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Abstract
We study multiclass online prediction where the learner can predict using a list of multiple labels
(as opposed to just one label in the traditional setting). We characterize learnability in this model
using the b-ary Littlestone dimension. This dimension is a variation of the classical Littlestone
dimension with the difference that binary mistake trees are replaced with (k+1)-ary mistake trees,
where k is the number of labels in the list. In the agnostic setting, we explore different scenarios
depending on whether the comparator class consists of single-labeled or multi-labeled functions
and its tradeoff with the size of the lists the algorithm uses. We find that it is possible to achieve
negative regret in some cases and provide a complete characterization of when this is possible.

As part of our work, we adapt classical algorithms such as Littlestone’s SOA and Rosenblatt’s
Perceptron to predict using lists of labels. We also establish combinatorial results for list-learnable
classes, including a list online version of the Sauer-Shelah-Perles Lemma. We state our results
within the framework of pattern classes — a generalization of hypothesis classes which can rep-
resent adaptive hypotheses (i.e. functions with memory), and model data-dependent assumptions
such as linear classification with margin.
Keywords: Online Learning, List Learning, Multiclass Classification, Littlestone Dimension, Per-
ceptron, Mistake Bound, Regret Bound

1. Introduction

In certain situations where supervised learning is used, it is acceptable if the prediction is presented
as a short list of candidate outputs. For instance, recommendation systems like those used by Netflix,
Amazon, and YouTube (see Figure 1) recommend a list of movies or products to their users for
selection (as opposed to just a single movie/product). In fact, even in tasks where the objective is
to predict a single label, it may be helpful to first reduce the output space (which can potentially
be very large) by learning a short list of options. For instance, medical doctors could consult an
algorithm that generates a short list of potential diagnoses based on a patient’s medical data.

List prediction rules naturally arise in the setting of conformal learning. In this model, algo-
rithms make their predictions while also offering some indication of the level of uncertainty or
confidence in those predictions. For example in multiclass classification tasks, given an unlabeled
test example x, the conformal learner might output a list of all possible classes along with scores
which reflect the probability that x belongs to each class. This list can then be truncated to a shorter
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Figure 1: YouTube’s recommendation system generates a short list of videos to users based on their
past watch history and likes/dislikes.

one which contains only the classes with the highest score. We refer the reader to the book by Vovk,
Gammerman, and Shafer (2005) and the surveys by Shafer and Vovk (2008); Angelopoulos and
Bates (2021) for more details.

Recently, list learning has been examined within the PAC (Probably Approximately Correct)
framework. Brukhim, Carmon, Dinur, Moran, and Yehudayoff (2022) proved a characterization of
multiclass PAC learning using the Daniely-Shwartz (DS) dimension. A central idea in this work is
the use of list learners to decrease the (possibly infinite) label space; this enables them to learn the
reduced problem using known methods which apply when the number of labels is bounded. In a
subsequent study, Charikar and Pabbaraju (2022) investigated which classes can be learned in the
list PAC model, and gave a characterization of list learnability using a natural extension of the DS
dimension. In the process, they identified key characteristics of PAC learnable classes that extend
naturally (but not trivially) to the list setting.

The purpose of this study is to examine list learnability in the setting of multiclass online clas-
sification. Specifically, we aim to understand:

Guiding Questions

• What tasks are online learnable by algorithms that make predictions using short lists
of labels? Is there a natural dimension that measures list online learnability?

• How does the possibility of using lists impact the mistake- and regret-bounds? How
do these bounds improve as the algorithm is allowed to use larger lists?

We study these questions in the context of multiclass online prediction using the 0/1 classifica-
tion loss. Extensions to weighted and continuous losses are left for future research.

1.1. Our Contribution

Realizable Case (Theorems 2 and 4). Our first main result characterizes list learnability using
a natural variation of the Littlestone dimension (Littlestone, 1988). We show that a class is k-list
online learnable (i.e. can be learned by an algorithm that predicts using list of size k) if and only
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if its (k + 1)-ary Littlestone dimension is bounded. The latter is defined as the maximum possible
depth of a complete (k+ 1)-ary mistake tree that is shattered by the class. We further show that the
list Littlestone dimension is equal to the optimal mistake bound attainable by deterministic learners.

Agnostic Case (Theorems 5 and 6). We characterize agnostic list online learnability by showing
it is also captured by a bounded list Littlestone dimension (and hence agnostic and realizable list
learning are equivalent). Our proof hinges on an effective transformation that converts a list learner
in the realizable case to an agnostic list learner.

We further investigate how does the expressiveness of the comparator class and the resources of
the algorithm impact the optimal regret rates. For example, consider the task of agnostic learning
a multi-labeled comparator class consisting of functions which maps an input instance x to a set of
k′ = 3 output labels. How does the optimal regret changes as we use list learners with different list
size k = 1, 2, 3, . . .? Clearly , the regret cannot increase as we increase k; does the regret decreases?
By how much? Can it become negative? We show that once the algorithm can use larger lists than
the minimum required for learning, then it can achieve negative regret (which can be called pride).
In Theorem 6 we characterize the cases in which negative regret is possible as a function of the
trade-off between the algorithm’s resources and the class complexity.

Variations of Classical Results and Algorithms. We develop and analyze variations of classical
algorithms such as Rosenblatt’s Perceptron (Figure 3) and Littlestone’s SOA (Figure 4). The new
modified algorithms predict using lists and hence are more expressive. For example, our k-list
Perceptron algorithm learns any linearly separable sequence with margin between the top class and
the (k + 1)’th top class (as opposed to margin between the top and the second top classes in the
standard multiclass Perceptron).

Our transformation of realizable list learners to agnostic list learners extends the one by Ben-
David, Pál, and Shalev-Shwartz (2009) in the binary case. Along the way we prove an online
variation of the Sauer-Shelah-Perles Lemma for list learnable classes (Proposition 1).

Pattern Classes. We present our results using a general framework of pattern classes. In a nut-
shell, a pattern class P is a set of sequences of examples; these sequences are thought of as the
set of allowable sequences that are expected as inputs. Thus, in the realizable case, the goal is to
design a learning rule that makes a bounded number of mistake on every pattern in the class. Every
hypothesis classH induces a pattern class consisting of all sequences that are realizable byH:

P(H) = {S : S is realizable byH}

However, pattern classes have the advantage of naturally expressing data-dependent assumption
such as linear classification with margin (see Section 3.1). In fact, pattern classes are more expres-
sive than hypothesis classes: in Appendix B we give examples of an online learnable pattern class
P such that for every hypothesis classH, if P ⊆ P(H) thenH is not online learnable.

Pattern classes are even more expressive than partial concept classes (Long, 2001; Alon, Han-
neke, Holzman, and Moran, 2021). In fact, partial concept classes essentially correspond to sym-
metric pattern classes: i.e. pattern classes with the property that a permutation of every pattern in
the class is also in the class. Asymmetric pattern classes can be used to represent online functions
(or functions with memory).1

1. Online functions are maps h : X ⋆ → Y that get as an input a finite sequence of instances x1, . . . , xT and produce
a sequence of labels y1, . . . , yT , where yt = h(xt;xt−1, . . . , x1) is interpreted as the label of xt. In contrast with
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1.2. Organization

We begin with giving the necessary background and formal definitions in Section 2. While this
section contains standard and basic definitions in online learning, we still recommend that even the
experienced readers will skim through it, especially through the less standard parts which define
learnability of pattern classes and introduce the list learning setting.

In Section 3 we state and present our main results, and in Section A we provide the proofs
along with some additional results with more elaborate bounds. Finally, Section 4 contains some
suggestions for future research.

2. Definitions and Background

Let X be a set called the domain and let Y be a set called the label space. We assume that Y is finite
(but possibly very large). A pair z = (x, y) ∈ X ×Y is called an example, and Z = X ×Y denotes
the space of examples. An hypothesis (or a concept) is a mapping h : X → Y , an hypothesis
class (or a concept class) H is a set of hypotheses. More generally, for |Y| ≥ k ≥ 1, a k multi-
labeled hypothesis is a map h : X →

(Y
k

)
taking an input x ∈ X to a set of k labels from Y . A k

multi-labeled hypothesis class is a class of k multi-labeled hypotheses.

Pattern Classes. We use pattern classes – a generalization of hypothesis classes which enables
modelling data-dependent assumptions such as linear classification with margin in a unified and
natural way.

