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Abstract
The goal of contrasting learning is to learn a representation that preserves underlying clusters by

keeping samples with similar content, e.g. the “dogness” of a dog, close to each other in the space
generated by the representation. A common and successful approach for tackling this unsupervised
learning problem is minimizing the InfoNCE loss associated with the training samples, where each
sample is associated with their augmentations (positive samples such as rotation, crop) and a batch
of negative samples (unrelated samples). To the best of our knowledge, it was unanswered if the
representation learned by minimizing the InfoNCE loss preserves the underlying data clusters, as
it only promotes learning a representation that is faithful to augmentations, i.e., an image and its
augmentations have the same representation. Our main result is to show that the representation
learned by InfoNCE with a finite number of negative samples is also consistent with respect to
clusters in the data, under the condition that the augmentation sets within clusters may be non-
overlapping but are close and intertwined, relative to the complexity of the learning function class.
Keywords: Contrastive learning, Representation learning, Self-supervised learning

1. Introduction

Representations pretrained on partially or completely unlabeled data are becoming ubiquitous
in machine learning applications (Peters et al., 2018; Radford et al., 2021), in large part due to the
availability of large unlabeled datasets and significant computing power offline, and the effectiveness
of self-supervised representation learning algorithms, especially contrastive learning (CL). CL aims
to learn representations that treat natural images similarly to their augmentations, while maximizing
the average distance between random pairs of images. In recent years CL has demonstrated numerous
successes in pretraining representations with unlabeled data that learn meaningful relationships
between data points that generalize well to downstream tasks in computer vision (Hjelm et al., 2018;
Oord et al., 2018; Bachman et al., 2019; Caron et al., 2020; Chen et al., 2020a,b; He et al., 2020;
Henaff, 2020; Li et al., 2020; Misra and Maaten, 2020; Tian et al., 2020a,b) and natural language
processing (Brown et al., 2020; Gao et al., 2021; Su et al., 2021; Radford et al., 2019).

Despite its empirical success, it is not well-understood how CL learns meaningful relationships
between data points. Since data are unlabeled, the only immediate structure in datasets leveraged
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by CL are the sets of images and their augmentations. Without further assumptions, this structure
is insufficient to learn relationships between images across augmentation sets. To circumvent this
issue there are two approaches. The first is to assume that augmentation sets of semantically similar
natural images overlap, i.e. for two images of cats, some of the augmentations of each image are
equivalent (Arora et al., 2019; HaoChen et al., 2021, 2022; Shen et al., 2022; Wang et al., 2022).
However, this assumption is unlikely to hold in practice, as pointed out by recent work (Saunshi
et al., 2022). The second approach is to consider inductive biases of the representation function class
and/or optimization algorithm and use these to argue that only certain types of representations (that
capture semantic relationships) can be learned.

Prior works have initiated the study of how inductive biases of the representation class can
lead to meaningful representations in CL (Saunshi et al., 2022; HaoChen and Ma, 2022), but their
analysis is for the spectral contrastive loss, which is not used in practice. Instead, the vast majority of
CL approaches, including the widely popular SimCLR framework (Chen et al., 2020a), optimize a
loss function based on InfoNCE (Gutmann and Hyvärinen, 2010; Oord et al., 2018). A variety of
works have studied properties of the InfoNCE loss, but due to its unwieldy log-sum structure have
made restrictive assumptions, such as having infinite (Wang and Isola, 2020; Robinson et al., 2020;
Von Kügelgen et al., 2021) or only a single (Tosh et al., 2021; Huang et al., 2021) negative sample(s).

Main Contributions. We are given a collection of clusters of natural images, with each image
associated with augmentations (positive samples such as ‘rotation’) and a finite set of negative samples
(unrelated images). Using the InfoNCE loss, our goal is to learn a d−dimensional representation
g ∈ G, where g = (f1, f2, . . . fd) and {fi} are binary functions mapping images to {−1, 1} (thus
g maps images on the hypercube Hd = {−1, 1}d). Our setting is one where the function class has
bounded expressivity with respect to the augmentation sets, meaning that the augmentation sets
within clusters are intertwined, and hard to separate from the rest of the cluster using functions in F .

(Realizable Setting) Suppose there exists a representation g∗ ∈ G that is: (a) cluster preserving,
and (b) different clusters of images are uniformly mapped over distinct vertices on the hypercube
(qualitatively, class-balance in the image dataset). We show that with any finite number of negative
samples, the representation learned by the InfoNCE loss is cluster-preserving and uniform. Fur-
thermore, this learned representation when composed with a two-layer ReLU head, achieves zero
downstream error on any cluster-preserving binary classification task. Our proof hinges on a novel
Markov Chain construction showing that the InfoNCE loss of any non-uniform representation can be
improved by “blurring” the representation through the Markov Chain transitions. Conversely, we
show that solutions to the InfoNCE loss optimized over an arbitrarily powerful representation class
G⋆ cannot have meaningful downstream performance guarantees on such tasks.

(Agnostic Setting) In the agnostic (non-realizable) case, through sensitivity analysis, we show that
for any close-to-uniform and non-cluster-preserving representation, there exists a representation
that preserves one additional cluster and thus improves the InfoNCE loss. Our proof uses a novel
partitioning of the image space that is of independent interest for future analysis of the InfoNCE loss.

1.1. Related Work

Several works have aimed to explain the success of contrastive learning in recent years. Wang and
Liu (2021) and Wang and Isola (2020) showed empirically that CL encourages aligned and uniform
representations, and improving alignment and uniformity improves downstream performance. The
work in Chen et al. (2021) generalizes the InfoNCE loss to a larger family of losses with alignment
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and uniformity terms weighted according to a hyperparameter. Early theoretical studies attributed
the success of CL to its proclivity to maximize the mutual information between augmentations of
the same image (Bachman et al., 2019), but later work cast doubt on this viewpoint by showing that
optimizing a tighter bound on the mutual information leads to worse performance (McAllester and
Stratos, 2020; Tschannen et al., 2019). The work in (Wang and Isola, 2020) further showed that
solutions to the InfoNCE loss are aligned and uniform in the limit of infinite negative samples per
batch.

A variety of works have studied CL’s ability to recover meaningful clusters or latent variables in
the data (Arora et al., 2019; Tosh et al., 2021; Zimmermann et al., 2021; Ash et al., 2021; Nozawa
and Sato, 2021; HaoChen et al., 2021; Shen et al., 2022; HaoChen et al., 2022; HaoChen and Ma,
2022; Wang et al., 2022; Awasthi et al., 2022; Bao et al., 2022). However, the majority of these
works consider arbitrary function classes, which requires strong assumptions on the connectedness of
augmentation sets within each cluster, such as assuming positive pairs are conditionally independent
given their cluster identity, in order to give downstream guarantees (Saunshi et al., 2022). The work
by HaoChen and Ma (2022) is the most related work to ours, as they study function classes that induce
a similar bias towards preserving clusters as ours without any assumption on the connectedness of
augmentation sets. However, their study is focused on minimizing a spectral contrastive loss which
serves as a surrogate for the more practically used InfoNCE loss. While studying spectral contrastive
loss is enlightening and provides some intuition, it cannot be extended to the InfoNCE loss because
of two major reasons: First, the loss function fails to highlight the role of finite batches of negative
samples, which is a well-studied and key component of the InfoNCE loss (Awasthi et al., 2022; Bao
et al., 2022; Ash et al., 2021; Nozawa and Sato, 2021). Second, their analysis does not translate to our
setting because the key difficulty in our proof is to show that negative samples promote uniformity;
this aspect directly follows with the spectral loss due to the covariance regularizer.

Additional theoretical works have studied the feature learning process of CL with (stochastic)
gradient descent on linear (Tian, 2022a; Ji et al., 2021) and two-layer ReLU neural networks (Wen
and Li, 2021; Tian, 2022b), properties augmentations must satisfy in order for CL to be successful
(Tian et al., 2020b), the role of the projection head in CL (Wen and Li, 2022; Gupta et al., 2022),
and the behavior of contrastive losses in (semi-)supervised settings (Khosla et al., 2020; Zheng
et al., 2021; Chen et al., 2022). Several other works analyze non-contrastive self-supervised learning
methods (Wei et al., 2020; Balestriero and LeCun, 2022; Garrido et al., 2022; Lee et al., 2021).

2. Problem Formulation

Our learning task consists of (i) a pretraining phase – wherein we are not provided supervised
labels but rather only associations between images and (ii) a supervised learning phase in which we
are provided (a few) labeled data points, labeled according to some specific downstream task. During
the pre-training phase, we do not know what the downstream task is. However, we are provided
augmentations of the raw data points that the learner knows should be classified the same way as the
raw data for any downstream task. In a sense, the augmentations can be seen as modifying the data in
a way that leaves the information contained in the data invariant with respect to the downstream tasks.
Ideally, we aim to learn a representation that is invariant to such augmentations so that downstream
learning can be statistically efficient. For interpretability, we will work in the setting of “images”.

Images and augmentations. The images consist of features that are either important for
classification or which function only as irrelevant details. Inspired by (Von Kügelgen et al., 2021),
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we consider an image generation model that consists of (i) content variables denoted by c which
capture innate qualities of the images (e.g., the ‘catness’ of a cat), and (ii) style variables denoted by
s which capture the appearance of the image (e.g., ‘rotation’ and ‘crop’ for creating augmentations to
an image; ‘long tail’ and ‘furry’ for different natural images of dogs). More precisely, each image x
is generated according to x = I(c, s), where I(., .) is a mapping from the space of content and style
variables to the space of images. We assume that the natural images are generated such that their
content variables c belong to the set C and their style variables s belong to the set S◦.

We further consider that there is a set of augmentations Λ, which is a set of functions mapping
natural images to augmented images. An augmented image of an image x is denoted A(x), where
A ∈ Λ. We assume that the augmented image preserves the content of the original image, while its
style may differ from the original image. More precisely, if the original image is given by x = I(c, s),
then its augmented image A(x) satisfies the following property: A(x) = A(I(c, s)) = I(c, s+) for
some s+ ∈ S, where the set S contains S◦. So the augmented images have possibly different style
variables but the same content variables as the natural images. Further, the set of augmented images
of the image x = I(c, s) is called its augmentation set and is defined as A(x) := A(I(c, s)) :=
{A(I(c, s))| A ∈ Λ}, with all images having equal-sized augmentation sets for simplicity. We
typically refer to an image I(c, s) as x and its augmentation I(c, s+) ∼ A(x) as x+, where, for all
sets of images B, ∼ B denotes a random sample drawn uniformly from the set B. We let D denote
the set of all images and their augmentations and D◦ ⊂ D denote the set of all natural images.

Representations and heads. We consider a function class F of binary functions, f(x′) ∈
{−1,+1}, where x′ is either an image x or its augmentation x+. This is a function class with
bounded expressivity (e.g., a class of functions that can be expressed as the thresholded output of
a neuron from a neural network with bounded width and depth). The function class F and the
augmentations Λ define a set of clean functions Fc ⊆ F that separate the data in a way that respects
the augmentations, Fc = {f : f(x) = f(A(x))) ∀x ∈ D◦,A ∈ Λ}. In other words, the binary
function f is clean if it does not separate any image and its augmentations from each other.

We search over d-dimensional representations, denoted by G, such that each coordinate of the
representation is an element of F , i.e., g = (f1, f2, . . . , fd),. Thus a representation g ∈ G := Fd is
simply a concatenation of d binary classifiers, mapping an image x to the vertex of the Rademacher
hypercube1 Hd = {−1, 1}d. Note that each g ∈ G denotes only the representation (e.g., the body
of a neural network). For downstream tasks, a full classifier is formed by composing g with a head
ω ∈ J for some class J of heads (e.g., the final classification layer of a neural network).

Clusters. We consider an equivalence class on content variables ∼ such that

c ∼ c′ ⇐⇒ f(I(c, s)) = f(I(c′, s′)) ∀f ∈ Fc .

We refer to the images in the equivalence classes as clusters Γc, so

Γc = {x : ∃ c′ ∼ c, s such that x = I(c′, s)}.

As an example, suppose that the content c captures the ‘dogness’ of an image. Then, different images
of dogs would have the same content, but have different style variables (e.g., furry, skinny, long ears).

1. Representations in CL often map to the unit hypersphere (Wang and Isola, 2020). Here, we consider a discretized
version of this output space for two reasons: (1) it allows us to construct a naturally restricted representation function
class by extending natural properties of binary classifiers, and (2) it provides a tractable setting for us to show the first
results that InfoNCE prefers cluster-preserving and uniform representations with finite samples, as it is still an open
problem to determine uniform arrangements of finite points on the unit hypersphere (Thomson, 1904).
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Recall that the augmentations of an image also share the same content, but the style might be chosen
from a different set (e.g., rotation, cropping, blur).

Our partition of the space of images into clusters highlights the interplay between the richness of
the function class F and the diversity in the augmentations Λ. A more diverse set of augmentations
generally results in a smaller set Fc, and hence generally increases the size of the clusters. Meanwhile,
a richer class F generally results in a larger Fc, and smaller clusters.

In this work we show conditions under which for a fixed choice of F and Λ, contrastive pre-
training learns the equivalence class. This is useful for solving downstream classification tasks, as
described below.

Goal of pretraining. Ultimately, we aim to find a representation that allows for easily solving
tasks from a set of possible downstream binary classification tasks h ∈ T , where each task h maps
an image to a binary label {−1, 1}. These tasks are assumed to be faithful to the clusters, meaning
that for any pair of images x, x′ belonging to the same cluster, h(x) = h(x′).

Note that during pretraining, the learner does not have any knowledge about which task will be
assigned among the solvable ones. After pretraining, the learner fixes the representation but can learn
a task-specific head when it encounters a downstream task. We define the error a representation g on
the downstream task h ∈ T with respect to the class J ⊆ {ω : Rd → R} of allowed heads as

Lh,J (g) := inf
ω∼J

Px∼D[ω ◦ g(x) ̸= h(x)]. (1)

The error of g on a family of downstream tasks T ⊆ Fc is the worst case error among tasks in T :

LT ,J (g) := sup
h∈T

Lh,J (g). (2)

To summarize, for a task that is realizable with supervision using function class F , we would like to
learn a representation entirely from unlabelled data such that the task on the embedded images is still
realizable for J . The overall motivation is that learning ω ∈ J can generally require fewer labeled
samples than learning the joint model ω ◦ g.

2.1. InfoNCE loss

We denote Ex,x+ := Ex∼D◦,x+∼A(x) and Ex,x+,{x−
i }ℓ := Ex∼D◦,x+∼A(x),{x−

i }ℓ∼Dℓ
◦

for simplic-

ity. The InfoNCE loss we consider is given by2

L(g) = −βEx,x+ [g(x)⊤g(x+)]︸ ︷︷ ︸
alignment

+ Ex,x+,{x−
i }ℓ

[
log

(
eβg(x)

⊤g(x+)+

ℓ∑
i=1

eβg(x)
⊤g(x−

i )

)]
︸ ︷︷ ︸

uniformity

(3)

Following Wang and Isola (2020), we refer to the first term as the alignment term, or the positive
term, and we refer to the second term as the uniformity term or the negative term. By minimizing
the first term, we are maximizing the alignment between the representation of an image and its
augmentation, and by minimizing the second term we are enforcing the representation of different
images to be as different as possible.

