/H (Definition of Q∗, V ∗)

≥ Q̃(s, a′)− εh/H − ε/(2H) (Assumption about Q̃)

≥ Q̃(s, a∗)− εh/H − ε/(2H) (The choice of a′ = argmaxa Q̃(s, a))

≥ Q∗(s, a∗)− εh/H − ε/H (Assumption about Q̃)

= V ∗(s)− ε(h+ 1)/H . (The choice of a∗ = argmaxaQ
∗(s, a))

This then gives us V π(s) ≥ V ∗(s)− ε for any state since there are in total H steps in the MDP.

We first prove a computational upper bound which is exponential in the feature dimension d.
On a high level, we discretize the parameter space that θ∗ may lie in to create a policy cover which
allows us to search for the best in class by estimating the value of each policy.

Proposition 14 Assume the MDP has a constant number of actions, optimal value functions V ∗

and Q∗ linear in d dimensional features ψ, time Horizon H and state space at most exp(poly(d)).
Furthermore, assume the feature vectors satisfy ‖ψ(s, a)‖2 ≤ 1 for all state action pairs and
‖θ∗‖2 ≤ 1 for the optimal policy parameter θ∗. Let ε ∈ (0, 1). There is an algorithm which
takes exp (c · d · log (Hd/ε)) time for some sufficiently large constant c and finds a policy π such
that V π(s) ≥ V ∗(s)− ε with probability 9/10.

Proof Let θ∗ denote the unknown parameters of the optimal Q∗ function, i.e. Q∗(s, a) =
〈θ∗, ψ(s, a)〉. Suppose we can find such a θ ∈ Rd satisfying ‖θ − θ∗‖2 ≤ ε/(2H ·

√
d). We

note that this implies

|〈θ, ψ(s, a)〉 −Q∗(s, a)| ≤ ε/(2H). (4)

Then, consider the policy π(θ) such that at state s it always chooses the action a =
argmaxa〈θ, ψ(s, a)〉. By Lemma 13, it holds V π(θ)(s) ≥ V ∗(s)− ε for any state s.

Now, let S ∈ Rd be the set of vectors that form an ε/(2H
√
d)-cover of the d-dimensional unit

sphere, i.e. minθ∈S ‖θ − θ∗‖2 ≤ ε/(2H
√
d) for any θ∗ satisfying ‖θ∗‖2 ≤ 1. Through a standard
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combinatorial construction, there exists such a cover S with size |S| ≤ exp (c · d · log (Hd/ε)) for
some sufficiently large constant c. From the argument above, we know there must be some θ ∈ S
such that π(θ) is nearly optimal, i.e. V π(θ)(s) ≥ V ∗(s)− ε for any state s.

Our strategy is simple: we will try π(θ) for all θ ∈ S in a brute-force manner and estimate
the expected reward of the induced trajectory up to accuracy ε. Notice that the maximum reward
collected by any trajectory is at most H . Hence, if we visit the same trajectory with poly(H, 1/ε) ·
log(1/δ) many times, we can then compute an estimation of its expected reward up to accuracy ε
with probability at least 1 − δ. We can take δ = 1

|S| so that by union bound our estimation for

V π(θ)(s0) is accurate up to error ε for all θ ∈ S with probability at least 9/10. Condition on that,
we can then choose θ such that it maximizes our empirical estimations of V π(θ)(s0). Then, it is
easy to see that such a π(θ) must satisfy V π(θ)(s0) ≥ V ∗(s0) − 2ε. Now, since to simulating the
interaction of one trajectory takes time at most poly(d,H), the total runtime is bounded by

poly(d,H) · poly(H, 1/ε) · log(1/|S|) · |S| ≤ exp (c · d · log (Hd/ε))

for some sufficiently large constant c.

