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Abstract
We consider the problem of stochastic convex optimization with exp-concave losses using Empir-
ical Risk Minimization in a convex class. Answering a question raised in several prior works, we
provide a

O
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n
log
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1

δ

))
excess risk bound valid for a wide class of bounded exp-concave losses, where d is the dimension
of the convex reference set, n is the sample size, and δ is the confidence level. Our result is based
on a unified geometric assumption on the gradient of losses and the notion of local norms.

1. Problem statement

We consider a stochastic convex optimization problem, that is, minimization of the objective

F (w) = Pf(w,Z)

over a compact convex set W ⊂ Rd. Here Z is a random element with a distribution P supported
on a set Z, and Pf(w,Z) stands for the expectation of f(w,Z) with respect to Z ∼ P . Since P is
usually unknown, the optimizer

w∗ ∈ argmin
w∈W

F (w) (1)

cannot be computed explicitly. Instead, a learner has an access to a sample Sn = {Zi : 1 ⩽ i ⩽ n}
with independent elements distributed according to P . The most natural and popular strategy in this
case is to replace the expectation with respect to Z ∼ P by the sample mean and study an empirical
risk minimizer (ERM)

ŵ ∈ argmin
w∈W

F̂ (w), (2)

where

F̂ (w) = Pnf(w,Z) =
1

n

n∑
i=1

f(w,Zi) for all w ∈ W . (3)

Here and further in the paper, Pn stands for the empirical measure, corresponding to the sample Sn.
We are interested in tight high probability bounds on the excess risk. Our main result will imply a
bound of the form

F (ŵ)− F (w∗) = O

(
d

n
+

1

n
log

(
1

δ

))
,

for a general class of bounded exp-concave losses.
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Contributions. Our contribution combines two ideas: specific assumptions on the loss function
and a careful probabilistic analysis utilizing empirical process techniques. We propose a general
assumption on loss functions that applies to most commonly used exp-concave losses in the bounded
setup. Our main result, Theorem 3.4, addresses the question raised explicitly in a series of papers
(Mahdavi, Zhang, and Jin, 2015; Koren and Levy, 2015; Mehta, 2017; Gonen and Shalev-Shwartz,
2018; Yang, Li, and Zhang, 2018) by further exploring the concept of local norms. Despite the
presence of established empirical process techniques in related contexts, our approach handles the
loss functions exhibiting data-dependent curvature. Compared to the existing localized analysis for
the losses with (data-independent) curvature (Mendelson, 2002; Sridharan et al., 2008; Koltchinskii,
2011), we do not assume any linear structure, so the common approach based on computing the
local complexity of the linear class is not applicable in our situation. Similarly, some more recent
applications of empirical process techniques to exp-concave losses (Vijaykumar, 2021) do not fully
exploit the local geometric structure of the reference set and thus lead to suboptimal bounds in our
setup. We discuss this in more detail in Section 4.

Notation. Throughout the paper, the notation f ≲ g or g ≳ f means that for some universal
constant c > 0 we have f ⩽ cg. For any set W ⊆ Rd, Int(W) denotes its interior. For a symmetric
positive semidefinite matrix A ∈ Rd×d, ∥ · ∥A stands for a seminorm, induced by A:

∥w∥A =
√
w⊤Aw, for all w ∈ W.

Finally, for any two positive semidefinite matrices A and B of the same size the inequalities A ⪯ B
and B ⪰ A mean that (B− A) is positive semidefinite.

Structure of the paper. The rest of the paper is organized as follows. In Section 2, we make a
brief overview of related works. In Section 3, we introduce our geometric assumption, present our
main result, Theorem 3.4, and discuss its implications. Section 4 is devoted to the proof of Theorem
3.4. It heavily relies on a technical statement about the supremum of a certain empirical process,
Lemma 4.2. We provide its proof in Section 5. Proofs of auxiliary results appear in Appendix.

2. Related work

Theoretical properties of the empirical risk minimizer ŵ, especially its generalization ability, were
extensively studied in the contexts of stochastic convex optimization and statistical learning theory.
Given the extensive body of relevant literature, we review only a subset of the most relevant papers.
Early results in this direction include the analysis of linear regression with squared loss via local
Rademacher complexities (see, e.g., (Mendelson, 2002) and (Koltchinskii, 2011, Section 5.1)). In
particular, Koltchinskii (2011, Section 5.1, Example 1) shows that, in the problem of bounded lin-
ear regression in Rd, the excess squared risk of a ERM scales as O(d/n) with high probability. In
contrast to the standard results on learning general VC-type classes under various margin conditions
(see, e.g., (Bartlett, Bousquet, and Mendelson, 2005; Massart and Nédélec, 2006; Zhivotovskiy and
Hanneke, 2018), and (Koltchinskii, 2011, Section 5.1, Example 3)), the linear regression specific
rate O(d/n) avoids an extra log n factor and exhibits tighter bounds on generalization ability of
ERM. The reason for that is a linear structure of the reference set, which allows to bound its local
Rademacher complexity using the standard Cauchy-Schwarz or Fenchel inequalities (see (Koltchin-
skii, 2011, Proposition 3.2) and (Kakade et al., 2008, Theorem 1)).
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Many researchers have further explored the possibility of achieving an excess risk bound better
than O(d log n/n) for problems with specific local structures in the reference set. Recent investi-
gations in stochastic approximation lead to numerous tight in-expectation O(d/n) bounds on the
excess risk of particular optimization algorithms (see, e.g., (Moulines and Bach, 2011; Bach and
Moulines, 2013; Woodworth and Srebro, 2021) to mention a few). The current paper focuses on
high probability bounds, which typically require a more technical analysis. In a study by Sridharan,
Shalev-Shwartz, and Srebro (2008), the authors extended the analysis of local Rademacher com-
plexities to the case of regularized strongly convex losses, f(w, z) = ℓ(y, w⊤x) + R(w), where
z = (x, y), ℓ is convex with respect to its second argument for any y, and R(w) is strongly con-
vex. Similar to an example in (Koltchinskii, 2011, Section 5.1, Example 1), the key to the proof
was a bound on the local Rademacher complexity of a linear class, as demonstrated in Lemma 7
in (Sridharan et al., 2008). The PAC-Bayesian localization technique was introduced by Audibert
and Catoni (2010, 2011) to obtain high-probability bounds on the squared excess risk of ERM in
the bounded linear regression problem. These authors achieved a rate of O((d + log(1/δ))/n).
This approach has also been used in (Zhang, 2006) in the context of density estimation. Related
to our study, Klochkov and Zhivotovskiy (2021) proved a dimension-free excess risk bound of
O(log(n) log(1/δ)/n) with high probability for arbitrary strongly convex and Lipschitz losses, us-
ing the uniform stability of ERM. We also would like to mention that excess risk bounds can be
derived from regret bounds for online learning algorithms via the online-to-batch conversion. We
refer to (Kakade and Tewari, 2008; Gaillard and Wintenberger, 2018; Van der Hoeven et al., 2022)
for related high probability upper bounds. However, in our context, the online-to-batch approach
yields risk bounds with additional logarithmic factors, which makes it unsuitable for our purposes.

