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Abstract

Motivated by the statistical analysis of the discrete optimal transport problem, we prove distribu-
tional limits for the solutions of linear programs with random constraints. Such limits were first
obtained by Klatt, Munk, & Zemel (2022), but their expressions for the limits involve a computa-
tionally intractable decomposition of R™ into a possibly exponential number of convex cones. We
give a new expression for the limit in terms of auxiliary linear programs, which can be solved in
polynomial time. We also leverage tools from random convex geometry to give distributional limits
for the entire set of random optimal solutions, when the optimum is not unique. Finally, we de-
scribe a simple, data-driven method to construct asymptotically valid confidence sets in polynomial
time.
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1. Introduction

Linear programming is one of the core techniques in convex optimization, capturing many canonical

problems such as maximum flow, shortest path, bipartite matching, and optimal transport. Linear

programs (LPs) are notable for their versatility, their rich combinatorial theory, and their algorithmic

tractability: the pioneering work of Hacijan (1979) showed that LPs can be solved in polynomial

time, and the last 70 years of research in theoretical computer science and scientific computing have

made solving linear programs a “mature technology” in practice (Boyd and Vandenberghe, 2004).
We consider throughout a standard form LP, given by

min (c, x), st. Ax=b, x>0, €))
xER™
where A € R¥*™ b € R¥ and ¢ € R™. The goal of this paper is to understand the distributional
behavior of solutions to Eq. (1) when b is replaced by a random vector b,,. We assume the existence

of a random variable G such that
rn(b, —b) 2 G )

for some rate r,, — oo, and we will seek a corresponding limit law for the solutions to Eq. (1). This
setting is motivated by applications of linear programming in statistics and machine learning, where
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the “right-hand side” vector b corresponds to random capacities, demands, or prices. An impor-
tant example, which motivates many of the developments of this paper, is the linear programming
formulation of the optimal transportation problem between discrete distributions, where the vec-
tor b corresponds to the probability mass function of the two measures. The statistician who only
has access to these measures via samples can compute a solution to an empirical optimal transport
problem by replacing b with an estimator b,,. Quantifying the uncertainty in the resulting solution
requires constructing an asymptotic confidence set for this random linear program.

Obtaining distributional limit results for solutions to random optimization problems is, of course,
a well studied subject both in scientific computing and in statistics (Dupacova and Wets, 1988; King
and Rockafellar, 1993; Linderoth et al., 2006; Polyak and Juditsky, 1992; Shapiro, 1991), but the LP
lacks the regularity conditions necessary to apply classical results: neither smoothness nor strong
convexity holds for Eq. (1) in general, solutions are generally not unique, and optimal solutions
to Eq. (1) always lie on the boundary of the feasible set. By contrast, standard distributional limit
results, for instance in the analysis of M-estimators, require local strong convexity, uniqueness, and
that the solution to the population-level problem lies in the relative interior of the feasible set (see,
e.g., Vaart, 1998). The challenges met in circumventing these classical conditions are well known
(Aitchison and Silvey, 1958; Andrews, 2002; Chernoff, 1954). Statistically, the lack of regularity
in Eq. (1) is the source of several pathologies: even when the solution to Eq. (1) is unique, the
limiting distribution will in general not be Gaussian, and if there are multiple solutions to Eq. (1) it
is not even clear how to formulate the desired distributional limit results. The typical path forward,
not taken in this work, is to impose extra conditions to guarantee that uniqueness holds and to focus
on settings where there is sufficient regularity to ensure a Gaussian limit.

Let us give a very simple example which illustrates some of the difficulties of this problem.
Consider a 2 x 2 optimal transport problem:

min g + 721, s.t.7r1:q77rT1:s,7r20,
meR2x2

where q = s = (1/2,1/2). In this case, the target solution 7* = (1/2,0;0,1/2) is unique. If we
suppose that q is replaced by random vector in the probability simplex q,, = (qg), q1(12)), then the

optimal solution to the perturbed program is
ftn = (1/2,¢% = 1/2,0,¢)1, 1) @, + (¢V,0;¢%) — 1/2,1/2)1, 1) _
" T O (R noo AN ’ {an’'<an’}’

and if we assume /1 (g, — q) converges in distribution to a centered Gaussian vector, the rescaled
solution \/n (7, — 7*) converges to a mixture distribution with two non-Gaussian components. A
3 x 3 version of the same problem, with the same objective functionand q =s = (1/3,1/3,1/3),
has multiple optimal solutions, and a priori it is not clear how to quantify the uncertainty of a
solution obtained when r is replaced by a random counterpart.

The challenges in obtaining distributional limits for LPs were first tackled by the pioneering
work of Klatt et al. (2022), who derived distributional limits for (1) in a very general setting. Their
results are expressed in terms of a partition of R™ into closed convex cones; the restriction of the
limiting distribution on each cone is a linear function of the limit of the sequence 7, (b, — b).
To handle the fact that solutions to (1) may not be unique, Klatt et al. (2022) adopt a framework
of an algorithmic flavor: they assume, informally speaking, that there exists a consistent, possibly
randomized, selection procedure to specify a solution within the optimal set. This strategy allows
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them to prove a distributional limit for the particular optimal solution selected by this procedure,
without having to assume that the optimal solution is unique.

Despite the completeness and sophistication of their approach, Klatt et al. (2022) leave open
several fundamental questions. First, it is not clear whether it is possible to sample from their limit
laws in polynomial time: all of their limits are expressed in terms of a decomposition of R"* into a
possibly exponential number of closed convex cones. Even evaluating the functions involved in their
limiting expressions therefore appears to be computationally intractable. Second, their approach to
non-unique solutions cleverly sidesteps the need to assume that the optimal solution is unique;
however, the resulting limit law does not give insight into the overall geometry of the random
solution set. Third, even ignoring issues of computational feasibility, their results do not yield a
method to obtain asymptotically valid confidence sets from data, because the limiting distributions
they obtain depend on the (typically unknown) optimal solutions to the original LP.

In this work, we propose solutions to these three questions. First, in the case the solution to
the original LP is unique, we give a new representation of the limit that can be sampled from in
polynomial time; in fact, we show that the limit can be generated by solving an auxiliary random
linear program. Second, in the general (non-unique) case, we define and prove a distributional
limit for the optimal solutions in the space of convex sets—the resulting limit captures the random
geometry of the entire solution set. Finally, we develop a practical and computationally cheap data-
driven method for constructing asymptotically valid confidence sets.

2. Preliminaries on linear programming

In this section, we recall some facts about the structure of linear programs. We point the reader to
standard reference works (Bertsimas and Tsitsiklis, 1997; Boyd and Vandenberghe, 2004; Bradley
et al., 1977; Nocedal and Wright, 2006) for additional background information.