2. For ease of exposition we consider the case wherein negative samples are drawn from the set of natural images, as in
(Wen and Li, 2021). Although this may not hold in practice, it greatly simplifies the presentation of our results.
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f1

f2

Cows Cats

Pandas
Dogs

f3

Figure 1: We illustrate a setting with four clusters, and
two augmentation sets within each cluster indicated by
linked rectangles in distinct colors. The clean function
f1 does not split any augmentation or cluster (meaning,
it maps all images from the same augmentation set
alike, and likewise for clusters). f2 splits the cluster of
dogs, and in accordance with Assumption 2, also splits
augmentation sets within that cluster (and is therefore
non-clean). Finally, f3 violates Assumption 2, because
it does not split any augmentation of pandas, yet it splits
the pandas cluster. Images are from the Animals V2
dataset: DeepNets (2022).

The above formulation suggests that the representation learned by minimizing the above loss
forces images and their augmentations to have a similar representation. What we show in the
following sections is a stronger result which guarantees by minimizing the InfoNCE loss, all images
that belong to the same cluster (share the same content) will have a similar representation.

3. Bounded Function Class

The goal of contrastive learning is to learn a representation from unlabeled samples that is useful
for downstream tasks. Recall that the representations we consider map images to vertices on the
Rademacher hypercube Hd. A “good” representation should map images from the same cluster to
the same vertex, and images from distinct clusters to distinct vertices.

Intuitively, this seems possible if images having the same content (i.e., from the same cluster)
along with their set of augmentations are “close and intertwined” (see Figure 1), such that any
function f ∈ F cannot split the cluster without also splitting an image from its augmentation. Note
that we do not need connected clusters with overlapping augmentations (meaning two images have
the same augmentation, which is an unrealistic assumption); merely that the cluster has a complex
geometry relative to the function class.

3.1. Complexity of F Relative to Augmentations

We formalize the notion of bounded expressivity of F relative to the geometry of clusters. We
use this assumption to show in Section 4 that solutions to the InfoNCE loss optimized over G satisfy
useful uniformity and alignment properties that lead to downstream performance guarantees on tasks
that adhere to the clusters. Formally, the function class F and the augmentations Λ define a set of
clean functions Fc ⊆ F that separate the data in a way that respects the augmentations.

Definition 1 (Clean Function) f ∈ Fc is clean ⇐⇒ f(x) = f(A(x))) ∀x ∈ D◦,A ∈ Λ.

In other words, the binary function f is clean if it does not separate any image and its augmentations
from each other. Our main assumption is that if a classifier in F splits a cluster, then it is not clean.

Assumption 2 (Intertwined Augmentations) For all f ∈ F , if f(x) ̸= f(x′) for some x, x′ ∈ Γc,
then f(x′′) ̸= f(A(x′′)) for some x′′ ∈ Γc ∩D◦, where A(x′′) ∈ A(x′′).
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Note that if a classifier does not split any cluster, then it must be clean, since augmentation sets
are contained within clusters. Thus, Assumption 2 implies that f ∈ Fc if and only if f labels all
images with the same content (belonging to the same cluster) alike, in other words it is cluster-
preserving. This assumption holds if the augmentation sets within clusters are close and intertwined
(they cannot be easily split from the rest of the cluster), relative to the complexity of F . Importantly,
the augmentation sets need not overlap, meaning a single image need not be an augmentation
to multiple natural images, consistent with practice (Saunshi et al., 2022). As prior works have
pointed out (Saunshi et al., 2022; HaoChen and Ma, 2022), Assumption 2 or variants on the bounded
complexity of the function class are necessary for the success of CL in the realistic setting in which
the augmentation sets do not overlap.

However, while some condition like Assumption 2 is necessary, it is not clear if this suffices to
show that CL learns useful representations. Consider the example in Figure 1. It may be the case,
for instance, that CL on F does not learn the cluster-preserving classifiers, as in addition to trying
to maximize the similarity between images and their augmentations, CL also tries to minimize the
similarity between negative pairs of images. Thus, it may choose a non-cluster-preserving classifier
such as f2 in an effort to minimize similarity of negative pairs. This would lead to poor downstream
generalization on tasks involving classifying dogs, since f2 separates images of dogs. It thus becomes
critical to quantify the extent to which non-cluster-preserving classifiers must intersect augmentation
sets such that CL will not learn them, as we do in Section 5. Before this, we must show that even if
CL learns a representation consisting of cluster-preserving classifiers, this representation generalizes
well, which may not happen if it maps two or more clusters to the same vertex. For instance, if
CL simply learned d copies of the cluster-preserving classifier f1 in Figure 1, this representation
would not be able to distinguish cows from pandas from dogs on downstream tasks. We thus desire
representations to be both cluster-preserving and uniform such that their mapping is a bijection from
clusters to vertices. Next, we show that when a cluster-preserving and uniform representation is
realizable, CL with the InfoNCE loss learns it, even with finite negative samples per batch.

4. Results for the Realizable Setting

Our first result shows that when the dataset D and representation class G allow for mapping the
data uniformly on the hypercube in a cluster-preserving manner, then the representation learned by
minimizing the InfoNCE loss over G results in such a mapping. We first formally define the terms
uniform and cluster-preserving below.

Definition 3 (Cluster-Preserving) A cluster-preserving representation g ∈ G is one that for all
c ∈ C and all x, x′ ∈ Γc, g(x) = g(x′).

Definition 4 (Uniform) A uniform representation g ∈ G satisfies Px∼D◦ [g(x) = v] = 2−d for all
v ∈ Hd.

Next, our results in this section assume a cluster-preserving and uniform representation exists in G.

Assumption 5 (Realizability) There exists a g ∈ G that is both cluster-preserving and uniform.

In order for there to exist a representation that is both cluster-preserving and uniform, there must
be an integral multiple of 2d clusters in the dataset and they must be balanced. Before stating our
main result, we must prove a key lemma that shows that among all “clean” representations, those
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that minimize the InfoNCE loss are uniform. We define Gc ⊆ G as the set of clean representations in
G consisting of d concatenated clean classifiers from Fc.

Lemma 6 If Assumptions 2 and 5 hold, β > c log d for an absolute constant c, d > 3, and ℓ ≥ 1,
then g∗ ∈ argmin

g∈Gc

L(g) if and only if g∗ is uniform.

Proof [Proof sketch] Since the optimization problem is over representations composed of clean
functions, we know that for all g ∈ Gc, the term g(x)⊤g(x+) in the InfoNCE loss is exactly equal to
d. Hence, by regrouping the terms in (3), the optimization problem simplifies to:

min
g∈Gc

L(g) = min
g∈Gc

{
L̂(g) := E

x,x+,{x−
i }ℓ

[
log

(
1 +

ℓ∑
i=1

eβg(x)
⊤g(x−

i )−βd

)]}
(4)

By Assumption 5, at least one uniform representation belongs to the set Gc. We show that it
minimizes the loss L̂(g). To do so, we observe that we can think of minimizing L̂(g) as an
optimization with respect to distributions over the hypercube induced by g. To better understand
this connection, consider the random variable g(x) for x ∼ D◦. Further, denote the corresponding
induced distribution over g(x) as Dg, i.e., Dg is a distribution over the vertices of the hypercube Hd.
Letting y = g(x), the objective above can now be rewritten in terms of these distributions:

min
{Dg :g∈Gc}

{
L̃(Dg) := E

y,{y−i }ℓ∼Dg

[
log

(
1 +

ℓ∑
i=1

eβy
⊤y−i −βd

)]}
(5)

Suppose the the minimizing distribution was not uniform over the hypercube, i.e. for D∗
g ∈

argmin{Dg :g∈Gc} L̃(Dg), D∗
g ̸= U , where U is the uniform distribution over the hypercube Hd. For

any sample y, {yi} ∼ Dg, consider a random walk that starts from this sample and evolves over time.
For this random walk, denote the variables at time t by yt, {yti} where yt (and similarly yti for all
i), with y0 = y (correspondingly y0i = yi). The random walk evolves from yt−1 to yt by flipping a
uniformly random bit of yt−1 with probability 1

2 , and with probability 1
2 , not changing anything; this

construction is independent across all samples. We now observe that this construction induces an
irreducible, aperiodic Markov chain with uniform stationary distribution over the hypercube.

With this construction, the critical step in our proof is a surprising “monotonicity” property over
time: we show in Appendix A that each transition over time decreases the function value as long as
Dg is not uniform. Intuitively, “blurring” the distribution Dg decreases the objective.

This result implies that g is a minimizer of the loss L̂(g) if and only if g is a uniform representation.
Consequently, we obtain that among all the representations in Gc, the ones that are uniform minimize
the loss in (5) and the statement of Lemma 6 follows. See Appendix A.1 for details.

Using Lemma 6, we show our main result that all minimizers of the InfoNCE loss are uniform and
cluster-preserving. To the best of our knowledge, this is the first result characterizing the minimizers
of the InfoNCE loss with a finite batch of negative samples. The proof is provided in Appendix A.2.

Theorem 7 If Assumptions 2 and 5 hold, and we have d > 3, ℓ ≥ 1, and β > c log d for an absolute
constant c, then a representation g∗ ∈ G is a global minimizer of the loss L(g) optimized over G if
and only if it is uniform and cluster-preserving.
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4.1. Downstream Guarantees

Next we translate the aforementioned representation learning results for G into downstream
performance guarantees. We consider the class of heads consisting of single-layer ReLU neural
networks with m neurons. Formally,

JReLU := {ωa,W,b : Rd → R s.t. ωa,W,b(g(x)) = a⊤ReLU(Wg(x)−b), a, b ∈ Rm,W ∈ Rm×d},

where ReLU(h) = max(h, 0).

Theorem 8 Suppose there are exactly 2d clusters, and the representation g∗ ∈ argming∈G L(g)
under Assumptions 2 and 5, β > c log d for an absolute constant c and d > 3. Then for any set of
cluster-preserving downstream tasks T , LT ,J ReLU(g

∗) = 0.

Theorem 8 shows that any representation learned by minimizing the InfoNCE loss achieves zero
downstream error on any task from Fc with a sufficiently wide two-layer ReLU head.

Next, we show that controlling the expressivity of G is necessary to achieve meaningful down-
stream performance guarantees. Suppose that instead of optimizing the InfoNCE loss over G, we
instead optimized it over a representation class G⋆ := Fd

⋆ where F⋆ := {f : D → {−1, 1}} consists
of all classifiers mapping from images to binary labels.

Theorem 9 Let β > c log d for an absolute constant c and d > 3. There exists a dataset D that
satisfies Assumptions 2 and 5 for G, representation g ∈ argming′∈G⋆ L(g′), and a downstream task
h ∈ Fc such that Lh,J⋆(g) ≥ 0.5, where J⋆ = {ω : Hd → {−1, 1}} is the set of all mappings from
Hd → {−1, 1}.

5. Results for the Agnostic Setting

In this section, we consider the setting in which there may not exist any cluster-preserving and
uniform representation (that is, Assumption 5 is violated). We show that even in this setting, the
InfoNCE loss prioritizes cluster-preserving representations. Specifically, we show that if an optimal
solution of the InfoNCE loss on G is close to uniform, then it must also be cluster-preserving. This
result requires two new assumptions that we describe below.

First, the function class F must be closed under operations that make classifiers cluster-preserving,
in the sense that if f ∈ F and f does not preserve the cluster Γc, then the two perturbations of f that
preserve Γc (by assigning ±1 to all images within it) and do not change f otherwise are also in F .

Assumption 10 (Expressivity of F) For any cluster Γc, if any f ∈ F is such that f(x) ̸= f(x′)
for some x, x′ ∈ Γc, then f ′ ∈ F and f ′′ ∈ F , where f ′(x) = f ′′(x) = f(x) ∀x /∈ Γc, and
f ′(x) = 1, f ′′(x) = −1 ∀x ∈ Γc.

Remark 11 This assumption is used in the analysis to perturb candidate representations that are
not cluster-preserving towards improved representations that are cluster-preserving but have a lower
loss. If F is expressive enough to isolate each cluster Γc (that is, if χ{x ∈ Γc} ∈ F for all c), then
for Assumption 10 to be satisfied, it is sufficient for F to be closed under negations and the ’OR’
operations, that is, if f ∈ F =⇒ ¬f ∈ F and f1, f2 ∈ F =⇒ f1 ∧ f2 ∈ F .

9
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Next we define a regularity condition of a function class and augmentation set that captures the
extent to which non-cluster-preserving classifiers classify images in positive pairs differently within
clusters that they intersect. So far, we have only assumed that non-cluster-preserving classifiers
misclassify at least one positive pair differently within any cluster they intersect (Assumption 2).
However, for regular classes of binary classifiers and intertwined augmentation sets within clusters,
we can expect that the number of positive pairs split in a cluster that are split by any binary classifier
scales with the number of negative pairs in the same cluster that are split by the classifier. For a set of
images B ⊆ D, we employ the notations ∥B∥◦ := Px∼D◦ [x ∈ B] and ∥B∥ := Px∼D\D◦ [x ∈ B].

Definition 12 (δ-Regularity) For any f ∈ F , let Σf := {c ∈ C : ∃x, x′ ∈ Γc s.t. f(x) ̸= f(x′)}
be the set of content variables corresponding to clusters split by f . For all c ∈ Σf and σ ∈ {−1, 1},
define

f (c,σ)(x) :=

{
f(x) x /∈ Γc

σ x ∈ Γc

as the classifier that outputs the same label as f on all images not in Γc and σ on Γc. Further define

∆f,c := min
σ∈{−1,1}

∥{x ∈ Γc,◦ | f(x) ̸= f (c,σ)(x)}∥◦

as the minimum measure of the set on which fc,σ and f differ among all possible choices of
σ ∈ {−1, 1}. Then (F ,Λ) is δ−regular if for all c ∈ Σf ,

∥{A(x) : A ∈ Λ, x ∈ Γc,◦, f(x) ̸= f(x+)}∥ ≥ δ∆f,c.

Next, we state our regularity assumption and the result for the agnostic case.

Assumption 13 (δ-Regularity of (F ,Λ)) The pair (F ,Λ) is δ−regular with δ ≥ 0.4.