To prove a horizon upper bound, we build on results of previous work (Du et al., 2020b). This upper
bound was originally personally communicated to the authors by Ruosong Wang. We only add it
here for completeness. We first give a high level overview of the differences. The proof is almost
exactly the same except we now divide the steps of the MDP into

√
H “rounds”. We will brute

force search in the rounds for the optimal policy and use the basis constructed in previous work (Du
et al., 2020b) to ensure error only grows by a factor of

√
d. We next prove this in more detail.

Proposition 15 (Ruosong Wang, personal communication) Assume the MDP has a constant
number of actions, optimal value functions V ∗ and Q∗ linear in d dimensional features ψ, time
Horizon H and state space at most exp(poly(d)). Furthermore, assume the feature vectors sat-
isfy ‖ψ(s, a)‖2 ≤ 1 for all state action pairs and ‖θ∗‖2 ≤ 1 for the optimal parameter θ∗. Let

ε ∈ (0, 1). There is an algorithm which takes exp
(
c ·
√
H log d

)
/ε−2 time for some sufficiently

large constant c and finds a policy π such that V π(s) ≥ V ∗(s)− ε.

Proof Given an arbitrary state s, suppose there is a procedure that runs in time

T := exp
(
c ·
√
H log d

)
/ε−2 · log(1/δ)

and computes an estimation of Q̃(s, a) for each action a ∈ A such that |Q̃(s, a) − Q∗(s, a)| ≤
ε/(2H) with probability at least 1 − δ. Then, we claim we can design an algorithm which outputs
a policy π such that V π(s0) ≥ V ∗(s0) − ε for the initial state s0 with probability at least 9/10.
Starting at the state s = s0, we will perform the following steps iteratively:

1. For the current state s, compute the estimations Q̃(s, a).

2. Choose a = argmaxa Q̃(s, a) and then updates s to be the next state after applying action a.

The above process goes on for at most H iterations. Hence, our estimations Q̃(s, a) are accurate in
all iterations with probability at least 9/10 if we set δ = 1/(10H). By Lemma 13, it then holds the
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resulting policy is nearly-optimal starting from the initial state s0. Moreover, the algorithm runs in
time H ·O(T ), which is within the desired runtime.

To finish the proof, we then describe our procedure for computing the estimations {Q̃(s, a)|a ∈
A} for a state s. We will describe the procedure for just the initial state s0 as computing the
estimations for other states can be done similarly. To do so, we divide the time steps of the MDP
into
√
H rounds. For each round h ∈

√
H , we build a set of vectors Bh that correspond to the

“basis” of some larger set of feature vectors ψ(s, a) where s is a state on the h ·
√
H level, i.e. there

is a trajectory going from s0 to s in h ·
√
H steps. The step is similar to previous work Du et al.

(2020b) and proceeds as follows. Let B0 = {ψ(s0, a) : a ∈ A} where a is the set of all actions.
Then, we construct Bh recursively from Bh−1 = {ψ(si, ai)}: Let B̄h = {ψ(P (si, ai), a) : a ∈
A and ψ(si, ai) ∈ Bh−1}. Note that |B̄h| ≤ |A| · |Bh−1|. Next, we set Bh ⊂ B̄h as any maximal
subset of independent vectors of B̄h. Note here |Bh| ≤ d. Moreover, since ‖ψ(s, a)‖2 ≤ 1 by
assumption, any ψ(s, a) ∈ B̄h can then be written as

∑|Bh|
i=1 αi · ψ(si, ai) satisfying ‖α‖2 ≤

√
d

where ψ(si, ai) are the base vectors in Bh.
We claim that for any h ∈ [

√
H], we can learn Q∗ on the basis Bh to accuracy (2d)−hε using at

most O
(

exp(
√
H · log d) · ε−2

)
time. We show this via induction on h. Notice that for any state

s on the last level (which are 1 step from termination) and action a ∈ A, the function Q∗(s, a) is
simply the expected reward E [R(s, a)] since the MDP terminates immediately afterwards. Hence,
we can follow the same trajectory and sample from R(s, a) for multiple times and compute an
empirical mean R̄(s, a). Suppose we take C · ε−2 log(H · |BH |/δ) · (2d)

