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Consider a family of predictors {fθ : θ ∈ Θ} indexed by an abstract set Θ. In the aggregation
problem, the aim is to combine the given predictors to achieve predictions nearly as accurate as the
best one. Given a prior probability measure π on Θ, classical global bounds in aggregation take the
form
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where f̂ is the output of the aggregation procedure, R(fθ) measures the risk of the predictor fθ, c
is a universal constant, and n is the size of the sample. An important feature of aggregation theory
is that bounds of the above form can be obtained without imposing any restrictions on the set Θ. In
particular, this allows to handle non-convex classes of predictors.

Aggregation has been studied in both sequential and statistical contexts. The classical results in
both cases feature the same global complexity measure Cglob(n/c, π), despite the sequential aggre-
gation problem being intrinsically harder than its statistical counterpart. In this paper, we revisit and
tighten classical results in the theory of aggregation in the statistical setting by replacing the global
complexity with a smaller, local one. This local complexity measure can be seen as the global com-
plexity computed with respect to a prior distribution π−n

c
R that is more tightly concentrated around

functions with low population risk; it can be defined as follows:
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We discuss the nature of this improvement in some special cases, including finite classes and
Gaussian process priors on functions. Our approach is inspired by the technique of PAC-Bayesian
localization introduced by Catoni (2007).

Among other results, we prove localized versions of the classical bound for the exponen-
tial weights estimator due to Leung and Barron (2006) and deviation-optimal bounds for the Q-
aggregation estimator. Our bounds refine the results of Dai, Rigollet, and Zhang (2012) in the fixed
design setting and the results of Lecué and Rigollet (2014) for random design.
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