Remark 14 [Discussion of Assumption 13] Assumption 13 can be interpreted as a relationship
between mislabelling of data and generalization error in the supervised learning problem associated
with F . Specifically, suppose f (c,σ)(x) := f ′(x) is a perfect classifier. Consider an entity that
mislabels images before giving them to a supervised learner using class F . For some f , the quantity
∥{x ∈ Γc,◦ | f(x) ̸= f ′(x)}∥◦ for some cluster can be interpreted as a “mislabelling budget”. The
classifier f can be thought of solving a dataset in which the {x ∈ Γc,◦ | f(x) ̸= f ′(x)} has been
mislabelled. Further, suppose generalization loss is given by the measure of augmented images (recall
that these are not provided during training in the supervised problem considered in this remark) that
are misclassified by f . This is precisely the quantity ∥{A(x) : A ∈ Λ, x ∈ Γc,◦, f(x) ̸= f(x+)}∥.
To summarize, this assumption says that training on the “true” labels, results in good generalization,
but classifying a mislabelled dataset results in a generalization error that scales in the size of the
mislabelling.

Note that this is related to Assumption 2, which simply states that δf > 0 whenever ∆f,c > 0.
Assumption 2 is sufficient in the realizable setting.

Theorem 15 Suppose Assumptions 10 and 13 hold and g = [f1, ..., fd] is not cluster-preserving with
minj∈[d]minc∈Σfj

Px,x′∼D[x, x
′ ∈ Γc, fj(x) ̸= fj(x

′)] ≥ ϵ > 0. Let ℓ ≥ c
ϵd2

d, β ≥ c log( cϵ )2
d for

10
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Ev1 Ev2

Qv2

Qv3

Qv1

Qv4

f1

f′￼1

f2

Z

Γc

R
+1
−1

+1
−1

Figure 2: Example partitioning of images with d = 2 andD ⊂ R2.
Green triangles denote natural images and solid black ellipses de-
note their corresponding augmentation sets (here we have drawn
the augmentation sets as compact convex sets for ease of pre-
sentation, but in reality they may be non-simply connected and
non-smooth). Clusters are indicated by dotted black ellipses. The
non-cluster-preserving representation g = (f1, f2), and we con-
struct g′ = (f ′1, f2) by making f1 preserve the cluster Γc. The
region R consisting of augmentations in Γc misclassified by f1
is shaded red, and the set E of images which are classified dif-
ferently by f1 and f ′1 is indicated by blue diagonal lines. By
Assumption 13, ∥R∥ ≥ δ∥E∥◦, where ∥B∥ := Px∼D\D◦ [x ∈ B]
and ∥B∥◦ := Px∼D◦ [x ∈ B] for any set of images B ⊆ D .

a sufficiently large constant c. Moreover, suppose g is close to a uniform representation in the sense
that3 Px∼D◦ [g(x) = v] ≥ 10

cd2d
or Px∼D◦ [g(x) = v] ≤ ϵ

100cd22d
for all v ∈ Hd. Then g is not a

minimizer of the InfoNCE loss.

Proof [Proof sketch of Theorem 15] For a non-cluster-preserving representation g that is “close”
to a uniform representation, we construct a nearby representation g′ by changing one coordinate
of g such that it preserves one additional cluster, and show that the resulting g′ achieves smaller
InfoNCE loss than g. Suppose WLOG that f1 does not preserve the cluster Γc. Further, let f (c,σ)1 be
the smallest perturbation of f1 that preserves Γc, as defined in Definition 12. Denote f ′1 = f

(c,σ)
1 . By

Assumption 10, f ′1 ∈ F . Construct g′ = [f ′1, f2, . . . , fd] ∈ G. Note that g′ is equivalent to g on all
but one coordinate, and the one differing coordinate differs only on one cluster.

To characterize the variation in the InfoNCE loss when moving from g to g′, we first consider a
specific partition of the space of images defined based on the representations g and g′. In particular,
for a given vertex v ∈ Hd, consider the set Qv := {x ∈ D : g(x) = v, g′(x) = v} which denotes the
set of images that both g and g′ map to vertex v, and the set Ev := {x ∈ D : g(x) = v, g′(x) ̸= v}
which denotes the set of images that g maps to v and g′ maps to another vertex. Considering these
definitions, the set Q := ∪v∈Hd

Qv corresponds to the set of all images that g and g′ map to the same
vertex, while E := ∪v∈Hd

Ev denotes the set of all images which g and g′ map to different vertices.
Based on this construction, it is not hard to observe that for any v ̸= v′ the sets Qv, Qv′ , Ev, and Ev′

are disjoint, and each image belongs to either some Qv or Ev. Hence, the concatenation of these
sets partitions the space of images. Figure 2 illustrates this partition for a special case with d = 2.
The above partition is critical as we divide our sensitivity analysis into multiple cases based on the
location of the positive and negative images in this partition.

Let us define L+ and L− as the alignment and uniformity losses in (3), respectively. We refer
to L+ as the positive part of the loss as it deals with positive samples (augmented images), and
we refer to L− as the negative part of the loss as it contains negative samples. To prove that
moving from g to g′ decreases the loss, i.e., L(g) − L(g′) > 0, we show that the amount that

3. Note that this near-uniformity condition allows for representations that for each vertex put mass at least a constant
factor of 1

d
times 2−d, or essentially treat the vertex as inactive, which allows for the case wherein the number of

clusters is less than 2d and some vertices are inactive for cluster-preserving representations.

11



PARULEKAR COLLINS SHANMUGAM MOKHTARI SHAKKOTTAI

the positive part of the loss decreases is more than the amount the negative part might increase:
L+(g)− L+(g′) > L−(g′)− L−(g). To do so, first, note that the variation in the positive part is

L+(g)− L+(g′) = 2β
(
P
[
x ∈ Q, x+ ∈ E

]
+ P

[
x ∈ Q, x+ ∈ E

])
. (6)

This holds as βg(x)⊤g(x+) = βg(x)′⊤g′(x+) except for the cases that x ∈ Q, x+ ∈ E or x ∈
Q, x+ ∈ E. In these two cases, they differ by 2β. Note that the augmentations that belong to either
of these two cases lie in the area shaded red in Figure 2. We refer to the set of augmentations in this
region as R, in other words, R is the set of augmentations in Γc that are classified differently than
their natural image by f1. Thus, we can write L+(g)− L+(g′) = 2β∥R∥.

Next, we consider the difference in negative parts of the loss. To bound this difference, we
leverage the partitioning of the space of images defined above to decompose the variation of the
losses based on the set that image x belongs to. In particular, if we define the function

L−
B(g) := Ex,x+,{x−

i }ℓ

[
χ(B) log

(
eβg(x)

⊤g(x+) +

ℓ∑
i=1

eβg(x)
⊤g(x−

i )
)]

for any event B, where χ(B) is the indicator random variable for the event B, then using the fact
that each image x either belongs to one of the Qv’s or Ev’s we can write

L−(g′)− L−(g) =
∑
v∈Hd

[
L−
{x∈Qv}(g

′)− L−
{x∈Qv}(g)

]
+
[
L−
{x∈Ev}(g

′)− L−
{x∈Ev}(g)

]
, (7)

Since the cases with x ∈ Ev utilize similar analysis for those with x ∈ Qv, we focus on the x ∈ Qv

cases here and defer the x ∈ Ev cases to Appendix B.
To analyze L−

{x∈Qv}(g
′)− L−

{x∈Qv}(g), we first observe that this difference is non-positive for a
subset of theQv’s. Note in Fig. 2 that if x belongs toQv1 orQv2 , then moving from f1 to f ′1 decreases
the representation similarity for some pairs of negative samples (those with x−i ∈ E) while keeping
the rest the same. So, the negative part of the loss cannot increase going from g to g′ if x lies in either
Qv1 orQv2 . We formally define this set ofQv’s as Z := {Qv : f ′1(x) ̸= f ′1(x

−) ∀x ∈ Qv, x
− ∈ Ev}.

At a high level, the reason this definition implies the negative part of the loss does not increase if
x ∈ Qv ∈ Z is because f1 and f ′1 must agree on Qv ∈ Z and disagree on E, so since f ′1 differs on
Qv ∈ Z and E, f1 must agree on these sets. Thus, the similarity between negative pairs consisting
of x ∈ Qv ∈ Z and x−i ∈ E diminishes when moving from g to g′. Thus, we have∑

v∈Hd

L−
{x∈Qv}(g

′)− L−
{x∈Qv}(g) ≤

∑
v∈Hd

L−
{x∈Qv /∈Z}(g

′)− L−
{x∈Qv /∈Z}(g) (8)

Now, for each event {x ∈ Qv /∈ Z}, we consider two cases depending on the number of negative
samples in Qv. (1) If there is at least one negative sample x−i ∈ Qv, then g′(x) = g′(x−i ) = g(x) =
g(x−i ), so both the log-sums in L−

{x∈Qv /∈Z}(g
′) and L−

{x∈Qv /∈Z}(g) are dominated by eβd terms and
the losses do not significantly differ (using that log-sum is approximately a max operation). (2) If no
negative samples lie inQv, then the dominant terms in the log-sum for L−

{x∈Qv /∈Z}(g
′) may be a factor

of e2β larger than the dominant terms for L−
{x∈Qv /∈Z}(g), requiring a sharp analysis to control the

probability these events occur. Letting n1,v denote the number of negative samples in Qv, we define
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these two cases above as Bv,1 := {x ∈ Qv /∈ Z, n1,v > 0} and Bv,2 := {x ∈ Qv /∈ Z, n1,v = 0},
respectively. Note that they form a partition of {x ∈ Qv /∈ Z}, so we have

L−
{x∈Qv /∈Z}(g

′)− L−
{x∈Qv /∈Z}(g) =

2∑
j=1

L−
Bv,j

(g′)− L−
Bv,j

(g).

We detail each case below, where n2 is the number of negative samples in E.
Case 1: B1,v := {x ∈ Qv /∈ Z, n1,v > 0}. In this case the dominant terms in the log sums for

L−
B1,v

(g′) and L−
B1,v

(g) are both eβd, although the losses may differ in the number of such terms,
which can be, in the worst case, n1,v + n2 + 1 for g′ and n1,v for g. This is because g and g′ can
disagree on at most n2 negative samples, and they can also disagree on the positive sample. Thus,

L−
B1,v

(g′)−L−
B1,v

(g)≤ E
[
χ(B1,v) log

(n1,v+n2+1
n1,v

)]
≤ E[χ(B1,v)

2(n2 + 1)

n1,v + 1
],

where the last inequality follows using log(1 + x) ≤ x. We bound E[χ(B1,v)
2(n2+1)
n1,v+1 ] by writing the

trinomial expansion of the expectation (note that the joint distribution of (n1,v, n2) is trinomial with
parameters (∥Qv∥◦, ∥E∥◦)), and further simplifying to result in an upper bound of ∥E∥◦. Importantly,
this bound is O(∥R∥) by Assumption 13 and independent of β, so we control it by making β large
enough.

Case 2: B2,v := {x ∈ Qv /∈ Z, n1,v = 0}. Since here there is no shared dominant eβd term
in the log-sums for L−

B2,v
(g′) and L−

B2,v
(g), the dominant terms for g′ may involve strictly larger

similarities than those for g, corresponding to x−i ∈ E and x+ ∈ E (the only samples on which g′

and g can disagree). These events are bounded depending on whether n2 = 0. If n2 = 0, the loss of
g′ exceeds that of g iff g′(x)⊤g′(x+) = g(x)⊤g(x+) + 2, which occurs iff x+ ∈ E. If n2 > 0, the
loss can increase by 2β regardless of the value of x+. Combining these sub-cases yields

L−
B2,v

(g′)− L−
B2,v

(g) ≤ 2βP(x ∈ Qv /∈ Z, x+ ∈ E)P(n1,v = 0, n2 = 0)

+ 2βP(x ∈ Qv /∈ Z)P(n1,v = 0, n2 > 0).

For each term above, we need to show that the coefficient of 2β is o(∥R∥) even after it is summed
over v. Note that both terms scale with the probability that x ∈ Qv /∈ Z and no negative samples
are in Qv. To control this probability we leverage that the distribution induced by g is close to
uniform in the sense that every “active” vertex v has mass P[g(x) = v] = Ω̃( 1

d2d
). We use this fact

to bound P[x ∈ Qv]. Note that the set of images that g maps to v is Qv ∪ Ev, yet for all Qz /∈ Z,
Ev = ∅ since, at a high level, f1 must separate these Qv from E. So, P[g(x) = v] = P[x ∈ Qv]
for all Qv /∈ Z. Therefore, we can show that with large ℓ it is highly unlikely that x ∈ Qv /∈ Z
and none of the negative samples are in Qv. To complete the bounds, we leverage the facts that
P[x ∈ Qv /∈ Z, x+ ∈ E] scales with ∥R∥ for the first term, and P[n2 > 0] scales with ∥E∥◦ for the
second term, where ∥E∥◦ = O(∥R∥) by Assumption 13.

After performing a similar analysis for {x ∈ Ev} and summing the resulting bounds over
{v ∈ Hd}, as in (6), we obtain L−(g′)− L−(g) < 2β∥R∥ = L+(g)− L+(g′).

Theorem 15 shows that for large ℓ and β, all minimizers of the InfoNCE loss that are near-uniform
must be cluster-preserving regardless of the sizes of each cluster or the number of clusters. However,
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it does not rule out that there could be a highly non-uniform and non-cluster-preserving optimal
representation. In Appendix B.1, we show that if we re-weight the alignment and uniformity losses
in the InfoNCE loss, we can ensure that all minimizers of the InfoNCE loss are cluster-preserving.

6. Conclusion

We study properties of minimizers of the InfoNCE loss optimized over function classes with
restricted complexity relative to the complexity of augmentations in the dataset, in realistic settings
with disjoint augmentation sets and finite negative samples. Our results show that such representations
are uniform and cluster-preserving in the realizable setting, and must be cluster-preserving if they
are close to uniform in the agnostic setting. We believe that our novel analytical tools, namely our
stochastic argument for the optimality of representations and our inverse partitioning of the space of
images, may be of use for future studies of the InfoNCE loss.
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Appendix A. Proof of Theorem 7

We prove Theorem 7. To do so, we first prove Lemma 6, and use this to prove our main result.

A.1. Proof of Lemma 6

Lemma 16 (Lemma 6 Restated) If Assumptions 2 and 5 hold, β > c log d for an absolute constant
c, d > 3, and ℓ ≥ 1, then g∗ ∈ argmin

g∈Gc

L(g) if and only if g∗ is uniform.

Proof To prove this claim we first note that since we are optimizing over Gc and g(x) = g(x+) for
all x ∈ D◦, x

+ ∈ A(x) and g ∈ Gc, the optimization problem ming∈Gc L(g) is equivalent to

min
g∈Gc

L̂(g) = Ex,{x−
i }ℓ

[
log

(
1 +

ℓ∑
i=1

eβg(x)
⊤g(x−

i )−βd

)]
. (9)

Note that we can think of this as an optimization over distributions over the hypercube induced by
g. That is, consider the random variable Y supported on the hypercube that is given by Y = g(X)
for X ∼ D◦, and denote its distribution as Dg. Using this notation, the optimization above can be
rewritten in terms of distributions

min
D∈{Dg :g∈G}

L̃(D) = Ey,{ȳi}ℓ∼D

[
log(1 +

ℓ∑
i=1

eβy
⊤ȳi−βd)

]
.

where ȳi corresponds to the representation of the i-th negative sample, and here we overload notation
by using ∼ D to denote an i.i.d. draw from the distribution D.