We denote the set of optimal solutions to (1) by

x*(b) := argmin(c, x), st. Ax =b, x> 0. 3)
x€R™

The notation x*(b) emphasizes that this optimal set depends on the right-hand side b. In general,
LPs do not possess unique solutions, so that typically |x*(b)| # 1. However, if the solution is
unique, by slight abuse of notation we write x*(b) for both the (single-element) set of optimal
solutions and for the optimal solution itself. We sometimes refer to x*(b) as the set of “target
solutions,” to contrast it with the random solution set x*(b,,) obtained by replacing b by its random
counterpart. We denote the optimal objective value of (1) by f(b).

Throughout, we make the following assumptions on (1).

Assumption 1 The constraint matrix A has full rank, the optimal solution set x*(b) is nonempty
and bounded, and (1) satisfies the Slater condition (Boyd and Vandenberghe, 2004, Section 5.2.3),
i.e., Ixg € R™, such that Axg = b, xg > 0.

The assumption that A is full rank is without loss of generality, as redundant constraints in the
matrix can always be removed. The assumption that x*(b) is nonempty and bounded is also made
by Klatt et al. (2022) and holds for many LPs of interest, including optimal transport problems.
Finally, the Slater condition is a standard assumption in convex programming and is only a minor
strengthening of Assumption (B2) of Klatt et al. (2022, see Lemma 5.4).
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2.1. Bases

For any subset I C {1,...,m}, we denote by Aj the k x |I| submatrix of A formed by taking the
columns of A corresponding to the elements of I. Analogously, for x € R™, we write xj for the
vector of length |I| consisting of the coordinates of x corresponding to I.

Definition 1 A set I C [m] is a basis if

11| =k, rank(Ag) = k 4)
Given a basis I, we can define the basic solution x(I; b) to be the vector x satisfying

X] = AI_ p
(&)
Xic = 0.

Explicitly, x(I, b) is defined by setting the coordinates not in I to zero and inverting the matrix A
to obtain the values on the coordinates corresponding to I. This vector is a feasible solution to (1) if
and only if the vector A; 'b is nonnegative; if it is, we say that x(I; b) is a basic feasible solution.
By construction, basic feasible solutions have at most k non-zero entries: if we denote the support
(i.e., the set of non-zero entries) of a vector x by S(x), then

S(x(I; b)) C 1.

This inclusion can be strict if the vector A b has zero coordinates. When the inclusion is strict,
the solution is called degenerate. If x is a degenerate basic feasible solution, then any basis I such
that S(x) C I satisfies x = x(I; b); in particular, several different bases may give rise to the same
(degenerate) basic feasible solution.

Geometrically, basic feasible solutions are precisely extreme points (vertices) of the feasible
set of (1) (Bertsimas and Tsitsiklis, 1997, Theorem 2.3); we will therefore use the terms basic
feasible solution and vertex interchangeably in what follows. Our justification for focusing on basic
feasible solutions is the “fundamental theorem of linear programming” (Bertsimas and Tsitsiklis,
1997, Theorem 2.7), which ensures that if any optimal solution to (1) exists, then there exists an
optimum which is a basic feasible solution.

We denote by Z(b) the set of all bases I for which x(I; b) is a basic feasible solution, and by
Z*(b) the set of all bases I for which x(I; b) is an optimal solution. Concretely, Z(b) or Z*(b) is a
set of sets: each of its elements is one basis. The set of optimal vertices of (1) is defined by

V*(b) = {x(I;b) : I € T*(b)} . 6)

The general theory of polyhedral geometry implies that since x*(b) is bounded, we may write

x*(b) = conv(V*(b)), the convex hull of V*(b). Moreover, the assumption that x*(b) is bounded

implies that x* (b’) is bounded for all perturbations b’.! We therefore also have x*(b’) = conv(V*(b’)).
We summarize the main notation used in this paper in Table 1.

1. This follows from the fact that x*(b) and x*(b’) are polyhedra with the same recession cone, which must equal {0}
since x* (b) is bounded.
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Symbol Meaning

f(b) Optimal objective value of (1)

b, b, True and random right-hand side constraints, (2)
S(x) Set of nonzero coordinates of x

x*(b) Set of optimal solutions, (3)

x(I; b) Basic feasible solution, (5)

Z(b),Z*(b) Set of feasible and optimal bases

V*(b) Extreme points of x*(b), (6)

hx Support function of K, (9)

Table 1: Important notation

3. Vertex and base stability

This section presents two stability results that are central to our analysis. Though simple and likely
well known, we present them explicitly here to highlight the important role they play in our theo-
rems.

The first is a Lipschitzian property of polytopes due to Walkup and Wets (1969), which shows
that the set of optimal solutions of Eq. (1) is Lipschitz with respect to the Hausdorff distance.

Proposition 2 Under Assumption 1, there exists a constant C = C (A, c) > 0 such that if by, by €
R¥ are such that x*(b1) and x* (by) are nonempty, then pg (x*(b1),x*(bs)) < C|by — by

The second proposition shows that optimal bases for b’ are also optimal for b.

Proposition 3 Under Assumption 1, there exists 6 = §(A,b) > 0 such that if |b’ — b|| < §, then
Z*(b') is nonempty and Z*(b') C Z*(b).

4. A tractable limiting distribution when the target solution is unique

In this section, we first consider the simplified setting where the target solution x*(b) is unique.
Even under this simplification, however, the limiting distribution obtained by Klatt et al. (2022)
does not have a tractable form. In particular, it is not even clear whether it is possible to generate
samples from this distribution in polynomial time. The goal of this section is to obtain an expression
for the limiting distribution that can be computed efficiently.

Stating this result requires defining a notion of distributional convergence suitable for a random
set. Even when |x*(b)| = 1, it is possible that [x*(b,,)| > 1. This situation can arise when x*(b)
is unique but degenerate, i.e., when there exist multiple optimal bases in Z*(b). Even if these bases
all give rise to the same solution x*(b) in the original program, they can correspond to different
optimal solutions when b is replaced by b,,. In this situation, |x*(by,)| > 1, and it is not possible
to formulate a distributional limit for 7, (x*(b,,) — x*(b)) viewed as the difference of two vectors
in R™. However, when |x*(b)| = 1, we can consider the set defined by translating the elements of
x*(by,) by x*(b) and rescaling them by 7,

rn(x*(by) — x*(b)) == {rp(x —x*(b)) : x € x*(b,,)} CR™.
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Our first main result is that this random set enjoys a set-valued distributional limit, with limit
equal to the distribution of the optimal set of a random auxiliary linear program.’