A pattern S = {zt}Tt=1 is a finite sequence of examples. For 0 < i ≤ T we let S<i denote the
prefix of S which consists of the first i−1 examples in S. For a pair of patterns S1, S2 we denote by
S1 ◦ S2 the pattern obtained by concatenating S2 after S1. We denote by S1 ⊆ S2 the relation “S1

is a subsequence of S2”. For a set A, we denote by A⋆ = ∪∞T=0A
T the set of all finite sequences2

of elements in A. Thus, Z⋆ is the set of all patterns.
A pattern class P ⊆ Z⋆ is a set of patterns which is downward closed: for every S ∈ P , if

S′ ⊆ S is a subsequence of S then S′ ∈ P . For a pattern class P , y ∈ Y and x ∈ X , we denote by
Px→y the subset of P consists of all patterns such that their concatenation with the example (x, y)
is also in P:

Px→y = {S : (x, y) ◦ S ∈ P}.
We say that a sequence/pattern S is realizable by P if S ∈ P . we say that a sequence/pattern
S ∈ Z⋆ is consistent with (or realizable by) a multi-labeled hypothesis h : X → Y if for every
(xt, yt) ∈ S we have yt ∈ h(xt) (or yt = h(xt) when h is a single-labeled hypothesis).

Notice that every (multi-labeled) hypothesis classH induces a pattern class:

P(H) = {S ∈ Z⋆ : S is consistent with some h ∈ H}.

So, a sequence S is realizable byH if and only if S ∈ P(H). The pattern class P(H) is equivalent
to H from a learning theoretic perspective in the sense that a learning rule learns H if and only

oblivious (memoryless) functions, the rule that assigns yt to xt can depend on the history (i.e. on x1, . . . xt−1). As
an example, consider the online function which gets as an input a sequence of points x1, . . . , xT ∈ Rd and produces
labels y1, . . . yT ∈ {0, 1} such that y1 = 0, y2 = 1 and for t > 2, yt is set to be the label of the closest point to xt

among x1, . . . xt−1 (breaking ties arbitrarily). One can model online function classes using pattern classes by taking
the set of all patterns (x1, y1), . . . , (xt, yt) that are obtained by feeding x1, . . . , xt to one of the online functions in
the class.

2. Here, A0 is the set A0 = {∅} which contains only the empty sequence ∅.

4



LIST ONLINE CLASSIFICATION

if it learns P(H). Hence, pattern classes are at least as expressive as hypothesis classes. The
upside is that pattern classes allow to naturally express data-dependent assumptions such as linear
separability with margin (as we study in more detail below). This is done by simply considering
the pattern class which consists of all sequences that satisfy the assumed data-dependent condition.
Pattern classes extend the notion of partial concept classes (Auer and Long, 1999; Alon et al., 2021).
In Appendix B we give examples of a learnable task that can be represented by a pattern class, but
not by an hypothesis class. That is, a learnable pattern class P such that every hypothesis class H
for which P ⊆ P(H) is not learnable.

Deterministic Learning Rules. A (deterministic) online learner is a mapping A : Z⋆ ×X → Y .
That is, it is a mapping that maps a finite sequence S ∈ Z⋆ (the past examples), and an unlabeled
example x (the current test point) to a label y, which is denoted by y = A(x;S).

Let k ≥ 1; a deterministic k-list learner is a mapping A : Z⋆ × X →
(Y
k

)
. That is, rather

than outputting a single label, a k-list learner outputs a set of k labels. For a sequence S =
{(xt, yt)}Tt=1 ∈ Z⋆ we denote by M(A;S) the number of mistakes A makes on S:

M
(
A;S

)
=

n∑
t=1

1
[
yt /∈ A(xt;S<t)

]
.

Randomized Learning Rules. In the randomized setting we follow the standard convention in the
online learning literature and model randomized learners as deterministic mappingsA : Z⋆×X →
∆(Y), where ∆(Y) denote the space of all distributions over Y . Thus, p̂ = A(x;S) is a |Y|-
dimensional probability vector representing the probability of the output label A assigns to x given
S (see e.g. Cesa-Bianchi and Lugosi (2006); Shalev-Shwartz (2012); Hazan (2019)). For a sequence
S = {(xt, yt)}Tt=1 ∈ Z⋆ we denote by M(A;S) the expected number of mistakes A makes on S:

M
(
A;S

)
= E

ŷt∼p̂t

[ T∑
t=1

1[ŷt ̸= yt]
]
=

T∑
t=1

Pr
ŷt∼p̂t

[ŷt ̸= yt]. (where p̂t = A(xt;S<t))

Similarly, for k ≥ 1 a randomized k-list learner is a mapping A : Z⋆ × X → ∆
((Y

k

))
, where

∆
((Y

k

))
is the space over all distributions over subsets of size k of Y . Thus, the expected number

mistakes A makes on a sequence S is given by

M
(
A;S

)
=

T∑
t=1

Pr
L̂t∼q̂t

[yt /∈ L̂t]. (where q̂t = A(xt;S<t))

Realizable Case Learnability (Pattern Classes). Let P be a pattern class and let k ≥ 1. We say
that P is k-list online learnable if there exists a learning ruleA and M ∈ N such that M(A;S) ≤M
for every input sequence S which is realizable byP . An hypothesis classH is k-list online learnable
if P(H) is k-list online learnable. Let Mk(P) denote the optimal mistake bound achievable in
learning P by deterministic learners, and let Rk(P) denote the optimal expected mistake bound in
learning P by randomized learners.

Agnostic Case Learnability (Hypothesis Classes). Pattern classes are suitable to define a learn-
ing task in terms of its possible input sequences (patterns). While it is possible to also define agnos-
tic online learning with respect to pattern classes, we find it more natural to stick to the traditional
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approach and define it with respect to hypothesis classes. For example, hypothesis classes allows to
explicitly study the tradeoff between the list-size used by the learning rule, and the list size used by
the functions in the class.

Let h be a k multi-labeled hypothesis. For a sequence S = {(xt, yt)}Tt=1 of examples, we let
M(h;S) =

∑T
t=1 1[yt /∈ h(xt)] denote the number of mistakes h makes on S. Let H be a multi-

labeled hypothesis class and letA be a k′ list learning rule (notice that k′ might be different than k).
For a sequence S = {(xt, yt)}Tt=1 of examples, denote the regret of A with respect toH on S by

RH(A;S) = M(A;S)−min
h∈H

M(h;S)

For an integer T , we let RH(A;T ) = max{RH(A;S) : |S| = T}. We say that H is k′-list
agnostic learnable if there exists a learning rule A and a sublinear function R(T ) = o(T ) such that
RH(A;T ) ≤ R(T ) for every T .

Mistake Trees and Littlestone Dimension. A b-ary mistake tree is a decision tree in which each
internal node has out-degree b. Each internal node v in the tree is associated with an unlabeled
example x(v) ∈ X and each edge e is associated with a label y(e) ∈ Y such that for every internal
node v all its b out-going edges are associated with different labels fromY . A branch is a root-to-leaf
path in the tree. Notice that every branch

v0 →e0 v1 →e1 . . .→er vr+1

naturally induces a sequence of examples {(xi, yi)}ri=0 where xi = x(vi) and yi = y(vi → vi+1)
(Figure 2).

x1
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x5 x6 x7
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x8 x9 x10
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x11 x12 x13

0

2

3 4 0

1

1 4 2

4

3 0 2

3

2

1 3 2

1

0 3 4

0

0 1 2

1

0

3 4 2

1

2 3 0

2

0 4 2

Figure 2: An example of a 3-ary mistake tree, over the label set {0, 1, 2, 3, 4}. The tree has 13
internal nodes, each associated with an unlabeled example xi ∈ X . The red marked path
defines the sequence (x1, 0), (x2, 4), (x7, 2) .

We say that a mistake tree T is shattered by a pattern class P if every branch in T induces a
sequence of examples in P . A mistake tree T is shattered by a (possibly multi-labeled) hypothesis
class H if it is shattered by P(H). The b-ary Littlestone dimension of a pattern class P , denoted
Lb−1(P), is the largest possible depth of a complete b-ary mistake tree that is shattered by P . (Thus,
L1(·) is the classical Littlestone dimension.) If P shatters such trees of arbitrarily large depths then
we define Lb−1(P) = ∞. The b-ary Littlestone dimension of a (multi-labeled) hypothesis class H
is Lb−1(H) := Lb−1(P(H)).
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3. Results

3.1. Warmup: List Perceptron

As a warmup, we begin with a natural adaptation of the classical Perceptron algorithm by Rosen-
blatt (1958) to the list online learning setting. Our list Perceptron algorithm may be seen as a natural
adaptation of the multiclass Perceptron algorithm by Kesler (Duda and Hart, 1973), and the more re-
cent variants by Crammer and Singer (2003) and by Beygelzimer, Pál, Szörényi, Thiruvenkatachari,
Wei, and Zhang (2019).