Next, we define a Markov chain as follows. We begin with a fresh set of samples denoted by
y0, ȳ01, . . . , ȳ

0
ℓ that are drawn i.i.d. from the distribution D0 = D. At each step, for each sample, we

either with probability 1
2 flip one bit uniformly at random, or with probability 1

2 we do not change it.
Concretely, we take for all i a random variable ji,t ∈ [d] (both uniformly random and independent of
each other and every other such sample) and set (ȳti)ji,t = −(ȳt−1

i )ji,t . After this operation, each
yti (and y) can be considered to be an i.i.d. drawn from Dt, where Dt is another distribution over
Hd. We show that L(Dt−1) > L(Dt) if Dt−1 is not uniform. Since {Dt}t converges to the uniform
distribution by Lemma 19, these two arguments together imply the claim of Lemma 6.

To show L(Dt−1) > L(Dt) for the case that Dt−1 is not the uniform distribution, considering
the definition of L we need to study the variation in the inner products between the vectors (yt, ȳti)
when we move from one distribution to another. Note that as these vectors are binary vectors, their
inner product can be written as a function of their Hamming distances. More precisely, for any pair
(y, y′) we have y⊤y′ = d − 2h(y, y′), where the Hamming distance between them is defined as
h(y, y′) :=

∑ℓ
j=1 χ{yj ̸= y′j} or the number of bits that are different in the two points y, y′ (note

that χ{U} is the indicator variable for the event U ).
For ease of notation we let hti := h(yt, ȳti) for all i, t. Due to the fact that each of the ȳti’s are

independent and identically distributed and are evolving according to a Markov chain, the hti’s also
evolve according to a Markov chain. In particular, for every distribution Dt over Hd that describes
the distribution of each ȳti , there is induced a distribution D̃t

h over [d] that specifies the distribution
for hti. By direct computation, one can check that hti has the following transition kernels which differ
for different values of hi:
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For 2 ≤ ht−1
i ≤ d− 2 :

hti →



ht−1
i − 2 w.p. (ht−1

i )(ht−1
i −1)

4d2

ht−1
i − 1 w.p. ht−1

i
2d

ht−1
i w.p. 1

4 +
(ht−1

i )(d−ht−1
i +1)+(d−ht−1

i )(ht−1
i +1)

4d2

ht−1
i + 1 w.p. d−ht−1

i
2d

ht−1
i + 2 w.p. (d−ht−1

i )(d−ht−1
i +1)

4d2

For ht−1
i = 1 :

1 →


0 w.p. 1

2d

1 w.p. 1
4 + 1

4d + 2(d−1)
4d2

2 w.p. d−1
2d

3 w.p. (d−1)(d−2)
4d2

(10)

For ht−1
i = d− 1 :

1 →


d w.p. 1

2d

d− 1 w.p. 1
4 + 1

4d + 2(d−1)
4d2

d− 2 w.p. d−1
2d

d− 3 w.p. (d−1)(d−2)
4d2

For ht−1
i = 0 :

0 →


0 w.p.14 + 1

4d

1 w.p.12
2 w.p.d−1

4d

(11)

For ht−1
i = d :

d→


d w.p.14 + 1

4d

d− 1 w.p.12
d− 2 w.p.d−1

4d

For ease of notation we drop the t superscripts and refer to quantities at time t − 1 without
any superscript, and quantities at times t with a ′ superscript, e.g. Dt−1 as D and Dt as D′, for the
remainder of the proof.

Next, let h = [h1, . . . , hℓ] denote the vector of concatenated Hamming distances between y and
{ȳi}ℓi=1. Using the above definitions, and the fact that d− y⊤ȳi is twice of the hamming distance
between y and ȳi the loss L̃ can be written as

L̃(D) = Ey,{ȳi}ℓ∼D

[
log

(
1 +

ℓ∑
i=1

eβ(y
⊤ȳi−d)

)]
= Eh∼D̃h

[
log

(
1 +

l∑
i=1

e−2βhi

)]
Now to characterize the difference between L̃(D) and L̃(D′) we need to study the evolution of the
distribution of the Hamming distance h from D̃h to D̃′

h, i.e.,

L̃(D′)− L̃(D) = Eh′∼D̃′
h

[
log

(
1 +

l∑
i=1

e−2βh′
i

)]
− Eh∼D̃h

[
log

(
1 +

l∑
i=1

e−2βhi

)]

20



INFONCE RECOVERS CLUSTER-PRESERVING REPRESENTATIONS

For each i, consider the random variable si = h′i − hi that indicates which of the transitions is
undertaken by hi, and let s := [s1, . . . , sℓ] be its concatenation. Note that each si takes values in
{−2,−1, 0, 1, 2} and its distribution depends on the value of hi, defined according to the transition
kernel of hi defined above. Given this, we can express L̃(D′) as

L̃(D′) = Eh∼D̃h,s

[
log 1 +

ℓ∑
i=1

e−2β(hi+si))

]

Now we consider the difference L̃(D′)−L̃(D). According to the above definitions, this difference
can be written as

L̃(D′)− L̃(D)

= Eh∼D̃h,s

[
log

(
1 +

l∑
i=1

e−2β(hi+si)

)
− log

(
1 +

l∑
i=1

e−2βhi

)]

=
l∑

i=1

Eh∼D̃h,s

[
log

(
1 +

i∑
j=1

e−β(hj+sj) +
l∑

j=i+1

e−2βhj

)

− log

(
1 +

i−1∑
j=1

e−2β(hj+sj) +
l∑

j=i

e−2βhj

)]
(12)

where (12) follows from telescoping over each negative sample indexed by i. Now if we take out the
i-th term of each of the above two expressions the difference can be written as

f(D′)− f(D)

=
l∑

i=1

Eh∼D̃h,s

[
log

(
1 +

i−1∑
j=1

e−2β(hj+sj) +
ℓ∑

j=i+1

e−2βhj + e−2β(hi+si)

)

− log

(
1 +

i−1∑
j=1

e−2βhj +
ℓ∑

j=i+1

e−2βhj + e−2βhi

)]

=
l∑

i=1

Eh−i,si Ehi∼D̃h,si

[
log

(
1 +

i−1∑
j=1

e−2β(hj+sj) +
ℓ∑

j=i+1

e−2βhj + e−2β(hi+si)
)

− log

(
1 +

i−1∑
j=1

e−2β(hj+sj) +
ℓ∑

j=i+1

e−2βhj + e−2βhi

)]

To show that the RHS above is strictly less than 0 when D is not uniform, it is sufficient to
show that each term of the sum is strictly less than zero. To do this, we show that the inner
expectation is strictly negative. In other words, all that remains to prove is that for all instances of
C−i := 1 +

∑i−1
j=1 e

−2β(hj+sj) +
∑ℓ

j=i+1 e
−2βhj , each of the terms satisfies

Ehi∼D̃h,si

[
log

(
C−i + e−2β(hi+si)

)
− log

(
C−i + e−2βhi

)]
< 0 (13)
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when D is not uniform. Once we have this result, the claim that f(D′)− f(D) < 0 holds.
From now on, for ease of notation, we replace C−i by C. To prove the claim in (13), we first

introduce the function ∆C(h) defined as

∆C(h) := Esi

[
log
(
C + e−2β(h+si)

)
− log

(
C + e−2βh

)]
= Esi

[
log
(
1 +

e−2β(h+si)

C

)
− log

(
1 +

e−2βh

C

)]
.

Considering this definition the claim in (13) can be translated into

d∑
k=0

Ph∼D̃h
[h = k]∆C(h) < 0. (14)

To show this, it is easiest to compare this expression with the analogous expression in the case
that D is uniform. That is y, {ȳi}ℓi=1 are drawn from the uniform distribution U . We let Ũh denote
the distribution on [d] of Hamming distances induced by U . By the stationarity of the uniform
distribution (Lemma 19), the distribution of h′i = hi + si is identical to that of hi if hi is drawn from
a uniform distribution. Thus we have the following result:

Ehi∼Ũh,si

[
log

(
C−i + e−2β(hi+si)

)
− log

(
C−i + e−2βhi

)]
= Ehi

′∼Ũ ′
h

[
log

(
C−i + e−2β(h′

i)

)]
− Ehi∼Ũh

[
log

(
C−i + e−2βhi

)]
= 0, (15)

Next, we show that
∑d

k=0 Ph∼D̃h
[h = k]∆C(h)−

∑d
k=0 Ph∼Ũh

[h = k]∆C(h) < 0, which by

(15) immediately implies
∑d

k=0 Ph∼D̃h
[h = k]∆C(h) < 0. To achieve this we invoke Lemmas 17

and 18, which describe the behavior of Ph∼D̃h
[h = k]∆C(h) −

∑d
k=0 Ph∼Ũh

[h = k]∆C(h) and
∆C(k), respectively. Using these lemmas we obtain:

d∑
k=0

Ph∼D̃h
[h = k]∆C(k)−

d∑
k=0

Ph∼Ũh
[h = k]∆C(k)

≤
(
Ph∼D̃h

[h = 0]− Ph∼Ũh
[h = 0]

)
∆C(0)

+
∑
k>0

(
d

k

)(
Ph∼D̃h

[h = 0]− Ph∼Ũh
[h = 0]

)
∆C(k) (16)

=
(
Ph∼D̃h

[h = 0]− Ph∼Ũh
[h = 0]

)∑
k≥0

(
d

k

)
∆C(k) (17)

< 0 (18)

where (16) holds by Lemma 17-3, (17) follows by simply combining terms, and (18) holds by
Lemma 17-2, which states that Ph∼D̃h

[h = 0]− Ph∼Ũh
[h = 0] > 0, and Lemma 18, which states

that
∑

k≥0

(
d
k

)
∆C(k) < 0. This completes the proof.
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Lemma 17 For any the distribution D̃h on [d] induced by any non-uniform distribution D on Hd,
the following are true:

1. Ph∼Ũh
[h = k] =

(
d
k

)
Ph∼Ũh

[h = 0]

2. Ph∼D̃h
[h = 0]− Ph∼Ũh

[h = 0] > 0

3. Ph∼D̃h
[h = k]− PY∼U [h = k] <

(
d
k

)(
Ph∼D̃h

[h = 0]− PY∼U [h(y, Y ) = k]
)

Proof For any vertex v ∈ Hd, we let pv := Py∼D[y = v] for ease of notation.

1. Note that for any k ∈ [d],

Ph∼Ũh
[h = k] = Py,y′∼U [h(y, y

′) = k] = Py∼U [h(w, y) = k] (19)

for any fixed vertex w ∈ Hd by the symmetry of the uniform distribution. Then

Ph∼Ũh
[h = k] = Py∼U [h(w, y) = k]

=
∑

v∈Hd:h(w,v)=k

Py∼U [y = v]

=
∑

v∈Hd:h(w,v)=k

1

2d

=

(
d

k

)
1

2d
,

which implies that Ph∼Ũh
[h = 0] = 1

2d
.

2. Using the above observation that Ph∼Ũh
[h = 0] = 1

2d
, we have

Ph∼D̃h
[h = 0]− Ph∼Ũh

[h = 0] =
∑
v∈Hd

(
p2v −

1

22d
)

=
∑
v∈Hd

(
p2v −

2pv
2d

+
1

22d
)
+
∑
v∈Hd

(
− 2

22d
+

2pv
2d
)

=
∑
v∈Hd

(
pv −

1

2d
)2

> 0

where the strict inequality holds since D is not uniform.

3. We argue similarly as in the proofs of the previous two statements. We have

2
(
Ph∼D̃h

[h = k]− Ph∼Ũh
[h = k]

)
(20)

= 2
∑

v,u∈Hd,h(v,u)=k

(
pvpu − 1

22d
)
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=
∑

v,u∈Hd,h(v,u)=k

(
− p2v + 2pvpu − p2u

)
+

∑
v,u∈Hd,h(v,u)=k

(
p2v + p2u − 2

22d
)

(21)

= −
∑

v,u∈Hd,h(v,u)=k

(
pv − pu

)2
+

∑
v,u∈Hd,h(v,u)=k

(
p2v −

1

22d
+ p2u − 1

22d
)

= −
∑

v,u∈Hd,h(v,u)=k

(
pv − pu

)2
+ 2

(
d

k

) ∑
v∈Hd

(
p2v −

1

22d
)

(22)

= −
∑

v,u∈Hd,h(v,u)=k

(
pv − pu

)2
+ 2

(
d

k

)(
Ph∼D̃h

[h = 0]− Ph∼Ũh
[h = 0]

)
< 2

(
d

k

)(
Ph∼D̃h

[h = 0]− PY∼U [h(y, Y ) = 0]
)

(23)

where (21) is obtained by adding and subtracting p2v + p2u, (22) follows by the symmetry of
the hypercube and the fact that for every v ∈ Hd, there are

(
d
k

)
vertices u ∈ Hd satisfying

h(v, u) = k, and (23) follows by the fact that pv ̸= pu for some v, u ∈ Hd for all non-uniform
distributions D.

Lemma 18 If β > c log d for an absolute constant c, d > 3 and C > 1, then
∑

k≥0

(
d
k

)
∆C(k) < 0.