Theorem 4 Suppose that Eq. (1) satisfies Assumption 1. If by, satisfies the distributional limit
Eq. (2) and |x*(b)| = 1, then

ra (" (by) —x"(b)) % Pj () @
where py,(G) is the set of optimal solutions to the following linear program:
min(c,p) : Ap =G, p; >0 Vi¢ S(x*(b)). ®)

The linear program Eq. (8) is a random optimization problem, with a random feasible set. For
each w in the background probability space {2, or equivalently, for each realization of G, Eq. (8) is
a bona fide linear program.

The continuous mapping theorem implies that continuous functionals of the set r,,(x*(b,) —
x*(b)) also enjoy weak convergence. To give a concrete example of the statistical implications of
this fact, consider the problem of obtaining a confidence set for x*(b). Doing so requires knowing
how far x*(b) typically is from x*(b,,). If we let d(S,x) = infycg ||y — x|, then the following
corollary shows that we can obtain a distributional limit for d(x*(b,,), x*(b)).

Corollary 5 r,,d(x*(b,),x*(b)) 3 d(p;(G), 0).

In words, the rescaled distance of the target solution x*(b) to the set of optimal solutions of the
random program converges in distribution to the distance of zero to the optimal set of the random
auxiliary LP. Importantly, this is a convex program, whose solution can be found in polynomial
time.

Let us compare Corollary 5 with what would be obtained by a more standard approach. If one
finds estimators by solving an optimization problem that can yield multiple optima, a standard path
to inference consists in first identifying a subset of them that are close to one another, and then
deriving the limiting distribution of any one of them, relative to the unique target. By contrast,
Corollary 5 gives information about the distance of x*(b) to the whole set of optima for the random
program.

We stress our limit law is equivalent to the one obtained by Klatt et al. (2022, Theorem 3.5).
The benefit of Theorem 4 is that py (G) is given explicitly: though this set can be large, it is algo-
rithmically accessible since it possesses an explicit polyhedral representation in terms of separating
hyperplanes. This implies, for instance, that it is possible to solve convex optimization problems
involving pj,(G) in polynomial time via the ellipsoid method. We can therefore generate samples
from the limiting distribution of (functionals of) the solution set in polynomial time, assuming b
and the limiting distribution of r,,(b,, — b) are known. Specifically, we can obtain such a sample by
1) generating a sample G from the known limiting distribution of 7, (b,, —b) (in many applications,
this will be a Gaussian distribution) and 2) solving the linear program Eq. (8), with that particular
sample G used to form the constraint Ap = G (this can be done by a standard efficient linear pro-
gramming algorithm). Given an oracle to generate samples G and a linear programming algorithm,

2. To define weak convergence in this setting, we view these random sets as random elements in the metric space of com-
pact subsets of R™ equipped with the Hausdorff distance, and weak convergence means, as usual, the convergence
of expectations of bounded, continuous functions in this topology (King, 1989; Molchanov, 2005).
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therefore, we obtain a polynomial-time oracle to generate samples from the limiting distribution of
rn(x*(by) — x*(b)). Such samples can be used, for instance, to obtain Monte Carlo estimates for
calibrating asymptotic hypothesis tests and confidence sets.

On the other hand, Klatt et al. prove the same result but where the expression on the right side is
a sum over a decomposition of R"" into a possibly exponential number of pieces. Even assuming b is
known and G can efficiently be sampled from, such a decomposition typically cannot be evaluated
in polynomial time. We emphasize that by formulating the limit as a linear program itself, we
leverage the algorithmic theory of linear programming to sidestep the inefficient enumeration over
the elements of this decomposition.

When the unique optimal solution x*(b) is also non-degenerate, then Proposition 3 implies
that for b,, sufficiently close to b, the perturbed linear program also possesses a unique solution.
In this situation, Theorem 4 is a standard distributional limit: asymptotically almost surely, the
set x*(b,,) reduces to a singleton, and Theorem 4 shows that the distributional limit of the vector
rn(x*(by,) — x*(b)) is the (unique) solution to Eq. (8), which is just x(I*; G) for the unique I* €
Z*(b). This recovers the limit for this simplified setting mentioned by Klatt et al. (2022, discussion
after Remark 3.2).

5. Distributional convergence in the space of convex sets

When x*(b) is not unique, the approach to defining a set-valued distributional limit taken in The-
orem 4 no longer succeeds. Indeed, if x*(b,,) and x*(b) are general closed sets, then even if
x*(b,,) — x*(b) in Hausdorff distance, the set

x*(b,) ©x*(b) = {x —x': x € x*(b,),x € x*(b)}

will not converge to {0} in general, so that no meaningful limit of 7, (x*(b,,) © x*(b)) exists. In
the non-unique case, Klatt et al. (2022) therefore define a distributional limit under the additional
assumption that there exists a consistent scheme for selecting a single element of x*(b,,) and x*(b);
they then show that this selection satisfies a distributional limit in the classical sense. This ingenious
approach captures the behavior of practical algorithms for solving LPs, since reasonable LP solvers
give rise to such selection schemes (see Klatt et al., 2022, Lemma 5.5). However, as in the case
where the target solution is unique, their limiting distribution is expressed as a sum over a decom-
position of R™ into a possibly exponential number of pieces. Moreover, their techniques do not
give insight into the overall fluctuations of the random set x*(b,,). By contrast, in the unique case,
Theorem 4 shows that it is possible to obtain simultaneous control over the whole random set.

In this section, we leverage techniques from random convex geometry to obtain similar results
for the non-unique case. Unlike Theorem 4, Theorem 6 goes beyond the setting analyzed by Klatt
etal. (2022). Like Theorem 4, we state our convergence results in terms of the optimal solutions to a
random auxiliary LP, implying that evaluating the limits we obtain can be computationally tractable
in applications.

To formulate our distributional limit, we adopt a strategy developed by Artstein and Vitale
(1975), Weil (1982), and independently by Lyashenko (1983) to prove central limit theorems for
random compact sets. To any compact, convex set K C R™, we associate its support function
hx : S™~! — R defined by

hg(a) = sup (@, x). ©)
xeEK
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The mapping K — hg provides an isometric embedding of the metric space of convex, compact
sets equipped with the Hausdorff metric into the Banach space C(S™ 1) of continuous functions on
the sphere equipped with the uniform norm (see Molchanov, 2005, section 3.1.2). Explicitly, given
two compact, convex sets K and Ko, we have

pr (K1, K2) = sup |hg () = hi, ()] (10)

acSm—1

In particular, the map from a convex set to its support function is injective; K can be recovered
from hx by taking its Legendre transform. This embedding has two profound implications. First,
the geometry of convex sets is entirely captured by their support functions. In particular, we may
associate to a random convex set its support function, viewed as a random element of C(S™1),
and study its distribution instead.®> Second, since C(S™~!) is a Banach space, we may leverage the
theory of probability in Banach spaces to prove limit theorems for support functions.

