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Abstract

Goldwasser et al. (2021) recently proposed the setting of PAC verification, where a hypothesis
(machine learning model) that purportedly satisfies the agnostic PAC learning objective is verified
using an interactive proof. In this paper we develop this notion further in a number of ways. First,
we prove a lower bound of Ω

(√
d/ε2

)
i.i.d. samples for PAC verification of hypothesis classes

of VC dimension d. Second, we present a protocol for PAC verification of unions of intervals
over R that improves upon their proposed protocol for that task, and matches our lower bound’s
dependence on d. Third, we introduce a natural generalization of their definition to verification of
general statistical algorithms, which is applicable to a wider variety of settings beyond agnostic
PAC learning. Showcasing our proposed definition, our final result is a protocol for the verification
of statistical query algorithms that satisfy a combinatorial constraint on their queries.

Keywords: PAC Learning, Interactive Proof Systems, Distribution Testing.

1. Introduction

Comparing what can be computed in a given model of computation versus what can be verified in
that model is a recurring theme throughout the fields of computability and computational complex-
ity. The most notorious example is of course the P vs. NP problem, which asks whether the set of
decision problems that can be solved in polynomial time equals the set of decision problems whose
solution can be verified in polynomial time given a suitable proof string. But the same question has
been studied for many other settings and models of computation as well, with prominent examples
including L vs. NL (for logspace computation), P vs. IP = PSPACE (polytime computation, with
an interactive proof) and MIP∗ = RE (ditto, with multiple quantum provers). The existence of a
gap between computing and verifying is sometimes interpreted as capturing the notion of creativity,
in the sense that finding a solution to a problem might require discovery or inventiveness, while
verifying a formal proof for the same is merely rote work.

While this theme has deep roots in the literature and an appealing interpretation, its parallels for
learning have only recently been explored for the first time. In the context of PAC1 learning, Gold-
wasser, Rothblum, Shafer, and Yehudayoff (2021) introduced the setting of PAC verification, in
which an untrusted prover attempts to convince a verifier that a certain classifier has nearly-optimal
loss with respect to a fixed unknown distribution from which the verfier can take random samples.

1. Probably Approximately Correct (PAC) is the standard theoretical model for supervised learning, introduced by
Vapnik and Chervonenkis (1968) and Valiant (1984). Agnostic PAC learning is a generalization to the non-realizable
case, introduced by Haussler (1992). See also Shalev-Shwartz and Ben-David (2014).
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Specifically, they work in the agnostic PAC setting, where the objective is to find a hypothesis h that
has nearly-optimal loss in the sense

L0-1
D (h) ≤ inf

h′∈H
L0-1
D
(
h′
)
+ ε, (1)

where L0-1
D denotes 0-1 population loss and H is some fixed and known hypothesis class (formal

definitions appear in Sections 1.3 and 2.2 below).

Seeing as computational gaps are already well-studied, the main novelty in this setting concerns
sample complexity gaps. They show that for some hypothesis classes (but not for others) the number
of i.i.d. samples necessary to find a hypothesis with nearly-optimal loss is strictly greater than the
number of i.i.d. samples necessary for verifying, with the help of an untrusted prover, that a proposed
hypothesis has nearly-optimal loss.

Beyond the (substantial) theoretical motivation, this setting could have meaningful (and timely) real-
world applications. First, if a sample complexity gap exists then “verifiable data collection + ML as
a service” becomes a viable business model. The provider would collect suitable training data from
the desired population distribution, execute a chosen ML algorithm, and subsequently prove to the
client that the end result is good with respect to the population distribution. The client would only
need a small amount of independent data from the population distribution to determine the veracity
of the claim. Beyond this, Goldwasser et al. (2021) envision a variety of other applications, such as
more efficient schemes for replicating scientific results in the empirical sciences.

1.1. Our Contributions

PAC verification is novel territory, and very little is currently known. The current paper aims to
make some modest steps towards charting this landscape. We focus on studying sample complexity
gaps between learning and verifying specifically in terms of the dependence on the VC (Vapnik–
Chervonenkis) dimension. We start with showing a lower bound for the sample complexity gap.
Prior to our work, one could imagine that some classes would give rise to very large gaps, e.g.,
O(log(d)) i.i.d. samples for verifying vs. the Θ(d) samples that are known to be necessary and
sufficient for learning, where d = VC(H). Our first result shows that the gap can be at most
quadratic. Namely, for any hypothesis class, PAC verification requires that the verifier use at least
Ω
(√

d
)

i.i.d. random samples.

Second, we show that our lower bound’s dependence on the VC dimension is tight in some cases,
by improving upon a result of Goldwasser et al. (2021) to obtain a PAC verifier for the class of
unions of intervals on R that uses O

(√
d
)

i.i.d. random samples. The previous result was an upper

bound for a weaker notion of verification, that guarantees only that L0-1
D (h) ≤ 2 · Opt + ε, where

Opt = infh′∈H L0-1
D (h′) (instead of Opt + ε as in Eq. (1)). Their result applied only to a specific

restriction of the class of unions of intervals, while our technique works for the restricted and for
the unrestricted versions of the class.

Third, we take a step towards making the notion of PAC verification more applicable in practical
settings. Many ML and data science algorithms that people use in practice, and might like to del-
egate to an untrusted service, do not obtain (or at least do not provably obtain) the objective of
agnostic PAC learning as in Eq. (1). Instead, they obtain some quantity of loss which is typically
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good enough in practice. With this reality in mind, we introduce a generalization of PAC verifica-
tion that guarantees that the outcome is competitive with a specific algorithm. Namely, the verifier
guarantees that with high probability, the hypothesis h satisfies L0-1

D (h) ≤ E
[
L0-1
D (hA)

]
+ ε, where

hA is the (possibly randomized) output of the algorithm (see Theorem 10).

Fourth, we study PAC verification of statistical query algorithms. For a batch q of statistical queries,
we define a notion of partition size, denoted PS(q), which is the number of atoms in the σ-algebra
generated by q. We show that whenever this quantity is sufficiently small, there is a sample com-
plexity gap between execution and verification of the statistical query algorithm.

Lastly, we show that there exists a sample complexity gap for a natural example we present, of op-
timizing a portfolio with advice. Both our lower bound and our upper bound apply to this example.

1.2. Related Works

The study of interactive proofs for properties of distributions was initiated by Chiesa and Gur (2018).
They showed general bounds in terms of the support size. However, they did not consider tighter
bounds that depend on combinatorial characterizations of the distribution testing property of interest
(e.g., bounds that depend on the VC dimension).

The study of PAC verification of a hypothesis class was introduced by Goldwasser, Rothblum,
Shafer, and Yehudayoff (2021), who considered interactive proofs for properties of distributions
in the specific context of machine learning. In particular, they also considered the relationship
between the VC dimension of the class and the sample complexity of verification. They showed
a lower bound that is incomparable with our lower bound, and they showed an upper bound for
unions of intervals which is weaker than our upper bound. Our definition of PAC verification of an
algorithm is closely modeled on their definition.