Mutliclass Linear Separability. Let X = Rd and let Y denote the label space. A sequence of
examples S = {(xt, yt)}Tt=1 is called linearly separable if for every label y ∈ Y there exists a
w⋆
y ∈ Rd such that for every t = 1, . . . , T :

(∀y ̸= yt) : w
⋆
yt · xt > w⋆

y · xt, (1)

where “·” denotes the standard inner product in Rd. In words, the label y of each point x corresponds
to the direction w⋆

y on which x has the largest projection. We follow standard convention and assume
that the w⋆

y’s are normalized such that ∑
y∈Y
∥w⋆

y∥2 = 1, (2)

where ∥·∥ denotes the ℓ2 euclidean norm. If a sequence of vectors w⋆
y for y ∈ Y satisfies Equations 1

and 2 above then we say that it linearly separates S.

Multiclass Margin. For k > 0, the k’th margin of a separable sequence S = {(xt, yt)}Tt=1,
denoted by γk(S) is the maximal real number γk > 0 for which there exist vectors w⋆

y for y ∈ Y
which linearly separate S such that for every t ≤ T ,

w⋆
yt · xt − w⋆

y · xt ≥ γk, for all but at most k labels y ∈ Y .

So, if we sort the labels y’s according to the inner product w⋆
y · xt then yt is the largest and the

(k + 1)’th largest label y in the sorted list satisfies (w⋆
yt − w⋆

y) · xt ≥ γk.
Notice that γ1 ≤ γ2 ≤ . . . and that γ1 is the standard margin in multiclass linear classification.

Theorem 1 (List Perceptron Mistake Bound) Let S = {(xt, yt)}Tt=1 be a linearly separable in-
put sequence and let R = maxt≤T ∥xt∥. Then, the k-list Perceptron algorithm (Figure 3) makes at
most k(k + 1)R

2

γ2
k

mistakes on S, where γk = γk(S) is the k’th margin of S.

We prove Theorem 1 in Section A.1. The proof follows an adaptation to the list setting of the
classical analysis of the Perceptron mistake bound (Rosenblatt, 1958; Crammer and Singer, 2003;
Beygelzimer et al., 2019).

Note that we can also state Theorem 1 in the language of pattern classes. For R, γ > 0 let
P = P(R, γk) denote the set of all patterns S = {(xt, yt)}Tt=1 whose k’th margin is at least γk and
such that ∥xt∥ ≤ R for all t ≤ T . Thus, Theorem 1 implies that P is online learnable with mistake
bound ≤ k(k + 1)R

2

γ2
k

.
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List Perceptron Algorithm

Parameters: X = Rd, Y = label space, and k = list size.
Input: A linearly separable sequence S of length T .
Initialize: For all y ∈ Y set wy = 0.
For t = 1, . . . , T

1. Receive unlabeled example xt ∈ X .

2. Sort the labels y ∈ Y in a non-increasing order according to the inner product wy · xt.

3. Predict the list Pt which consists of the top k labels in the above order.

4. Receive correct label yt ∈ Y .

5. If yt /∈ Pt then update the wy’s as follows:

• wyt ← wyt + kxt,

• wy ← wy − xt for all y ∈ Pt.

Figure 3: List Perceptron Algorithm

3.2. Realizable Case

We now turn to characterize list online learnability in the realizable setting. We will state our
results in the general framework of pattern classes which generalizes the traditional framework of
hypothesis classes, as detailed above.

3.2.1. QUALITATIVE CHARACTERIZATION

Theorem 2 (Pattern Classes) Let P be a pattern class, and let k ∈ N denote the list-size param-
eter. Then, the following statements are equivalent:

1. P is k-list online learnable in the realizable setting.

2. The (k + 1)-ary Littlestone dimension of P is finite: Lk(P) <∞.

As a corollary, we deduce the same characterization for (multi-labeled) hypothesis classes.

Corollary 3 (Hypothesis Classes) Let H be a k′ multi-labeled hypothesis class, and let k ∈ N
denote the list-size parameter. Then, the following statements are equivalent:

1. H is k-list online learnable in the realizable setting.

2. The (k + 1)-ary Littlestone dimension ofH is finite: Lk(H) <∞.

Proof Notice thatH is k-list online learnable if and only if P(H) is, and that Lk(H) = Lk(P(H)).
Thus, the corollary follows from Theorem 2.

8
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List SOA

Parameter: k = list size.
Input: A pattern class P with domain X and label space Y .
Initialize: V = P .
For t = 1, 2, . . .

1. Receive unlabeled example xt ∈ X .

2. Sort the labels y ∈ Y in a non-increasing order according to the values Lk(Vxt→y).

3. Predict the list Pt which consists of the top k labels in the above order.

4. Receive correct label yt ∈ Y .

5. If yt /∈ Pt then update V ← Vxt→yt
a.

a. One may wonder, why V is not updated at each time step. The reason is because in the proof of the list
version of the SSP lemma (See Section A.3), we use the List SOA to construct an online cover, and this
construction exploits the property that V is changed only upon making a mistake.

Figure 4: List Standard Optimal Algorithm (SOA)

3.2.2. QUANTITATIVE MISTAKE BOUNDS

Theorem 4 (Optimal Mistake Bound) Let P be a pattern class and recall that Mk(P) is the opti-
mal (deterministic) mistake bound in k-list learning P in the realizable case. Then,

Mk(P) = Lk(P).

Further, the optimal expected mistake bound for randomized algorithms, Rk(P), satisfies

Mk(P) ≥ Rk(P) ≥
1

k + 1
Mk(P),

and both inequalities can be tight.

As before, this theorem applies verbatim to (multi-labeled) hypothesis classes.
The lower bound in Theorem 4 follows directly from the definition of mistake trees and Lk(P).

The upper bound relies on an adaptation of Littlestone’s Standard Optimal Algorithm (SOA) to the
list learning setting and to pattern class (see Figure 4).

3.3. Agnostic Case

We next turn to the agnostic case where we lift the assumption that the input sequence is realizable
by the class. Consequently, the goal of the learner is also adapted to achieve a mistake bound which
is competitive with the best function in the class. (See Section 2 for the formal definition.) Thus, in
the agnostic setting the class is viewed as a comparator class with respect to which the algorithm
should achieve vanishing regret.

9
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In this section we address the following questions: can every (multi-labeled) hypothesis classH
that is learnable in the realizable setting be learned in the agnostic setting? How do the regret bounds
behave as a function of the list size used by the learner? E.g. say H is k = 2-list learnable and that
the learner A uses lists of size 3. Is it possible to achieve negative regret in this case?

Notice that we model the agnostic setting using hypothesis classes and not pattern classes. We
made this choice because we find it more natural to address the above questions, specifically re-
garding the way the regret depends on the list size of the algorithm and the number of labels each
hypothesis h ∈ H assigns to a given point.

3.3.1. CHARACTERIZATION

We show a similar qualitative result for the agnostic case. That is, a class is agnostic k-list online
learnable if and only if its (k + 1)-ary Littlestone dimension is finite.

Theorem 5 LetH be a (possibly multi-labeled) hypothesis class, and let k ∈ N. Then, the follow-
ing statements are equivalent:

1. H is k-list online learnable in the agnostic setting.

2. The (k + 1)-ary Littlestone dimension ofH in finite, Lk(H) <∞.

Quantitatively we get the following upper bound on the regret

O

(√√√√dT + dT ln
(T
d

⌈
L− k

k

⌉
k
))

, (3)

where d = Lk(H), and L = |Y|.
The proof of Theorem 5 follows an adaptation to the list setting of the agnostic-to-realizable

reduction by Ben-David, Pál, and Shalev-Shwartz (2009); Daniely, Sabato, Ben-David, and Shalev-
Shwartz (2015), which hinges on the List Online Sauer-Shelah-Perles Lemma. We note that like in
classical online learning, agnostic list online learners must be randomized.

3.3.2. PRIDE AND REGRET

Let H be an hypothesis class such that Lk(H) < ∞. Theorem 5 implies that there is a k-list
learner that agnostically learns H with vanishing regret. How does the regret changes if we use
more resourceful list learners, with list size larger than k? Can it become negative? The following
theorem answers this question. In a nutshell, it shows that once the algorithm has more resources
than necessary for learningH in the realizable setting, then it can achieve negative regret.

Theorem 6 LetH be a multi-labeled hypothesis class, and assume that |H| > 1. Let 1 ≤ kH ≤ |Y|
be the minimal number such that LkH(H) < ∞. For a list-learning rule A let kA ≤ |Y| denote
the size of the lists it uses. Then, if A agnostically learns H then necessarily kA ≥ kH and the
following holds in these cases:

10
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1. Negative Regret. Let |Y| ≥ k > kH, then there exists a learning rule A with kA = k which
learns H with a negative regret in the following sense: its expected regret on every input
sequence of length T is at most

(p− 1) · optH + c ·
(√

T lnT
)
,

where p = p(H) < 1, c = c(H) both do not depend on T , and optH is the number of
mistakes made by the best function in H. (Note that when optH = Ω(T ) then the regret is
indeed negative.)