Our main result of this section is a distributional limit for the set x*(b,,). We will focus on the
support functions of x*(b,,) as defined in Eq. (9). Once again, it is stated in terms of the solutions
to an auxiliary linear program.

Theorem 6 Let h,, and h be the support functions of x*(by,) and x*(b), respectively. Suppose that
(1) satisfies Assumption 1. If b, satisfies the distributional limit (2), then

ra(h, —h) 2 ge (an
where gg is the random element of C(S™ 1) defined by

ge(a) = sup (a,x),

x€q; (G)
and q,(G) is the set of optimal vertex solutions to the following linear program.*
min(c,q) : Aq =G, q; >0 Vi¢S(Vh(a)). (12)

Informally, Theorem 6 shows that when n is large, h, L h + 7-'gg. By the isometry described
in Eq. (10), this translates into a statement about the fluctuations of the random set x*(b,,) around
x*(b). The proof of Theorem 6 is based on establishing the directional Hadamard differentiabil-
ity of the mapping b + hy-(,) viewed as a function from R* to C(S™~!), and then applying a
functional delta method due to Romisch (2006).

Like Theorem 4, Theorem 6 has statistical implications for the problem of obtaining a confi-
dence set for x*(b). The isometry (10) implies the following analogue of Corollary 5.

* * D
Corollary 7 r,pp (x*(by,),x*(b)) = supacgm-1 |ga ()]

3. We omit a detailed discussion of measurability here, but it can be shown that if the space of convex, compact subsets
of R™ is equipped with an appropriate o-algebra (known as the Effros o-algebra), then for a random set K the
support function h is indeed a random variable in C(S™ ') (see Molchanov, 2005, Proposition 2.5).

4. The function h is only differentiable almost everywhere, but since gg () is almost surely continuous it suffices to
specify its values on a dense subset.
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In other words, the rescaled Hausdorff distance between the solution sets converges in distribution
to the supremum of a random continuous function on the sphere. Corollary 7 can be compared to
(Klatt et al., 2022, Proposition 3.7), which shows that py (x*(by,),x*(b)) = Op(r;!). Our result
gives finer control over the behavior of the rescaled distance in terms of the solutions to auxiliary
linear programs. However, unlike Corollary 5, we are not aware of an algorithm that can compute
the supremum on the right side of Corollary 7 in polynomial time. Finding a computationally
tractable expression for this limit is an attractive open problem.

6. Data-driven confidence sets

Theorems 4 and 6 give explicit distributional limits for x*(b,,) in terms of auxiliary linear programs.
Though evaluating these limits is computationally tractable, they fail to be suitable for concrete
inference tasks because the limiting distributions depend on properties of the true optimal solution
set x*(b). Since this set is almost always unknown in practice, Theorems 4 and 6 do not provide a
data-driven way to obtain asymptotically valid confidence sets.

In principle, the fact that Theorem 6 is proven by directional Hadamard differentiability argu-
ments implies that the m-out-of-n bootstrap is consistent (Diimbgen, 1993). However, using the
bootstrap for inference raises other practical difficulties: it is an open question how to choose m for
good performance, and convergence is slow. Therefore, even though Theorems 4 and 6 provide a
complete answer to the theoretical question of obtaining a valid distributional limit, they are a poor
way to construct confidence sets in practice.

In this section, we give a simple procedure to obtain such sets. Specifically, we suppose that that
statistician has solved the perturbed linear program and obtained a random solution X,, € V*(b,,)
along with a corresponding basis I, € Z*(b,,).> We will construct a confidence set based on %X,
that is guaranteed to contain at least one element of x*(b) with high probability. Specifically, let
us consider the basic solution x(I,,; b) defined by the random basis I,,. This solution may not be
feasible for (1), much less optimal, so we define the projection

x, = argmin ||x(I,; b) — x| . (13)
xex*(b)

The following result shows that we can construct a set containing this point with high probabil-

ity.

Theorem 8 Suppose that (1) satisfies Assumption I and b, satisfies the distributional limit (2).
Let G, be an open set such that P{G € Go} > 1 — o Then

Hminf P (r, (%, — X)) € x(I;Ga)) > 1 — a, (14)

n—o0

where x(1,,; Go) = {x(I,; G) : G € Gy}

Corollary 9 (Confidence set for an optimal solution) In the setting of Theorem 8, the set C,, =
{%, —rylx : x € x(I,; Go)} contains an element of x*(b) with asymptotic probability at least
1—oau

5. Algorithms such as the simplex method always return an optimal vertex when one exists, along with a corresponding
basis (Bertsimas and Tsitsiklis, 1997, Theorem 3.3).
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Theorem 8 and Corollary 9 are weaker than Theorems 4 and 6: they do not give any information
about the whole set of optimal solutions x*(b). Instead, Corollary 9 only guarantees that C,, con-
tains an optimal solution with high probability. As our simulations in Section 7 show, when the
optimal solution is non-unique, the confidence sets constructed by this procedure sometimes cover
one solution, sometimes another. Nevertheless, Theorem 9 does offer the practitioner an asymptotic
guarantee that some optimal solution is in a neighborhood of the estimator.

On the other hand, unlike Theorems 4 and 6, Corollary 9 is eminently practical. It requires only
the outputs x,, and I,, from a standard linear programming algorithm, and the set x(I,, : G,,) is easy
to compute, since the mapping G — x(I,, : G) is an explicit linear transformation. For instance, if
G, is an ellipsoid of the form {y € R* : y"¥~ly < 1}, then recalling definition (5) in Section 2
we have

x(Ly;Go) = {x e R™ : x{ M, x{ <1, x1. =0}, (15)

where M, := AITnZ_lAIn € RFxk,

7. Examples

We will provide two examples in this section to show the effectiveness of the method described in
Theorem 8 and Corollary 9 for generating a confidence set for solutions to LPs.

We first return to the simple discrete optimal transport problem described in the introduction,
which is a linear program with a unique degenerate optimal vertex. We then treat a more compli-
cated example arising from a min-cost flow problem (see Bradley et al., 1977, section 8.1). In this
example, there are two optimal vertex solutions at the population level. In both cases, our simu-
lations confirm that the method gives confidence sets which cover an optimal solution with high
probability.

7.1. Empirical Optimal Transport

We consider the optimal transport example given in the introduction, where we suppose that nq,, ~
Mult(n, (1/2,1/2)). This corresponds to the situation where we aim to estimate the solution to an
optimal transport problem involving an unknown distribution q = (1/2,1/2) on the basis of n i.i.d.

samples from q. In this setting, the classical central limit theorem implies \/n(q, —q) B (Z,-2),
where Z ~ N(0,1/4). We therefore choose G, = {(z,—x) : © € [—20.025/2, 20.025/2]} ,
where [—20.025/2, 20.025/2] is a 95% confidence interval for an '(0, 1/4) random variable, and use
Corollary 9 to construct a confidence set for the entries of 7.