Proof According to the transition matrix of h for the case that h = 0 we know that s could be either
0, 1, or 2, with probabilities denoted in (11). Hence, we can simplify the expression for ∆C(0) as

∆C(0) = log

(
1 +

1

C

)
d+ 1

4d
+ log

(
1 +

e−2β

C

)
1

2
+ log

(
1 +

e−4β

C

)
d− 1

4d
− log

(
1 +

1

C

)
= −3d− 1

4d
log

(
1 +

1

C

)
+ log

(
1 +

e−2β

C

)
1

2
+ log

(
1 +

e−4β

C

)
d− 1

4d

We can similarly compute ∆C(1), ∆C(2), . . . to obtain:

∑
k≥0

(
d

k

)
∆C(k)

= log

(
1 +

1

C

)
−3d+ 1

4d
+ log

(
1 +

e−2β

C

)
1

2
+ log

(
1 +

e−4β

C

)
d− 1

4d

+

(
d

1

)(
log(1 +

1

C
)
1

2d
+ log

(
1 +

e−2β

C

)
−3d2 + 3d− 2

4d2

+ log

(
1 +

e−4β

C

)
d− 1

2d
+ log(1 +

e−6β

C
)
(d− 1)(d− 2)

4d2

)
+

(
d

2

)(
log

(
1 +

1

C

)
1

2d2

24



INFONCE RECOVERS CLUSTER-PRESERVING REPRESENTATIONS

+ log

(
1 +

e−2β

C

)
1

d
+ log

(
1 +

e−4β

C

)(
−3

4
+

2 (d− 1) + 3 (d− 2)

4d2

)
+ log

(
1 +

e−6β

C

)
(d− 2)

2d
+ log

(
1 +

e−8β

C

)
(d− 2) (d− 3)

4d2

)
+
∑
k>2

(
d

k

)
∆(k)

= log

(
1 +

1

C

)(
−3d+ 1

4d
+

(
d
1

)
2d

+

(
d
2

)
2d2

)
+ log

(
1 +

e−2β

C

)(
1

2
+

(
d

1

)
−3d2 + 3d− 2

4d2
+

(
d
2

)
d

)
+ log

(
1 +

e−4β

C

)(
d− 1

4d
+

(
d

1

)
d− 1

2d
+

(
d

2

)(
−3

4
+

2 (d− 1) + 3 (d− 2)

4d2

))
+ log

(
1 +

e−6β

C

)((
d

1

)
(d− 1)(d− 2)

4d2
+

(
d

2

)
(d− 2)

2d

)
+ log

(
1 +

e−8β

C

)(
d

2

)
(d− 2) (d− 3)

4d2
+
∑
k>2

(
d

k

)
∆(k)

= − log

(
1 +

e−2β

C

)(
d2 − 3d+ 2

4d

)
+ log

(
1 +

e−4β

C

)(
d− 1

4d
+

(
d

1

)
d− 1

2d
+

(
d

2

)(
−3

4
+

2 (d− 1) + 3 (d− 2)

4d2

))
+ log

(
1 +

e−6β

C

)((
d

1

)
(d− 1)(d− 2)

4d2
+

(
d

2

)
(d− 2)

2d

)
+ log

(
1 +

e−8β

C

)(
d

2

)
(d− 2) (d− 3)

4d2
+
∑
k>2

(
d

k

)
∆(k)

≤ −e
−2β

C

d2 − 3d+ 2

8d
+
c′

C
d2e−4β +

∑
k>2

(
d

k

)
∆(k) (24)

where in (24) we have used the numerical inequalities − log(1 + x) ≤ −x
2 for x ∈ [0, 1] and

log(1 + x) ≤ x, and β > c log d, and c′ is a sufficiently large constant.
For k > 2, we again use log(1 + x) ≤ x to obtain

∆(k) ≤ e−2β·(k−2)

C

(k − 1) k

4d2
+
e−2β(k−1)

C

k

2d
− 1

2
log

(
1 +

e−2βk

C

)
+
e−2β(k+1)

2C
+
e−2β(k+2)

4C

≤ e−2β·(k−2)

C

(k − 1) k

4d2
+
c′′

C
e−2β(k−1) (25)

for an absolute constant c′′. Combining this bound with (24) yields

∑
k≥0

(
d

k

)
∆C(k) ≤ −e

−2β

C

d2 − 3d+ 2

8d
+
c′

C
d2e−4β +

d∑
k=3

e−2β·(k−2)

C

(k − 1) k

4d2
+
c′′

C
e−2β(k−1)

≤ e−2β

C

(
−d

3 − 3d2 + 2d

8d2
+

12

8d2

)
+
c′′′

C
d2e−4β (26)

< 0 (27)
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where (26) holds for an absolute constant c′′′, and (27) holds for a sufficiently large constant c and
d > 3, where throughout we have used β > c log d.

Lemma 19 {Dt}t converges to Ud.

Proof The transition kernel of Dt is aperiodic and irreducible over a finite state space, and has a
symmetric transition kernel, so it must converge to the uniform distribution (Bremaud, 2001).

A.2. Proof of Theorem 7

Now using the above results, we prove the main claim of Theorem 7.

Proof Note that the InfoNCE loss can be written as

L(g) = E
x,x+,{x−

i }ℓ

[
log

(
1 +

ℓ∑
i=1

eβg(x)
⊤(g(x−

i )−g(x+))
)]

(28)

Considering that we search over representations composed of clean functions, we know that for all
g ∈ Gc, the term g(x)⊤g(x+) is exactly equal to d. Hence, the optimizing L(g) over Gc simplifies to
minimizing

L̂(g) := E
x,x+,{x−

i }ℓ

[
log

(
1 +

ℓ∑
i=1

eβg(x)
⊤g(x−

i )−βd

)]
(29)

Below, we use the term ‘clean representation’ to indicate that the the representation is composed
of clean functions, and a non-clean representation if at least one of the functions in the representation
is not clean. Recall the definitions of the functions L(g) in (28) and L̂(g) in (29). Note that since
we always have g(x)⊤g(x+) ≤ d, we can argue that for any g we have L(g) ≥ L̂(g). Indeed,
the equality holds when g is a clean representation. Moreover, for any non-clean representation
g, we know that there exists at least one image x for which its representation g(x) is not exactly
aligned with the representation of one of its augmented images x+. Therefore, for that pair (x, x+),
−βg(x)⊤g(x+) > −βd. Hence, for some sample x, x+, {x−i }ℓ with positive mass, we have:
βg(x)⊤(g(x−i )− g(x+)) > βg(x)⊤g(x−i )− βd. Therefore, for non-clean g we have L(g) > L̂(g)
from (28) and (29).

Moreover, according to the result of Lemma 6, we know that the minimizer of the loss function
L̂ is a uniform representation, thus for any non-uniform representation g′ and uniform representation
g′′ we have L̂(g′) > L̂(g′′).

Considering these two observations, we show that a uniform representation composed of clean
functions, denoted by g∗, is an optimal solution of the loss L. We consider the following two cases:

Case 1: If the representation g′ is not composed of clean functions, then we have

L(g′)
(a)
> L̂(g′)

(b)

≥ L̂(g∗) (c)
= L(g∗)

where (a) holds with strict inequality since g′ is not clean (discussion above), (b) holds as g∗ with a
uniform distribution is an optimal solution of L̂ (Lemma 6), and (c) holds because g∗ is composed of
clean functions.
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Case 2: If the representation g′ is composed of clean functions, but is not uniform, then we have

L(g′)
(a)

≥ L̂(g′)
(b)
> L̂(g∗) (c)

= L(g∗)

where (a) holds based on the definitions of L and L̂, (b) holds since g′ is not uniform and g∗ is
uniform (discussion above), and (c) holds because g∗ is composed of clean functions.

Combining these two cases, we obtain that the representation g∗ minimizes L(·) if and only if g∗

is composed of clean functions and uniform. Furthermore, by Assumption 2, g∗ being composed of
clean functions implies that is it cluster-preserving.

Appendix B. Agnostic Case

In this section we prove Theorem 15.

Theorem 20 (Theorem 15 Restated) Suppose Assumptions 10 and 13 hold and g = [f1, ..., fd] is
not cluster-preserving with minj∈[d]minc∈Σfj

Px,x′∼D[x, x
′ ∈ Γc, fj(x) ̸= fj(x

′)] ≥ ϵ > 0. Let

ℓ ≥ c
ϵd2

d, β ≥ c log( cϵ )2
d for a sufficiently large constant c > 1. Moreover, suppose g is close to a

uniform representation in the sense that Px∼D◦ [g(x) = v] ≥ 10
cd2d

or Px∼D◦ [g(x) = v] ≤ ϵ
100cd22d

for all v ∈ Hd. Then g is not a minimizer of the InfoNCE loss.

Proof First we recall notations: for a set of images B ⊆ D, we employ the notations ∥B∥◦ :=
Px∼D◦ [x ∈ B] and ∥B∥ := Px∼D\D◦ [x ∈ B]. Also, we let Γc,◦ := Γc ∩D◦.

As discussed in the proof sketch, we construct a representation g′ that is close to g by changing
one coordinate of g such that it preserves one additional cluster, and show that the resulting g′

achieves smaller InfoNCE loss than g.
Suppose WLOG that f1 does not preserve the cluster Γc for some c ∈ C. That is, ∃x, x′ ∈ Γc

such that f1(x) ̸= f1(x
′). Further, let f (c,σ)1 be the smallest perturbation of f1 that preserves Γc.

Specifically, f (c,σ)(x) :=

{
f(x) x /∈ Γc

σ x ∈ Γc

, where σ ∈ argminσ′∈{−1,1} ∥{x ∈ Γc,◦ | f1(x) ̸=

f
(c,σ′)
1 (x)}∥◦.

Denote f ′1 = f
(c,σ)
1 . By Assumption 10, f ′1 ∈ F . Construct g′ = [f ′1, f2, . . . , fd] ∈ G, and note

that g′ is equivalent to g on all but one coordinate, and the one differing coordinate differs only on
one cluster, for which this coordinate preserves the cluster in g′ but does not preserve it in g.

We show that L(g)− L(g′) > 0, where

L(g)− L(g′) = L+(g)− L+(g′) + L−(g)− L−(g′). (30)

where

L+(g) := −βEx,x+

[
g(x)⊤g(x+)

]
L−(g) := Ex,x+,{x−

i }ℓ

[
log

(
eβg(x)

⊤g(x+)+

ℓ∑
i=1

eβg(x)
⊤g(x−

i )

)]
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where L+ and L− respectively correspond to the alignment and uniformity losses in 3. We will
refer to these losses as the positive and negative losses, respectively. We show L(g)− L(g′) > 0 by
showing

L+(g)− L+(g′) > L−(g′)− L−(g) (31)

by first computing the LHS explicitly, then upper bounding the RHS. To do this, we define a
partitioning of the set of images D as follows. For all v ∈ Hd, define the sets Qv := {x ∈ D :
g(x) = v, g′(x) = v} and Ev := {x ∈ D : g(x) = v, g′(x) ̸= v}. In other words Qv ∪ Ev is the
set of images that g maps to v, and Qv is the subset of this set which g′ also maps to v, while Ev

is the subset which g′ does not map to v. Let Q := ∪v∈Hd
Qv and E := ∪v∈Hd

Ev. Observe that
Q ∪ E = D, and each of the Qv and Ev’s are disjoint, so they form a partition of D. Further note
that ∥E∥◦ = ∆f1,c := minσ′∈{−1,1} ∥{x ∈ Γc,◦ | f1(x) ̸= f

(c,σ′)
1 (x)}∥◦, as defined in Definition

12.
Now we consider the difference in the positive losses. For all augmentations x+ ∈ D \ D◦,

define Ã−1(x+) as the natural image from which the augmentation was derived, i.e.
Ã−1(x+) = x ⇐⇒ A(x) = x+ for some A ∈ Λ. Moreover, define R := {x+ ∈ E \ D◦ :
Ã−1(x+) ∈ Q} ∪ {x+ ∈ Q \D◦ : Ã−1(x+) ∈ E} = {x+ ∈ Γc : f1(Ã−1(x+)) ̸= f1(x

+)} as the
set of augmentations in Γc that f1 classifies incorrectly. For any event B, let χB denote the indicator
random variable for B, i.e. χB = 1 if B occurs and χB = 0 otherwise. Using this notation and the
construction of g′ we can write the difference in positive losses as:

L+(g)− L+(g′) = βEx,x+

[
g′(x)⊤g′(x+)− g(x)⊤g(x+)

]
= βEx,x+

[
f ′1(x)f

′
1(x

+)− f1(x)f1(x
+)
]

= β
∑
v∈Hd

Ex,x+

[
χ{x ∈ Qv}(f ′1(x)f ′1(x+)− f1(x)f1(x

+))

+ χ{x ∈ Ev}(f ′1(x)f ′1(x+)− f1(x)f1(x
+))
]

= 2β
∑
v∈Hd

Ex,x+

[
χ{x ∈ Qv}χ{x+ ∈ E}+ χ{x ∈ Ev}χ{x+ ∈ Q}

]
= 2β

∑
v∈Hd

(
Px∼D◦,x+∼A(x)

[
x ∈ Qv, x

+ ∈ E
]

+ Px∼D◦,x+∼A(x)

[
x ∈ Ev, x

+ ∈ Q
] )

= 2β∥R∥

where in the last equality we have used that all augmentation sets are of equal size.
Now we consider the negative losses. We first decompose the negative loss as

L−(g) = Ex,x+,{x−
i }ℓ

[
log

(
eβg(x)

⊤g(x+)+
ℓ∑

i=1

eβg(x)
⊤g(x−

i )

)]

=
∑
v∈Hd

Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv} log

(
eβg(x)

⊤g(x+)+

ℓ∑
i=1

eβg(x)
⊤g(x−

i )

)]

+
∑
v∈Hd

Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev} log

(
eβg(x)

⊤g(x+)+

ℓ∑
i=1

eβg(x)
⊤g(x−

i )

)]
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=
∑
v∈Hd

L−
Qv

(g) + L−
Ev

(g)

where L−
Qv

(g) := Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv} log

(
eβg(x)

⊤g(x+)+
∑ℓ

i=1 e
βg(x)⊤g(x−

i )
)]

and

L−
Ev

(g) := Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev} log

(
eβg(x)

⊤g(x+)+
∑ℓ

i=1 e
βg(x)⊤g(x−

i )
)]

. Note that we need to
upper bound

L−(g′)− L−(g) =
∑
v∈Hd

L−
Qv

(g′)− L−
Qv

(g) + L−
Ev

(g′)− L−
Ev

(g). (32)

We analyze L−
Qv

(g′) − L−
Qv

(g) and L−
Ev

(g′) − L−
Ev

(g) separately for every v ∈ Hd. To do so,
we define additional notations. For a batch of negative samples {x−i }ℓi=1 and a vertex v ∈ Hd,
let n1,v :=

∑ℓ
i=1 χ{x

−
i ∈ Qv}, n2 :=

∑ℓ
i=1 χ{x

−
i ∈ E}, n3,v :=

∑ℓ
i=1 χ{x

−
i ∈ Ev} and

n4 :=
∑ℓ

i=1 χ{x
−
i ∈ Q}. Using the fact that g(x)⊤g(x−i ) = d for all x, x−i ∈ Qv, we have

L−
Qv

(g) = Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv} log

(
eβg(x)

⊤g(x+)+n1,ve
βd +

∑
x−
i /∈Qv

eβg(x)
⊤g(x−

i )

)]

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv}

log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i /∈Qv∪E

eβg(x)
⊤g(x−

i )

)]

Next, using the fact that g′(x) = g(x) for all x /∈ E, we have

L−
Qv

(g′) = Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv} log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i /∈Qv

eβg
′(x)⊤g′(x−

i )

)]

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv}

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i /∈Qv∪E

eβg(x)
⊤g(x−

i )

)]

Before analyzing L−
Ev

, we first prove the following claims.

Claim B.1 For all x, x− ∈ Ev, g′(x) = g′(x−).