√
H samples from R(s, a)

for a sufficiently large constant C. It then follows from standard concentration inequalities that
|R̄(s, a)−E[R(s, a)]| ≤ (2d)−

√
Hεwith probability at least 1−δ/ (H · |BH |). By the union bound,

this holds for all φ(s, a) ∈ BH with probability at least 1− δ/H . Therefore, for all φ(s, a) ∈ B√H ,

we can compute an estimator for for Q∗(s, a) with accuracy (2d)−
√
H in time at most(

C · ε−2 log(H · |BH |/δ) · (2d)
√
H
)
· |BH | · poly(d,H) ≤ exp

(
c ·
√
H · log d

)
ε−2 log(1/δ)

for some large enough constant c.
Assume we have already learned Q∗ on the basis Bh to accuracy d−hε. We will see how we can

use the information to estimate Q∗ on the basis Bh−1 to accuracy d−h+1ε. Still, consider a single
state-action pair (s, a) such that φ(s, a) ∈ Bh−1. Let Rs,a,√H be the set of states reachable from s

within
√
H many steps condition on that the first step is a (notice thatRs,a,√H is a subset of B̄h by

our construction). In other words, each state s′ in Rs,a,√H is a state in the (h ·
√
H)-th level such

that there is a trajectory going from s to s′ beginning with the action a. We will without loss of
generality assume that each state s′ has a unique trajectory starting from s: If there are two different
trajectories leading to the same state s′, we can create two copies of s′ and index them by the unique
trajectory that leads to them.

We know there must exist some state s∗ ∈ Rs,a,√H and a∗ ∈ A such that Q∗(s, a) is equal to
the sum of the expected rewards collected from the trajectory from s to s∗ and Q(s∗, a∗). We will
denote by κ(s, s′) the expected reward collected from the path going from s to s′ for s′ ∈ Rs,a,√H .
Our goal is then to compute (i) an estimation for each κ(s, s′) where s′ ∈ Rs,a,√H and (ii) an
estimation for each Q∗(s′, a′) where s′ ∈ Rs,a,√H and a′ ∈ A. It is easy to see if we can compute
both (i) and (ii) up to accuracy d−h+1 · 2−h, we can then take the optimal combination of s′, a′ to
get an estimation of Q∗(s, a) up to accuracy (2d)−h+1.
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To get an estimation of κ(s, s′), the expected reward collected from a trajectory, we can just visit
the trajectory for multiple times. Since κ(s, s′) ≤

√
H , it then follow from standard concentration

that if we visit the trajectory for

C ·H · ε−2 log(H · |Rs,a,√H |/δ) · (2d)h

many times where C is a sufficiently large constant, then we can estimate all κ(s, s′) up to the
desired accuracy with high probability. There are at most |A|

√
H = exp(log |A| ·

√
H) many states

in Rs,a,√H . Since we visit a trajectory C ·H · ε−2 log(H · |Rs,a,√H |/δ) · (2d)h times, estimating
each κ(s, s′) takes time at most

exp(log |A| ·
√
H) ·

(
C ·H · ε−2 log(H · |Rs,a,√H |/δ) · (2d)h

)
· poly(d,H)

≤ exp
(
c ·
√
H · log d

)
ε−2 log(1/δ)

for some sufficiently large constant c.
To get an estimation of Q∗(s′, a′) where s′ ∈ Rs,a,√H and a′ ∈ A, we will take advantage of

the fact that we already have estimations of Q∗ on the basis in Bh. In particular, we can express
ψ(s′, a′) =

∑|Bh|
i=1 αi · ψ(si, ai) for ψ(si, ai) being the basis in Bh. By linearity, we then have

Q∗(s′, a′) =

|Bh|∑
i=1

αi ·Q∗(si, ai). (5)