Figure 1 shows examples of the confidence intervals produced by our method. We plot one
realization for each of the labeled values of n. Note that for each realization, the confidence intervals
for two (random) entries of 7 are singletons: for example, when n = 20, the solution we obtained to
the LP was 7, = (0.5,0.05; 0,0.45) and the confidence intervals given by Corollary 9 were m1; =
0.5, m12 € [—0.169,0.269], w31 = 0 and w2 € [0.23,0.67]. Even though the confidence intervals
for 17 and 791 have zero width, this set does in fact contain the optimal solution (%, 0;0, %) The
somewhat counterintuitive fact that a confidence set with empty interior covers the true parameter
with probability approaching 95% is a consequence of the fact that the distribution of 7, is not
absolutely continuous with respect to the Lebesgue measure.

10
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n=120 n=520 n=620 n=20 n=220 n=320
n=820 1n=920 n=420 n=720
| I 1 1 1 I L 1 I L 1 1 I L L L
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 -0.15  -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
™, 12
-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
1 T

Figure 1: Example confidence intervals for m = (%, 0;0, %) computed with different values of n
(one replicate each). For the values of n appearing in the box on the left, the confidence
intervals for 72 and mee were singletons at 0 and 1/2, respectively; for the values of n
appearing on the right, the confidence intervals for 717 and 712 were singletons.

We also estimate the observed coverage probabilities for finite n. For each n, we generate
1000 independent replicates, calculate the 95% confidence intervals and count the replicates that
successfully capture a true solution.

n 1 3 5 10 50 100 500 | 10000
Coverage Probability | 0.480 | 0.892 | 0.941 | 0.981 | 0.935 | 0.922 | 0.947 | 0.950

7.2. Minimal Cost Flow Problem

We adapt an example from Bradley et al. (1977, Section 8.1) arising in operations research. Con-
sider the problem of moving goods from origins to destinations along routes with certain volume
constraints and costs. We model an instance of this problem as the directed graph depicted in Fig. 2,
with 5 nodes and 9 arcs. Each arc is unidirectional, labeled with its capacity and transportation cost
(the pair of numbers in the parentheses adjacent to the arc). Each node is labeled with its supply
or demand. For example, the supply of node 1 is 20. The arc x12 transports products from node
1 to node 2 with the maximum capacity of 15 units of product and the cost $4 per unit of product.
Assuming that the total demand matches the total supply, the goal is to fulfill all the demands in the
network at a minimum cost.
This minimal-cost flow problem can be written in a linear program form:

min ey Y wig— >k =bi (i=1,2,..,5), 0 < a5 < iy, (16)
ij i k

where b; is the supply of each node, u;; is the capacity of each arc, and c;; is the transportation cost
of each arc. A standard linear program in the form of Eq. (1) can be obtained for this problem by
introducing the auxiliary variable y;;, which satisfies y;; + z;; = w;; and y;; > 0. The auxiliary

11
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(209

(4,$3)

Figure 2: Minimal-cost flow problem. Each arc is labeled with its capacity (the total amount of
flow it can carry) and the cost of moving a single unit of flow across it. Vertices are
labeled with supplies (positive quantities) or demands (negative quantities) for goods at
each location.

variable y;; represents the remaining capacity for each arc. The standard form for Eq. (16) is

mianijxij : Zl’ij — Tli — bi, Yij + Tij = Ujj, Tij 2 O, Yij Z 0. (17)
1,7 J k
Note that the equality constraints » jTij — > s Tki = b; are redundant due to the flow balance
condition of the network, and deleting any one of them will not change the program. Suppose
the flow balance constraint on the third node is deleted and we have the modified supply vector
b = (b1, bz, ba, bs) = (20,0, -5, —15).
The program in Fig. 2 has two optimal vertex solutions:

T12 | T13 | T23 | T4 | T25 | T34 | T35 | T45 | T53
solution 1 | 12 8 8 4 0 15 1 14 0
solution2 | 12 8 8 4 0 12 4 11 0

In applications, the true supply and demand at each node may not be known precisely, but
rather must be estimated by an empirical supply vector b,, obtained by averaging the observed

supplies and demands over n days. Suppose that we know \/ﬁ(f)n — IE)) B Gg, where Gy ~
N (0,diag(4, 1,1, 3)). We calculate a min-cost flow %,, using the estimated supply vector by, and
employ Corollary 9 to build a confidence set.

To visualize the confidence set for X,, for various n, we show the projection of 4 dimensional
confidence sets to lower dimensional spaces. As an example, we plot the confidence interval for
the z45 coordinate (Fig. 3, Fig. 4) and the confidence set for the 2 dimensional arc pair (z23, Z45)
(Fig. 5). In Fig. 3, we show several examples of the confidence sets we obtain for x45. We plot
a single realization for each value of n. Figure 4 shows many replicates for the n = 50 case to
illustrate the sampling variability of the sets we construct, and Fig. 5 depicts the same procedure
for the two-dimensional confidence set for (x93, x45). We can see that for each replicate, the given

12
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confidence sets capture one of the solutions very well—which solution is covered depends on the
random fluctuations in each replicate.

In short, Corollary 9 gives a practical means of obtaining asymptotically valid confidence sets
for the solution to a linear program. To our knowledge, this is the first procedure satisfying these
requirements.

n=15 [0 n=50 n=300 n=700 n=100 n=200 [ n=400 n=500 n=900
True solutions 4+7
| | | | | | | | |
10 10.5 11 11.5 12 125 13 135 14 14.5 15

Figure 3: Example confidence intervals for flow through arc x45 computed with different values of
n.

True solutions @~—— o 4 I

| | | | | | | |
10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

Figure 4: Confidence intervals for flow through arc z45 when n = 50 (many replicates).

True solutions

13 14

X45

Figure 5: Confidence sets for flow through the arc pair (z23, x45) when n = 50 (many replicates).
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Appendix A. Proofs of propositions

We first establish a few basic lemmas. In the proofs, we utilize the optimal conditions of the linear
program Eq. (1) and its dual program:

max (b, \), st.c—ATA>0. (18)
AERF

The linear program Eq. (1) and the dual program Eq. (18) achieve their optima at (x*(b), A*(b))
if and only if 3 s € R™ such that:

ATX*(b) +s=c, Ax*(b) =b, x*(b) >0, s >0, x*(b)Ts =0. (19)
The last condition is called complementary slackness, and is equivalent to the condition that x*(b); >

0 = s; =0foralli € [m].
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Lemma 10 Under Assumption 1, there exists 6 = 6(A,b) > 0, C; = C(A), and Cy = C(A,c)
such that the following properties hold:

1. If|b" = b|| < 0, then I(b") C Z(b)
2. If||b’ — b|| <9, thenx*(b’) # ()
3. Ix(L: W) — x(I:b)| < Gy — b

, forall I € I(b'),
4. If f(b) is finite, then | f(b") — f(b)| < Co||b’ — b,
Proof The perturbed LP with linear constraint Ax = b’ reads:

min (c, X), st.Ax =b', x>0, (20)
XERT’L

1. Inclusion of feasible bases: Z(b') C Z(b) If JIp € Z(b")\Z(b), there exist 1 < p < k such

A7'b
that (AI_Olb’)p > (0 and (AI_Olb)p < 0. However, when ||b’ — b|| < %,
)

[(A'D), — (AL D), < AL'D — AL < [(AL'D),l.