Recently, there have been a number of works on the general theme of distribution testing and in-
teractive proofs for properties of distributions in the context of machine learning. These include
Canetti and Karchmer (2021), Anil, Zhang, Wu, and Grosse (2021), Rubinfeld and Vasilyan (2022)
and Herman and Rothblum (2022), among others. Caro, Hinsche, Ioannou, Nietner, and Sweke
(2023) studied PAC verification with a quantum prover. Seshia, Sadigh, and Sastry (2022) survey
the use of formal methods for verification of AI systems.

1.3. Preliminaries

Notation 1 N = {1, 2, 3, . . . }, i.e., 0 /∈ N. For any n ∈ N, we denote [n] = {1, 2, 3, . . . , n}.

Notation 2 For a set Ω, we write ∆(Ω) to denote the set of all probability measures defined on the
measurable space (Ω,F), where F is some fixed σ-algebra that is implicitly understood.

Definition 3 Let P,Q be probability measures defined on a measurable space (Ω,F). The total
variation distance between P and Q is TV(P,Q) = supA∈F |P(A)−Q(A)|.

PAC LEARNING

Definition 4 Let X be a set, and let H ⊆ {0, 1}X be a set of functions. Let k ∈ N, X =
{x1, x2, . . . , xk} ⊆ X . We say that H shatters X if for any y1, y2, . . . , yk ∈ {0, 1} there exists
h ∈ H such that h(xi) = yi for all i ∈ [k]. The Vapnik–Chervonenkis (VC) dimension of H,
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denoted VC(H), is the largest d ∈ N for which there exist a set X ⊆ X of cardinality d that is
shattered byH. IfH shatters sets of cardinality arbitrarily large, we say that VC(H) =∞.

Throughout most of this paper we use loss functions of the type common in PAC learning, where the
loss of a hypothesis with respect to a distribution is defined as the expected loss of that hypothesis
on a randomly drawn sample form the distribution, as follows.

Definition 5 Let Ω and H be sets. A loss function is a function L : Ω × H → [0, 1]. Let
h ∈ H, and let S = (z1, . . . , zm) ∈ Ωm be a vector. The empirical loss of h with respect to S is
LS(h) = 1

m

∑
i∈[m] L(zi, h). For any distribution D ∈ ∆(Ω), the loss of h with respect to D is

LD(h) = EZ∼D[L(Z, h)]. The loss ofH with respect to D is LD(H) = infh′∈H LD(h
′).

The 0-1 loss, denoted L0-1, is the special case in which X is a set, Ω = X × {0, 1}, H ⊆ {0, 1}X ,
and L((x, y), h) = 1(h(x) ̸= y).

However, in Theorem 10 below we also consider more general types of loss.

Definition 6 Let X be a set, and let H ⊆ {0, 1}X be a class of hypotheses. We say that H is
agnostically PAC learnable if there exist an algorithm A and a function mA : [0, 1]2 → N such
that for any ε, δ ∈ (0, 1) and any distribution D ∈ ∆(X × {0, 1}), if A receives as input a tuple of
mA(ε, δ) i.i.d. samples from D, then A outputs a function h ∈ H satisfying

P
[
L0-1
D (h) ≤ L0-1

D (H) + ε
]
≥ 1− δ.

In words, this means that h is probably (with confidence 1 − δ) approximately correct (has loss
at most ε worse than optimal). The point-wise minimal such function mA is called the sample
complexity ofH.

PAC VERIFICATION OF A HYPOTHESIS CLASS

Definition 7 (PAC Verification of a Hypothesis Class; a special case of Goldwasser et al. (2021),
Definition 4) Let X be a set, let D ⊆ ∆(X × {0, 1}) be a set of distributions, and letH ⊆ {0, 1}X
be a class of hypotheses. We say that H is PAC verifiable with respect to D using random samples
if there exist an interactive proof system consisting of a verifier V and an honest prover P such that
for any ε, δ ∈ (0, 1) there exist mV ,mP ∈ N such that for any D ∈ D, the following conditions are
satisfied:

• Completeness. Let the random variable

hV = [V (SV , ε, δ), P (SP , ε, δ)] ∈ H ∪ {reject}

denote the output of V after receiving input (SV , ε, δ) and interacting with P , which received
input (SP , ε, δ). Then

PSV ∼DmV ,SP∼DmP

[
hV ̸= reject ∧

(
L0-1
D (hV ) ≤ L0-1

D (H) + ε
)]
≥ 1− δ.

• Soundness. For any (possibly malicious and computationally unbounded) prover P ′ (which
may depend on D, ε, and δ), the verifier’s output hV = [V (SV , ε, δ), P

′] satisfies

PSV ∼DmV ,SP∼DmP

[
hV = reject ∨

(
L0-1
D (hV ) ≤ L0-1

D (H) + ε
)]
≥ 1− δ.
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In both conditions, the probability is over the randomness of the samples SV and SP , as well as the
randomness of V , P and P ′.

2. Technical Overview

2.1. Bounds for Verification of VC Classes

Our first result is a lower bound for the number of i.i.d. random samples the verifier requires to
successfully PAC verify a class.

Theorem 8 There exist constants C, c > 0 as follows. Let ε ∈ (0, 1), δ = 1/3, let X be a set,
and let H ⊆ {0, 1}X be a hypothesis class with VC(H) = d ∈ N. Assume that (V, P ) is an
interactive proof system that PAC verifies H with parameters (ε, δ) with respect to the set of all
distributions D = ∆(X × {0, 1}), and the verifier V uses mV = mV (d, ε) i.i.d. labeled samples.
Then mV (d, ε) ≥ (C ·

√
d− c)/ε2.

Proof Idea This is an application of Le Cam’s ‘point vs. mixture’ method (see Yu, 1997), together
with a reduction from distribution testing to PAC verification. Consider distributions where the
marginal over the domain is uniform on a fixed H-shattered set of size d. PAC verification requires
distinguishing the case of truly random labels (where the loss of the class is 1/2), from the case
where the labels are ε-biased (and the loss of the class is 1/2− ε). An Ω

(√
d/ε2

)
lower bound for

distinguishing these two cases is due to Paninski (2008). ■

Our second result shows that the lower bound’s dependence on d is tight for a specific class.

Theorem 9 Let d ∈ N, and let

Hd =

1X : X =
⋃
i∈[d]

[ai, bi] ∧ (∀i ∈ [d] : 0 ≤ ai ≤ bi ≤ 1)

 ⊆ {0, 1}[0,1]
be the class of boolean-valued functions over the domain [0, 1] that are indicator functions for
a union of d intervals. There exists an interactive proof system that PAC verifies the class Hd

with respect to the set of all distributions over [0, 1] × {0, 1}, such that the verifier uses mV =

O
(√

d log(1/δ)ε−2.5
)

random samples, the honest prover uses

mP = O
(
(d2 log(d/ε) + log(1/δ))ε−4

)
random samples, and both the verifier and the honest prover run in time polynomial in their numbers
of samples.