This paper focuses on stochastic convex optimization problems using a broad class of exp-
concave losses. Our goal is to provide tight high probability bounds O((d + log(1/δ))/n) on
the excess risk of ERM under mild assumptions on the function f(w, z). In the context of exp-
concave losses, this question was directly addressed in a series of papers and turned out to be
quite challenging. It appears that one also needs to make some additional assumptions on the loss
function that allows to capture the local geometry of the reference set. Several works have achieved
the desired O(d/n) rate in expectation (e.g., (Koren and Levy, 2015; Gonen and Shalev-Shwartz,
2018; Zhang and Zhou, 2019)), but transforming this guarantee into a high probability bound results
in suboptimal O((d log n + log(1/δ))/n) guarantees. Several groups of authors (Mahdavi, Zhang,
and Jin, 2015; Koren and Levy, 2015; Mehta, 2017; Gonen and Shalev-Shwartz, 2018; Yang, Li, and
Zhang, 2018) have questioned the possibility of achieving the optimal O((d + log(1/δ))/n) high
probability excess risk bound. The best bound in this direction is given by the confidence boosting
approach suggested by Mehta (2017), which replaces ERM with an aggregate of independently
trained ERMs, resulting in a bound of O(d log(1/δ)/n). We additionally refer to the recent papers
by Mourtada and Gaı̈ffas (2022) and Bilodeau, Foster, and Roy (2021) where a detailed survey of
relevant results is provided.

The cornerstone of the analysis of empirical risk minimizers in learning problems with the
squared loss (or more general strongly convex losses) is localization. Certain fixed point equations
appeared in influential works (Van de Geer, 1990; Birgé and Massart, 1993; Yang and Barron, 1999)
and then became familiar to the machine learning community thanks to the papers (Koltchinskii,
2006; Bartlett, Bousquet, and Mendelson, 2005). We refer to the monographs (Van de Geer, 2000;
Koltchinskii, 2011) and the paper (Mendelson, 2002) for examples of application of local entropy
and local Rademacher complexity to the analysis of linear regression with squared loss. Finally, we
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note that the analysis of the local structure of the reference set in the context of density estimation
has its roots in the classical works of LeCam (1973) and Birgé (1983). For related upper bounds,
we refer to Section 32.2.3 in the forthcoming book by Polyanskiy and Wu (2023).

3. Main results and examples

In this section, we present our main result. Throughout the paper, we assume that the loss function
f(w, z) satisfies the following condition.

Assumption 3.1 For any training sample Z1, . . . , Zn there is positive semidefinite matrix H ∈
Rd×d, which may depend on the sample, such that

• the expectation of H is finite;

• F̂ (w) given by (3) is σ-strongly convex on W with respect to the seminorm, induced by H;
that is, for any u, v ∈ W and α ∈ [0, 1], the next inequality holds almost surely:

F̂
(
αu+ (1− α)v

)
⩽ αF̂ (u) + (1− α)F̂ (v)− σα(1− α)

2
∥u− v∥2H; (4)

• for any u, v ∈ W , the empirical L2-distance between f(u, Z) and f(v, Z) satisfies the in-
equality

Pn

(
f(u, Z)− f(v, Z)

)2
⩽ L2∥u− v∥2H.

Here, σ and L are positive constants that do not depend on Z1, . . . , Zn.

When H is the identity matrix, we simply say that F̂ is a strongly convex function. Similarly, when
H is the identity matrix, the second part of this assumption corresponds to the standard Lipschitz
property. Though Assumption 3.1 may appear similar to the commonly used assumptions of strong
convexity and Lipschitzness, the introduction of the data-dependent matrix H broadens the range of
applications of our model. In particular, it includes regularized objectives, considered in (Sridharan
et al., 2008), and generalized linear models (see, e.g., (Gonen and Shalev-Shwartz, 2018)), where
the loss function has a form

f(w, z) = ℓ(w⊤x, y). (5)

Here z = (x, y) is a feature-label pair, w and x belong to bounded subsets of Rd, and ℓ is L-
Lipschitz and σ-strongly convex with respect to the first argument for all y. In this case, F̂ (w) is
σ-strongly convex with respect to the seminorm ∥ · ∥H, induced by H = (X1X

⊤
1 + · · ·+XnX

⊤
n )/n

(see Example 3.6). Our setup covers both of the most commonly used generalized linear models:
linear regression, which corresponds to f(w, z) = (y − w⊤x)2, and logistic regression, which
corresponds to f(w, z) = log(1 + e−yw⊤x) with y ∈ {−1, 1}.

Under mild differentiability assumptions, F̂ demonstrates exponential concavity, as shown in
the following result.

Proposition 3.2 Suppose that F̂ satisfies Assumption 3.1 and let the loss function f(w, z) be twice
differentiable with respect to the first argument for all z ∈ Z. Then F̂ is (σ/L2)-exponentially
concave on W . That is, e−σF̂/L2

is concave on W .