(A7),

Therefore, (A;Olb’)p < 0. Take &y, = min A, invertible} minpi(Afolb)p<0 AT When ||b’ —
0

b|| < dp,. there is no such basis Iy and Z(b") C Z(b).
2. Existence of optimal solution x*(b’). We first show that the perturbed LP is feasible.
By Assumption 1, there exists xq satisfying

Axo=b, x>0.

Let sx, be the smallest entry of x( and let Iy be an arbitrary element of Z(b). When ||b’ — b|| <

Sx .
||A‘01|| := p, , we have
)

Ix(Zo; b’ = b) || = A7 (B = b)|| < sx,-

Then x|, := xo + x([o; b’ — b) satisfies Ax(, = b’ and x{, > 0, which indicates that x|, lies in the
feasible region of Eq. (20).
The dual problem of Eq. (20) is

max (b’ \), st.c—ATX>0. (21)
AERK

The fact that x*(b) is nonempty implies that Eq. (21) is feasible, since the feasible set of Eq. (21)
does not depend on b’. Hence the value of Eq. (20) is bounded and there exist optimal solutions.

3. Lipschitz continuity of basic feasible solutions. We argue as in Part 1. For any I € Z(b'),
X(I, b/>IC = X(L b)IC = 0, and

I(AT D) — (A 'b)|l = A7 "D — Ar'b]| < A H[B = bl

Taking C'y = maxr. A, invertible || A 1 || yields the bound.
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4. Local Lipschitz continuity of optimal value The fact that target and perturbed primal prob-
lems have finite values indicates that there exist optimal solutions to the target and perturbed dual
problems. Denote optimal vertex solutions to the dual programs by A*(b) and A\*(b’), respectively
Strong duality implies
(b', A" (b)) = f(b') = (e, x"(D)).
Therefore, we have
(b, A" (b)) — (b, A"(b)) = (c,x"(b") —x"(b)) = f(b') - f(b).
Since A*(b) and \*(b’) are optimal vertices of Eq. (18) and Eq. (21), respectively, we obtain
(b’ = b, A" (b)) < (f(b) = f(b)) < (b’ — b, \"(D)).

Therefore
no_ < ;o
£(b) = £(B)] < [Ib' = b max Al

where A is the set of all vertices of the polytope AT\ > c.
|

We now turn to proofs of the propositions.

Proof [Proof of Proposition 2] We follow the same argument as is given in the proof of Proposition
3.7 in Klatt et al. (2022). If x*(b;) and x*(bs2) are both nonempty, then Lemma 10, part 4, implies
that || f(b1) — f(b2)|| < Ca||b; —bz||. We then apply the main theorem of Walkup and Wets (1969)
with K being the positive orthant and 7(x) = (Ax, (c, x)). |

Proof [Proof of Proposition 3] Let § be small enough that Lemma 10 holds. Parts 1 and 2 of that
lemma imply that () # Z*(b’") C Z(b’) C Z(b). It therefore suffices to show that Iy € Z*(b) for all
Iy € I*(b/).

Assume that x(Ip; b’) € x*(b’). Denote by Ar, an optimal dual solution to Eq. (21), which
satisfies

ATX, +s=c, Ax(Ip;b') = b/, x(Ip;b') >0, s > 0, x(Ip;b") s =0

for some s € R™. We will now show that (x(Ip; b), A,) is also an optimal primal-dual pair for the
unperturbed program when 9§ is small enough.
The first four conditions still hold for (x(Ip; b), A, ):

AT)p, +s=c, Ax(lp;b) = b, x(Ip;b) >0, s > 0.

To show the complementary slackness condition holds, we use Part 3 of Lemma 10, since S(x(lp; b)) C
S(x(Ip; b)) as long as ||x(Ip; b) — x(Ip; b')|| < 7(A, b), where

7(A,b) := max min  x(I;b); > 0.
LI€Z(b)) ieS(x(I;b))

By Part 3 of Lemma 10, we can choose §'(A,b) > 0 small enough that ||x(Ip; b) — x(Ip; b')|| <
7(A,b) whenever |b — b’|| < ¢’
We obtain that if ||b’ — b’|| < §*(A,b) =: § A ¢, then Z*(b’) C Z*(b), as desired.
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Appendix B. Proofs of main theorems

This section contains the proofs of our main results. We first show how to derive Theorem 6 and
Corollary 7 (Appendix B.1). We then obtain Theorem 4 and Corollary 5 as easy consequences (Ap-
pendix B.2). Finally, we give the elementary proofs of Theorem 8 and Corollary 9 in Appendix B.3.

B.1. Proofs for Section 5

Our proof is based on the Hadamard differentiability properties of the mapping H : R* — C(S™™1)
which sends a vector b to the support function hy« (). Specifically, we will show the following:

Theorem 11 The mapping H : R¥ — C(S™1) is directionally Hadamard differentiable, with
derivative g., where g is as in the statement of Theorem 6. That is,
H(b —H(b
L H(b 1) — H(b)
tn\(07£n_>£ tn

= 8¢ (22)

in C(S™1).

Theorem 6 then follows directly from Romisch (2006).
Proof [Proof of Theorem 11] First, Proposition 2 and Eq. (10) imply that if ¢,, is sufficiently small
and &, is sufficiently close to &, then

[hst (bttnen) = Mt brtng) 200 = pE (X (b + &), X" (b + 08)) S tnll&n — €Il

Therefore Hb Hib
t — t o0
i IO+ ) ZHEOON ¢ iy g, g =0, 3)
tn—0,En—¢ ty En—E
so that Hib Hib
1 \0,En—€ tn
inC(S™1).
It therefore suffices to show that
. H(b+t,&) — H(b)
| = ge. 25
tnlgo tn 8¢ (25)

The function h(«) is differentiable whenever supycv+p){(c, X) is uniquely achieved, and the gra-
dient is precisely the vertex giving the supremum. For a vertex v € V*(b) we write K for the
subset of S”~! consisting of all a for which h is differentiable at o, with derivative v. The collec-
tion {Ky : v € V*(b)} forms a finite disjoint partition of a sphere up to a measure zero set. We
shall show that H (b + ¢,,£) converges uniformly to H (b) on each element of this partition, which
establishes almost everywhere uniform convergence and the desired limit.