2. Nonnegative Regret.3 Every learning rule A with kA = kH has non-negative regret: there
exists p′ = p′(H) > 0 so that for every p ≤ p′ and every T there exists an input sequence of
length T such that optH ≤ ⌊p·T ⌋ but the expected number of mistakes made byA is≥ ⌊p·T ⌋.

3. Unbounded Regret. If in addition to Item 2, there are h′, h′′ ∈ H and an input x such that
h′(x), h′′(x) are distinct lists of size kH then every learning rule A with kA = kH has regret
at least c ·

√
T , where c = c(H) does not depend on T .

Item 2 is tight in the sense that there is a classH satisfying the assumption in Item 2 which can
be learned by a learning ruleA with kA = kH that has a non-positive regret. Indeed, let X = N and
Y = {0, 1, 2, 3}, and considerH = {0, 1}N. Thus, kH = 2 and all functions inH map each x ∈ X
to a single output in {0, 1} (and hence the additional assumption in Item 3 does not apply). Finally,
notice that the learning rule A which always predicts with the list {0, 1} achieves regret ≤ 0.

On the other hand, there are also such classes (i.e. that satisfy the assumption in Item 2 but
not the additional assumption in Item 3) for which the optimal regret does scale like Ω(

√
T ). One

such example is H = {0, 1}X ∪ {2, 3}X . It will be interesting to refine the above theorem and
characterize, for every class H, the optimal regret achievable by learning rules A for which kA =
kH.

The proof of Theorem 6 appears in Section A.5. It combines a variety of techniques: in Item 1
the idea is to combine two algorithms: one which uses lists of size kH and has vanishing regret,
and another that uses additional k − kH > 0 labels that were not chosen by the first algorithm
in a way that achieves the overall regret. In fact, we show that for the second algorithm, we can
simply pick the k − kH labels uniformly at random from the remaining labels. The proof of Item 2
follows by a randomized construction of a hard input sequence which witnesses the nonngegative
regret. In particular we start by taking a shattered kH-tree of depth T (such a tree exists for all T
because LkH−1(H) = ∞), then pick a sequence corresponding to a random branch in the tree, and
carefully modify this random sequence in p · T random locations. The proof of Item 3 also follows
by a randomized construction of a hard input sequence. The argument here generalizes the classical
lower bound of Ω(

√
T ) for any class H which consists of at least 2 functions. However, the proof

here is a little bit more subtle.

3.4. Online List Sauer-Shelah-Perles Lemma

A central tool in the derivation of our upper bound in the agnostic setting is a covering lemma,
which takes a realizable case learner for a pattern classP and uses it to construct a small collection of
online/adaptive functions which coverP . We begin with introducing some definitions and notations.

3. We comment that in the realizable case every learning algorithm trivially has nonnegative regret. Thus, notice that
this item states a more elaborate statement which demonstrates a non-trivial sense in which the regret is non-negative.

11
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Online Functions. An online (or adaptive) function is a mapping f : X ⋆ → Y . That is, its input is
a finite sequence of points x1, . . . , xt−1, x ∈ X and its output is a label y ∈ Y which we denote by
y = f(x;x1, . . . , xt−1). We interpret this object as a function with memory: the points x1, . . . xt−1

are the points that f has already seen and stored in its memory, and y is the label it assigns to the
current point x. Similarly, a k-list online function is a mapping f : X ⋆ →

(Y
k

)
.

Definition 7 (Online Coverings) Let P be a pattern class and let T ∈ N. We say that a family F
of k-list online functions is a T -cover of P if for every pattern {(xt, yt)}Tt=1 ∈ P of length T there
exists a k-list online function f ∈ F such that

(∀t ≤ T ) : yt ∈ f(xt;x1, . . . , xt−1).

Proposition 1 (List Sauer-Shelah-Perles Lemma) Let P be a pattern class with Lk(P) = d <
∞, and let L = |Y|. Then, for every T ∈ N there is a family F of k-list online functions which is a
T -cover of P such that

|F| ≤
d∑

i=0

(
T

i

)(⌈
L− k

k

⌉
k

)i

≈
(
e · T

d
L

)d

.

The construction of the covering family F follows a similar approach like in Ben-David et al.
(2009). In particular it relies on our lazy List SOA (lazy in the sense that it only changes its predictor
when making a mistake). Then, each k-list online function in F simulates the List SOA, on all but
at most d steps, aiming to fully cover all patterns in P .

4. Future Research

There are plenty of directions for keep exploring list online learning, here we consider a few natural
ones that arise in this work.

1. Our characterization of the agnostic case only applies when the label space is finite. (Quan-
titatively, our upper bound on the regret depends on the size of the label space.) Does the
characterization extends to infinite label space? More generally, it will be interesting to de-
rive tighter lower and upper bounds on the optimal regret.

2. Study specific list learning tasks. For example, for linear classification with margin, we
demonstrated an upper bound using the list Perceptron algorithm. It will be interesting to
determine whether this algorithm achieves an optimal mistake bound, or perhaps there are
better algorithms?

3. What is the optimal expected mistake bound for randomized list learners? Is there a natural
description of an optimal randomized list learner?

4. We study list online learning in the context of multiclass online prediction using the 0/1
classification loss. Extensions to weighted and continuous losses are left for future research.

5. Study the expressivity of pattern classes (see Section B).

12
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Appendix A. Proofs

A.1. List Perceptron

Proof [Proof of Theorem 1] We follow the classical analysis of the Perceptron by upper and lower
bounding the sum

∑
y ∥wy∥2 at the end of round T . This sum only changes on rounds t in which

the algorithm makes a mistake. In such rounds, the vectors wy are updated to w′
y as follows

w′
yt = wyt + kxt,

w′
y = wy − xt. (for all y ∈ Pt)
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Thus, the change in the potential function from round t to t+ 1 is upper bounded as follows∑
y∈Y
∥w′

y∥2 −
∑
y∈Y
∥wy∥2 =

(
∥w′

yt∥
2 − ∥wyt∥2

)
+
(∑
y∈Pt

∥w′
y∥2 − ∥wy∥2

)
= k2∥xt∥2 + 2k(wyt · xt) +

∑
y∈Pt

(∥xt∥2 − 2wy · xt)

= k(k + 1)∥xt∥2 + 2
∑
y∈Pt

(wyt − wy) · xt

≤ k(k + 1)∥xt∥2 (wyt · xt ≤ wy · xt)
≤ k(k + 1)R2. (∥xt∥ ≤ R)

Thus, if we denote by M the total number of mistakes that the Perceptron makes on S then the
potential function at time T satisfies:∑

y∈Y
∥wy∥2 ≤M · k(k + 1)R2. (4)

We now lower bound the potential function. Let w⋆
y for y ∈ Y denote the unit vectors that witness

that S is linearly separable with k-margin at least γk. Consider the sum of inner products
∑

y∈Y wy ·
w⋆
y . This sum also changes only on rounds t when a mistake occurs, hence∑

y∈Y
w′
y · w⋆

y −
∑
y∈Y

wy · w⋆
y = kxt · w⋆

yt −
∑
y∈Pt

xt · w⋆
y

=
∑
y∈Pt

(w⋆
yt − w⋆

y)xt ≥ γk. (because ∥Pt∥ = k)

Thus, after round T we have Mγk ≤
∑

y∈Y wy · w⋆
y and hence:

Mγk ≤
∑
y∈Y

wy · w⋆
y ≤

∑
y∈Y
∥wy∥ · ∥w⋆

y∥ (Cauchey-Schwartz)

≤
√∑

y∈Y
∥wy∥2 ·

√∑
y∈Y
∥w⋆

y∥2 =
√∑

y∈Y
∥wy∥2. (Cauchey-Schwartz)

Hence,
∑

y∈Y ∥wy∥2 ≥ M2 · γ2k , which in combination with Equation 4 yields M ≤ k(k + 1)R
2

γ2
k

as required.