4



EXPLORING LOCAL NORMS IN EXP-CONCAVE STATISTICAL LEARNING

However, our assumptions are slightly stronger than exp-concavity alone. In fact, our assumption
implies the boundedness of the loss.

Proposition 3.3 Under Assumption 3.1, we have |f(w,Z) − f(w∗, Z)| ⩽ 4L2/σ for all w ∈ W
and almost surely with respect to Z.

Observe that this result does not necessarily imply the boundedness of the set W . This distinguishes
our assumptions from the more restrictive strongly convex Lipshitz assumption, which implies both
the boundedness of the loss and W . In fact, the proof of Proposition 3.3 yields that

∥w − ŵ∥2H ⩽
4

σ

(
F̂ (w)− F̂ (ŵ)

)
⩽

32L2

σ2
for all w ∈ W.

If det(H) ̸= 0, then W is bounded. However, in general, the matrix H is not assumed to be
nondegenerate. Hence, W may potentially be unbounded under our assumption. The proofs of
Propositions 3.3 and 3.2 are deferred to Appendix A. After listing these basic properties, we are
ready to present our main result.

Theorem 3.4 Assume that W ⊂ Rd is a compact convex set. Under Assumption 3.1, for any
δ ∈ (0, 1), it holds that, with probability at least 1− δ, the ERM estimator (2) satisfies

F (ŵ)− min
w∈W

F (w) ≲
L2(d+ log(1/δ))

σn
.

Theorem 3.4 answers a natural question raised in several previous papers. The most relevant
to our result are the papers of Koren and Levy (2015); Gonen and Shalev-Shwartz (2018), where
the authors obtained optimal in-expectation bounds of order O(d/n), and of Mahdavi et al. (2015);
Mehta (2017); Yang et al. (2018), where the authors proved O((d log n+ log(1/δ))/n) high proba-
bility upper bounds. We will now discuss the differences in assumptions made on the loss functions.
In (Koren and Levy, 2015; Yang et al., 2018), the authors required the gradient ∂f(w, z)/∂w be
Lipschitz on W . Koren and Levy (2015) also asked if the smoothness of the gradient is necessary
for obtaining fast rates for ERM. A partial answer was given in (Gonen and Shalev-Shwartz, 2018),
where the authors considered generalized linear models with the losses of the form (5), where ℓ(·, y)
is Lipschitz and strongly convex with respect to its first argument for all y’s. Under these assump-
tions, the authors showed that the expected excess risk of ERM can decay as fast as O(d/n). Our
result strictly improves the one of Gonen and Shalev-Shwartz (2018). As it was discussed earlier,
our Assumption 3.1 is more general than the requirements of Gonen and Shalev-Shwartz (2018). At
the same time, we derive a rate optimal O((d + log(1/δ))/n) high probability excess risk bound.
Concerning the papers (Mahdavi et al., 2015; Mehta, 2017), the authors work under more general
assumptions than Assumption 3.1. Namely, they only assume that the loss f(w, z) is bounded, Lip-
schitz and σ-exponentially concave with respect to w ∈ W for all z ∈ Z. It is not clear, if it is
possible to get rid of extra log n factors in their high probability bounds. However, we would like
to note that our setup covers all interesting bounded loss functions arising in exp-concave learning
with convex reference sets.

Theorem 3.4 has several implications. We discuss them in the examples below.

Example 3.5 (Linear regression with squared loss) Fix R > 0. Assume that the observations
Z1, . . . , Zn have a form Zi = (Xi, Yi), 1 ⩽ i ⩽ n, where Xi ∈ Rd and Yi ∈ R have distributions
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supported on {x ∈ Rd : ∥x∥ ⩽ 1} and [−R,R], respectively. Consider W = {w ∈ Rd : ∥w∥ ⩽ R}
and the quadratic loss function f(w, z) = (y − w⊤x)2. Note that f(w, z) fulfils Assumption 3.1
with the matrix H = (X1X

⊤
1 + · · · +XnX

⊤
n )/n and the constants σ = 2, L = 4R. According to

Theorem 3.4, for any δ ∈ (0, 1), an empirical risk minimizer ŵ satisfies the inequality

F (ŵ)− F (w∗) ≲
R2(d+ log(1/δ)

n

with probability at least 1 − δ. This agrees with the upper bound of Koltchinskii (2011, Sec-
tion 5.1, Example 1), based on local Rademacher complexities, and the lower bound of Shamir
(2015, Theorem 1), who showed that for any estimator w̃ ∈ W there exists a data distribution over
B(0, 1)× [−R,R] such that EF (w̃)− F (w∗) ≳ R2d/n.

Example 3.6 (Logistic regression) Again, assume that the observations Z1, . . . , Zn have a form
Zi = (Xi, Yi), 1 ⩽ i ⩽ n, where Xi ∈ Rd and Yi ∈ {−1, 1}. Fix R > 0 and let the distribution of
Xi’s be supported on B(0, R) = {x ∈ Rd : ∥x∥ ⩽ R}. Consider W = {w ∈ Rd : ∥w∥ ⩽ B} and
the logistic loss

f(w, z) = log(1 + e−yw⊤x).

Direct calculations show that the map u 7→ log(1 + eu) is 1-Lipschitz and e−BR-strongly convex
on [−BR,BR]. Hence, the logistic loss meets Assumption 3.1 with the matrix

H =
1

n

n∑
i=1

XiX
⊤
i

and the constants σ = e−BR, L = 1. Theorem 3.4 implies that, for any δ ∈ (0, 1), with probability
at least 1− δ, it holds that

F (ŵ)− F (w∗) ≲
eBR(d+ log(1/δ))

n
. (6)

We refer to (Hazan, Koren, and Levy, 2014), where the authors discuss the inavoidability of the eBR

factor for ERM. We note that the bound (6) has not appeared in the literature before.