Proof By construction of g′, g′(x) agrees with g(x) on all but the first coordinate. Thus, g(x) ̸=
g′(x) =⇒ f1(x) = −f ′1(x). Consider any x, x− ∈ Ev. By definition of Ev, g(x) = g(x−) = v,
and g′(x) ̸= g(x). Let v = [v1, v2, . . . , vd], then we have g′(x) = g′(x−) = [−v1, v2, . . . , vd].

Claim B.2 For all v ∈ Hd and all x ∈ Ev, x− ∈ E, g′(x)⊤g′(x−) = g(x)⊤g(x−).
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Proof Consider any x ∈ Ev, x
− ∈ E. As above, observe that the j-th coordinates of g(x) and g′(x)

are the same for all j > 1 (and likewise for g(x−) and g′(x−)) by construction of g. Moreover,
f1(x) = −f ′1(x) and f1(x−) = −f ′1(x−) by definition of E. Thus g′(x)⊤g′(x−)− g(x)⊤g(x−) =
f ′1(x)f

′
1(x

−)− (−f ′1(x))(−f ′1(x−)) = 0.

Claim B.3 For all v ∈ Hd and all x ∈ Ev, x− ∈ Q, g′(x)⊤g′(x−) ̸= g(x)⊤g(x−).

Proof By definition of Ev, g′(x) ̸= g(x) for all x ∈ Ev, and by definition of Q, g′(x−) = g(x−) for
all x− ∈ Q. Thus g′(x)⊤g′(x−) ̸= g(x)⊤g(x−).

Next we can decompose L−
Ev

(g) as follows, using the fact that g(x)⊤g(x−i ) = d for all x, x−i ∈
Ev.

L−
Ev

(g) = Ex,x+,{x−
i }ℓ

χ{x ∈ Ev} log
(
eβg(x)

⊤g(x+)+n3,ve
βd +

∑
x−
i ̸∈Ev

eβg(x)
⊤g(x−

i )

)
= Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev}

log

(
eβg(x)

⊤g(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)]

Next we use Claims B.1, B.2 and B.3 to obtain

L−
Ev

(g′) = Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev} log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd +

∑
x−
i ̸∈Ev

eβg
′(x)⊤g′(x−

i )

)]

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev}

log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)]

Next, define Z := {x ∈ Q : f ′1(x) ̸= f ′1(x
−), ∀x− ∈ E} ⊆ Q. as the set of images that f ′1

labels differently than it does the samples in E (note that f ′1(x) = f ′1(x
−) for all x, x− ∈ E, and

f ′1(x) = f ′1(x
−) for all x, x− ∈ Qv, so the ∀ condition in the definition of Z could be replaced with

‘for some’). Also note that the definition of Z here differs slightly from the one in the proof sketch in
Section 5 for ease of notation.

Next we prove two claims regarding properties of Z.

Claim B.4 For all v ∈ Hd exactly one of the following holds: (i) Qv ∩Z = Qv or (ii) Qv \Z = Qv.

Proof Suppose x ∈ Qv ∩ Z. Then, for all x′ ∈ Qv, f ′1(x
′) = f ′1(x) by definition of Qv. Thus

f ′1(x
′) = f ′1(x) ̸= f ′1(x

′′) for any x′′ ∈ E since x ∈ Z. This implies x′ ∈ Z, thereforeQv∩Z = Qv.
Likewise, suppose x ∈ Qv \ Z. Then, for all x′ ∈ Qv, f ′1(x

′) = f ′1(x) by definition of Qv. Thus
f ′1(x

′) = f ′1(x) = f ′1(x
′′) for any x′′ ∈ E since x /∈ Z. This implies x′ /∈ Z, therefore Qv \Z = Qv.
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Claim B.5 For all v ∈ Hd, x ∈ Qv ∩ Z, x− ∈ E, g′(x)⊤g′(x−) = g(x)⊤g(x−)− 2.

Proof Suppose x ∈ Qv ∈ Z. For any x− ∈ E, then f1(x
−
i ) = −f ′1(x

−
i ) by definition of

E, f1(x) = f ′1(x) by definition of Qv and f ′1(x) = −f ′1(x
−
i ) by definition of Z. Therefore,

f1(x) = f1(x
−
i ) and g′(x)⊤g′(x−) = g(x)⊤g(x−)− 2, noting that g and g′ agree on all but the first

coordinate.

Claim B.6 For all v ∈ Hd, Qv ∩ Z = ∅ and Qv ̸= ∅ =⇒ Ev = ∅.

Proof From Claim B.4, Qv ∩ Z = ∅ =⇒ Qv \ Z = Qv. Suppose x ∈ Qv \ Z and x′ ∈ Ev. Then
f1(x) = f1(x

′) by definition of Qv and Ev. Also, f ′1(x) = f ′1(x
′) since x /∈ Z and x′ ∈ E, and

f1(x
′) ̸= f ′1(x

′) by definition of E. Therefore f1(x) ̸= f ′1(x), but this contradicts the definition of
Qv.

We use Claim B.6 later in the proof. For now we use Claims B.4 and B.5 to bound L−
Qv

(g′)−
L−
Qv

(g) for all v such that Qv ⊆ Z:

L−
Qv

(g′)− L−
Qv

(g)

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv}(

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

))]

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv}(

log

(
eβg(x)

⊤g(x+) + n1,ve
βd + e−2β

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

))]
(33)

≤ 0 (34)

Thus, we have

L−(g′)− L−(g) =
∑
v∈Hd

L−
Qv

(g′)− L−
Qv

(g) + L−
Ev

(g′)− L−
Ev

(g)

≤
∑

v∈Hd:Qv\Z=Qv

L−
Qv

(g′)− L−
Qv

(g) +
∑
v∈Hd

L−
Ev

(g′)− L−
Ev

(g) (35)

For each v ∈ Hd : Qv \ Z = Qv, we consider three cases: (1) n2 = 0, (2) n2 > 0, n1,v=0, and
(3) n2 > 0, n1,v > 0. In particular we decompose L−

Qv
(g′)− L−

Qv
(g) as follows:

L−
Qv

(g′)− L−
Qv

(g)
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= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z}χ{n2 = 0}(

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

))]

+ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z}χ{n2 > 0, n1,v = 0}(

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

))]

+ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z}χ{n2 > 0, n1,v > 0}(

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

))]

Likewise, for each v ∈ Hd, we decompose L−
Ev

(g′)− L−
Ev

(g) as:

L−
Ev

(g′)− L−
Ev

(g)

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev}χ{n4 = 0}(

log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

+ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev}χ{n4 > 0, n3,v = 0}(

log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

+ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev}χ{n4 > 0, n3,v > 0}
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(
log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

Thus, for each v in (32), we need to upper bound a total of six terms. We consider each of these six
terms individually, starting with the three terms with χ{x ∈ Qv \ Z} factors.

1. x ∈ Qv \ Z, n2 = 0.

In this case, we have

((1)) := Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z}χ{n2 = 0}(

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

))]
(36)

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z}χ{n2 = 0}(

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd

)
− log

(
eβg(x)

⊤g(x+) + n1,ve
βd

))]
(37)

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0} log

(
e2βeβg(x)

⊤g(x+) + n1,ve
βd

eβg(x)⊤g(x+) + n1,veβd

)]
(38)

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0} log

(
eβd + n1,ve

βd

eβ(d−2) + n1,veβd

)]
(39)

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0} log

(
1 + n1,v

e−2β + n1,v

)]
= Ex,x+,{x−

i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0, n1,v = 0} log

(
1 + n1,v

e−2β + n1,v

)]
+ Ex,x+,{x−

i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0, n1,v > 0} log

(
1 + n1,v

e−2β + n1,v

)]
≤ 2βEx,x+,{x−

i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0, n1,v = 0}

]
+ log(2)Ex,x+,{x−

i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0, n1,v > 0}

]
(40)

where (37) follows by the submodularity of the log(·) function and the fact that g′(x)⊤g′(x+) ≥
g(x)⊤g(x+) by construction of g′, (54) follows by the fact that if x ∈ Qv, then g′(x)⊤g′(x+) =
g(x)⊤g(x+) for all x+ /∈ B, and (39) follows since h(x) := ax+c

x+c is monotonically increasing
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for a > 1. Next, by the independence of x−i from x and x+,

Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0, n1,v = 0}

]
= P(x ∈ Qv \ Z ∩ x+ ∈ B)P(n1,v = 0, n2 = 0)

= P(x ∈ Qv \ Z ∩ x+ ∈ B)(1− ∥Qv \ Z∥◦ − ∥E∥◦)ℓ (41)

Similarly, for the second term in (40), we have

Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z, x+ ∈ E,n2 = 0, n1,v > 0}

]
= P(x ∈ Qv \ Z ∩ x+ ∈ E)P(n1,v > 0|n2 = 0)P(n2 = 0) (42)

≤ P(x ∈ Qv \ Z ∩ x+ ∈ E)min

(
1,
ℓ∥Qv \ Z∥◦
1− ∥E∥◦

)
(1− ∥E∥◦)ℓ (43)

By combining (43), (41), and (40), we obtain the following upper bound on (36):

((1)) ≤ P(x ∈ Qv \ Z ∩ x+ ∈ E)(
2β(1− ∥Qv \ Z∥◦ − ∥E∥◦)ℓ + log(2)min(1,

ℓ∥Qv \ Z∥◦
1− ∥E∥◦

)(1− ∥E∥◦)ℓ
)
.

(44)

2. x ∈ Qv \ Z, n1,v = 0, n2 > 0

In this case we have:

((2)) := Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z, n1,v = 0, n2 > 0}(

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i /∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

))]
(45)

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z, n1,v = 0, n2 > 0}(

log

(
eβg

′(x)⊤g′(x+) +
∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i /∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) +
∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i /∈Qv∪E

eβg(x)
⊤g(x−

i )

))]
(46)

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Qv \ Z, n1,v = 0, n2 > 0}(

log

(
eβg

′(x)⊤g′(x+) +
∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i )

)
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− log

(
eβg(x)

⊤g(x+) +
∑
x−
i ∈E

eβg(x)
⊤g(x−

i )

))]
(47)

where (47) follows by the submodularity of the log() function and the facts that g′(x)⊤g′(x+) ≥
g(x)⊤g(x+) and g′(x)⊤g′(x−i ) ≥ g(x)⊤g(x−i ) for all x ∈ Qv \ Z, x−i ∈ E by definition of
g′, C and E. Next,

((2)) ≤ 2βP(x ∈ Qv \ Z)E{x−
i }ℓ [χ{n1,v = 0}χ{n2 > 0}] (48)

= 2βP(x ∈ Qv \ Z)E{x−
i }ℓ [χ{∩i{x−i /∈ Qv \ Z}}χ{∪i{x−i ∈ E}}]

= 2βP(x ∈ Qv \ Z)P(∪i{x−i ∈ E}| ∩i {x−i /∈ Qv \ Z})P(∩i{x−i /∈ Qv \ Z})

≤ 2βP(x ∈ Qv \ Z)P(∩i{x−i /∈ Qv \ Z})min

(
1,

ℓ∑
i=1

P(x−i ∈ E|x−i /∈ Qv \ Z)

)
(49)

= 2β∥Qv \ Z∥◦(1− ∥Qv \ Z∥◦)ℓmin

(
1,

ℓ∥E∥◦
1− ∥Qv \ Z∥◦

)
where (48) follows since g′(x)⊤g′(x+)−g(x)⊤g(x+) ≤ 2 and g′(x)⊤g′(x−i )−g(x)⊤g(x

−
i ) ≤

2 for all x, x−i , and (49) follows by a union bound.

3. x ∈ Qv \ Z, n1 > 0, n2 > 0.

In this case, we have

((3)) := E
[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0}(

log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Qv∪E

eβg(x)
⊤g(x−

i )

))]
(50)

≤ E
[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0}(
log

(
eβg

′(x)⊤g′(x+) + n1,ve
βd + e2β

∑
x−
i ∈E

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n1,ve
βd +

∑
x−
i ∈E

eβg(x)
⊤g(x−

i )

))]
(51)

where (51) follows by the submodularity of log() and the facts that g′(x)⊤g′(x+) ≥ g(x)⊤g(x+)
and g′(x)⊤g′(x−i ) = g(x)⊤g(x−i ) + 2 for all x ∈ Qv \ Z, x−i ∈ E by definition of g′, Z and
E. Continuing, we obtain

((3)) ≤ E
[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0}

35



PARULEKAR COLLINS SHANMUGAM MOKHTARI SHAKKOTTAI

(
log

(
eβg

′(x)⊤g′(x+) + (n1,v + n2)e
βd

)
− log

(
eβg(x)

⊤g(x+) + n1,ve
βd + n2e

β(d−2)

))]
(52)

= E
[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ /∈ E}(

log

(
eβg

′(x)⊤g′(x+) + (n1,v + n2)e
βd

)
− log

(
eβg(x)

⊤g(x+) + n1,ve
βd + n2e

β(d−2)

))]
+ E

[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ ∈ E}(
log

(
eβg

′(x)⊤g′(x+) + (n1,v + n2)e
βd

)
− log

(
eβg(x)

⊤g(x+) + n1,ve
βd + n2e

β(d−2)

))]
(53)

where (52) follows since h(x) := a+cx
b+x is an increasing function of x for x > 0, c > a

b (here,
a
b ≤ 2

1+e−2β ≤ 2 and c = e2β > 2). Note that x ∈ Qv, x
+ ∈ E =⇒ g′(x)⊤g′(x+) =

g(x)⊤g(x+) + 2, and x ∈ Qv, x
+ /∈ E =⇒ g′(x)⊤g′(x+) = g(x)⊤g(x+). Using this we

find

((3)) ≤ E
[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ /∈ E} log

(
n1,v + n2
n1,v

)]
+ E

[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ ∈ B} log

(
n1,v + n2 + 1

n1,v

)]
≤ E

[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ /∈ B} 2n2

n1,v + 1

]
+ E

[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ ∈ E} 2n2 + 2

n1,v + 1

]
(54)

= E
[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0} 2n2

n1,v + 1

]
+ E

[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ ∈ B} 2

n1,v + 1

]
= E

[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0} 2n2

n1,v + 1

]
+ E

[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ ∈ E} 2

n1,v + 1

]
(55)

where (54) follows using the inequality log(1 + x) ≤ x. Thus we are left with two terms in
(55). For the first term we have (ignoring notation overload, as after the first line, n1,v and n2
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change from random variables to dummy variables):

E
[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, Qv ∩ E = ∅} 2n2

n1,v + 1

]
= P(x ∈ Qv \ Z)

∑
n1,v ,n2:n1,v+n2≤ℓ

χ{n1,v > 0, n2 > 0}
(

ℓ

n1,v n2 ℓ−n1,v−n2

)
∥Qv \ Z∥

n1,v
◦ ∥E∥n2

◦ (1− ∥Qv \ Z∥◦ − ∥E∥◦)ℓ−n1,v−n2
2n2

n1,v + 1
(56)

= 2∥Qv \ Z∥◦
∑

n1,v ,n2:n1,v ,n2>0,n1,v+n2≤ℓ

(
ℓ

n1,v n2 ℓ−n1,v−n2

)
∥Qv \ Z∥

n1,v
◦ ∥E∥n2

◦ (1− ∥Qv \ Z∥◦ − ∥E∥◦)ℓ−n1,v−n2
n2

n1,v + 1
(57)

= 2∥Qv \ Z∥◦
∥E∥◦

∥Qv \ Z∥◦

∑
n1,v ,n2:n1,v ,n2>0,n1,v+n2≤ℓ

(
ℓ

n1,v + 1 n2 − 1 ℓ−n1,v−n2

)
∥Qv \ Z∥

n1,v+1
◦ ∥E∥n2−1

◦ (1− ∥Qv \ Z∥◦ − ∥E∥◦)ℓ−n1,v−n2 (58)

≤ 2∥Qv \ Z∥◦
∥E∥◦

∥Qv \ Z∥◦∑
n1,v+1,n2−1:n1,v+1,n2−1≥0,n1,v+1+n2−1≤ℓ

(
ℓ

n1,v+1 n2−1 ℓ− (n1,v+1)−(n2−1)

)
∥Qv \ Z∥

n1,v+1
◦ ∥E∥n2−1

◦ (1−∥Qv \ Z∥◦−∥E∥◦)ℓ−(n1,v+1)−(n2−1)

(59)

= 2∥E∥◦(∥Qv \ Z∥◦ + ∥E∥◦ + 1− ∥Qv \ Z∥◦ − ∥E∥◦)ℓ

= 2∥E∥◦

where in (59) we have added terms to the sum to complete the trinomial expansion, and the
last equality follows since Qv and E are disjoint.