Proof Idea A discretization of the population distribution is induced by partitioning the domain
[0, 1] into d/ε intervals, each of which has weight ε/d according to the population distribution. In
the discretized distribution, the probability mass from each interval is lumped together into a single
arbitrary point in that interval. We show that to find an ε-sub-optimal union of intervals, it suffices
to know this discretized distribution. The prover sends the (purported) discretized distribution to
the verifier. The verifier uses a distribution identity tester to verify that the provided distribution
is a correct discretization of the population distribution. This is possible using O

(√
d
)

samples,
because the support of the discretized distribution is of size O(d). ■
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2.2. Verification of Statistical Algorithms

Many popular algorithms do not come with provable PAC-like guarantees, but tend to work well in
practice. Such heuristics are common in machine learning, data science, optimization, operations
research, finance, etc. People might like to delegate the task of collecting data and executing an
algorithm on that data to an untrusted party. To capture this notion, our next contribution is a new
definition of PAC verification of an algorithm.2 This generalizes the definition of PAC verification
of a hypothesis class (Theorem 7, introduced by Goldwasser et al., 2021), which corresponds to the
special case of PAC verifying an algorithm that is an agnostic PAC learner for the class.

Definition 10 (PAC Verification of an Algorithm) Let Ω be a set, let D ⊆ ∆(Ω) be a set of
distributions, let H be a set (called the set of possible outputs), and for each D ∈ D let OD be
an oracle. Let A be a (possibly randomized) algorithm that takes no inputs, has query access to
OD, and outputs a value hA = AOD ∈ H. Let L : D × (H ∪ {reject}) → [0, 1] be an arbitrary
function3, let LD(·) denote L(D, ·), and let LD(A) = E[LD(hA)], where the expectation is over
the randomness of A and of the oracle OD. We say that the algorithm A with access to oracles
{OD}D∈D is PAC verifiable with respect to D by a verification protocol that uses random samples
if there exist an interactive proof system consisting of a verifier V and an honest prover P such that
for any ε, δ ∈ (0, 1) there exist mV ,mP ∈ N such that for any D ∈ D, the following conditions are
satisfied:

• Completeness. Let the random variable

hV = [V (SV , ε, δ), P (SP , ε, δ)] ∈ H ∪ {reject}

denote the output of V after receiving input (SV , ε, δ) and interacting with P , which received
input (SP , ε, δ). Then

PSV ∼DmV ,SP∼DmP [hV ̸= reject ∧ LD(hV ) ≤ LD(A) + ε] ≥ 1− δ.

• Soundness. For any deterministic or randomized (possibly malicious and computationally
unbounded) prover P ′ (which may depend on D, ε, δ and {OD}D∈D), the verifier’s output
h = [V (SV , ε, δ), P

′] satisfies

PSV ∼DmV [hV = reject ∨ LD(hV ) ≤ LD(A) + ε] ≥ 1− δ.

The probabilities are over the randomness of V , P and P ′ and of the samples SV and SP .

In other words, whereas the definition of Goldwasser et al. (2021) required that the interactive proof
system guarantee that a hypothesis is competitive with respect to any hypothesis inH, our definition
requires that it be competitive with respect to a specific algorithm.

Remark 11 PAC verification of an algorithm A requires that LD(hV ) ≤ OptA + ε with high
probability. Two natural candidate definitions for OptA include (1) OptA = LD(hA), and (2)
OptA = E[LD(hA)]. Candidate (1) requires that with high probability the verifier’s output be at

2. This notion differs from delegation of computation, in that the data (the input to the algorithm) is collected by the
untrusted prover.

3. Note that this is more general than in Theorem 5.
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most ε worse than the output of executing algorithm A, while (2) requires that it be at most ε worse
than the expected loss of A.

The loss LD(hA) is a random variable that depends, inter alia, on the random samples used by A
(more generally: on the randomness of the oracle used by A). A crucial aspect of PAC verification
is that the verifier use less random samples than are necessary for executing A, and in particular it
cannot access the random samples used by A. So the verifier cannot know what loss was obtained
in any particular execution of A. Therefore, we reject candidate (1) and adopt candidate (2).

As an application of this new definition, we show that some statistical query algorithms (see Theo-
rems 19 and 21) can be PAC verified via a protocol in which the verifier uses less i.i.d. samples than
would be required for simulating the statistical query oracle used by the algorithm. Specifically, for
a batch q of statistical queries, the partition size PS(q) is the number of atoms in the σ-algebra gen-
erated by q. If the algorithm uses only batches with small partition size then verification is cheap,
as in the following theorem.

Theorem 26 (Informal version) Let A be a statistical query algorithm that adaptively generates
at most b batches of queries with precision τ such that each batch q satisfies PS(q) ≤ s. Then A is
PAC verifiable by an interactive proof system where the verifier uses

mV = Θ

(√
s log(b/εδ)

τ2
+

log(1/εδ)

ε2

)
i.i.d. samples.

Proof Idea The verifier simulates algorithm A. Each time A sends a batch of queries to be evalu-
ated by the statistical query oracle, the verifier sends the queries to the prover, and the prover sends
back a vector of purported evaluations. The verifier uses O

(√
s/τ2

)
i.i.d. random samples to exe-

cute a distribution identity tester (Theorem 15) to verify that the prover’s evaluations are correct up
to the desired accuracy τ . ■

In particular, Theorem 26 implies the following separation:

Corollary 27 (Informal version) Let d ∈ N and let A be a statistical query algorithm such that
each batch of queries generated by A corresponds precisely to a σ-algebra with d atoms. Then
simulating A using random samples requires Ω

(
d/τ2

)
random samples, but there exists a PAC

verification protocol for A where the verifier uses O
(√

d/τ2
)

random samples.

2.3. Examples

Example 1 (Optimizing a portfolio with advice) Consider a task in which an agent selects a
subset S consisting of n items from the set Ω = [2n]. Subsequently, an item i ∈ Ω is chosen
at random according to a distribution D ∈ ∆(Ω) that is unknown to the agent, and the agent
experiences loss L(i, S) = 1(i /∈ S).

To help make an optimal decision, the agent has access to an i.i.d. sample Z = (z1, . . . , zm) ∼ Dm.
LetH =

(
Ω
n

)
denote the collection of subsets of size n that the agent could select. VC(H) = n, and

therefore estimating the expected loss LD(S) of each possible choice S ∈ H up to precision ε > 0
requires mA = Ω

(
(n+ log(1/δ))/ε2

)
samples.
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By Theorem 27, if the agent can receive advice from an untrusted prover, it can make an ε-optimal
choice using mV = O

(√
n log(1/δε)/ε2

)
i.i.d. samples. Note that mV ≪ mA for large n. Further-

more, our expression for mV is tight in the sense that, by Theorem 8, Ω(
√
n) samples are necessary

for verifying the advice of an untrusted prover. ■

Note that the above example is an instance of verification in our generalized setting (Theorem 10),
but it is technically not an instance of PAC verification as previously defined by Goldwasser et al.
(2021), e.g., because the distribution has no labels. More generally, Theorem 10 includes verifica-
tion of distribution learning, as follows.