Furthermore, our bound covers strongly convex and Lipschitz losses, regardless of any linear
structure in the loss function. In (Klochkov and Zhivotovskiy, 2021), the authors used the uniform
stability argument to prove that, if f(·, z) is L-Lipschitz and σ-strongly convex for all z ∈ Z, then,
for any δ ∈ (0, 1), with probability at least 1− δ, it holds that

F (ŵ)− F (w∗) ≲
L2 log n log(1/δ)

σn
. (7)

Taking together their result and Theorem 3.4, we get the following bound.

Corollary 3.7 (Strongly convex and Lipschitz losses) Assume that, for any z ∈ Z, the loss func-
tion f(·, z) is L-Lipschitz and σ-strongly convex on W ⊆ Rd, which is a compact convex set. Then,
for any δ ∈ (0, 1), with probability at least 1− δ, it holds that

F (ŵ)− F (w∗) ≲
L2min{d+ log(1/δ), log n log(1/δ)}

σn
.
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This gives the best known high probability upper bound in this standard setup. Recent results on
algorithmic stability (Bousquet et al., 2020; Klochkov and Zhivotovskiy, 2021) leave the question
if the log n term can be removed in the bounds such as (7). Our Corollary (3.7) shows that if this
factor cannot be removed, then any demonstration of this must occur in the regime d+ log(1/δ) ≳
log n log(1/δ).

On logarithmic factors and improper learning. We focus on the sharp analysis of ERM in a
convex reference set W . Nevertheless, recent work has demonstrated that the use of so-called im-
proper estimators — estimators that predict values outside of the reference set W — can lead to
significant improvements in the dependence on some parameters. These estimators are typically
based on aggregating the functions within certain non-convex reference sets constructed by trun-
cating the original functions that correspond to W . Such improvements are known in both logistic
regression (Kakade and Ng, 2004; Foster et al., 2018; Mourtada and Gaı̈ffas, 2022) and regression
with the squared loss (Forster and Warmuth, 2002; Vaškevičius and Zhivotovskiy, 2023; Mourtada
et al., 2021). However, it should be noted that the improper learning setup poses a considerable
challenge for the localized analysis utilized in this paper. Specifically, the lower bound of Rakhlin,
Sridharan, and Tsybakov (2017, Theorem 6) indicates that, in the context of bounded regression
with a non-convex reference set, the lower bound of Ω(log(n)/n) cannot be surpassed even with
the use of improper learners. At present, there is no known analysis that can yield high probability
excess risk bounds of order O((d+ log(1/δ))/n) for any improper learner in non-convex reference
sets.

4. Proof of Theorem 3.4

Our proof is making most of the standard arguments on the Laplace transform of shifted or offset
empirical processes. A similar approach was exploited by many authors Wegkamp (2003); Lecué
and Rigollet (2014); Liang, Rakhlin, and Sridharan (2015); Zhivotovskiy and Hanneke (2018);
Kanade, Rebeschini, and Vaškevičius (2022) in the statistical setup, though their analysis is specific
to strongly convex losses or binary losses under additional probabilistic assumptions. In (Vijayku-
mar, 2021), the author generalized the approach of Liang et al. (2015) to study the properties of
ERM under exp-concave losses, though their analysis only focuses on getting the O(1/n) rate of
convergence and fails to capture the local structure of the reference set. In our context their result
would give an additional log n factor, which is known to be achievable using an ε-net argument
(Mehta, 2017). The key point of our analysis is based on relating Assumption 3.1 with the localized
covering numbers of the set W with respect to the data-dependent semi-norm induced by H. Two
papers that are worth mentioning on the topic of online learning and exp-concave losses, which
utilize sequential offset processes, are (Rakhlin and Sridharan, 2015) and (Bilodeau et al., 2020).

Lemma 4.1 Under Assumption 3.1, let Φ : R → R be a convex monotonously increasing function.
Then, it holds that

EΦ
(
F (ŵ)− F (w∗)

)
⩽ EEεΦ

(
4 sup
w∈W

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

])
,

where ε1, . . . , εn are i.i.d. Rademacher random variables.
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The proof of Lemma 4.1 is postponed to Appendix A.3. From now on, we focus our attention on
the shifted multiplier process of the form Pnε

(
f(w,Z)−f(w∗, Z)

)
−σ∥w−w∗∥2H/8, w ∈ W , and

consider exponential moments of its supremum. In Section 5, we prove our main technical bound.

Lemma 4.2 Let f(w, z) satisfy Assumption 3.1. Set λ = σn/(32eL2). Then, for all Z1, . . . , Zn, it
holds that

Eε exp

{
λ sup

w∈W

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}
⩽ e+ e3d + 14e2048(1+e)2d/e.

Let us briefly describe the idea of the proof of Lemma 4.2. We use the standard peeling argument
and represent the whole set W as the union

W = W[0, r] ∪

( ∞⋃
k=0

W[2kr, 2k+1r]

)
,

where r > 0 is a fixed number and, for any b ⩾ a ⩾ 0, W[a, b] is defined as

W[a, b] = {w ∈ W : a ⩽ ∥w − w∗∥H ⩽ b} .

After this step, we essentially reduce the problem to the analysis of localized offset process, that is,
the process of the form

Pnε
(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H,

where w runs over a local set W[0, r], rather than over the whole set W . However, the peeling
argument alone is not sufficient to avoid unnecessary log n factors, and one should be careful at
this point. In (Mehta, 2017, Theorem 1) and (Liang et al., 2015, Lemma 6, Lemma 7), the authors
use the ε-net argument, which leads to a suboptimal result in our situation. The main difference
of our approach from the previous works is hidden in the proof Lemma 5.1, where we combine
the localized analysis with chaining and Talagrand’s inequality to derive a tight upper bound on the
exponential moment

Eε exp

{
λ sup

w∈W[0,r]
Pnε

(
f(w,Z)− f(w∗, Z)

)}
.