On one hand, we have ‖α‖2 ≤
√
d. On the other hand, by the inductive hypothesis, we have an

estimation of each Q∗(si, ai) up to accuracy (2d)−h · ε. If we simply plugin our estimation for
Q∗(si, ai) into Equation (5) to compute our estimation for Q∗(s′, a′), we then have the error is at
most d · (2d)−h · ε ≤ 2−h · d−h+1 · ε by the Cauchy Schwarz’s Inequality, which is the desired
bound. Computing the estimation for one Q∗(s′, a′) takes poly(d) time. Since there are at most
exp(log |A| ·

√
H) · |A|many pairs of (s′, a′), this part takes time at most exp

(
c ·
(√

H + log d
))

for some sufficiently large constant c.
By induction, this then gives us a way to approximate Q∗ on B0 = {φ(s0, a) : a ∈

A} up to accuracy ε with high probability. Moreover, the entire process runs in time
exp

(
c ·
√
H · log d

)
ε−2 log(1/δ) for some sufficiently large constant c.

Appendix C. Omitted Proof from Section 4

Proof [Proof of Lemma 6] The first claim follows from the fact that the greedy policy will choose
an action that will decrease the distance between the current assignment and the optimal assignment
w∗ used by the MDP whenever there is such an action. As a result, starting from a state s, it will
flip all the free variables where w and w∗ differ in the current round, and then flip all the used
variables where w and w∗ differ in the next round. Upon reaching w∗, the final reward received will
be exactly Equation (3) with no intermediate rewards.
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Following the greedy policy may fail to reach w∗. The only way this can happen is when the
MDP terminates early: when more than (1 − ε)-fraction of the clauses is satisfied, or when we
reached a final state in the last round. In such cases, the reward received depends on the extended
assignment of the terminal state. From Definitions 3 and 4 it follows that the reward received is the
same than the reward would have been if the MDP were not to terminate at that point. Hence, the
reward received is still consistent with Equation (3).

To prove the second claim, we follow a similar approach as in the proof of Proposition 10 in
Kane et al. (2022). In particular, we will show that V π(s) can be written as a polynomial of degree
at most 2p in w∗. To see why this is enough, we set θ to be all monomials in w∗ of degree at most
2p. That is, each coordinate of θ corresponds to a multiset S ⊂ [v] of size |S| ≤ 2p, and its value is
θS =

∏
i∈S w

∗
i . We set ψ(s) to be the corresponding coefficients in the polynomial V π. Then, we

can write V π(s) = 〈θ, ψ(s)〉. Since, there are at most
∑2p

i=0 v
i ≤ 2v2p many coefficients we can

set the feature dimension as d = 2v2p.
Finally, we prove that V π(s) can be written as a polynomial of degree at most 2p in w∗. First

recall that distS,free(w,w
∗) and distS,used(w,w∗) can be written as a linear function of w∗ and some

state specific parameters w(n), w and S. Moreover, dist(w(n), w) is independent of w∗ and only
depends on w(n) and w. Then the fact is proven by noting for each gi(·) in the expression that:
(i) for i < n it is independent of w∗; and (ii) for i ∈ {n, n + 1}, it is a degree-p polynomial in
dist(w(n), w), distS,free(w,w

∗) and distS,used(w,w∗).
Finally, note that linear V π implies linear Qπ in deterministic MDPs for ψ(s, a) = ψ(P (s, a)),

since by definition, in MDPs with deterministic transition, Qπ(s, a) = r(s, a) + V π(P (s, a)) and
the rewards in our MDPs are zero, except for the last stage where the rewards do not depend on the
action.

C.1. Optimality of Greedy Policy

We now prove some structural properties of the polynomials gi. First, we will show that if a policy
makes a “reasonable” number of flips in a round, then the value function decreases by a multi-
plicative factor. This follows from gi being (an appropriate degree) Taylor approximation of exp(·)
function around zero.

Claim 16 The polynomials gi defined in Equation (2) are bounded:

1

4
≤ gi(x) ≤ 1− ε

6bvq−2

for all εb · v ≤ x ≤ v and i ∈ {1, . . . , h}. Moreover, gi is monotonically decreasing.