Example 2 (Verification of distribution learning) Let Ω = [n]. Consider a task in which an
agent has access to an i.i.d. sample Z = (z1, . . . , zm) ∼ Dm from some distribution D ∈ ∆(Ω)
that is unknown to the agent. The agent selects a distribution D̂ ∈ ∆(Ω), and experience loss
LD

(
D̂
)
= TV

(
D̂,D

)
.

It is well known that to achieve loss at most ε with probability at least 1 − δ, it is necessary and
sufficient to take mA = Θ

(
(n+ log(1/δ))/ε2

)
samples (Canonne, 2020b, Theorem 1). In contrast,

if the agent has access to advice from an untrusted prover then mV = O
(√

n log(1/δ)ε−2
)

i.i.d.
samples are sufficient. The honest prover simply sends the verifier a description of a distribution
D̃ ∈ ∆(Ω) that has loss at most ε/

√
n. The verifier uses distribution testing (Theorem 15) to decide

whether LD

(
D̃
)
≤ ε/

√
n or LD

(
D̃
)
≥ ε, and accepts if and only if the former case holds. ■

A large collection of concrete tasks that might be of interest and that fall within the setting of Theo-
rem 10 involve solving various problems on graphs given random samples that convey information
about the graph, as follows.

Example 3 (Verification in graphs) Fix n ∈ N. For any graph G = (V,E) with V = [n], let DG

be the uniform distribution on E. The agent does not know G, but it knows n and it has access to
an i.i.d. sample Z = (z1, . . . , zm) ∼ Dm

G . Consider some standard tasks, such as:

• Maximum matching. The agent selects a subset M ⊆
(
V
2

)
and experiences loss

LDG
(M) = min

M ′∈M

|M∆M ′|
n

,

whereM is the set of all matchings in G of maximal size.

• Coloring. The agent selects a function f : V → N and experiences loss

LDG
(f) = min

f ′∈F

∑
v∈V 1 (f(v) ̸= f ′(v))

n

where F is the set of all valid colorings of G that use a minimal number of colors.

For these tasks, there is an easy lower bound of m = Ω(n) on the number of samples the agent
needs to guarantee loss at most ε with probability at least 1 − δ for ε = δ = 0.1. To see this,
consider the family of graphs that consist of a disjoint union of triplets (sets of three vertices), such
that each triplet contains a single edge. Because the agent does not know in advance where the
edge is in each triplet, finding an approximately maximum matching and an approximate 2-coloring
require seeing nearly all the edges in the graph.
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However, if we assume that G has maximum degree bounded by a constant (as in the lower bound),
then DG is a uniform distribution with support size O(n). Hence, given access to advice from
an untrusted prover, the agent can solve these tasks using O(

√
n) samples using the verification

procedure of Example 2.

To see that Ω(
√
n) samples are necessary for verification with the help of a prover, consider a

family of graphs consisting of a disjoint union of triplets as above, but where only half the triplets
contain an edge. Distinguishing between this family and the previous family requires observing a
collision (receiving a sample that contains the same edge twice), which requires Ω(

√
n) samples by

the ‘birthday paradox’. ■

So far, all our examples involved a quadratic gap between learning and verifying. However, larger
gaps are possible if we make strong assumptions on the unknown distribution. One example of
this, pointed out by Goldwasser et al. (2021), is that the gap between learning and verifying for
realizable PAC learning is unbounded. Unbounded gaps can exist also for other tasks as well, as in
the following example.

Example 4 (Unbounded gap in a graph task) Let n, G = (V,E), and DG be as in Example 3.
Consider the maximal matching tasks under the assumption that E is a perfect matching. Again,
there is an easy lower bound of Ω(n) random samples to guarantee loss at most ε with probability
at least 1 − δ for ε = δ = 0.1 without the help of a prover. To see this, consider a graph that is
a disjoint union of sets of four vertices, where each such set contains two disjoint edges. Finding a
perfect matching requires seeing an edge from each set.

In contrast, mV = O(log(1/δ)/ε) samples are sufficient given advice from an untrusted prover.
The protocol is as follows. The prover sends Ẽ, which purportedly equals E. If Ẽ is not a perfect
matching then the verifier rejects. Then, the verifier takes mV samples from DG, and accepts if and
only if all the edges in the sample appear in Ẽ. For completeness, if Ẽ = E then the verifier always
accepts. For soundness, if

(
|Ẽ∆E|

)
/n ≥ ε, then DG has weight Ω(ε) on edges that are not in

Ẽ, and so taking mV samples is sufficient to ensure that the verifier rejects with probability at least
1− δ. ■

For the maximum matching task, we have seen that under the assumption that G has maximum
degree bounded by a constant the sample complexity gap is quadratic, but that the gap is unbounded
under the stronger assumption that G is a perfect matching. We view this as a demonstration of the
richness of this setting.

3. A Lower Bound for PAC Verification of VC Classes

Theorem 8 is proved via a reduction from the following distribution testing lower bound.

Theorem 12 (Reformulation of Theorem 4 in Paninski, 2008) Let d, t ∈ N and let ε ∈ (0, 1).
For every σ ∈ Σ = {±1}d, let Dσ,ε ∈ ∆([2d]) be a distribution such that for all i ∈ [d],

Dσ,ε(2i− 1) =
1 + σi · ε

2d
, and Dσ,ε(2i) =

1− σi · ε
2d

.

LetDΣ,ε,t be the distribution over [2d]t generated by selecting a vector σ ∈ Σ uniformly at random,
and then taking t i.i.d. samples from Dσ,ε. Let DU,t = U([2d])t be the distribution over [2d]t

9
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generated by selecting t i.i.d. uniform samples from [2d]. Then TV(DU,t,DΣ,ε,t) ≤ fPaninski(t, ε, d)
for

fPaninski(t, ε, d) =
1

2
·
(
exp

(
t2ε4

d

)
− 1

)1/2

.

The proof also uses the following well-known fact about maximal couplings (see e.g. Lemma 4.1.13
in Roch, 2023+).

Theorem 13 Let Ω be a set, and let pX , pY ∈ ∆(Ω) be distributions. Then

TV(pX , pY ) = inf
{
P[X ̸= Y ] : (X,Y ) is a joint distribution with marginals X ∼ pX and Y ∼ pY

}
.

Proof of Theorem 8 Let X = {x1, . . . , xd} ⊆ X be a set of size d that is shattered by H (such a
set exists because VC(H) = d). Let DU = U(X × {0, 1}).

For every h ∈ HX = {0, 1}X , let Dh,4ε ∈ ∆(X × {0, 1}) be a distribution such that

∀ (x, y) ∈ X × {0, 1} : Dh,4ε

(
(x, y)

)
=

{
(1 + 4ε)/2d h(x) = y
(1− 4ε)/2d h(x) ̸= y

.

Consider a (possibly randomized) testing algorithm T that takes t i.i.d. samples from an unknown
distribution D and decides correctly with probability at least 1 − β whether D = DU or whether
D ∈ {Dh,4ε : h ∈ HX} (if D is not one of these |HX | + 1 options then we make no assumptions
regarding the behavior of T ).