Given that we consider the geometry of the loss in defining W[0, r], deriving an upper bound on its
covering number is relatively straightforward. We provide this bound in Lemma 5.2. The key point
of this approach, which sets it apart and enables improvement over existing results, is the decision
not to use the naive ε-net argument.

Lemma 4.1 and Lemma 4.2 immediately imply that

logE exp {λ(F (ŵ)− F (w∗))} ≲ d with λ =
σn

128eL2
.

Hence, for any δ ∈ (0, 1), the following inequality holds, with probability at least 1− δ:

F (ŵ)− F (w∗) ≲
L2(d+ log(1/δ))

σn
.

The claim follows.
■
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5. Proof of Lemma 4.2

Our proof relies on the classical peeling argument. For any b ⩾ a ⩾ 0 define

W[a, b] = {w ∈ W : a ⩽ ∥w − w∗∥H ⩽ b} .

Let r > 0 be a positive real number to be specified later. Since the function Φ(x) = eλx takes only
positive values, the expectation of interest does not exceed

Eε exp

{
λ sup

w∈W

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}
⩽ Eε exp

{
λ sup

w∈W[0,r]

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}
(8)

+

∞∑
k=0

Eε exp

{
λ sup

w∈W[2kr,2k+1r]

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}
.

Thus, we have bounded the exponential moment of the supremum of the empirical process by the
sum of exponential moments of localized processes. The main ingredient in the proof of Lemma
4.2 is Lemma 5.1, which provides an upper bound on the exponential moment of the supremum of
a localized set without introducing additional logarithmic factors.

Lemma 5.1 Let f(w,Z) satisfy Assumption 3.1. Let

B = sup
w∈W[0,r]

esssup
z∈Z

|f(w, z)− f(w∗, z)|.

Then, for any λ ⩾ 0, it holds that

logEε exp

{
λ sup

w∈W[0,r]
Pnε

(
f(w,Z)− f(w∗, Z)

)}

⩽ 64λLr

√
d

n
+

B2λ2eBλ/n

2n

(
128Lr

B

√
d

n
+

L2r2

B2

)
.

If, in addition, λ ⩽ n/B, then

logEε exp

{
λ sup

w∈W[0,r]
Pnε

(
f(w,Z)− f(w∗, Z)

)}
⩽ 64(1 + e)λLr

√
d

n
+

eλ2L2r2

2n
.

We defer the proof of Lemma 5.1 to Section 5.1 and focus on finishing the proof of Lemma 4.2.
Note that Proposition 3.3 implies that B ⩽ 4L2/σ under Assumption 3.1. Since we consider
λ = σn/(32eL2), the conditions of the second part of Lemma 5.1 are satisfied. Applying it to the

9
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first term in the right-hand side of (8), we obtain that

Eε exp

{
λ sup

w∈W[0,r]

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}

⩽ Eε exp

{
λ sup

w∈W[0,r]
Pnε

(
f(w,Z)− f(w∗, Z)

)}
(9)

⩽ exp

{
64(1 + e)λLr

√
d

n
+

eλ2L2r2

2n

}
.

Next, fix a non-negative integer k and consider

Eε exp

{
λ sup

w∈W[2kr,2k+1r]

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}
.

In contrast to (9), dropping the negative term leads to a suboptimal bound in this situation. At the
same time, the following simple observation allows us to obtain a tight bound. By the definition of
W[2kr, 2k+1r], we have ∥w − w∗∥H ⩾ 2kr for any w ∈ W[2kr, 2k+1r]. Therefore,

Eε exp

{
λ sup

w∈W[2kr,2k+1r]

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}

⩽ Eε exp

{
λ sup

w∈W[2kr,2k+1r]

[
Pnε

(
f(w,Z)− f(w∗, Z)

)]
− 4k−1σλr2/2

}

⩽ Eε exp

{
λ sup

w∈W[0,2k+1r]

[
Pnε

(
f(w,Z)− f(w∗, Z)

)]
− 4k−1σλr2/2

}
.

Applying Lemma 5.1 again, we obtain that

Eε exp

{
λ sup

w∈W[0,2k+1r]

[
Pnε

(
f(w,Z)− f(w∗, Z)

)]
− 4k−1σλr2/2

}

⩽ exp

{
64(1 + e) 2k+1λLr

√
d

n
+

e · 4k+1λ2L2r2

2n
− 4k−1σλr2/2

}
(10)

= exp

{
128(1 + e) 2kλLr

√
d

n
+

2e · 4kλ2L2r2

n
− 4k−1σλr2/2

}
.

Taking (8), (9), and (10) together, we get that

Eε exp

{
λ sup

w∈W

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}
⩽ exp

{
64(1 + e)λLr

√
d

n
+

eλ2L2r2

2n

}

+

∞∑
k=0

exp

{
128(1 + e) 2kλLr

√
d

n
+

2e · 4kλ2L2r2

n
− 4k−1σλr2/2

}
.

10
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The remainder of the proof relies on standard computations and on making the appropriate choice
for the parameters λ and r. Let us recall that λ = σn/(32eL2). It is easy to observe that such a
choice ensures

2e · 4kλ2L2r2

n
=

4kσλr2

16
.

Then, it holds that

exp

{
64(1 + e)λLr

√
d

n
+

eλ2L2r2

2n

}

+

∞∑
k=0

exp

{
128(1 + e) 2kλLr

√
d

n
+

2e · 4kλ2L2r2

n
− 4k−1σλr2/2

}

⩽ exp

{
64(1 + e)λLr

√
d

n
+

σλr2

64

}
+

∞∑
k=0

exp

{
128(1 + e) 2kλLr

√
d

n
− 4k−2σλr2

}
.

Choosing

r =
L

σ

√
d

n
,

we obtain that

64(1 + e)λLr

√
d

n
+

σλr2

64
=

64(1 + e)λL2d

σn
+

λL2d

64σn
=

2(1 + e)d

e
+

d

2048e
< 3d,

and, for any k ⩾ 0, it holds that

128(1 + e) 2kλLr

√
d

n
− 4k−2σλr2 ⩽

λL2d

σn

(
128(1 + e) 2k − 4k−2

)
.