A.2. Realizable Case

The qualitative statement of Theorem 2 is just a corollary of the quantitative statement given by
Theorem 4.
Proof [Proof of Theorem 4] The lower bound follows directly from the definition of mistake trees
and Lk(P). Let A be a deterministic k-list learner, and let T be a shattered complete (k + 1)-ary
mistake tree of depth n. We will build an input sequence by following the adversary on the shattered
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tree T . Starting from the root, we will choose a label for each node xi in the root-to-leaf path,
associated with one edge from its k + 1 out-going edges, so that the chosen label will not be in the
predicted set of the learner A. We can always do that because the predicted set in of size k and for
each node in the tree there are k + 1 out-going edges (with different labels). With this construction
we will get a sequence of size n which is realizable by P and forces A to always err and hence to
make n mistakes on the input-sequence. Therefore, for finite (k + 1)-ary Littlestone dimension d,
we can construct a realizable sequence of length d such that A makes at least d mistakes on S, and
for infinite (k + 1)-ary Littlestone dimension, we can construct a realizable sequence of length n,
for each n ∈ N such that A makes at least n mistakes on S.

Corollary 8
Mk(P) ≥ Lk(P).

The lower bound for randomized learners is achieved in a very similar way. We still follow a
root-to-leaf path in a shattered tree, but now, instead of choosing the unchosen label by the learner,
we choose a random label, so that at each step, the algorithm makes a mistake with probability 1

k+1 .

Corollary 9
Rk(P) ≥

1

k + 1
Lk(P).

The upper bound relies on an adaptation of Littlestone’s Standard Optimal Algorithm (SOA) to
the list learning setting and to pattern class, described in Figure 4.

Claim 1 Let P be a pattern class such that Lk(H) <∞ and let x ∈ X . Then the number of y ∈ Y
such that Lk(Px→y) = Lk(P) is at most k.

Proof Assume by contradiction that there exists a subset I ⊆ Y, |I| = k + 1 such that ∀y ∈ I ,
Lk(Px→y) = Lk(P) =: d. Then we will construct the following tree. Let {Ty}y∈I be complete
(k + 1)-ary mistake trees with depth d shattered by {Px→y}y∈I respectively. Construct a tree with
x as a root, where its outgoing edges are labeled with the labels in I and {Ty}y∈I are the subtrees
under x where the subtree under each outgoing edge with label y ∈ I is Ty. With this construction
we get a complete (k+1)-ary mistake tree of depth d+1 which is shattered by P which contradicts
with the assumption that d is the maximal depth of a complete (k + 1)-ary mistake tree which is
shattered by P .

Claim 2 The List SOA makes at most Lk(P) mistakes on every realizable sequence.

Proof Note that at each time step where the List SOA makes a mistake, the (k + 1)-ary Littlestone
dimension of V is decreasing. This is because of Claim 1 combined with the construction of the
predicted list Pt to contain the k labels with maximal value Lk (V ). Since the (k+1)-ary Littlestone
dimension is bounded below by 0, it can only decrease at most Lk(P) times. Therefore, the number
of mistakes the algorithm makes is bounded above by Lk(P).

Corollary 10
Mk(P) ≤ Lk(P).
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The upper bound of Lk(P) achieved by the List SOA, completes the characterization of list learn-
ability for realizable sequences, and shows that the optimal mistake bound of deterministic learner
is exactly the (k + 1)-ary Littlestone dimension Lk(P).

For randomized learners, the lower and upper bounds of the optimal number of mistakes, pro-
vided in Theorem 4 are tight;

• There is a k-list learnable pattern class P , such that for every k-list learner A, there exists a
realizable sequence S, with M(A;S) ≥ Lk(P).

• There is a k-list learnable pattern class P , and a k-list learnerA, such that for every realizable
sequence S, M(A;S) ≤ 1

k+1Lk(P).

See Appendix C for the construction of these extremal classes, and the analysis of their optimal
mistake bounds.

A.3. Online Sauer-Shelah-Perles Lemma

Proof [Proof of Proposition 1] The construction of the covering familyF follows a similar approach
like in Ben-David et al. (2009). In particular it relies on our lazy List SOA (lazy in the sense that it
only changes its predictor when making a mistake). Each k-list online function in F simulates the
List SOA, on all but at most d steps, aiming to fully cover all patterns in P .

We now describe the family F . Since our goal is to cover realizable sequences of length T , it
suffices to define each f ∈ F on input sequences in X ⋆ of size at most T .4 In what follows, it is
convenient to fix a linear order on the label set Y (e.g. one can think of Y as Y = {0, . . . , L− 1}).
Also, for every A ⊆ Y , fix a covering {A1, . . . , Am} of A into m = ⌈|A|/k⌉ sets, where each
set has size k (e.g., the first k elements in A form the first part, the second k elements form the
next part, and so on; if the last part has size l less than k, then complete it with the first k − l
elements to get a size of k). We will refer to this fixed cover as the canonical k-cover of A. Each
f ∈ F is parameterized by a subset |I| ⊂ [T ] of size |I| ≤ d and a vector of pairs

(
(it, jt)

)
t∈I ,

where it ∈ {1, . . . , k}, and jt ∈ {1, . . . , ⌈L−k
k ⌉}. Since there are ⌈L−k

k ⌉k ways to pick a given pair
(it, jt), we get

|F| =
d∑

i=0

(
T

i

)(⌈L− k

k

⌉
k
)i
.

Each such function f is defined as follows:

4. If t > T then set f(xt;x1, . . . , xt−1) = 0 for all f ∈ F and all x1, . . . , xt ∈ X .

17



MORAN SHARON TSUBARI YOSEBASHVILI

Parameters: T ∈ N,
(
I, {(it, jt)}t∈I

)
, where I ⊆ [T ] and it ≤ k, jt ≤ ⌈L−k

k ⌉.
Input: An input sequence of unlabeled examples x = {xt}Tt=1 of length T .
Initialize: S = ∅. For t = 1, 2, . . . , T

1. Get xt and let Pt = ListSOA(xt;S).

2. If t /∈ I then:

• Set f(xt;x<t) = Pt.

• Set yt to be any label in f(xt;x<t).

3. If t ∈ I then:

• Set f(xt;x<t) to be set number jt in the canonical k-cover of Y \ Pt.

• Set yt to be the it’th element in f(xt;x<t).

4. Update S ← S ◦ (xt, yt).

Finally, it remains to show that F covers P . That is, to show that for every S ∈ P there exists
f ∈ F such that yt ∈ f(xt;x1, . . . , xt−1) for all (xt, yt) ∈ S. To this end, imagine a simulation
of the List SOA on the sequence S, and denote by I = I(S) the set of all indices where the List
SOA made a mistake on S. Notice that |I| ≤ d, since S is realizable by P . For each t ∈ I , let jt
be an index of a set At in the canonical k-cover of Y \ ListSOA(xt;S<t) such that yt ∈ At, and let
it be the ordinal of yt in At.5 Consider the function f ∈ F parameterized by (I, {(it, jt)}t∈I). By
the laziness property of the List SOA algorithm, it follows that f(xt;x<t) = ListSOA(xt;S<t) on
each time step t /∈ I . By construction, on time steps t ∈ I , the list f(xt;x<t) contains the label yt.
Thus, in total f covers S as required.

A.4. Agnostic Case

The proof of Theorem 5 consists of an upper bound statement and a lower bound statement:

• Upper bound. finite Lk(H)→H is agnostically k-list learnable.

• Lower bound. infinite Lk(H)→H is not agnostically k-list learnable.

The proof of the upper bound proof follows a similar approach as in the agnostic-to-realizable
reduction by Ben-David et al. (2009); Daniely et al. (2015): the idea is to cover the set of all
sequences realizable by H using a small set of adaptive experts, and then run a vanishing regret
algorithm on top of these experts. We break the proof into a few propositions. Proposition 2
shows that each finite class of k-list online functions is agnostically k-list learnable, with regret
O(
√
T lnn), where n is the number of functions in the class. This follows by a standard application

of vanishing regret algorithms, here we use Multiplicative Weights. In Propositions 3 and 4 we show
that a general multi-labeled hypothesis class with finite (k + 1)-ary Littlestone dimension is k-list
learnable (with a matching upper bound), relying on Proposition 2 for finite class of experts, and
the list version of SSP lemma 1 from previous section.

5. I.e. there are it − 1 elements in At that are smaller than yt with respect to the assumed ordering on Y .
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Multiplicative Weights Algorithm

Parameter: γ ∈ (0, 1).
Input: A finite classH of experts.
Initialize: ∀f ∈ H initialize W1(f) = 1.
For t = 1, 2, . . .

1. Receive unlabeled example xt ∈ X .

2. Predict Pt =
∑

f∈H
Wt(f)
Wt
· f(xt;x1, . . . , xt−1) where Wt :=

∑
f∈HWt(f).