Let DU,t = (DU )
t and let DHX ,4ε,t be the distribution generated by selecting h ∈ HX uniformly

at random and then taking t i.i.d. samples from Dh,4ε. By Theorem 12, TV(DU,t,DHX ,4ε,t) ≤
fPaninski(t, 4ε, d). By Theorem 13, for every α > 0 there exists a joint distribution (SU , SH) such
that SU ∼ DU,t, SH ∼ DHX ,4ε,t, and P[SU ̸= SH] ≤ fPaninski(t, 4ε, d) + α.

For any such α and (SU , SH), no tester can distinguish with probability strictly greater than 1/2
between SU and SH in the event where SU = SH. Hence,

β ≥ 1/2 · P[SU = SH] = 1/2 · (1− P[SU ̸= SH]) ≥ 1/2 · (1− fPaninski(t, 4ε, d)− α).

Taking α→ 0 and rearranging yields

t ≥
√
d · ln(1 + (4β − 2)2)

ε2
. (2)

This establishes a lower bound on the sample complexity for the DU vs. {Dh,4ε : h ∈ HX}
distribution testing problem.

Next, we show a reduction from the distribution testing problem to PAC verification of H. Let
(V, P ) be an interactive proof system that PAC verifiesH such that the verifier V and honest prover
P use mV and mP i.i.d. samples from the unknown distribution respectively, and satisfy Theorem 7
with parameters ε and δ, as in the statement of Theorem 8. Using (V, P ), we construct a tester T for
the DU vs. {Dh,4ε : h ∈ HX} testing problem. Given sample access to an unknown distribution D
for the testing problem, T operates as follows:

10
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1. Compute hV = [V (D), P (DU )]. Namely, simulate an execution of the PAC verification pro-
tocol as follows. Take a sample SV ∼ DmV of mV i.i.d. samples from D, and take a sample
SP ∼ (DU )

mP of mP i.i.d. samples from DU (seeing as the specification of DU is completely
known to T , T can generate as many samples from DU as necessary using uniform random
coins). Execute the PAC verification protocol such that V receives input SV , P receives input
SP , and the output of the verifier at the end of the protocol is hV ∈ H ∪ {reject}.

2. Take a sample Stest ∼ Dℓ of ℓ =
⌈
ln(24)/2ε2

⌉
< 3/ε2 i.i.d. samples from D.

3. If (hV = reject) ∨ (hV ̸= reject ∧ L0-1
Stest

(hV ) ≤ 1/2 − 2ε) then output “D ∈ {Dh,4ε : h ∈
HX}”. Otherwise, output “D = DU”.

We argue that the tester T defined in this manner solves the testing problem correctly with proba-
bility at least 7/12. If D = DU , then L0-1

D (h) = 1/2 for any h ∈ H. In particular, if hV ̸= reject then
L0-1
Stest

(hV ) ≥ 1/2 − ε with probability at least 11/12 (by Hoeffding’s inequality and the choice of ℓ).
Thus, if D = DU then T outputs “D = DU” with probability at least 11/12.

Conversely, if D = Dh′,4ε for some h′ ∈ HX , then L0-1
D (h) = 1/2 − 4ε for h ∈ H such that

h|X = h′. From the correctness of the PAC verification protocol, with probability at least 2/3, either
hV = reject, or L0-1

D (hV ) ≤ 1/2 − 3ε, and in that case with probability at least 11/12, L0-1
Stest

(h) ≤
1/2 − 2ε (again by Hoeffding’s inequality and choice of ℓ). A union bound implies that if D =
Dh′,4ε for some h′ ∈ HX then T outputs “D ∈ {Dh,4ε : h ∈ HX}” with probability at least
1− 1/3− 1/12 = 7/12.

We conclude that T correctly solves theDU vs. {Dh,4ε : h ∈ HX} testing problem with probability
at least 7/12 using t = mV + ℓ i.i.d. samples from the unknown distribution D. Plugging β = 5/12
in Eq. (2), this implies that mV ≥ (0.3 ·

√
d− 3)/ε2, as desired.

Remark 14 A previous version of this paper (Mutreja and Shafer, 2022) presented a proof of an
Ω
(√

d
)

lower bound, without the dependence on ε. That proof uses a reduction to a simpler
distribution testing lower bound based on the ‘birthday paradox’ (instead of the Paninski bound),
and it may be better suited for pedagogical expositions.

4. Verification of Unions of Intervals

Theorem 15 (Canonne et al. 2022, Theorem 14) Let ε, δ ∈ (0, 1), let n ∈ N, and let P, P̃ ∈
∆([n]) be distributions. There exists a tolerant distribution identity tester that, given a complete
description of P̃ and m = O

(√
n log(1/δ)ε−2

)
i.i.d. samples from P , satisfies the following:

• Completeness. If TV
(
P, P̃

)
≤ ε/

√
n then the tester accepts with probability at least 1− δ.

• Soundness. If TV
(
P, P̃

)
> ε then the tester rejects with probability at least 1− δ.

Definition 16 Let ε ∈ [0, 1], let X be a set and let F ⊆ {0, 1}X be a set of functions. Let
D ∈ ∆(X ), and let S ∈ Xm for some m ∈ N. We say that S is an ε-sample forD with respect to F

4. See also Goldreich and Ron (2011) and the discussion following Theorem 5.4 in Canonne (2020a).
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if

∀f ∈ F :

∣∣∣∣ |{x ∈ S : f(x) = 1}|
m

− Px∼D[f(x) = 1]

∣∣∣∣ ≤ ε.

Theorem 17 (Vapnik and Chervonenkis, 19685) Let d ∈ N and ε, δ ∈ (0, 1). Let X be a set and
let F ⊆ {0, 1}X be a set of functions with VC(F) = d. Let D ∈ ∆(X ), and let S ∼ Dm, where

m = Ω

(
d log(d/ε) + log(1/δ)

ε2

)
.

Then with probability at least 1− δ, S is an ε-sample for D with respect to F .

Proof of Theorem 9 We show that Protocol 1 (in Appendix A) satisfies the requirements of the
theorem. For completeness, note that if the prover follows the protocol then P̃j,0 + P̃j,1 = 1/k for
all j, so the verifier will never reject at the first ‘if’ statement. Let B = {Ij × {y} : j ∈ [k] ∧ y ∈
{0, 1}}, and let F = {1E : E ∈ σ(B)} ⊆ {0, 1}[0,1]×{0,1}. In words, F is the set of indicator
functions for events in the σ-algebra generated by B. VC(F) = 2k = O(d/ε), so Theorem 17 and
the choice of mP imply that with probability at least 1 − δ/2, SP is an ε/(6

√
2k)-sample for D

with respect to F . By the definitions of total variation distance and of an ε-sample, this implies that
P
[
TV
(
P, P̃

)
≤ ε/(6

√
2k)
]
≥ 1 − δ/2. From the completeness of the tester of Theorem 15 and

a union bound we conclude that with probability at least 1 − δ, the verifier does not reject. This
establishes completeness.

For soundness, consider two cases.