Now we need to consider the last term in (55), which corresponds to the case wherein the
positive inner products are not equal for g and g′. For this term, we simply have

E
[
χ{x ∈ Qv \ Z, n1,v > 0, n2 > 0, x+ ∈ E} 2

n1,v + 1

]
≤ P

[
x ∈ Qv \ Z, x+ ∈ E

]
(60)

In total, for the case n1,v > 0, n2 > 0 and x ∈ Qv \ Z, we have

((3)) ≤ 2∥E∥+ P
[
x ∈ Qv \ Z, x+ ∈ E

]
(61)

4. x ∈ Ev, n4 = 0.

This case is symmetric to Case 1, so we argue similarly.

((4)) := Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev}χ{n4 = 0}

37



PARULEKAR COLLINS SHANMUGAM MOKHTARI SHAKKOTTAI

(
log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

= Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev}χ{n4 = 0}(

log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd +

∑
x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n3,ve
βd +

∑
x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev}χ{n4 = 0} log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd

eβg(x)⊤g(x+) + n3,veβd

)]
(62)

where (62) follows since g′(x)⊤g′(x+) ≥ g(x)⊤g(x+) and log() is submodular. Next we
intersect with the events {x+ ∈ Q} and {x+ /∈ Q}, obtaining

((4)) ≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ ∈ Q} log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd

eβg(x)⊤g(x+) + n3,veβd

)]
+ Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ /∈ Q} log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd

eβg(x)⊤g(x+) + n3,veβd

)]
= Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ ∈ Q} log

(
e2βeβg(x)

⊤g(x+) + n3,ve
βd

eβg(x)⊤g(x+) + n3,veβd

)]
≤ Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ ∈ Q} log

(
eβd + n3,ve

βd

eβ(d−2) + n3,veβd

)]
= Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ ∈ Q} log

(
1 + n3,v

e−2β + n3,v

)]
≤ 2βEx,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ ∈ Q,n3,v = 0}

]
+ log(2)Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ ∈ Q,n3,v > 0}

]
(63)

where

Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ ∈ Q,n3,v = 0}

]
= P(x ∈ Ev ∩ x+ ∈ Q)P(n3,v = 0, n4 = 0) (64)

= P(x ∈ Ev ∩ x+ ∈ Q)(1− ∥Ev∥◦ − ∥Q∥◦)ℓ (65)

Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 = 0, x+ ∈ Q,n3,v > 0}

]
= P(x ∈ Ev ∩ x+ ∈ Q)P(n3,v > 0, n4 = 0)

≤ P(x ∈ Ev ∩ x+ ∈ Q)min

(
1,

ℓ∥Ev∥◦
1− ∥Q∥◦

)
(1− ∥Q∥◦)ℓ (66)
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so in total for this case we have

((4)) ≤ P(x ∈ Ev ∩ x+ ∈ Q)(
2β(1− ∥Ev∥◦ − ∥Q∥◦)ℓ + log(2)min(1,

ℓ∥Ev∥◦
1− ∥Q∥◦

)(1− ∥Q∥◦)ℓ
)

5. x ∈ Ev, n4 > 0, n3,v = 0.

Define n5 :=
∑ℓ

i=1 χ{x
−
i ∈ Q \ Z}. We have

((5)) = Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0}(

log

(
eβg

′(x)⊤g′(x+) +
∑
x−
i ∈Q

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) +
∑
x−
i ∈Q

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

since we are intersecting with the event {n3,v = 0}. Next we split the negative samples in Q
into those in Q \ Z and those in Z, noting that g′(x)⊤g′(x−i ) = g(x)⊤g(x−i )− 2 for x−i ∈ Z
and g′(x)⊤g′(x−i ) = g(x)⊤g(x−i ) + 2 for x−i ∈ Q \ Z.

((5)) = Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0}(

log

(
eβg

′(x)⊤g′(x+) + e2β
∑

x−
i ∈Q\Z

eβg(x)
⊤g(x−

i )

+ e−2β
∑
x−
i ∈C

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) +
∑

x−
i ∈Q\Z

eβg(x)
⊤g(x−

i ) +
∑
x−
i ∈C

eβg(x)
⊤g(x−

i )

+
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0}(

log

(
eβg

′(x)⊤g′(x+) + e2β
∑

x−
i ∈Q\Z

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) +
∑

x−
i ∈Q\Z

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0}
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(
log

(
eβg

′(x)⊤g′(x+) + n5e
βd +

∑
x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n5e
β(d−2) +

∑
x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]
(67)

where (67) follows since h(x) := a+e2βx
b+x is an increasing function of x for a ≤ e2βb. Next we

intersect with {x+ ∈ Q} and {x+ /∈ Q} to obtain

((5)) ≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0, x+ ∈ Q}(

log

(
(n5 + 1)eβd +

∑
x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
(n5 + 1)eβ(d−2) +

∑
x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

+ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0, x+ /∈ Q}(

log

(
n5e

βd +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
n5e

β(d−2) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]
(68)

We have two terms above. For the first term,

Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0, x+ ∈ Q}(

log

(
(n5 + 1)eβd +

∑
x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
(n5 + 1)eβ(d−2) +

∑
x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0, x+ ∈ Q}

(
log

(
(n5 + 1)eβd

(n5 + 1)eβ(d−2)

))]
(69)

≤ 2βEx,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0, x+ ∈ Q}

]
Similarly, for the second term in (68), we have

Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0, x+ /∈ Q}(

log

(
n5e

βd +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)
− log

(
n5e

β(d−2) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]
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≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n5 > 0, n3,v = 0, x+ /∈ Q} log

(
n5e

βd

n5eβ(d−2)

)]
= 2βEx,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n5 > 0, n3,v = 0, x+ /∈ Q}

]
By summing the upper bounds on the two terms in (68), we obtain

((5)) ≤ 2βEx,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v = 0, x+ ∈ Q}

]
+ 2βEx,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n5 > 0, n3,v = 0, x+ /∈ Q}

]
≤ 2βP(x ∈ Ev)P(n4 > 0, n3,v = 0)

= 2β∥Ev∥◦(1− ∥Ev∥◦)ℓmin

(
1,

ℓ∥Q∥◦
1− ∥Ev∥◦

)
. (70)

6. x ∈ Ev, n4 > 0, n3,v > 0.

In this case, we argue similarly as in Case 3 to obtain

((6)) = Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v > 0}(

log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg
′(x)⊤g′(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n3,ve
βd +

∑
x−
i ∈Q

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v > 0}(

log

(
eβg

′(x)⊤g′(x+) + n3,ve
βd + e2β

∑
x−
i ∈Q\Z

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

)

− log

(
eβg(x)

⊤g(x+) + n3,ve
βd +

∑
x−
i ∈Q\Z

eβg(x)
⊤g(x−

i ) +
∑

x−
i ̸∈Ev∪Q

eβg(x)
⊤g(x−

i )

))]

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v > 0}(

log

(
eβg

′(x)⊤g′(x+) + (n3,v + n5)e
βd

)
− log

(
eβg(x)

⊤g(x+) + n3,ve
βd + n5e

β(d−2)

))]
(71)

where (71) follows by the analogous argument as in (52). Next we intersect with {x+ ∈ Q}
and {x+ /∈ Q}. We have

((6)) ≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v > 0}(

log

(
eβg

′(x)⊤g′(x+) + (n3,v + n5)e
βd

)
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− log

(
eβg(x)

⊤g(x+) + n3,ve
βd + n5e

β(d−2)

))]
≤ Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v > 0, x+ ∈ Q} log

(
n3,v + n5 + 1

n3,v

)]
+ Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n4 > 0, n3,v > 0, x+ /∈ Q} log

(
n3,v + n5
n3,v

)]
(72)

≤ Ex,x+,{x−
i }ℓ

[
χ{x ∈ Ev, n3,v > 0, x+ ∈ Q} log(n5 + 2)

]
+ Ex,x+,{x−

i }ℓ

[
χ{x ∈ Ev, n3,v > 0, x+ /∈ Q} log(n5 + 1)

]
= P(x ∈ Ev, x

+ ∈ Q)Ex,x+,{x−
i }ℓ

[
χ{n3,v > 0} log(n5 + 2)

]
+ P(x ∈ Ev, x

+ /∈ Q)Ex,x+,{x−
i }ℓ

[
χ{n3,v > 0} log(n5 + 1)

]
≤ P(x ∈ Ev, x

+ ∈ Q) log(E[n5 + 2]) + P(x ∈ Ev, x
+ /∈ Q) log(E[n5 + 1]) (73)

≤ P(x ∈ Ev, x
+ ∈ Q) log(ℓ∥Q \ Z∥◦ + 2) + ∥Ev∥◦ log(ℓ∥Q \ Z∥◦ + 1)

where (72) follows since if x ∈ Ev, then x+ ∈ Q ⇐⇒ g′(x)⊤g′(x+) = g(x)⊤g(x+) + 2
and by the submodularity of log(), and (73) follows by Jensen’s Inequality and upper bounding
χ{n3,v > 0} ≤ 1.

Now we combine all six cases and sum over v ∈ Hd. We obtain

L−(g′)− L−(g)

≤
∑
v∈Hd

(
P(x ∈ Qv \ Z ∩ x+ ∈ E)(

2β(1− ∥Qv \ Z∥◦ − ∥E∥◦)ℓ + log(2)min
(
1, ℓ∥Qv\Z∥◦

1−∥E∥◦

)
(1− ∥E∥◦)ℓ

)
+ 2β∥Qv \ Z∥◦(1− ∥Qv \ Z∥◦)ℓmin

(
1, ℓ∥E∥◦

1−∥Qv\Z∥◦

)
+ 2∥E∥◦ + P

[
x ∈ Qv \ Z, x+ ∈ E

]
+ P(x ∈ Ev ∩ x+ ∈ Q)

(
2β(1− ∥Ev∥◦ − ∥Q \ Z∥◦)ℓ

+ log(2)min
(
1, ℓ∥Ev∥◦

1−∥Q∥◦

)
(1− ∥Q \ Z∥◦)ℓ

)
+ 2β∥Ev∥◦(1− ∥Ev∥◦)ℓmin

(
1, ℓ∥Q∥◦

1−∥Ev∥◦

)
+ P(x ∈ Ev, x

+ ∈ Q) log(ℓ∥Q \ Z∥◦ + 2) + ∥Ev∥◦ log(ℓ∥Q \ Z∥◦ + 1)

)
(74)

≤ ∥R∥ log(ℓ+ 2) + ∥E∥◦(2d+1 + log(ℓ+ 1))

+
∑
v∈Hd

(
P(x ∈ Qv ∩ x+ ∈ E)

(
2β(1− ∥Qv∥◦ − ∥E∥◦)ℓ + log(2)(1− ∥E∥◦)ℓ

)
+ 2βℓ∥E∥◦∥Qv \ Z∥◦(1− ∥Qv \ Z∥◦)ℓ−1

+ P(x ∈ Ev ∩ x+ ∈ Q)
(
2β(1− ∥Ev∥◦ − ∥Q∥◦)ℓ + log(2)(1− ∥Q∥◦)ℓ

)
+ 2β∥Ev∥◦(1− ∥Ev∥◦)ℓ

)
(75)
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≤ ∥R∥(log(ℓ+ 2) + log(2)) + ∥E∥◦(2d+1 + log(ℓ+ 1))

+ 2β
∑
v∈Hd

(
P(x ∈ Qv ∩ x+ ∈ E)(∥Q∥◦ − ∥Qv∥◦)ℓ + P(x ∈ Ev ∩ x+ ∈ Q)(∥E∥◦ − ∥Ev∥◦)ℓ

+ ℓ∥E∥◦∥Qv \ Z∥◦(1− ∥Qv \ Z∥◦)ℓ−1 + ∥Ev∥◦(1− ∥Ev∥◦)ℓ
)

≤ ∥R∥(log(ℓ+ 2) + log(2)) + ∥E∥◦(2d+1 + log(ℓ+ 1)) + 2−(ℓ−1)β∥R∥

+ 2β
∑
v∈Hd

(
P(x ∈ Qv ∩ x+ ∈ E)(∥Q∥◦ − ∥Qv∥◦)ℓ

+ ℓ∥E∥◦∥Qv \ Z∥◦(1− ∥Qv \ Z∥◦)ℓ−1 + ∥Ev∥◦(1− ∥Ev∥◦)ℓ
)

(76)

where (75) follows since min(x, y) ≤ x,
∑

v∈Hd
∥Ev∥◦ = ∥E∥◦, and ∥R∥ =

∑
v∈Hd

P(x ∈
Qv ∩ x+ ∈ Ev) + P(x ∈ Ev ∩ x+ ∈ Q), and (76) follows since ∥E∥◦ ≤ 1

2 by construction of g′

(since for f ′1 = f
(c,σ)
1 , σ is chosen such that the induced ∥E∥◦ cannot be larger than 1

2 ). It remains to
bound the three terms in the sum in (76).