3. Receive correct label yt ∈ Y .

4. ∀f ∈ H, update Wt+1(f) =

{
Wt(f) yt ∈ f(xt)

(1− γ)Wt(f) yt /∈ f(xt)

Figure 5: Multiplicative Weights Algorithm

A.4.1. FINITE CLASS OF EXPERTS

Proposition 2 Let H be a finite class of k-list online functions with size |H| = n. Also let S =
{(xi, yi)}Ti=1 be an input sequence. Then there exists a k-list online learner A such that R(A;S) ≤
2
√
T lnn respecting to the classH.

We will construct the algorithm A using the randomized multiplicative weights method, so the
desired algorithm will be a randomized algorithm. A randomized k-list algorithm, is an algorithm
which for each input sample returns some probability distribution over all subsets of Y of size k. For
our convenience in describing and analyzing the algorithm, we will use a vector representation of the
prediction Pt, where the prediction Pt is a vector of length L = |Y|, and each entry i represents the
probability that i is in the predicted set. For a deterministic k-list algorithm, the value of each entry
in the vector representation of Pt will be 0 or 1, and the number of 1’s will be k. For a randomized
k-list algorithm, the value of each entry in the vector representation of Pt will be between 0 and
1, and the summation over all entries will be k. With this point of view we can also look at a
randomized algorithm as a deterministic algorithm, where the loss function (i.e. the probability to
make a mistake) will be lt = 1 − Pt(yt) , which is exactly the probability that yt will not be in the
randomized-chosen predicted set Pt.
Proof The proof uses the multiplicative weights algorithm with parameter γ ∈ (0, 1), described
in Figure 5. This algorithm runs over a finite class of experts, where each expert is a k-list online
function. The computation of the prediction Pt uses the vector representation of each expert f ∈ H,
so that Pt is a convex combination of those vectors and hence a legal vector representation of a
randomized k-list algorithm’s prediction i.e. each entry is between 0 and 1, and the summation over
all entries is k. The analysis of the multiplicative weights algorithm does not care of the type of the
experts in class. In particular, the analysis does not depend neither on the number of labels L, nor on
the list’s size k. Let S = {(xt, yt)}Tt=1 be any input sequence, let LT =

∑T
t=1 lt be the accumulated

loss until time T , and set optH := minf∈H M(f ;S). The sum of all weights at time t+ 1 equals to
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the following expression:

Wt+1 = ltWt(1− γ) + (1− lt)Wt = Wt(1− γlt)

Hence, if we denote the best expert inH by f∗ and note that W1 = n, we get the following relation:

(1− γ)optH = WT (f
∗) ≤WT = n

T∏
t=1

(1− γlt) ≤ n exp (−γ
T∑
t=1

lt) = n exp (−γLT )

Thus,
(1− γ)optH ≤ n exp (−γLT )

Claim 3 1− x ≥ exp(−x− x2) ∀x ∈ [0, 12 ]

Proof By the Taylor series, it is known that ∀x ∈ [0, 1), 1
1−x = 1 + x + x2 + x3 + . . ., hence we

get:

1− x = exp(ln(1− x)) = exp(−
∫

1

1− x
) = exp(−

∫
(1 + x+ x2 + . . .))

= exp(−(x+
x2

2
+

x3

3
+ . . .)) ≥

x≤ 1
2

exp(−(x+
x2

2
+

x2

2
))

Using Claim 3 with x = γ, we get:

exp(optH(−γ − γ2)) ≤ (1− γ)optH ≤ n exp(−γLT )

⇒ − optH(γ + γ2)) ≤ lnn− γLT

⇒ γ(LT − optH) ≤ lnn+ optH · γ2

⇒ R(A;S) = LT − optH ≤
lnn

γ
+ optH · γ ≤

lnn

γ
+ Tγ

This gives us an upper bound for the regret, depending on γ, and by setting γ =
√

lnn
T we will get

the desired bound from the theorem:

R(A;S) = LT − optH ≤ 2
√
T lnn.

Note that the above result is valid only for large values of T when γ =
√

lnn
T ≤ 1

2 . But we can

overcome this obstacle easily. If
√

lnn
T > 1

2 then T < 4 lnn. Hence T 2 < 4T lnn and by taking

the square root of both sides, T < 2
√
T lnn. Since the regret is bounded by the length of the input

sequence T , we will get that if
√

lnn
T > 1

2 then,

R(A;S) ≤ T ≤ 2
√
T lnn.
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A.4.2. GENERAL CLASS

The previous section showed that any finite class of k-list online experts is agnostic online learnable
in the k-list setting with a bound on the regret of 2

√
T lnn, where n is the number of experts and T is

the length of the input sequence. We now want to generalize this result to a multi-labeled hypothesis
classH with no restriction on the size of the class. For that we will use the list SSP lemma to cover
the class H by a finite set of k-list online functions, and then applying the multiplicative weights
algorithm over the finite covering set.

Proposition 3 Let H be a (multi-labeled) hypothesis class, with Lk(H) = d < ∞, and let S =
{(xt, yt)}Tt=1 be an input sequence. Then there exists an algorithm A such that

R(A;S) < 2

√
dT + dT ln

(T
d

⌈
L− k

k

⌉
k
)

with respect to the classH.

Proof Let F be a family of n ≤
(
T
≤d

)(⌈
L−k
k

⌉
k
)d

k-list online functions which is a T -cover of
P(H). Namely, that covers all realizable sequences by H of length T . Apply the multiplicative
weights algorithm A described in the proof of Proposition 2 on the class F , and get that

R(A;S) ≤ 2
√
T lnn

= 2

√
T ln

(( T

≤ d

)(⌈L− k

k

⌉
k
)d)

≤ 2

√
T ln

((eT
d

)d(⌈L− k

k

⌉
k
)d)

= 2

√
dT + dT ln

(T
d

⌈
L− k

k

⌉
k
)
=: r(T )

where the regret is with respect to the class F . This means that

M(A;S)−min
f∈F

M(f ;S) ≤ r(T ).

Since minf∈F M(f ;S) ≤ minh∈H M(h;S) we get that

M(A;S)−min
h∈H

M(h;S) ≤ M(A;S)−min
f∈F

M(f ;S) ≤ r(T ).

Hence,
R(A;S) ≤ r(T )

with respect to the classH.

Notice that the randomized algorithm above achieves a sub-linear bound on the regret while
assuming that the length of the input sequence is known. We now want to remove this assumption,
and construct an algorithm that also achieves the same bound on the regret. We will rely on the
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construction of the above algorithm in order to build the desired algorithm that learnsH without as-
suming that the length of the input sequence is given. The method we use is called the doubling trick
(Shalev-Shwartz, 2012). The idea is to separate the input sequence of examples into subsequences
with increasing size and then apply the algorithm for a known size of input sequence repeatedly
over these subsequences.

Proposition 4 Let H be a (multi-labeled) hypothesis class with Lk(H) = d < ∞, and also let S
be an input sequence. Then there exists an algorithm A such that

R(A;S) < 2
√
2√

2− 1

√
dT + dT ln

(
T

d

⌈
L− k

k

⌉
k

)

with respect to the classH, where T = |S|.

Proof We will use the algorithmA described on the proof of Proposition 3, which knows the length
of the input sequence, and apply it on subsequences of the original input sequence of length T as
follows: The first subsequence S1 will be the first sample in S: (x1, y1), the second subsequence
S2 will be the next two samples: (x2, y2), (x3, y3), the third subsequence S3 will be the next four
samples: (x4, y4), (x5, y5), (x6, y6), (x7, y7) and so on. We will get a sequence of subsequences
{Si}i≥1 with increasing lengths: {Ti}i≥1 = 1, 2, 4, 8, . . . such that the length of the i’th sequence
Si will be |Si| = Ti = 2i−1. 6 On each of these subsequences with a known length, we can now
apply the algorithm A, to get the following bound on the regret:

2

√
dTi + dTi ln

(
Ti

d

⌈
L− k

k

⌉
k

)
.