• The prover is too dishonest, such that TV
(
P, P̃

)
> ε/6. Then by the soundness of the tester

of Theorem 15, the verifier rejects with probability at least 1− δ/2.

• The prover is sufficiently honest, such that TV
(
P, P̃

)
≤ ε/6. Then for any h′ ∈ Hd,

∣∣∣L0-1
D
(
h′
)
− L0-1

P̃
(
h′
)∣∣∣ ≤ ∣∣L0-1

D
(
h′
)
− L0-1

P
(
h′
)∣∣+ ∣∣∣L0-1

P
(
h′
)
− L0-1

P̃
(
h′
)∣∣∣

≤
∣∣L0-1

D
(
h′
)
− L0-1

P
(
h′
)∣∣+ ε/6, (3)

where the last inequality follows from TV
(
P, P̃

)
≤ ε/6.

Fix h′ ∈ Hd. We argue that
∣∣L0-1

D (h′)− L0-1
P (h′)

∣∣ ≤ ε/3. Let Q = {x ∈ [0, 1] : h′(x) ̸=
h′(x∗)}, where for each x ∈ [0, 1], we define x∗ = x∗j such that x ∈ Ij . Namely, Q is the set
of points for which applying the discretization procedure alters the output of h′. Then∣∣L0-1

D
(
h′
)
− L0-1

P
(
h′
)∣∣ = ∣∣P(x,y)∼D

[
h′(x) ̸= y

]
− P(x,y)∼D

[
h′(x∗) ̸= y

]∣∣
=
∣∣∣P(x,y)∼D

[
h′(x) ̸= y ∧ x ∈ Q

]
− P(x,y)∼D

[
h′(x∗) ̸= y ∧ x ∈ Q

]∣∣∣ (4)

5. Cf. Alon and Spencer (2000), Theorem 13.4.4.
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≤ D(Q′) (Q′ = Q× {0, 1})

≤
∑

j∈[k]: Ij∩Q̸=∅

D(I ′j) (I ′j = Ij × {0, 1})

=
∑

j∈[k]: Ij∩Q̸=∅

P(I ′j) (D(I ′j) = P(I ′j))

= P
(⋃{

I ′j : Ij ∩Q ̸= ∅
})

≤ P̃
(⋃{

I ′j : Ij ∩Q ̸= ∅
})

+ TV
(
P, P̃

)
≤ 2d/k + TV

(
P, P̃

)
(5)

≤ 2d/k + ε/6 = ε/3, (6)

where Eq. (4) holds since the loss of h′ can differ between D and P only for points in Q;
Eq. (5) holds because h′ consists of d intervals, which together have 2d endpoints, Ij ∩Q ̸= ∅
only if Ij contains one of these endpoints, and if the verifier did not reject then P̃(I ′j) = 1/k for
all j; finally Eq. (6) holds by the assumption (in the current case) that the prover is sufficiently
honest.

Combining Eq. (6) with Eq. (3) yields ∀h′ ∈ Hd :
∣∣∣L0-1

D (h′)− L0-1
P̃ (h′)

∣∣∣ ≤ ε/2. This implies

that a hypothesis h that has minimum loss with respect to P̃ satisfies L0-1
D (h) ≤ L0-1

D (H) + ε.

We conclude that regardless of the prover’s behavior, with probability at least 1 − δ/2 the verifier
either rejects or outputs a hypothesis with excess loss at most ε, as desired.

Remark 18 The dependence of the tolerance parameter in Theorem 15 on the domain size is
quadratic, namely the verifier accepts if TV

(
P, P̃

)
≤ ε/

√
n. Notice that this affects the sam-

ple complexity of the honest prover but not of the verifier. For instance, if the tolerance was ε/en

instead of ε/
√
n, the verifier’s sample complexity would remain unchanged.

5. Discussion and Future Work

In this paper, we have shown that Ω
(√

d
)

samples are necessary for PAC verifying a class of VC

dimension d, and furthermore, for some classes O
(√

d
)

samples are sufficient. In contrast, Lemma
4.1 in Goldwasser et al. (2021) states that there also exist VC classes where the sample complexity
for verification is Ω̃(d) under the assumption that the verifier is proper (outputs a hypothesis from
the class), and we believe it is likely that there exist VC classes for which an Ω̃(d) lower bound
holds for any verifier.

Hence, it appears likely that the VC dimension does not characterize the sample complexity of PAC
verification. In that case, finding an alternative combinatorial quantity that does characterize that
sample complexity is an exciting open problem.

A potentially easier problem is to devise upper bounds (PAC verification protocols) for specific
classes of interest. For example, the main property of the thresholds class utilized in the proof of

13
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Theorem 9 is that it has low ‘surface area’ or noise sensitivity (cf. Balcan et al., 2012). Perhaps a
similar proof technique could apply to other classes as well.

Additionally, we introduced a notion of PAC verification of an algorithm. We believe this is very
natural definition, because many of the algorithms that people might like to delegate in practice are
not PAC learners, including unsupervised learning algorithms (e.g., clustering and dimensionality
reduction algorithms), and supervised algorithms that are not provably PAC learners (e.g., neural
networks trained via SGD). Devising PAC verification protocols for specific algorithms of interest
could be a rewarding endeavor.
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Appendix A. Protocol for Unions of Intervals

Assumptions:
• d, 1/ε ∈ N (this can always be achieved by making ε smaller if necessary), k = 12d/ε.
• mP = O

(
(d2 log(d/ε) + log(1/δ))ε−4

)
is a multiple of k.

• mV = O
(√

d log(1/δ)ε−2.5
)

.
• SV ∼ DmV , SP ∼ DmP .
• D ∈ ∆([0, 1]× {0, 1}) is an unknown target distribution.

PROVER(SP , δ, ε):
I1, I2, . . . , Ik ← a partition of [0, 1] into disjoint intervals such that ∪i∈[k]Ii = [0, 1]

and ∀j ∈ [k] : |{xP1 , . . . , xPmP
} ∩ Ij | = mP/k.

for j ∈ [k]:
for b ∈ {0, 1}:

P̃j,b ← |{(x, y) ∈ SP : x ∈ Ij ∧ y = b}|/mP ▷ Counted as a multiset

send (I1, . . . , Ik) and
(
P̃j,y

)
j∈[k],y∈{0,1} to the verifier

VERIFIER(SV , δ, ε):
receive (I1, . . . , Ik) and

(
P̃j,y

)
j∈[k],y∈{0,1} from the prover

if ∃j ∈ [k] s.t. P̃j,0 + P̃j,1 ̸= 1/k:
output reject and terminate

x∗1, . . . , x
∗
k ← arbitrary points such that ∀j ∈ [k] : x∗j ∈ Ij

execute the tester of Theorem 15 with parameters ε/6, δ/2 where P, P̃ ∈ ∆([0, 1] ×
{0, 1}) are as follows:

- P is the distribution generated by sampling (x, y) ∼ D and then outputting (x∗, y)
where x∗ = x∗j such that x ∈ Ij

- P̃ is the distribution such that P
[
(x∗j , y)

]
= P̃j,y for all j ∈ [k], y ∈ {0, 1}

if distribution identity tester rejects:
output reject and terminate

h← argminh′∈Hd
L0-1
P̃ (h′)

output h

Protocol 1: Verification protocol for unions of d-intervals.
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Appendix B. Verification of Statistical Query Algorithms

B.1. Definitions

B.1.1. STATISTICAL QUERY ALGORITHMS

Definition 19 (Kearns, 1998) Let Ω be a set, let D ∈ ∆(Ω) be a distribution, and let τ ≥ 0. A
statistical query is an indicator function q : Ω → {0, 1}. An oracle O is a statistical query oracle
for D with precision τ , denoted O ∈ SQ(D, τ), if at each invocation, O takes a statistical query q
as input and produces an arbitrary evaluation O(q) ∈ [0, 1] as output such that∣∣O(q)− EX∼D[q(X)]

∣∣ ≤ τ. (7)

In particular, the oracle’s evaluations may be adversarial and adaptive, as long as each of them
satisfies Eq. (7).