To do so, we first define Ẽv := {x+ ∈ B : Ã−1(x+) ∈ Qv} as the set of partial augmentation
sets that are in B, corresponding to sets whose natural image is in Qv (where Ã−1(x+) is the natural
image from which the augmented image x+ was generated, i.e. Ã−1(x+) = x ⇐⇒ A(x) = x+

for some A ∈ Λ). We have∑
v∈Hd

P(x ∈ Qv ∩ x+ ∈ E)(∥Q∥◦ − ∥Qv∥◦)ℓ =
∑
v∈Hd

∥Ẽv∥(∥Q∥◦ − ∥Qv∥◦)ℓ (77)

≤
∑
v∈Hd

∥Ẽv∥(1− ∥Qv∥◦)ℓ

≤
∑
v∈Hd

∥Ẽv∥
(
1− ∥Ẽv∥

)ℓ
(78)

where (77) and (78) follow since all augmentation sets are equal size.
Note

∑
v ∥Ẽv∥ = ∥R∥, and h(xv) := xv(1 − xv)

ℓ is maximized on xv ∈ [0, 1] at xv = 1
ℓ+1 .

Thus,
∑

v ∥Ẽv∥
(
1− ∥Ẽv∥

)ℓ
is upper bounded by setting ∥Ẽv∥ = 1

ℓ+1 for all v. Thus we obtain

∑
v∈Hd

P(x ∈ Qv ∩ x+ ∈ B)(∥Q∥◦ − ∥Qv∥◦)ℓ ≤
∑
v∈Hd

1

ℓ+ 1

(
1− 1

ℓ+ 1

)ℓ

=
2d

ℓ+ 1

(
1− 1

ℓ+ 1

)ℓ

≤ ϵ

cd
e−

ℓ
ℓ+1

where we have used ℓ ≥ c
ϵd2

d for a constant c in the last line. Next we consider
∑

v∈Hd
∥Ev∥◦(1−

∥Ev∥◦)ℓ, and use a tighter method of bounding this sum than above. Note that
∑

v∈Hd
∥Ev∥◦ =

∥E∥◦. If ∥E∥◦
2d

≤ 1
ℓ+1 , then by the concavity of h(xv) := xv(1− xv)

ℓ on the interval xv ∈ [0, 1
ℓ+1 ],
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the sum is maximized by setting ∥Ev∥◦ = ∥E∥◦
2d

for all v. Otherwise, the sum is upper bounded by
setting ∥Ev∥◦ = 1

ℓ+1 for all v. Thus we have

∑
v∈Hd

∥Ev∥◦(1− ∥Ev∥◦)ℓ ≤ χ

{
∥E∥◦ ≤

2d

ℓ+ 1

}
∥E∥◦

(
1− ∥E∥◦

2d

)ℓ

+ χ

{
∥E∥◦ >

2d

ℓ+ 1

}
2d

ℓ+ 1

(
1− 1

ℓ+ 1

)ℓ

≤ χ

{
∥E∥◦ ≤

2d

ℓ+ 1

}
∥E∥◦e−

∥E∥◦ℓ
2d

+ χ

{
∥E∥◦ >

2d

ℓ+ 1

}
∥E∥◦e−

ℓ
ℓ+1 (79)

Finally, note that Dg(v) := Px∼D◦ [g(x) = v] = ∥Qv∥◦ + ∥Ev∥◦. We have that for all v, Qv \
Z ̸= ∅ =⇒ Qv \ Z = Qv, Ev = ∅ by Claims B.4 and B.6. Thus for all v : Qv \ Z ̸= ∅,
Dg(v) = ∥Qv∥◦ = ∥Qv \ Z∥◦. This allows us to use that g is near uniform, i.e. Dg(v) >

1
c1d2d

or
Dg(v) ≤ ϵ

c2d22d
for all v ∈ Hd for some constants c1, c2. We have ℓ ≥ c

ϵd2
d and choose c1 < c,

such that 1
c1d2d

> 1
ℓ+1 . Since h(xv) := xv(1− xv)

ℓ is a decreasing function of xv for xv ≥ 1
ℓ+1 , we

can bound the last sum in (76) as

ℓ
∑
v∈Hd

∥Qv \ Z∥◦(1− ∥Qv \ Z∥◦)ℓ−1 ≤ ℓ2dmax

(
ϵ

c2d22d
,

1

c1d2d
(1− 1

c1d2d
)ℓ
)

≤ ℓmax

(
ϵ

c2d2d
,
1

c1d
e
− ℓ

c1d2
d

)
≤ max

(
c

c2
,
c

c1ϵ
e
−( c

c1ϵ
−1)
)

(80)

Before we combining these bounds with (76), we first show that ∥R∥ = Ω(ϵ).

Claim B.7 Let ϵ ≤ minj∈[d]minc′∈Σfj
Px,x′∼D[x, x

′ ∈ Γc′ , fj(x) ̸= fj(x
′)] as defined in the

statement of Theorem 15. Then ϵ ≤ 6
δ∥R∥.

Proof From our choice of f ′1, we have

ϵ ≤ min
j∈[d]

min
c′∈Σfj

Px,x′∼D[x, x
′ ∈ Γc′ , fj(x) ̸= fj(x

′)]

≤ 2Px,x′∼D[x ∈ Γc \ E, x′ ∈ E]

= 2Px∼D[x ∈ Γc \ E]Px∼D[x ∈ E]

≤ 2Px∼D[x ∈ E]

≤ 2(Px∼D◦ [x ∈ E] + Px+∼D\D◦ [x
+ ∈ E])

= 2(∥E∥◦ + ∥E∥). (81)

Note that ∥E∥◦ ≤ 1
δ∥R∥ by Assumption 13. Observe that

∥E∥ = Px+∼D\D◦ [x
+ ∈ E]
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= Px+∼D\D◦ [x
+ ∈ E,A−1(x+) ∈ E] + Px+∼D\D◦ [x

+ ∈ E,A−1(x+) /∈ E]

≤ Px∼D◦,x+∼A(x)[x ∈ E, x+ ∈ E] + ∥R∥
≤ ∥E∥◦ + ∥R∥ (82)

Note that ∥E∥◦ ≤ 1
δ∥R∥ by Assumption 13. Combining this with (81) and (82) yields

ϵ ≤ 2(2∥E∥◦ + ∥R∥) ≤ 6

δ
∥R∥

Finally, using Claim B.7 with β ≥ c′

δ log
(
c
ϵ

)
2d, we obtain from (76) that

L−(g′)− L−(g)

≤ ∥R∥(log(ℓ+ 2) + log(2)) +
∥R∥
δ

(2d+1 + log(ℓ+ 1)) + 2−(ℓ−1)β∥R∥

+
2βϵ

cd
e−

ℓ
ℓ+1 + 2βmax

(
c

c2
,
c

c1
e
−( c

c1ϵ
−1)
)

+ 2βχ

{
∥E∥◦ ≤

2d

ℓ+ 1

}
∥E∥◦e−

∥E∥◦ℓ
2d + 2βχ

{
∥E∥◦ >

2d

ℓ+ 1

}
∥E∥◦e−

ℓ
ℓ+1

≤ β∥R∥
(
log(2cd2d/ϵ+ 4) + 1

δ log(cd2
d/ϵ+ 1)

c′ log( cϵ )2
d/δ

+
2

c′ log( cϵ )2
d
+

2

2cd2d/ϵ

+
12

cdδ
e−

ℓ
ℓ+1 + 2max

(
c

c2
,
c

c1
e
−( c

c1ϵ
−1)
))

+ 2β∥E∥◦
(
χ
{
∥E∥◦ ≤

ϵ

cd

}
e
− ∥E∥◦ℓ

2d + χ

{
∥E∥◦ >

2d

ℓ+ 1

}
e−

ℓ
ℓ+1

)
≤ β∥R∥

(
log(4c/ϵ+ 4) + 1

δ log(2c/ϵ+ 1)

2c′ log( cϵ )/δ
+

1

c′ log( cϵ )
+

1

2c/ϵ

+
12

cdδ
e−

ℓ
ℓ+1 + 2max

(
c

c2
,
c

c1
e
−( c

c1ϵ
−1)
))

+ β∥R∥
(

12

cdδ
χ

{
∥E∥◦ ≤

6∥R∥
cdδ

}
+

1

δ
χ

{
∥E∥◦ >

2d

ℓ+ 1

}
e−

ℓ
ℓ+1

)
≤ 2β∥R∥

(
2c

c2
+

1

100

)
+ 2β∥R∥1.01

δe
(83)

< 2β∥R∥ = L+(g)− L+(g′) (84)

where (83) follows for a sufficiently large constants c′ and c > c1. Use δ ≥ 0.4 and set c′ = c,
c1 =

c
10 , c2 = 100c and make c sufficiently large to obtain

L−(g′)− L−(g) < 2β∥R∥ = L+(g)− L+(g′).
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B.1. Remark: Modified version of Theorem 15

Theorem 15 shows that if a minimizer of the InfoNCE loss is close to uniform, then it must
be clean. Here we show that the InfoNCE loss can be interpreted as the Lagrangian which, under
appropriate choice of hyperparameters, we can formally show to be minimized only by clean
representations.

Weighted InfoNCE loss. Consider the following constrained optimization problem that tries to
maximize uniformity while preserving alignment:

min
g∈G

Ex,x+,{x−
i }ℓ

[
log

(
eβg(x)

⊤g(x+)+

ℓ∑
i=1

eβg(x)
⊤g(x−

i )

)]
s.t. Ex,x+ [g(x)⊤g(x+)] = d (85)

The unconstrained penalized version of this problem is

min
g∈G

−λ E
x,x+

[
g(x)⊤g(x+)

]
+ E

x,x+,{x−
i }ℓ

[
log

(
eβg(x)

⊤g(x+)+
ℓ∑

i=1

eβg(x)
⊤g(x−

i )

)]
(86)

Note that the above objective with penalty coefficient λ = β is equal to the InfoNCE objective. This
formulation motivates alternate choices of λ depending on how strictly we would like to enforce
alignment. We refer to the loss

Lρ(g) = −ρβ E
x,x+

[
g(x)⊤g(x+)

]
+ E

x,x+,{x−
i }ℓ

[
log

(
eβg(x)

⊤g(x+)+

ℓ∑
i=1

eβg(x)
⊤g(x−

i )

)]
(87)

as the Weighted InfoNCE loss which is equivalent to the penalized version of (85) with λ = ρβ. We
note that this loss is similar to the generalized InfoNCE loss proposed by Chen et al. (2021).

Corollary 21 Consider the same setting as Theorem 15 but with any δ > 0 and with the Weighted
InfoNCE loss with ρ ≥ 2d+1 + 1

δ . Then for sufficiently large ℓ and β, all solutions of the Weighted
InfoNCE objective are cluster-preserving.

Proof The result follows from the analysis in the proof of Theorem 15. The analysis for the difference
in positive terms is identical except that they are scaled by ρ, so we have

L+(g)− L+(g′) = 2ρβ∥R∥ (88)

For the difference in negative terms, the analysis is again identical except that we can no longer use
that g is close to uniform. The only place we have used this is to bound ℓ

∑
v∈Hd

∥Qv \ Z∥◦(1−
∥Qv \ Z∥◦)ℓ in (80). Here, we bound this term using the fact that h(x) := x(1− x)ℓ is maximized
on the interval x ∈ [0, 1] at x = 1

ℓ+1 .

ℓ
∑
v∈Hd

∥Qv \ Z∥◦(1− ∥Qv \ Z∥◦)ℓ ≤ ℓ
∑
v∈Hd

1

ℓ+ 1

(
1− 1

ℓ+ 1

)ℓ

= 2d
(

ℓ

ℓ+ 1

)ℓ+1
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≤ 2d

e
(89)

Replacing this bound and executing the same analysis as in (83) yields

L−(g′)− L−(g)

≤ 2β∥R∥
(
2d +

1

100

)
+ 2β∥R∥1.01

δe

< 2ρβ∥R∥ (90)

completing the proof.

Appendix C. Proofs of Downstream Guarantees

C.1. Proof of Theorem 8

Proof Because there are exactly 2d clusters, from Theorem 7, we know that since g∗ is uniform,
it maps each cluster to a unique vertex on the d-dimensional hypercube. Let ψf := {Γc : f(x) =
1 ∀x ∈ Γc} be the set of clusters which f labels 1, and let N = |ψf |. Similarly let ψc

f :=

{Γc : f(x) = −1 ∀x ∈ Γc}. For all j ∈ [N ], let the j-th row of W ∈ Rm×d equal the vertex
corresponding to the mapping of the j-th cluster in ψf by g∗. For all j ∈ [m−N ], let the j +N -th
row of W equal the vertex corresponding to the mapping of the j-th cluster in ψc

f by g∗ Then for any
x such that f(x) = 1, Wg∗(x) has exactly one element with value d among the first N elements,
and all other elements are at most d− 2. On the other hand, for any x such that f(x) = −1, Wg∗(x)
has exactly one element with value d among the last m −N elements, and all other elements are
at most d − 2. Set b = (d − 2) × 1m, that is, d − 2 times the Ñ -dimensional vector of ones, and
a = [1⊤N ,−1⊤m−N ]⊤, that is, the m-dimensional vector whose first m elements are 1 and whose last
m−N elements are −1. Then a⊤ReLU(Wg(x)− b) = f(x) for all x.

C.2. Proof of Theorem 9

Proof Since we are in the realizable setting, D has m := 2d, equal-size clusters, where d > 3.
Moreover, since F⋆ is arbitrarily powerful and the augmentation sets are disjoint, for every pair of
augmentation sets (A(x), A(x̄)), there exists an f ∈ F⋆ such that f(x+) ̸= f(x̄+) for all x+ ∈ A(x)
and x̄ ∈ A(x̄), and f does not intersect any other augmentation set. Further, G⋆ can map augmentation
sets to arbitrarily different vertices, even if these sets lie in the same cluster. In other words, there are
clean representations in G⋆ (meaning they are faithful to all augmentation sets) that split clusters by
augmentation sets.

Suppose the number of augmentation sets in each cluster is k×m× 2d for some k ∈ N+, and all
augmentation sets are of equal size M . Then there exists a clean and uniform representation g ∈ G⋆

such that for each vertex v ∈ Hd, kM of the images in the set {x ∈ D◦ : g(x) = v} are in each
cluster. In other words, for all x ∈ D◦ and x+ ∼ A(x), g(x) = g(x+). Thus, we can apply Theorem
7 to obtain g ∈ argming′∈G⋆ L(g′) (note that in Theorem 7, cluster-preserving is equivalent to clean
since we are optimizing over the restricted class G, and the same proof can be applied exactly as is,
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with the word “cluster-preserving” replaced by “clean”, to show that g ∈ argming′∈G⋆
L(g′) if and

only if g is clean and uniform).
Since any head ω ∈ J composed with g must yield the same prediction for all images mapped to

the same vertex on Hd, and all vertices have the same number of images from each cluster mapped
to them, the number of images with predicted label 1 must be the same for all clusters, and likewise
for −1. Thus, for any downstream binary classification task h that satisfies h(x) = h(x′) for all
x, x′ ∈ Γc for all c ∈ C and Px∼D◦ [h(x) = 1] = 0.5, any ω must have Lf (ω ◦ g) ≥ 0.5.
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