Proof For simplicity let
z =

x

vq−1 · (3− i/h)
.

For the range of values of x we are interested in and since q ≥ 2, it follows that z ≤ 1/2. Then,
using the fact that gi is a Taylor approximation, we can upper bound gi by

gi(x) = Tp (−z) =

p∑
j=0

(−z)j

j!
≤ 1− z

2
(as p ≥ 2 and z ≤ 1/2)

≤ 1− ε

6bvq−2
. (as x ≥ ε

b · v)
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On the other hand, we can lower bound gi(x) as follows:

gi(x) = exp (−z)−
∞∑

j=p+1

(−z)j

j!
≥ exp

(
−1

2

)
− 1

2p(p+ 1)!
≥ 1

4
, (6)

where the first inequality again follows from z ≤ 1/2 and summation of geometric series and the
last inequality holds as long as p ≥ 1.

Next, we argue gi(x) is monotonically decreasing. We do so by showing the derivative of gi(x)
is negative. For this, we calculate

d

dx
gi(x) =

(
d

dx
z

)
·
(
d

dz
Tp(−z)

)
= −

p−1∑
j=0

(
(−z)j

j!

)
.

Similar to Equation (6), we have

p−1∑
j=0

(
(−z)j

j!

)
≥ exp

(
−1

2

)
− 1

2p−1p!
> 0

whenever p ≥ 2. Therefore, d
dxgi(x) < 0 which implies that gi(x) is monotonically decreasing.

Next, we will show that the polynomials are designed such that correcting variables (where w and
w∗ differ) in round i is always better than correcting variables in round i+ 1. In particular, suppose
we have flipped c bits in the i-th round and d bits in the (i+ 1)-th round. We then want to show that
gi(c) ·gi+1(d) ≥ gi(c−1) ·gi+1(d+1) for any 1 ≤ c ≤ v and 0 ≤ d ≤ v. To prove this, we need to
show that the error from Taylor approximation which depends on the choice of p is relatively small.

Claim 17 For any two polynomials gi, gi+1 defined in Equation (2), let

fi,c,d(x) = gi(c+ x) · gi+1(d− x).

where i ∈ {1, . . . , h}, 0 ≤ c, d ≤ v and x = {1, 2, . . . , d}. Then, for large enough v,

fi,c,d(x) ≥ fi,c,d(x− 1).

Proof Consider the function f̂i,c,d(·) defined as

f̂i,c,d(x) = exp

(
− c+ x

vq−1 · (3− i/h)

)
· exp

(
− d− x
vq−1 · (3− (i+ 1)/h)

)
. (7)

To prove our claim, we will show that

f̂i,c,d(x)− f̂i,c,d(x− 1) ≥ Ω

(
1

α · v2q−2

)
, (8)

|fi,c,d(x)− f̂i,c,d(x)| = O

(
1

v2q−2

)
, (9)
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where to recall α in Equation (8) is the parameter in the time horizon factor, i.e. H = α · vq and
h = H/v. Then, our claim follows from the inequalities above as long as α is set to be a sufficiently
small constant. We first prove Equation (8). For this, we will show that the derivative of f̂i,c,d(x) is
not only positive but lower bounded by Ω(1/α · v2q−2). The derivative of f̂(·) is given by

f̂ ′i,c,d(x) = f̂i,c,d(x) · h

vq−1 · (3h− i) · (3h− i− 1)
. (10)

Notice that we always have

f̂i,c,d(x) ≥ exp

(
− 2v

vq−1

)
· exp

(
− v

vq−1

)
= exp

(
− 3

vq−2

)
≥ Ω(1),

where the first step follows from 0 ≤ c, d, x ≤ v and i ∈ {1, . . . , h} and last step from q ≥ 2. We
hence have f̂i,c,d(x) ≥ Ω(1). Combining this with h := α · vq−1 and Equation (10), we can lower
bound the derivatives by

f̂ ′i,c,d(x) ≥ Ω

(
1

α · v2q−2

)
.

