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Abstract
We connect the study of phase transitions in high-dimensional statistical inference to the study of
threshold phenomena in random graphs.

A major question in the study of the Erdős–Rényi random graph 𝐺p𝑛, 𝑝q is to understand the
probability, as a function of 𝑝, that 𝐺p𝑛, 𝑝q contains a given subgraph 𝐻 “ 𝐻𝑛 . This was studied
for many specific examples of 𝐻, starting with classical work of Erdős and Rényi (1960). More
recent work studies this question for general 𝐻, both in building a general theory of sharp versus
coarse transitions (Friedgut and Bourgain 1999; Hatami, 2012) and in results on the location of the
transition (Kahn and Kalai, 2007; Talagrand, 2010; Frankston, Kahn, Narayanan, Park, 2019; Park
and Pham, 2022).

In inference problems, one often studies the optimal accuracy of inference as a function of the
amount of noise. In a variety of sparse recovery problems, an “all-or-nothing (AoN) phenomenon”
has been observed: Informally, as the amount of noise is gradually increased, at some critical
threshold the inference problem undergoes a sharp jump from near-perfect recovery to near-zero
accuracy (Gamarnik and Zadik, 2017; Reeves, Xu, Zadik, 2021). We can regard AoN as the natural
inference analogue of the sharp threshold phenomenon in random graphs. In contrast with the
general theory developed for sharp thresholds of random graph properties, the AoN phenomenon
has only been studied so far in specific inference settings, and a general theory behind its appearance
remains elusive.

In this paper we study the general problem of inferring a graph 𝐻 “ 𝐻𝑛 planted in an Erdős–
Rényi random graph, thus naturally connecting the two lines of research mentioned above. We show
that questions of AoN are closely connected to first moment thresholds, and to a generalization of
the so-called Kahn–Kalai expectation threshold that scans over subgraphs of 𝐻 of edge density at
least 𝑞. In a variety of settings we characterize AoN, by showing that AoN occurs if and only if
this “generalized expectation threshold” is roughly constant in 𝑞. Our proofs combine techniques
from random graph theory and Bayesian inference.1
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1. Extended abstract. Full version appears as [arXiv:2302.14830, v1]
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