In what follows, we therefore fix a v € V*(b) and consider the functions H (b + ¢,{) and
H(b) on Ky. By assumption, Supycvy+(p) (@, X) is uniquely attained at v for all « in this set. We
will now show that for all « € K and ¢,, smaller than a constant that depends on v but not on «,
we may restrict the SUpremum in SUPyey« (b-t1,¢) (% X) to vectors of the form x(I; b + ¢,£) where
IeZ*(b+t,8) and x(I; b) = v.
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The optimal set x € x*(b + ¢,&) is the set of nonnegative vectors in R" that satisfy the
linear constraint Ax = b + t,{ and that achieve the value (c,x) = f(b + ¢,£). Therefore
SUDyex* (btt,¢) (@ X) 18 equivalent to the linear program

max(a,x) : Ax =b +t,&, (c,x) = f(b+t,£),x > 0. (26)
Analogously, we have by assumption that v is the unique solution to
max{a,X) : Ax = b, (¢, x) = f(b),x > 0. (27)

Since x*(b + t,&) is compact, Eq. (26) has an optimal solution, and therefore so does its dual
problem:
min(\, b + t,€) 4+ puf(b +t,€) : ATA + pc > a, (28)

where A € R* and ;1 € R. Denote by \* and x* arbitrary optimal solutions to this problem.
Complementary slackness implies that any optimal solution x}, to Eq. (26) satisfies

1€ S(X:) — (AT)\*)l + H*Ci = Q. 29)

We can always assume that SUDyex«(bt1,¢) (@ X) is achieved at an extreme point, and so is
given by some basic feasible solution x(I; b + ¢,£) for I € Z*(b + t,,£). So it suffices to show that
if such an I gives rise to an optimal solution to Eq. (26), then x(I; b) = v. By Eq. (29),

(ATX); + pci = a; Vi€ S(x(I;b+t,6)). (30)

By Proposition 3, for ¢, small enough (independent of «), the fact that I € Z*(b + ¢,&) implies
I € Z*(b) and S(x(I; b)) C S(x(I; b + t,£)). Combining this fact with Eq. (30) gives that

(ATX* + e — a,x(I;b)) = 0. (31)

But this implies that x(I; b) must be optimal for Eq. (27) by weak duality. To see this explicitly,
we first observe that I € Z*(b) shows that x(I; b) is feasible in Eq. (27). Second, A* and u* are
feasible for Eq. (28). Therefore, if x is any feasible point for Eq. (28), we have

(0, x(I;b) —x) = (ATX + pe,x(I;b) — x) + (AT + pc — a,x — x(I; b))
>0,

where we have used that (A T\ + uc,x(I;b) — x) = 0 since Ax(I;b) = Ax and (c,x(I;b)) =

(c,x) and the second term is nonnegative in light of Eq. (31) and the fact that AT\ + pc — o and

x are both nonnegative. Therefore x(I; b) is optimal for Eq. (27), so we must have x(I;b) = v,

which was what we wanted to show.
For a0 € K, we therefore have that for ¢,, sufficiently small, depending only on v,

su o,X) —  su o, X) = max a,x(I;b+t,6) —v). (32)
xev*(bp+tn§)< > erP(b)< ) IeI*(b+tn§):X(I;b):v< ( 2 )

Consider now the linear program appearing in the definition of g}, (£):

min(c,q) : Aq=§,q; >0 Vi¢g S(v). (33)
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Note that this program does not depend on «, only on v. We wish to show that for ¢,, small enough,
the basic feasible solutions of this program are exactly the vectors of the form ¢, ! (x(I; b+1,£) —v)
forI € Z(b + t,£) such that x(I;b) = v. A basic feasible solution corresponds to a selection of
m linearly independent constraints: k that arise from the equality constraints, and m — k tight
inequality constraints selected from the set S(v)°.

Fix a basis for this linear program, denote by .J the set of equality constraints selected from the
set S(v)©, and let J = J. The fact that J C S(v)¢ implies S(v) C J. Since these give rise
to a basis, the system of equations given by Aq = £ and q; = 0 for j ¢ J has a unique solution.
Equivalently, the set J satisfies that A yq; = £ has a unique solution, so that A ; is full rank. If
this basis gives rise to a basic feasible solution of Eq. (33), then (A}lﬁ)z’ > 0 foralli ¢ S(v).
To conclude, basic feasible solutions to Eq. (33) are of the form q; = A}lf and q;c = 0, where
J 2O S(v) satisfies

| J| = k,rank(A ;) =k, (A;1€); >0 Vig¢g S(v). (34)

Conversely, every set J satisfying these requirements gives rise to a basic feasible solution of
Eq. (33).

On the other hand, if y =t} (x(I; b + ,£) — v) for some I € Z(b + t,£) such that x(I; b) =
v, then y; = t; A7 (b + t,6 —b) = A;'¢ and y;c = 0. Moreover, the requirement that
I € Z(b + t,§) implies that y; = A e > —tLvy, since this is equivalent to I being feasible for
b + t,¢, and the requirement that x(I; b) = v implies S(v) C I. To conclude, y is a vector such
that y; = Al_lf and yjc = 0, where I O S(v) satisfies

1| = k,rank(A;) = k, A7 ' > —t, vy (35)

Conversely, any set I satisfying these properties gives rise to a vector y of the form ¢, (x(I; b +
tn€) — v) for some I € Z(b + ¢,£) such that x(I; b) = v.

We now notice that Eq. (34) and Eq. (35) are nearly the same. Clearly, all sets I O S(v)
satisfying Eq. (35) also satisfy (A;'¢); > 0 Vi ¢ S(v), since if i ¢ S(v) this is equivalent to the
requirement that (A 15)1- > —t'v; = 0in Eq. (35). Conversely, for t,, sufficiently small, every
set J D S(v) satisfying Eq. (34) also satisfies A;lf > —t v This is because every coordinate
of the vector A}lf is bounded, uniformly in J. So for ¢,, small enough, if v; > 0, we will have
(A;lﬁ )i > —t, lv;. Therefore, for t,, small enough, the allowable subsets in Eq. (34) and Eq. (35)
agree. In other words, the basic feasible solutions to Eq. (33) are precisely the vectors of the form
t (x(I; b + t,€) — v) for some I € Z(b + t,£) such that x(I; b) = v. Moreover, it is now easy
to see that optimal vertices in Eq. (33) correspond to vectors of the form #,, ' (x(I; b + t,£) — v)
for some I € Z*(b + t,,£) (i.e., the set of optimal bases) for which x(I; b) = v. Indeed, in each
case we simply need to select the subset of vertices that minimize the inner product with c: that
is obviously true in the case of solutions to Eq. (33), and by linearity a basic feasible solution
x(I; b + t,,£) minimizes the inner product with c if and only if ¢, ! (x(I; b + #,,£) — v) minimizes
the inner product with c.