For each step i, we got a bound on the regret for a specific pattern hi ∈ H, so

min
h∈H

M(h;S) ≥
⌊log T ⌋+1∑

i=1

min
h∈H

M(h;Si),

since the optimal “global” hypothesis h may make more mistakes on Si then the optimal “local”
hypothesis hi. Hence,

R(A;S) ≤
⌊log T ⌋+1∑

i=1

R(Ai;Si),

6. The length of the last sequence may be smaller, but it can only improve the bound.
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where Ai is the algorithm applied on the subsequence Si, with the assumption of length Ti, and
with some calculations we will get

R(A;S) ≤
⌊log T ⌋+1∑

i=1

R(Ai;Si)

=

⌊log T ⌋+1∑
i=1

2

√
dTi + dTi ln

(
Ti

d

⌈
L− k

k

⌉
k

)

=

⌊log T ⌋+1∑
i=1

2

√
d2i−1 + d2i−1 ln

(
2i−1

d

⌈
L− k

k

⌉
k

)

≤
⌊log T ⌋+1∑

i=1

2

√
d2i−1 + d2i−1 ln

(
2log T

d

⌈
L− k

k

⌉
k

)

= 2

√
d+ d ln

(
T

d

⌈
L− k

k

⌉
k

) ⌊log T ⌋+1∑
i=1

2i−1

= 2

√
d+ d ln

(
T

d

⌈
L− k

k

⌉
k

)√
2
⌊log T ⌋+1 − 1√

2− 1

≤ 2

√
d+ d ln

(
T

d

⌈
L− k

k

⌉
k

)√
2
⌊log T ⌋+1

√
2− 1

≤ 2

√
d+ d ln

(
T

d

⌈
L− k

k

⌉
k

) √
2T√
2− 1

=
2
√
2√

2− 1

√
dT + dT ln

(
T

d

⌈
L− k

k

⌉
k

)
.

The following Proposition shows that a class with infinite (k + 1)-ary Littlestone dimension is
not k-list learnable in the agnostic setting.

Proposition 5 Let H be a (multi-labeled) hypothesis class with infinite (k + 1)-ary Littlestone
dimension Lk(H) = ∞. Then for each (maybe randomized) k-list algorithm A and T ∈ N there
exists an input sequence S of length T such that the regret is

R(A;S) = Ω(T ).

Proof The proof repeats the same argument as in the lower bound proof of Lk(P) for randomized
learners over the number of mistakes; letA be a k-list online learner and let T ∈ N. Since Lk(H) =
∞, there is a complete (k + 1)-ary mistake tree of depth T , which is shattered by H. Follow a
root-to-leaf path in the shattered tree, and choose one of the k + 1 labels associated to the k + 1
outgoing edges from the current node in the path, uniformly at random. At each step, the learner A
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will make a mistake with probability 1
k+1 . The sequence S of length T generated by this process,

is realizable by H, which means minh∈H M(h;S) = 0. Further, A makes 1
k+1T mistakes on S in

expectation. Thus, the regret will be 1
k+1T which means R(A;S) = Ω(T ).

Proof [proof of Theorem 5] The proof of the upper bound was given in a series of propositions:
Proposition 2, Proposition 3 and Proposition 4, while the proof of the lower bound was given by
Proposition 5.

A.5. Proof of Theorem 6

Proof Let H be a multi-labeled hypothesis class, |H| > 1, and let 1 ≤ kH ≤ |Y| be the minimal
number such that LkH(H) < ∞ 7. By Theorem 5, an agnostic list-learning rule A for H exists if
and only if kH ≤ kA, where kA is the size of the lists used by A.

Proof [Proof of Item 1 (Negative Regret)]

Let kH < k ≤ |Y|. We will show that there exists a learning ruleAwith kA = k which learnsH
with a negative regret in the following sense: its expected regret on every input sequence of length
T is at most

(p− 1) · optH + c ·
(√

T lnT
)
,

where p = p(H) < 1, c = c(H) both do not depend on T , and optH is the number of mistakes
made by the best function inH. The idea is to use a list-learning rule, denoted by B, that uses lists of
size kH and has vanishing regret (O(

√
d · T lnT )) where d = LkH(H) (such a learning rule exists

by Theorem 5), and in each time-step add to its list kA − kH labels that are chosen uniformly at
random from the remaining labels. To analyze the regret, notice that on every fixed input sequence
S = {(xt, yt)}Tt=1 of length T , the accumulated loss A suffers is equal to the accumulated loss B
suffers times p < 1, where p = |Y|−k

|Y|−kH
. Indeed, in every time-step t, let ℓBt denote the expected

loss of B in this round, that is, ℓBt is the probability that the random list of size kH does not include
yt, and also let Yadd denote the (random) set of labels that are added to the list B predicts (so
|Yadd| = k − kH). Then,

ℓAt = ℓBt · Pr
[
yt /∈ Yadd|yt /∈ B

(
xt; {(xi, yi)}i<t

)]
= ℓBt

(
1− k − kH
|Y| − kH

)
= ℓBt

(
|Y| − k

|Y| − kH

)
= ℓBt · p.

7. Notice that the minimum always exists if Y is finite since L|Y|(H) < ∞.
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And by summing over the whole input sequence S, we get

R(A;S) = M(A;S)−min
h∈H

M(h;S)

=
T∑
t=1

ℓAt − optH

=
T∑
t=1

ℓBt · p− optH

= p
T∑
t=1

ℓBt − optH

≤ p(optH + c ·
(√

T lnT
)
)− optH

= (p− 1)optH + p · c
(√

T lnT
)

≤ (p− 1)optH + c
(√

T lnT
)
.

Proof [Proof of Item 2 (Nonnegative Regret)] Assume that A is a list-learning rule with kA = kH.
We will show that A has a non-negative regret, by showing that for a sufficient small p > 0, there
is an input sequence S with arbitrarily large length T , such that optH ≤ ⌊p · T ⌋ but the expected
number of mistakes made by A is at least ⌊p · T ⌋. We will show that this holds for any p ≤ 1

kH+1 .
To simplify presentation we assume here that p · T ∈ N.

Let T ∈ N. Since LkH−1(H) = ∞, there is a complete kH-ary mistake tree T of length T
which is shattered byH. We construct the hard sequence S randomly as follows:

1. First draw a branch B in T uniformly at random by starting at the root and at each step
proceed on an outgoing edge which is chosen uniformly at random.

2. Let SB denote the sequence of T examples corresponding to the random branch, and let Lt

be the set of labels corresponding to the outgoing edges from the t’th node in the branch B.
(In particular, notice that |Lt| = kH and yt ∈ Lt.)

3. Pick uniformly a random subsequence of p·T examples from SB , and for each of the examples
(xt, yt) in the subsequence, replace the label yt with a random label y′t, chosen uniformly such
that y′t /∈ Lt.

4. Denote by S the resulting random sequence.

Notice that E[optH] ≤ p · T ; indeed, SB is realizable and S differs from it in p · T places.
It remains to show that the expected number of mistakes made by A is ≥ p · T . By linearity of

expectation, it suffices to show that the probability that A makes a mistake at each step is ≥ p. For
each y ∈ Y and t ≤ T , let pt(y) be the probability that the label y is in the predicted list of A at
time-step t and let qt(y) = 1−pt(y) be the probability that y is not in the predicted list ofA in time
t. Let α =

∑
y∈Lt

pt(y) and β =
∑

y∈Y\Lt
pt(y); thus, α + β = |Lt| = kH. Then, the probability
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that A makes a mistake at the time-step t is:

lt(A) = (1− p) ·
∑
y∈Lt

qt(y) ·
1

|Lt|
+ p ·

∑
y/∈Lt

qt(y) ·
1

|Y \ Lt|

= (1− p) · kH − α

kH
+ p · |Y| − kH − β

|Y| − kH

= (1− p) · β

kH
+ p · |Y| − kH − β

|Y| − kH
.

It suffices to show that lt(A) ≥ p for every possible value of β ∈ [0, kH]. Indeed:

• If β = 0, then lt(A) = p.

• If β ≥ 1, then lt(A) ≥ (1− p) β
kH
≥ (1− p) 1

kH
≥ p, because p ≤ 1

kH+1 .

• If 0 < β < 1, then since lt(A) is a linear function in β, getting values ≥ p for β ∈ {0, 1}
then also for the middle range, lt(A) ≥ p.

To conclude this analysis, for each value of p smaller than 1/(kH+1), each list-learning ruleA,
with list size kH, achieves a non-negative regret for some input sequence with arbitrarily large length
T .