Since f̂i,c,d is a convex function, this proves Equation (8).

Next, we prove Equation (9). Recall that

gi(y) = Tp

(
−y

vq−1 · (3− i/h)

)
where Tp is the degree-p Taylor approximation of the exponential function. Then, for 0 ≤ y ≤ 2v
we have∣∣∣∣gi(y)− exp

(
− y

vq−1 · (3− i/h)

)∣∣∣∣ ≤ O
((

y

vq−1 · (3− i/h)

)p+1
)
≤ O

(
1

v(q−2)·(p+1) · 2p+1

)
.

(11)

In addition, for y ≥ 0 we have

exp(−y/(vq−1 · (3− i/h)) < 1. (12)

Substituting Equations (11) and (12) into Equation (7) then gives

fi,c,d(x) =

(
exp

(
− c+ x

vq−1 · (3− i/h)

)
±O

(
1

v(q−2)·(p+1) · 2p+1

))
·(

exp

(
− d− x
vq−1 · (3− (i+ 1)/h)

)
±O

(
1

v(q−2)·(p+1) · 2p+1

))
= f̂i,c,d(x)±O

(
1

v(q−2)·(p+1) · 2p+1

)
.

For both settings of p and q we consider, p = 2; q = 4 for the first result or p = 2 log v; q = 2 for
the second result, this implies

|fi,c,d(x)− f̂i,c,d(x)| ≤ O
(

1

v(q−2)·(p+1) · 2p+1

)
= O

(
1

v2q−2

)
.
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Using above recursively, we can show that any greedy policy is an optimal policy in our MDPs. This
is important because this in conjunction with Lemma 6 implies that the optimal value functions V ∗

and Q∗ can be written as a linear function of some features depending only on states s and action a.

Lemma 18 Any greedy policy as defined in Definition 5 is optimal.

Proof Let π be the greedy policy and consider some other policy π̃. We show the reward received
by the greedy policy π is no worse than π̃ starting from an arbitrary state scurr with assignment wcurr,
free variables Scurr and round history w(1), . . . , w(n). Notice that the final rewards of both π̃ and π
will have the term G :=

∏n−1
i=1 gi(dist(w(i), w(i+1))). We abbreviate the term as G so that we can

focus on comparing the remaining terms.
Suppose π̃ terminates in the (n + l)-th round. In particular, assume it terminates on the state s̃

with round history w(1), . . . , w(n), w̃(n+1), . . . , w̃(n+l), free variables S̃ and terminal assignment w̃.
For notational convenience, we will denote w̃(n+l+1) = ext

(
w̃, S̃

)
.4 Then, the value of π̃ starting

from wcurr (also the reward of the state s̃) can be written as

V π̃(scurr) = G ·
n+l∏
i=n

gi

(
dist(w̃(i), w̃(i+1))

)
· gn+l+1

(
dist

(
w̃(n+l+1), w∗

))
. (13)

First, we argue that it is never beneficial for π̃ to terminate in rounds after the (n + 1)-th round.
More formally, we will show

n+l∏
i=n

gi(dist(w̃(i), w̃(i+1))) · gn+l+1(dist(w̃(n+l+1), w∗)) ≤ gn
(
w̃(n), w̃(n+1)

)
· gn+1

(
w̃(n+1), w∗

)
.

(14)

Using Claim 17, we have

gn+l

(
dist(w̃(n+l), w̃(n+l+1))

)
· gn+l+1

(
dist(w̃(n+l+1), w∗)

)
≤ gn+l

(
dist(w̃(n+l), w̃(n+l+1)) + dist(w̃(n+l+1), w∗)

)
· gn+l+1(0) ≤ gn+l

(
dist(w̃(n+l), w∗)

)
,

where the last inequality follows from gn+l+1(0) = 1, the triangle inequality used with dist(·) and
that gn+l(·) is monotonically decreasing (Claim 16). This then shows that

n+l∏
i=n

gi(dist(w̃(i), w̃(i+1))) · gn+l+1(dist(w̃(n+l+1), w∗))

≤
n+l−1∏
i=n

gi(dist(w̃(i), w̃(i+1))) · gn+l(dist(w̃(n+l), w∗)).