Remark 20 The notion of PAC verification of an algorithm (Theorem 10) requires that the verifier’s
output be competitive with LD(A) = E

[
LD
(
AO)], the expected loss of algorithm A when executed

with access to oracle O. For this expectation to be defined, throughout this paper we only consider
oracles whose behavior can be described by a probability measure. In particular, oracles may be
adaptive and adversarial in a deterministic or randomized manner, but they cannot be arbitrary.

Definition 21 A statistical query algorithm is a (possibly randomized) algorithm A that takes no
inputs and has access to a statistical query oracle O. At each time step t = 1, 2, 3, . . . :

• A chooses a finite batch qt =
(
q1t , . . . , q

nt
t

)
of statistical queries and sends it to the oracle O.

• O sends a batch of evaluations vt =
(
v1t , . . . , v

nt
t

)
∈ [0, 1]nt to A, such that vit = O(qit) for

all i ∈ [nt].

• A either produces an output and terminates, or continues to time step t+ 1.

The resulting sequence r = (q1,v1,q2,v2, . . . ) is called a transcript of the execution.

Note that for each t, the choice of qt is a deterministic function of (r<t, ρ), where

r<t = (q1,v1,q2,v2, . . . ,qt−1,vt−1),

and ρ denotes the randomness of A. If A terminates, its final output is a deterministic function of
(r, ρ).

B.1.2. THE PARTITION SIZE

Definition 22 Let Ω be a set, and let S ⊆ 2Ω be a collection of subsets. We say that S is a σ-algebra
for Ω if it satisfies the following properties:

• Ω ∈ S.

• ∀S ⊆ S : Ω \ S ∈ S.

• For any countable sequence S1, S2, . . . ∈ S : ∪∞i=1 Si ∈ S.

Definition 23 Let Ω be a set.
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• Let A ⊆ 2Ω be a collection of subsets. The σ-algebra generated by A for Ω, denoted σ(A), is
the intersection of all σ-algebras for Ω that are supersets of A.

• Let F ⊆ {0, 1}Ω be a set of indicator functions. The σ-algebra generated by F for Ω is
σ(F) = σ ({A ⊆ Ω : 1A ∈ F}).

Definition 24 Let S be a σ-algebra. The set of atoms of S is

Atoms(S) =
{
S ∈ S :

(
∀S′ ∈ S \∅ : S′ ̸⊂ S

)}
.6

Definition 25 Let Ω be a set and let F = {f1, f2, . . . , fk} ⊆ {0, 1}Ω be a finite set of indicator
functions. The partition size of F is PS(F) = |Atoms(σ(F))| ∈ N, i.e., the number of atoms in the
σ-algebra generated by F for Ω.

B.2. Formal Statements

Theorem 26 (PAC Verification of an SQ Algorithm) Let b, s ∈ N, let Ω be a set and H be a
discrete set. Let A be a statistical query algorithm that adaptively and randomly generates some
random number T of batches q1, . . . ,qT of statistical queries Ω→ {0, 1} such that with probability
1, T ≤ b and PS(qt) ≤ s for each t ∈ [T ], and the algorithm outputs a random value h ∈ H. Let
D ⊆ ∆(Ω) be a set of distributions, let τ > 0, and let L : Ω×H → [0, 1] be a loss function.

Then there exists a collection of oracles O = {OD}D∈D where OD ∈ SQ(D, τ) for all D ∈ D,
such that algorithm A with access to oracles O is PAC verifiable with respect to D by a verification
protocol that uses random samples, where the verifier and honest prover respectively use

mV = Θ

(√
s log(bk/δ)

τ2
+

log(k/δ)

ε2

)
,

and

mP = Θ

(
s3 log(sbk/δτ)

τ2

)
i.i.d. samples, with k = ⌈8 log(4/δ)/ε⌉.

As a corollary, we obtain that for statistical query algorithms of a particular type, the sample com-
plexity of PAC verification has a quadratically lower dependence on the VC dimension of the
batches of statistical queries compared to simulating the algorithm using random samples.

Corollary 27 Let A be a statistical query algorithm as in Theorem 26, and let d ∈ N. Assume that
in each time step t ∈ [T ], VC(qt) = d and |qt| = 2d. Namely, qt is the set of indicator functions of
a σ-algebra with d atoms. Consider an implementation of A that uses random samples to simulate
the SQ oracle accessed by A, such that the implementation uses random samples only and does not
use any oracles. Simulating an oracle O ∈ SQ(D, τ) requires

m = Ω

(
d+ log(1/δ)

τ2

)
6. S′ ̸⊂ S denotes that S′ is not a strict subset of S.
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i.i.d. samples from D. In contrast, there exists a protocol that PAC verifies A such that the verifier
uses only

mV = Θ

(√
d log(bk/δ)

τ2
+

log(k/δ)

ε2

)
i.i.d. samples from D, with k = ⌈8 log(4/δ)/ε⌉.

The lower bound in the corollary is the standard VC lower bound.

B.3. Proofs

Definition 28 Let A be a statistical query algorithm, let D be a collection of distributions, and let
ε, τ > 0. We say that a collection of oracles O = {OD}D∈D is ε-maximizing with respect to A and
D if for each D ∈ D, OD ∈ SQ(D, τ) and E

[
LD
(
AOD

)]
≥ supO∈SQ(D,τ) E

[
LD
(
AO)]− ε.

Proof of Theorem 26 Fix a collection of oracles O = {OD}D∈D that is ε/4-maximizing with
respect to A and D. We show that algorithm A with access to the oracles O is PAC verified by
Protocol 2.

To establish completeness, notice that each batch at of queries sent to the prover by VERIFIERIT-
ERATION satisfies VC(at) = 1, and there are at most b · k such batches. Hence, by Theorem 17 and
a union bound, taking mP as in the statement is sufficient to guarantee that with probability at least
1− δ/4,

∀ iteration i ∈ [k] ∀t ∈ [T ] : ∥p̃t − pt∥∞ ≤
τ

s
√
s
,

where pt is the vector of correct evaluations, with components pjt = EZ∼D

[
ajt (Z)

]
. Hence, with

probability at least 1− δ/4,

∀ iteration i ∈ [k] ∀t ∈ [T ] : ∥p̃t − pt∥1 ≤
τ√
s
. (8)

By Eq. (8), Theorem 15, and the choice of mV , with probability at least 1− δ/4, none of the execu-
tions of IDENTITYTEST cause the verifier to reject.