Thus, we conclude that

Eε exp

{
λ sup

w∈W

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}
⩽ e3d +

∞∑
k=0

exp

{
λL2d

σn

(
128(1 + e) 2k − 4k−2

)}
, (11)

where λ = σn/(32eL2). It remains to bound the sum

∞∑
k=0

exp

{
λL2d

σn

(
128(1 + e) 2k − 4k−2

)}
.

Note that, if k ⩾ 14, then 128(1 + e) 2k < 2k+9 ⩽ 4k−2/2. Hence,

∞∑
k=0

exp

{
λL2d

σn

(
128(1 + e) 2k − 4k−2

)}

⩽
13∑
k=0

exp

{
λL2d

σn

(
128(1 + e) 2k − 4k−2

)}
+

∞∑
k=14

exp

{
−4kλL2d

32σn

}
. (12)

11
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Applying the standard bound for the quadratic function

128(1 + e) 2k − 4k−2 =

(
128(1 + e)x− x2

16

)∣∣∣∣
x=2k

⩽ 2562(1 + e)2,

we deduce that the first term in the right-hand side does not exceed

14 exp

{
2562(1 + e)2λL2d

σn

}
= 14 exp

{
2048(1 + e)2d

e

}
. (13)

For the second one, we have
∞∑

k=14

exp

{
−4kλL2d

32σn

}
=

∞∑
k=0

exp

{
−4k+14d

322e

}
⩽

∞∑
k=0

exp

{
−414 kd

322e

}

⩽
∞∑
k=0

exp

{
−49 kd

e

}
⩽ e. (14)

The inequalities (11), (12), (13), and (14) imply that

Eε exp

{
λ sup

w∈W

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

]}
⩽ e+ e3d + 14e2048(1+e)2d/e.

The claim follows.
■

5.1. Proof of Lemma 5.1

We start with an upper bound on the expected value of the supremum. Let F [0, r] = {f(w, z) −
f(w∗, z) : w ∈ W[0, r]}. According to Assumption 3.1, we have

Pn

(
f(u, Z)− f(v, Z)

)2
⩽ L2∥u− v∥2H for all u, v ∈ W .

This yields that, for any γ > 0, a (γ/L)-net in W[0, r] with respect to the seminorm ∥ · ∥H induces
a γ-net in F [0, r] with respect to the empirical L2-norm. Indeed, let Wγ/L[0, r] be a (γ/L)-net in
W[0, r]. Consider any g ∈ F [0, r]. By the definition of F [0, r], there exists w ∈ W[0, r], such
that g(z) = f(w, z). Let wγ/L be the closest to w element of Wγ/L[0, r]. By the definition of
Wγ/L[0, r], we have ∥w − wγ/L∥H ⩽ γ/L. Then, it holds that∣∣∣∣√Pn

(
f(w,Z)− f(w∗, Z)

)2 −√Pn

(
f(wγ/L, Z)− f(w∗, Z)

)2∣∣∣∣
⩽
√

Pn

(
f(w,Z)− f(wγ/L, Z)

)2
⩽ L∥w − wγ/L∥H ⩽ γ.

Hence, the covering number of F [0, r] with respect to the empirical L2-norm does not exceed the
one of W[0, r] with respect to the seminorm ∥ · ∥H. Applying the standard chaining technique, we
obtain that

Eε sup
w∈W[0,r]

Pnε
(
f(w,Z)− f(w∗, Z)

)
⩽

12√
n

Lr∫
0

√
logN (W[0, r], ∥ · ∥H, γ/L)dγ. (15)

We use the following lemma to bound the covering number of W[0, r].

12
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Lemma 5.2 For any u ∈ (0, r], it holds that N (W[0, r], ∥ · ∥H, u) ⩽ (6r/u)d .

The proof of Lemma 5.2 is moved to Section A.4. Substituting the bound of Lemma 5.2 into the
Dudley integral (15), we obtain that

Eε sup
w∈W[0,r]

Pnε
(
f(w,Z)− f(w∗, Z)

)
⩽

12√
n

Lr∫
0

√
d log(6Lr/γ)dγ.

Substituting γ with 6Lre−u, we get

Lr∫
0

√
log(6Lr/γ)dγ = 6Lr

+∞∫
log 6

√
ue−udu ⩽ 6Lr

+∞∫
0

√
ue−udu = 6Lr Γ(3/2) = 3Lr

√
π.

Therefore, we have

Eε sup
w∈W[0,r]

Pnε
(
f(w,Z)− f(w∗, Z)

)
⩽ 12

√
d

n
· 3Lr

√
π ⩽ 64Lr

√
d

n
. (16)

Since |ε(f(w,Z)−f(w∗, Z))| ⩽ B almost surely, we can apply Talagrand’s concentration inequal-
ity for the supremum of the empirical process to

sup
w∈W[0,r]

Pnε
(
f(w,Z)− f(w∗, Z)

)
.

We use an upper bound on the exponential moment of the supremum, which follows from (Bous-
quet, 2002, Theorems 2.1 and 2.3):

logEε exp

{
λ sup

w∈W[0,r]

n∑
i=1

εi
(
f(w,Zi)− f(w∗, Zi)

)}

⩽ λEε sup
w∈W[0,r]

n∑
i=1

εi
(
f(w,Zi)− f(w∗, Zi)

)
+ Vn

(
eBλ −Bλ− 1

)
for all λ ⩾ 0, (17)

where

Vn =
2

B
Eε sup

w∈W[0,r]

n∑
i=1

εi
(
f(w,Z)− f(w∗, Z)

)
+

1

B2
sup

w∈W[0,r]

n∑
i=1

(
f(w,Z)− f(w∗, Z)

)2
⩽

2

B
Eε sup

w∈W[0,r]

n∑
i=1

εi
(
f(w,Z)− f(w∗, Z)

)
+

nL2r2

B2
. (18)

Combining the inequalities (16), (17), (18) with the bound ex − x − 1 ⩽ x2ex

2 , which holds for all
x ⩾ 0, we obtain for any λ ⩾ 0,

logEε exp

{
λ sup

w∈W[0,r]
Pnε

(
f(w,Z)− f(w∗, Z)

)}

⩽ 64λLr

√
d

n
+

B2λ2eBλ/n

2n

(
128Lr

B

√
d

n
+

L2r2

B2

)
.