4. Notice it could be that the terminal state s̃ is in the same round as scurr. In that case, we have l = 0.
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We can then do induction on l to get Equation (14). Substituting Equation (14) into Equation (13)
then gives

V π̃(s) ≤ G · gn
(

dist
(
w(n), w̃(n+1)

))
· gn+1

(
dist

(
w̃(n+1), w∗

))
. (15)

We then proceed to argue the expression above is upper bounded by V π. Notice that by the triangle
inequality, for any w̃(n+1) it holds that

dist(wcurr, w̃
(n+1)) + dist(w̃(n+1), w∗) ≥ dist(wcurr, w

∗) .

On the other hand, we always have

dist(wcurr, w
∗) = distScurr,used(wcurr, w

∗) + distScurr,free(wcurr, w
∗).

Combining the two and rearranging the terms then gives

dist(wcurr, w̃
(n+1)) + dist(w̃(n+1), w∗)− distScurr,free(wcurr, w

∗) ≥ distScurr,used(wcurr, w
∗) (16)

Now, we will use case analysis based on the relative sizes of dist(wcurr, w̃
(n+1)) and

distScurr,free(wcurr, w
∗). We first consider the case dist(wcurr, w̃

(n+1)) ≤ distScurr,free(wcurr, w
∗). In

this case we have

gn

(
dist(w(n), w̃(n+1))

)
· gn+1

(
dist(w̃(n+1), w∗)

)
= gn

(
dist(w(n), wcurr) + dist(wcurr, w̃

(n+1))
)
· gn+1

(
dist(w̃(n+1), w∗)

)
≤ gn

(
dist(w(n), wcurr) + distScurr,free(wcurr, w

∗)
)

· gn+1

(
dist(w̃(n+1), w∗) + dist(wcurr, w̃

(n+1))− distScurr,free(wcurr, w
∗)
)

≤ gn
(

dist(w(n), wcurr) + distScurr,free(wcurr, w
∗)
)
· gn+1

(
distScurr,used(wcurr, w

∗)
)
,

where the first inequality follows from Claim 17 and the second inequality follows from gn is a
monotonically decreasing function (Claim 16) and Equation (16).

Now, we consider the other remaining case when dist(wcurr, w̃
(n+1)) > distScurr,free(wcurr, w

∗).
Denote M as the set of free variables on which wcurr and w∗ agree but wcurr and w̃(n+1) disagree.
In other words, these are the variables mistakenly flipped by the policy π̃ on the path from wcurr
to w̃(n+1). Since w̃(n+1), w∗ disagree on these variables, these variables must be flipped again on
the path from w̃(n+1) to w∗. We can then consider the alternative path wcurr → w̄ → w∗ for w̄
satisfying w̄i 6= w̃

(n+1)
i for i ∈M and w̄i = w̃

(n+1)
i for i 6∈M . Then, it is easy to see that

gn(dist(w(n), wcurr) + dist(wcurr, w̃
(n+1))) · gn+1(dist(w̃(n+1), w∗))

≤ gn(dist(w(n), wcurr) + dist(wcurr, w̄)) · gn+1(dist(w̄, w∗))

since gn(·) is monotonically decreasing. Moreover, now we have dist(wcurr, w̄) ≤
distScurr,free(wcurr, w

∗) since the variables flipped are restricted to be the ones on which wcurr and
w∗ do not agree. Hence, the proof is reduced to the first case.
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C.2. Reduction from GAP-3-SAT to LINEAR-k-RL

Proof [Proof of Proposition 8] Take a satisfiable formula ϕ. The optimal value in this case is at least
1/4. Indeed, by Lemma 18, the greedy policy is optimal, its value is g1(dist(w,w∗)) and thus by
Claim 16,

V ∗ = g1(dist(w,w∗)) ≥ 1

4
.