Proof [Proof of Item 3 (Unbounded Regret)] Let A be a list learning rule with kA = kH, and let
h′, h′′ ∈ H and x ∈ X such that h′(x), h′′(x) are distinct lists of size kH. Produce a random
sequence of length T whose examples are of the form (x, yt), where yt is a random label drawn
uniformly from h′(x)∪h′′(x). Notice that the expected number of mistakes ofA is at least T ·

(
1−

kH
U

)
, where U = |h′(x)∪h′′(x)| > kH. Thus it remains to show that optH does better. Consider the

random variable ∆ counting how many of the yt’s belong to the symmetric difference h′(x)∆h′′(x).
If yt is in the intersection of h′(x) and h′′(x) then both of the functions do not make a mistake on
(x, yt), and therefore such examples do not contribute to optH. Otherwise, if yt is in the symmetric
difference h′(x)∆h′′(x) then the probability that yt belongs to h′(x) is equal to the probability it
belongs to h′′(x), and both are equal to 1/2. Thus, conditioned on ∆, the number of mistakes made
by h′ or h′′ behaves like a binomial random variables X ′, X ′′ with parameters n = ∆, p = 1/2,
where X ′ +X ′′ = ∆ and E[optH|∆] is at most E[min{X ′, X ′′}|∆] = E[min{X ′,∆−X ′}|∆]:

E[optH|∆] ≤ E[min{X ′,∆−X ′}|∆] =
∆

2
− E

[∣∣∣X ′ − ∆

2

∣∣∣|∆].
Now, notice that

E
[∣∣∣X ′ − ∆

2

∣∣∣|∆] =√Var(X ′) =

√
∆

2
,

and by linearity of expectation,

E[optH] = E[E[optH|∆]] ≤ 1

2
E[∆]− 1

2
E[
√
∆] ≤ E[LT (A)]−

1

2
E[
√
∆],

where the last inequality holds because

E[∆] = T · U − |h
′(x) ∩ h′′(x)|
U

= T · U − (2kH − U)

U
= 2T · U − kH

U
≤ 2E[LT (A)].
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It thus remains to show that E[
√
∆] = Ω(

√
T ). Indeed, since ∆ is a binomial random variable with

horizon T and probability p = 2 · U−kH
U ,

E[
√
∆] ≥

√
T · p− 1− p

2
√
T · p

= Ω(
√
T ).

The latter follows because
√
x ≥ 1 + x−1

2 −
(x−1)2

2 and therefore for any nonnegative random

variable X , E[
√
X] ≥

√
E[X]

(
1− Var(X)

2E[X]2

)
. Further, this bound can be expressed in terms of kH,

by the observation that

p = 2 · U − kH
U

≥ 2

kH + 1
, (kH + 1 ≤ U ≤ 2 · kH)

and thus,

E[
√
∆] ≥

√
T · p− 1− p

2
√
T · p

≥
√
T · 2

kH + 1
−

1− 2
kH+1

2
√

T · 2
kH+1

= Ω(
√
T ).

Appendix B. Pattern Classes vs. Hypothesis Classes

In this section we compare between hypothesis classes and pattern classes in terms of their expres-
sivity to model learning tasks.

Recall that a pattern class P is a collection of finite sequences of examples, which is downward
closed: for every S ∈ P , if S′ ⊆ S is a subsequence of S then S′ ∈ P , and also that the induced
pattern class P(H) of an hypothesis classH is:

P(H) = {S ∈ Z⋆ : S is consistent with some h ∈ H}.

There are two basic properties which seem to capture the gap between pattern classes and hy-
pothesis classes. These two properties hold in any induced pattern classP(H), but (as shown below)
they do not necessarily hold in a general pattern class P .

Contradiction-free. A pattern class P is called contradiction-free if every pattern in it has no
contradictions, namely it does not contain the same example twice with different labels. Clearly,
P(H) is contradiction-free for every hypothesis classH. Thus, any pattern class P which contains a
contradiction cannot be extended by an hypothesis classH. Below we focus only on contradiction-
free pattern classes.
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Symmetry. A pattern class P is called symmetric if it is closed under taking permutations: if
S ∈ P then π(S) ∈ P for every permutation π of the elements in S. Clearly, P(H) is sym-
metric for every hypothesis class H. Non-symmetric pattern classes can be naturally used to ex-
press adaptive/dynamic hypotheses (or hypotheses with memory), which are functions of the form
h : X ⋆ → Y mapping a finite sequence x1, . . . , xt to an output yt ∈ Y . (xt is thought of as the
current point, yt is its label, and x1, . . . , xt−1 are the previous points.) Thus, non-symmetric pattern
classes allows us to study the learnability of adaptive hypothesis classes.

This suggests the following question: Can learnable pattern classes which are contradiction-
free (but possibly non-symmetric) be extended by a learnable hypothesis class? I.e. is it the case
that for every contradiction-free pattern class P with L(P) <∞ there exists an hypothesis class H
such that P(H) ⊇ P and L(H) <∞?

The answer to this question is no, as the following example shows. Let X be an infinite set
and Y = {0, 1}. Consider the pattern class P ⊂ (X × Y)∗ containing all patterns {(xi, yi)}ni=1

such that their restriction to Y , {yi}ni=1, is non-increasing: if i < j then yi ≥ yj , and such that
yi ̸= yj ⇒ xi ̸= xj (i.e. contradiction-free property).

Not hard to see that P is online learnable by the learner that predicts the label 1, until she makes
a mistake (namely, the true label is 0), and then predicts the label 0 for the rest of the input sequence
of examples.

Now assume that H ⊂ YX is an hypothesis class, such that P ⊆ P(H). We will show that H
cannot be online learnable, by showing that L(H) ≥ d for all d ∈ N. Let d ∈ N, we will show that
there is a complete binary mistake tree of depth d which is shattered by H. In fact, we will show a
stronger result; we will show that almost any complete binary mistake tree of depth d is shattered
by H, with the only restriction of different values of x ∈ X in each root-to-leaf path in the tree,
to avoid contradictions. Let T be such a tree, and let S be the induced sequence of some path in
T . We claim that S is realized by H. Indeed, reorder the elements of S to get a sequence S′ with
non-increasing order of the labels. I.e., permute S to get a sequence S′ ∈ P ⊆ P(H). Since P(H)
is symmetric it follows that S ∈ P(H) and hence S is realized by H. Thus, T is shattered by H as
claimed.

What about learnable pattern classes P which are both free of contradictions and symmetric? Is
there always a learnable hypothesis classH such that P ⊂ P(H)? This remains an interesting open
question for future research. (We remark that an equivalent open question was asked by Alon et al.
(2021).)

Appendix C. Tightness of Bounds for Randomized Learners

Here we give two examples for pattern classes, one class P1 with Rk(P1) = 1
k+1Lk(P1) and second

class P2 with Rk(P2) = Lk(P2).

Lower bound is tight. The first class is the induced pattern class P1 = P(H) of the hypothesis
class of all functions from [d] to [k + 1]:

H = [k + 1][d].

Notice that Lk(P1) = d.
Now, we will define a randomized algorithm A which makes at most 1

k+1Lk(P1) = d
k+1

mistakes in expectation on every realizable sequence. Notice that in a realizable sequence S =
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{(xi, yi)}Ti=1 by P1, if xi = xj then yi = yj . Define the algorithmA so that for each input example
xi, the prediction will be a list of k labels, chosen uniformly at random. If the algorithm already
seen the example xi, then the predicted set will consists of the matching known label and completed
to a list of size k arbitrarily. for each x ∈ [d], the algorithm A may make a mistake on x in at most
one single time step. The probability that the learner will make a mistake on x at this time step is
1

k+1 . Hence, the expected number of mistakes of A on S is at most d
k+1 .

Upper bound is tight. The second class is the induced pattern class P2 = P(H) of the following
hypothesis classH ⊂ {0, 1, . . . , k}N:

H = {h ∈ {0, 1, . . . , k}N : |h−1(0)| ≤ d}.

Notice that P2 is online learnable by the learner that always predicts the list {1, 2, . . . , k}, and that
Lk(P2) = d. Indeed, take a complete (k+1)-ary mistake tree of depth d, where all nodes with same
depth are associated with the same x ∈ N and each two nodes with different depths are associated
with different items from N. This tree is shattered by P2, hence Lk(P2) ≥ d. In addition, there is
no complete shattered tree with depth larger than d, since a path with all zeros labels must have size
of at most d, hence Lk(P2) ≤ d.

Now let A be a randomized learner. We will show that for each ϵ > 0, there is a realizable
sequence S = {(xt, yt)}Tt=1 of length T (ϵ), such that A makes at least d − ϵ mistakes on S in
expectation. First, we choose the xt’s such that they are all distinct, e.g. xt = t. The labels yt
are defined as follows: Let ϵ > 0. Let Pt be the (maybe random) predicted set of A at time t. If
Pr(0 ∈ Pt) ≤ ϵ

d , then we will set yt = 0. If we already set yt = 0 d times, then we will choose
a different value for yt, uniformly at random from {1, . . . , k}, to keep the realizability property of
the input sequence. If Pr(0 ∈ Pt) > ϵ

d , then we will choose the label yt uniformly at random
from the set {1, . . . , k}. By this construction of the input sequence, we get the following result;
in the case that the input sequence contains d entries with yt = 0, it means that A makes at least
d
(
1− ϵ

d

)
= d − ϵ mistakes in expectation. In the case that input sequence contains less than d

entries with yt = 0, then for input sequence with length T (ϵ) ≥ kd2

ϵ + d − 1, A will make at least
kd2

ϵ

(
1− 1

k

(
k − ϵ

d

))
= d mistakes in expectation.
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