13



PUCHKIN ZHIVOTOVSKIY

If λ ⩽ n/B, then

64λLr

√
d

n
+

B2λ2eBλ/n

2n

(
128Lr

B

√
d

n
+

L2r2

B2

)
⩽ 64(1 + e)λLr

√
d

n
+

eλ2L2r2

2n
.

The claim follows.
■

6. Conclusion

In this work, we have established a tight high-probability upper bound on the excess risk of Empir-
ical Risk Minimization (ERM), specifically O(d/n + log(1/δ)/n), for a subclass of exp-concave
losses. The key aspect of our analysis is the convexity of the domain W , though it does not neces-
sitate boundedness. Nevertheless, it is important for the loss function f(w,Zi) to remain bounded
for every w ∈ W and all i ∈ {1, . . . , n}. This assumption proves instrumental in Lemma 5.1, when
we are applying Talagrand’s inequality for the suprema of empirical processes. The counterpart to
Talagrand’s inequality in the unbounded case, as indicated in (Adamczak, 2008), might introduce
an extra log n factor. Currently, it remains unclear whether a similar O(d/n + log(1/δ)/n) bound
can be achieved in the unbounded scenario. While applications like logistic regression can mitigate
the unbounded case to the bounded one with clipping (see (Foster et al., 2018)), this results in non-
convex classes, making our localized analysis inapplicable. Moreover, as noted in Section 3, the
additional log n factor is sometimes inavoidable when dealing with a non-convex reference set (see
(Rakhlin et al., 2017, Theorem 6)). Understanding the geometry of non-convex classes, particularly
in relation to proper and improper learners, appears to be a promising direction for future research.
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Appendix A. Proofs of auxiliary results

A.1. Proof of Proposition 3.2

It is enough to check that
∇2e−σF̂ (w)/L2 ⪯ O

for all w from the interior of W . Here O is a matrix with zero entries. This is equivalent to

σ

L2
∇F̂ (w)∇F̂ (w)⊤ ⪯ ∇2F̂ (w) for all w ∈ Int(W).

The strong convexity of F̂ with respect to the seminorm ∥ · ∥H implies that the function F̂ (w) −
σ∥w∥2H is convex on H. The last is equivalent to the inequality

∇2
(
F̂ (w)− σ∥w∥2H

)
⪰ O for all w ∈ Int(W)

or simply ∇2F̂ (w) ⪰ σH for all w ∈ Int(W). On the other hand, it holds that(
F̂ (u)− F̂ (v)

)2
⩽ Pn

(
f(u, Z)− f(v, Z)

)2
⩽ L2∥u− v∥2H for all u, v ∈ W .

This yields that
∇F̂ (w)∇F̂ (w)⊤ ⪯ L2H for all w ∈ Int(W).

Hence, for any w in the interior of W , we have

σ

L2
∇F̂ (w)∇F̂ (w)⊤ ⪯ σH ⪯ ∇2F̂ (w).

The claim follows.
■

A.2. Proof of Proposition 3.3

If Assumption 3.1 holds, then Jensen’s inequality immediately implies that(
F̂ (u)− F̂ (v)

)2
⩽ Pn

(
f(u, Z)− f(v, Z)

)2
⩽ L2∥u− v∥2H for all u, v ∈ W .

Thus, F̂ is L-Lipschitz on W with respect to the seminorm ∥ · ∥H. On the other hand, the strong
convexity of F̂ yields that

F̂ (ŵ) ⩽ F̂

(
ŵ + w

2

)
⩽

1

2
F̂ (ŵ) +

1

2
F̂ (w)− σ

8
∥ŵ − w∥2H for all w ∈ W ,

where the first inequality follows from the convexity of W and the definition of ŵ. Hence,

F̂ (w) ⩾ F̂ (ŵ) +
σ

4
∥ŵ − w∥2H for all w ∈ W .

As a result, we obtain that(
F̂ (w)− F̂ (ŵ)

)2
⩽ L2∥ŵ − w∥2H ⩽

4L2

σ

(
F̂ (w)− F̂ (ŵ)

)
for all w ∈ W .
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Consequently,∣∣∣F̂ (w)− F̂ (w∗)
∣∣∣ ⩽ max

{
F̂ (w)− F̂ (ŵ), F̂ (w∗)− F̂ (ŵ)

}
⩽

4L2

σ
for all w ∈ W . (19)

We show that |f(w,Z)−f(w∗, Z)| ⩽ 4L2/σ almost surely. Assume the opposite. Let Z> ⊆ Z be a
set of all such z ∈ Z that f(w, z)−f(w∗, z) > 4L2/σ. If Z> has a positive probability measure, then
we have F̂ (w)− F̂ (w∗) > 4L2/σ on Z⊗n

> , which contradicts (19). Hence, f(w,Z)− f(w∗, Z) ⩽
4L2/σ almost surely. Similarly, we can prove that f(w∗, Z)− f(w,Z) ⩽ 4L2/σ almost surely.

■

A.3. Proof of Lemma 4.1

Note that

F (ŵ)− F (w∗) = 2(P − Pn)
(
f(ŵ, Z)− f(w∗, Z)

)
+ P

(
f(w∗, Z)− f(ŵ, Z)

)
+ 2Pn

(
f(ŵ, Z)− f(w∗, Z)

)
.

According to Assumption 3.1, F̂ is strongly convex with respect to the seminorm, induced by the
matrix H. Taking into account the convexity of W and the equation (4), we obtain that

F̂ (ŵ) ⩽ F̂

(
ŵ + w

2

)
⩽

1

2
F̂ (ŵ) +

1

2
F̂ (w)− σ

8
∥ŵ − w∥2H for all w ∈ W .