We now argue by contraposition: Assume that π does not end on an assignment that satisfies
at least a (1 − ε)-fraction of clauses. Let w(1), . . . , w(h), w̄ denote the sequence of assignments
obtained by π: w(1) = w, and w(i+1) is the assignment at the end of round 1 ≤ i ≤ h − 1 and w̄
is the final assignment. Recall in each round the MDP has two stages. In the first stage, the agent is
presented unsatisfied clauses made up of only free variables. By our construction, the first stage is
of length at least εv/b. It follows that dist(w(i), w(i+1)) ≥ εv/b since the policies are not allowed
to undo any flips. We can then upper bound the reward obtained at the end by

h∏
i=1

gi(dist(w(i), w(i+1))) · gh+1(dist(w̄, w∗)) ≤
h∏
i=1

gi(εv/b) ≤
(

1− ε

6bvq−2

)h
≤ exp(−cv),

where c = Θ(αε/b), the first inequality follows dist(w(i), w(i+1)) ≥ εv/b, the second from Claim
16, and the third follows from 1 − x ≤ e−x that holds for all x and our choice of h = αvq−1.
Therefore, if V π > V ∗ − 1/8 ≥ 1/8, and v is large enough so that exp(−cv) < 1/8, then the
policy π has to end on a state which satisfied at least a (1− ε)-fraction of clauses.

Proof [Proof of Proposition 9]
Let PrMϕ and PrM̄ϕ

denote the distribution on the observed rewards and output policies induced
by the algorithm ARL when running on access to MDP oracle Mϕ and simulator M̄ϕ respectively.
Let Ri denote the reward received on the last layer at the end of i-th trajectory and N be the total
number of trajectories sampled by algorithm ARL when running on access to MDP oracle Mϕ. By
our assumption, ARL runs in time T and therefore N ≤ T .

We remark that if the algorithmARL ever reaches a satisfying assignment,ASAT will terminate
the simulation immediately, returning YES. Before reaching a satisfying assignment,ARL may only
receive rewards from the last layer. Since the expected reward at the last layer in the MDP Mϕ is
upper bounded by 1/(5T ) by our assumption, and the algorithm only visits at most N ≤ T states
on last layer, we get by the union bound that with high probability all the rewards at the last level
are zero. More precisely, we have

Pr
Mϕ

[Ri = 0 ∀i ∈ [N ]] ≥ 1− T/(5T ) ≥ 4

5
.

We say thatARL succeeds with access toMϕ (or M̄ϕ) if the output policy π satisfies V π > V ∗−1/8
with respect to Mϕ after running for time at most T . Using the above reasoning and the assumption
that ARL succeeds with access to MDP oracle Mϕ with probability 9/10 implies

Pr
Mϕ

[ARL succeeds with access to Mϕ | Ri = 0 ∀i ∈ [N ]] ≥
9
10 −

1
5

4
5

=
7

8
.
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Note that the marginal distributions PrMϕ and PrM̄ϕ
conditioned on Ri = 0 ∀i ∈ [N ] are exactly

the same because MDP oracle M̄ϕ and simulator Mϕ may only differ on last layer rewards before
ARL reaches a satisfying assignment. This implies

Pr
M̄ϕ

[
ARL succeeds with access to M̄ϕ | Ri = 0 ∀i ∈ [N ]

]
= Pr

Mϕ

[ARL succeeds with access to Mϕ | Ri = 0 ∀i ∈ [N ]]

Since, PrM̄ϕ
[Ri = 0 ∀i ∈ [N ]] = 1, we conclude that

Pr
M̄ϕ

[
ARL succeeds with access to M̄ϕ

]
≥ 7

8
.
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