By a union bound, with probability at least 1 − δ/2, Eq. (8) holds and the verifier does not reject.
Then, by Theorem 29,

∀i ∈ [k] : P
[
LD(hi) ≤ LD(A) +

ε

2

]
≥ ε

8
. (9)

By the choice of k,

P
[
∀i ∈ [k] : LD(hi) > LD(A) +

ε

2

]
≤
(
1− ε

8

)k
≤ e−εk/8 ≤ δ

4
. (10)

By Hoeffding’s inequality, a union bound, and the choice of mV ,

P
[
∀i ∈ [k] :

∣∣∣LS′
V
(hi)− LD(hi)

∣∣∣ ≤ ε

2

]
≥ 1− δ

4
. (11)

Combining Eqs. (8), (10) and (11) via a union bound, we conclude that with probability 1 − δ, the
verifier does not reject and it outputs h ∈ H such that LD(h) ≤ LD(A) + ε. This establishes
completeness.
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To establish soundness, consider an interaction between the verifier of Protocol 2 and any determin-
istic or randomized (possibly malicious and computationally unbounded) prover P ′, and examine
the following two events.

• Event I: the evaluations provided by P ′ satisfy

∀ iteration i ∈ [k] ∀t ∈ [T ] : ∥p̃t − pt∥1 ≤ τ. (12)

If the verifier does not reject then Theorem 29 implies that Eq. (9) holds. As we saw in the
proof for the completeness requirement, this implies that with probability at least 1 − δ, the
verifier outputs h ∈ H such that LD(h) ≤ LD(A) + ε.

• Event II: there exists an iteration i ∈ [k] containing a time step t∗ ∈ [T ] such that ∥p̃t∗ − pt∗∥1
> τ . By Theorem 15 and the choice of mV , with probability at least 1− δ/4 the verifier rejects
in time step t∗.

We conclude that in both cases,

PSV ∼DmV [h = reject ∨ LD(h) ≤ LD(A) + ε] ≥ 1− δ,

and this establishes soundness.

Lemma 29 In the context of Theorem 26, fix a distribution D ∈ D and let OD ∈ SQ(D, τ) be an
oracle such that

E
[
LD
(
AOD

)]
≥ sup

O∈SQ(D,τ)
E
[
LD
(
AO)]− ε/4.

Consider an execution of VERIFIERITERATION (Protocol 3). Let G denote the event in which the
verifier does not reject, and the query evaluations p̃t provided by the prover satisfy

∀t ∈ [T ] : ∥p̃t − pt∥1 ≤ τ, (13)

where pt is the vector of correct evaluations pit = EZ∼D
[
ait(Z)

]
. Then the output hi ∈ H returned

by VERIFIERITERATION satisfies

P
[
LD(hi) ≤ E

[
LD
(
AOD

)]
+

ε

2

∣∣∣ G] ≥ ε

8
. (14)

Proof Let OG denote the oracle with evaluations that are equal in distribution to the evaluations
provided by the prover conditioned on event G occurring. By the choice of OD,

E[LD(hi) | G] = E
[
LD
(
AOG

)]
≤ E

[
LD
(
AOD

)]
+ ε/4.

By Markov’s inequality,

P
[
LD(hi) > E

[
LD
(
AOD

)]
+ ε/2

∣∣ G] ≤ P
[
LD(hi) > E[LD(hi) | G] + ε/4

∣∣ G]
≤ E[LD(hi) | G]

E[LD(hi) | G] + ε/4

≤ 1

1 + ε/4
,
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since LD is at most 1. Hence, the complement satisfies

P
[
LD(hi) ≤ E

[
LD
(
AOD

)]
+

ε

2

∣∣∣ G] ≤ ε/4

1 + ε/4
≤ ε

8
,

as desired.

Assumptions:
• Ω is a set, D ∈ ∆(Ω) is the population distribution.
• A is a statistical query algorithm to be verified.
• τ ∈ (0, 1) is the accuracy parameter for statistical queries used by A.
• b ∈ N is an upper bound on the number of statistical query batches generated by A.
• ε, δ ∈ (0, 1) are the desired accuracy and confidence parameters for the verification.
• k = ⌈8 log(4/δ)/ε⌉.
• mV = Θ

(√
s log(bk/δ)τ−2 + log(k/δ)ε−2

)
.

• mP = Θ
(
s3 log(sbk/δτ)τ−2

)
.

• SV , S
′
V ∼ DmV , SP ∼ DmP are independent sets of i.i.d. samples.

• SV = (zV
1 , . . . , z

V
mV

), S′
V = (zV ′

1 , . . . , zV ′
mV

), SP = (zP
1 , . . . , z

P
mP

).

VERIFIER(SV , S
′
V ):

for i ∈ [k]:
hi ← VERIFIERITERATION(SV ) ▷ Protocol 3

i∗ ← argmini∈[k] LS′
V
(hi)

output hi∗

PROVER(SP ):

loop forever:
q ← receive query from verifier

v ← 1
mP

∑
i∈[mP ] q (z

P
i )

send v to verifier

Protocol 2: A PAC verification protocol for statistical query algorithms.
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Assumptions: As in Protocol 2.

VERIFIERITERATION(SV ):
for t← 1, 2, . . . :

simulate A until it sends a batch of queries or produces an output
if A sends a batch of queries qt:

if t ≥ b:
output reject and terminate

at ← Atoms(σ(qt))
send at to prover
receive p̃t from prover
IDENTITYTEST(SV ,at, p̃t, τ)
ṽt ← evaluations for qt induced by p̃t

send ṽt to A
else if A produces output h:

return h

IDENTITYTEST(SV ,at, p̃t, τ):
for j ∈ [mV ]:

ij ← i ∈ [|at|] such that ait(z
V
j ) = 1

execute the distribution identity tester of Theorem 15
with sample I = (i1, . . . , imV ) to distinguish with
probability at least 1− εδ/4b between

TV(p̃t,pt) ≤
τ

2
√
|at|

, and τ ≤ TV(p̃t,pt)

where pt is the distribution that generated I

if identity tester rejects:
output reject and terminate

Protocol 3: A subroutine of Protocol 2.

Appendix C. Concentration of Measure

Theorem 30 (Hoeffding, 1963) Let a, b, µ ∈ R and m ∈ N. Let Z1, . . . , Zm be a sequence of
i.i.d. real-valued random variables and let Z = 1

m

∑m
i=1 Zi. Assume that E[Z] = µ, and for every

i ∈ [m], P[a ≤ Zi ≤ b] = 1. Then, for any ε > 0,

P[|Z − µ| > ε] ≤ 2 exp

(
−2mε2

(b− a)2

)
.
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