Therefore, it holds that

F̂ (w) ⩾ F̂ (ŵ) +
σ

4
∥ŵ − w∥2H for all w ∈ W . (20)

Similarly, we deduce that the following inequality holds for all w ∈ W:

F (w∗) = EF̂ (w∗) ⩽ EF̂
(
w∗ + w

2

)
⩽

1

2
EF̂ (w∗) +

1

2
EF̂ (w)− σ

8
E∥w∗ − w∥2H.

Consequently, we have

F (w) ⩾ F (w∗) +
σ

4
E∥w∗ − w∥2H for all w ∈ W . (21)

Observe that E∥w∗ − w∥2H = ∥w∗ − w∥2EH. Then the inequalities (20) and (21) imply that

P
(
f(w∗, Z)− f(ŵ, Z)

)
⩽ −σ

4
∥ŵ−w∗∥2EH and Pn

(
f(ŵ, Z)− f(w∗, Z)

)
⩽ −σ

4
∥ŵ−w∗∥2H.

Thus, it holds that

F (ŵ)− F (w∗) ⩽ 2(P − Pn)
(
f(ŵ, Z)− f(w∗, Z)

)
− σ

4
∥ŵ − w∗∥2EH − σ

2
∥ŵ − w∗∥2H.

The last expression does not exceed

2 sup
w∈W

[
(P − Pn)

(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2EH + ∥w − w∗∥2H

)]
.
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We are ready to apply the symmetrization argument. Let Z ′
1, . . . , Z

′
n be independent copies of

Z1, . . . , Zn, and let H′ = H(Z ′
1, . . . , Z

′
n) be the corresponding matrix from Assumption 3.1. Then

EΦ
(
2 sup
w∈W

[
(P − Pn)

(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2EH + ∥w − w∗∥2H

)])
= EΦ

(
2 sup
w∈W

[
E′(P ′

n − Pn)
(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
E′∥w − w∗∥2H′ + ∥w − w∗∥2H

)])
,

where P ′
n denotes the expectation with respect to the uniform measure on Z ′

1, . . . , Z
′
n and E′ stands

for the expectation with respect to Z ′
1, . . . , Z

′
n. Using Jensen’s inequality, we obtain that

EΦ
(
2 sup
w∈W

[
(P − Pn)

(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2EH + ∥w − w∗∥2H

)])
⩽ EE′Φ

(
2 sup
w∈W

[
(P ′

n − Pn)
(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2H′ + ∥w − w∗∥2H

)])
.

Let ε1, . . . , εn be i.i.d. Rademacher random variables. Note that, whatever the realization of
ε1, . . . , εn is,

(P ′
n − Pn)ε

(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2H′ + ∥w − w∗∥2H

)
has the same distribution as

(P ′
n − Pn)

(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2H′ + ∥w − w∗∥2H

)
.

Thus,

EE′Φ

(
2 sup
w∈W

[
(P ′

n − Pn)
(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2H′ + ∥w − w∗∥2H

)])
= EE′EεΦ

(
2 sup
w∈W

[
(P ′

n − Pn)ε
(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2H′ + ∥w − w∗∥2H

)])
⩽ EEεΦ

(
4 sup
w∈W

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

])
,

where the last line is due to the triangle inequality. Hence, we conclude that

EΦ
(
F (ŵ)− F (w∗)

)
⩽ EEεΦ

(
2 sup
w∈W

[
(P − Pn)

(
f(w,Z)− f(w∗, Z)

)
− σ

8

(
∥w − w∗∥2EH + ∥w − w∗∥2H

)])
⩽ EEεΦ

(
4 sup
w∈W

[
Pnε

(
f(w,Z)− f(w∗, Z)

)
− σ

8
∥w − w∗∥2H

])
.

The claim follows.
■
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A.4. Proof of Lemma 5.2

Let H =
rank(H)∑
j=1

λjvjv
⊤
j be the eigendecomposition of H. Here we assume that λ1 ⩾ λ2 ⩾ . . . ⩾

λrank(H) > 0, and the vectors v1, . . . , vrank(H) form an orthonormal system. Define the Moore-
Penrose pseudoinverse of H

H† =

rank(H)∑
j=1

λ−1
j vjv

⊤
j

and the square roots

H1/2 =

rank(H)∑
j=1

√
λjvjv

⊤
j and

(
H†
)1/2

=

rank(H)∑
j=1

1√
λj

vjv
⊤
j .

It is easy to observe that

Π = H1/2
(
H†
)1/2

=

rank(H)∑
j=1

vjv
⊤
j .

is nothing but the orthogonal projector onto the image of H1/2. Let {a1, . . . , aN} be the smallest
u-net of the Euclidean ball B(0, r) ⊂ Rd with respect to the Euclidean norm. It is known that
N ⩽ (6r/u)d. We show that

{
w∗ +

(
H†)1/2 a1, . . . , w∗ +

(
H†)1/2 aN} is a u-net of W[0, r] with

respect to the seminorm ∥ · ∥H. For this purpose, fix any w ∈ W[0, r] and let

a = H1/2(w − w∗).

By the definition of Π and a, Πa = a. Find the closest to a element amongst {a1, . . . , aN} (with
respect to the Euclidean distance). Without loss of generality, assume that it is a1. Denote w∗ +(
H†)1/2 a1 by w1. Then, it holds that

∥w − w1∥H = ∥H1/2(w − w1)∥ = ∥a− H1/2(w1 − w∗)∥

=

∥∥∥∥a− H1/2
(
H†
)1/2

a1

∥∥∥∥ = ∥a−Πa1∥ = ∥Πa−Πa1∥ ⩽ ∥a− a1∥ ⩽ u.

Hence,
{
w∗ +

(
H†)1/2 a1, . . . , w∗ +

(
H†)1/2 aN} is a u-net of W[0, r] with respect to ∥ · ∥H. The

claim follows.
■
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