We conclude that for ¢,, small enough (depending only on v and not on «), for all @ € K,

X(Lb +1n8) —v) = X)) =ty : 36
Iez*(béil?)):(xa;b):vm x( &) =v) Xg;%’é)@ X) ge(a) (36)
Therefore Hb £)(a) - Hb)(a)

tEr\no tn = ge(a) (37)
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uniformly on K, as claimed. |

Proof [Proof of Corollary 7] The functional f — sup,csm—1 f(a) is clearly a continuous map from
C(S™ 1) to R, so the continuous mapping theorem combined with Theorem 6 implies

D
rn sup |hn(e) —h(a)| = sup |gg(a)].
aES"”71 QES""71

Combined with Eq. (10), this implies

rapr (x*(by), x*(b)) B sup g (@)

acSm—1

B.2. Proofs for Section 4

The results of this section will follow from specializing the results of Section 5 to the case where
the target solution x*(b) is unique.
Proof [Proof of Theorem 4] We will apply Theorem 6. We first need to verify that the sense of
convergence is the same, and then that the expressions for the limit agree. The random solution
set x*(b,,) is nonempty with probability approaching 1 as n — oo by Lemma 10. The sets on
the left side of the limit in Theorem 4 are therefore (on an event of probability approaching one)
non-empty, convex, compact sets. If K7, ..., is a sequence of such random sets, Molchanov (2005,
Theorem 6.13) implies that it converges weakly to a random set K if and only if for any NV € N,
ai,...,ay € S™1 the vector (hg, (a1),...,hg, (ay)) converges to (hx(a1),...,hg(an)),
and the sets are tight, in the sense that lim,_,~, sup,, P {|| K, || > ¢} — 0.

To compute the support function of 7, (x*(b,,) —x*(b)), we use the fact that x*(b) is a singleton
to write

sup (a,x) = sup (a,7,(x' —x*(b))
x€rn (x*(bn)—x*(b)) x'ex*(bp)
=Tn SUp <O[, Xl) - Tn<Oé, X*(b»
x'ex*(byp)

= rp(hn(a) = h(a)),

where h,, and h are as in Theorem 6. Theorem 6 shows that the support function of r,(x*(b,,) —
x*(b)) converges to gg. The tightness condition is therefore trivially satisfied, so we will be done
as long as we can show that the function gg is the support function of the set pj,(G). Since h(a) =
(a, x*(b)), the gradient Vh(«) is identically equal to x*(b), so that the linear program Eq. (12)
reduces to Eq. (8). Since gg is defined as the supremum of a linear functional, we may replace the
set q*(G) of optimal vertices by its convex hull conv(q*(G)), and we just need to show that this
set agrees with p (G) to show that gg is its support function. To do so, we use the fact that the
recession cone of py,(G) is {0} when x*(b) is unique. To see this, first observe that a vector in
the recession cone must satisfy (c,d) = 0,Ad = 0,d; > O forall i ¢ S(x*(b)). If d is such a
vector, then for € > 0 small enough the vector x*(b) + ed is also optimal for Eq. (1). Indeed this
vector satisfies the linear constraints and has the same objective value, and for € sufficiently small

21



L1 BUNEA NILES-WEED

no coordinates of x*(b) + ed will be negative. Since we have assumed that x*(b) is a singleton,
we must have that d = 0, so that the recession cone of the optimal set in this LP is {0}. Therefore
P}, (G) = conv(q*(G)), and therefore gg is the support function of pj, (G), proving the claim. W

Proof [Proof of Corollary 5] For any vector x, the functional S +— d(S,x) is continuous with
respect to the Hausdorff distance. The continuous mapping theorem therefore implies that

d(ry(x*(by) — x*(b)),0) 2 d(p;(G),0).

It then suffices to note that the quantity on the left is equal to r,d(x*(by,), x*(b)). [

B.3. Proofs for Section 6

Proof [Proof of Theorem 8] Define A,, := (A; er ) € R"™*™ to be the matrix whose first k rows
are A and whose remaining m — k rows consist of the elementary basis vectors e; for i ¢ I,,.
Since I,, is a basis, A, has full rank. Moreover, the fact that the basis I,, corresponds to X,, implies
that S(%,) C I,. Therefore A%, = b?, where b? = (b,,0) € R™ is the augmented vector
whose first k£ coordinates are b,, and whose remaining m — k coordinates are zero. Similarly,
A, x(I,;b) = b?, where b’ € R™ is defined in an analogous way.
We obtain

ToAn(Xn — x(In; b)) = 1, (b2 — bY) 25 G, (38)
where as above G is the random variable obtained by appending m — k zeroes to G.

We will now show that r,,(%* — x(I,; b)) & 0, so that we can replace x(L,; b) by X* in the
limit. By Theorem 3, there exists a constant § > 0 such that if ||b,, —b|| < §, then Z*(b,,) C Z*(b).
Since I,, € Z*(b,,) by assumption, this fact implies that if ||b,, — b|| < 4, then I, is an optimal
basis for the target problem, i.e., x(I,; b) € x*(b). In particular, on the event that |b,, — b|| < 4,
we have X} = x(I,,; b). The distributional convergence assumption Eq. (2) implies b,, 2. We
therefore have that P {r,|x; — x(I,;b)|| > 0} < P{||/b, —b|| >} — 0asn — oo, so that
(X% — x(I,; b)) 2 0. Combining this fact with Eq. (38) yields

oAy (n — %5) 2 G, (39)
If we define (G, as in the theorem, we therefore obtain that

lim inf P {rn(%, — %) € A'GY) = lim inf P {rnA, (%, —X5) €GO} >1—a  (40)
where G € R™ is obtained from G, € R* by padding each vector with zeros. To conclude, we
note that A 1G% = x(I,;G,). Indeed, for any G € G,, the definition of A,, implies that the
first k£ coordinates of A, x(I,,; G) are Ax(I,; G) = G and the last m — k coordinates are zero.
Therefore GO = A, x(I,,;; G, ), and since A, is invertible this proves the claim. [ |

Corollary 9 is an immediate consequence.
Proof [Proof of Corollary 9] If 7, (X, — X,) € x(L,; G4 ), then there exists an x € x(I,;; G4) such
that X} = %, — r,, 'x. Since X* € x*(b), the result follows from Theorem 8. |
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