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Abstract

The k-cap (or k-winners-take-all) process on a graph works as follows: in each iteration,
a subset of k vertices of the graph are identified as winners; the next round winners are
the vertices that have the highest total degree from the current winners, with ties broken
randomly. This natural process is a simple model of firing activity and inhibition in the
brain and has been found to have desirable robustness properties as an activation function.
We study its convergence on directed geometric random graphs in any constant dimension,
revealing rather surprising behavior, with the support of the current active set converging
to lie in a small ball and the active set itself remaining essentially random within that.
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1. Introduction

Despite the resounding empirical success of recurrent networks in many applications, their
underlying dynamics are still poorly understood. We analyze a simple recurrent process,
analogous to the classical Hopfield Network (Hopfield, 1982), which represents the propa-
gation of signals through a graph under inhibition. It has been proposed as a simple model
for neural firing behavior, and it forms the backbone of an emerging model for computation
in the brain, known as the assembly model.

The k-cap process repeatedly applies k-Winners-Take-All to the degrees of a random
graph: at each time step t > 0, the firing set At ⊂ V consists of the k vertices with
the highest degree in At−1 (with ties broken randomly). Given this process, some natural
questions arise: How does the firing set At evolve with t? When the process does converge,
how quickly does it do so?

We make two key contributions to the study of this model. First, we study the k-
cap process on Geometric Random Graphs, and we show that the high local density of this
model leads to rapid convergence. Second, we illuminate a new notion of convergence which
more closely resembles the behavior of firing neurons in the brain.

Motivation from the Brain. The k-cap process forms the backbone of the assembly
model for computation, an emerging line of inquiry at the intersection between computer
science and theoretical neuroscience. An assembly of neurons is a subset of densely intercon-
nected nodes within a brain area which tend to fire together in response to the same input to
the brain area (Papadimitriou et al., 2020; Buzsáki, 2019). Assemblies are created through
projection, where an outside stimulus fires (repeatedly), activating a subset of neurons. Two
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ideas, rooted in experimental findings in neuroscience, lead to the convergence of assembly
projection in a random brain graph. The first is inhibition: at each step, the k neurons with
the highest total synaptic input are chosen to fire, while the rest are suppressed. The second
is plasticity: if a neuron fires immediately following one of its pre-synaptic neighbors, the
weight of the edge between them is increased. This causes neurons that ‘fire together’ to
‘wire together’, and strengthens internal connections each time an assembly is activated.

Figure 1: Two types of convergence. (a) convergence
in the high-plasticity regime, and (b) the
low-plasticity regime analyzed in this paper.

Rigorous analysis of the assem-
bly model has thus far been based
on a directed Erdös-Rényi random
graph, where each pair of neurons
has an equal probability of being
connected via a synapse. There
are two important ways in which
this model departs from observed
reality. First, the locations of neu-
rons in the brain and the physical
distance between them have a sig-
nificant impact on the probability
of connection. Long axons come
with a cost in both material and
energy, so neurons tend to prefer to create connections that are close in physical space.
The principle of conservation of axonal wiring costs was proposed by Ramon y Cajal in
the early 20th century (Ramón y Cajal, 1911), and the relationship between distance and
connection probability has been confirmed empirically (Bullmore and Sporns, 2009; Cuntz
et al., 2010). Moreover, models that take locality into account are better able to explain
statistical deviations of the connectome from the standard random graph model, as ob-
served in experiments (Song et al., 2005). Second, in the standard random graph model,
assemblies are shown to correspond to the firing of k neurons, with most of them in a fixed
set of size (1 + o(1))k with at most o(k) outside this set. On the other hand, what has
been observed is that assemblies represent increased firing activity of a relatively small but
significantly larger than k subset of neurons for a period of time (Durstewitz et al., 2000;
Buzsáki, 2019). The difference between these two types is illustrated in Figure 1.

We address the first departure by studying the k-cap process on Geometric Random
Graphs, a graph model where the connection probability varies with distance. We addition-
ally find that the k-cap process on this graph model exhibits the second type of convergence
to a larger-than-k subset. An exciting aspect of our investigation is a rigorous explanation
of this phenomenon.

Geometric Random Graphs The behavior of the k-cap process depends heavily on the
graph structure. On the complete graph, every vertex has degree k from the firing set At;
so, assuming random tie-breaking, all vertices fire with probability k/n at each time step.
On the other hand, if G is a sparse graph with a planted k-clique H, we expect At = H to
be a fixed point (for k sufficiently large). While directed Erdős–Rényi graphs are simple to
study, we do not expect to see meaningful convergence on this model. We take inspiration
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from the graph-theoretic structure of the brain and study this process on the Geometric
Random Graph model.

In geometric random graphs, each vertex is assigned a position in a hidden variable
space (for example, the cube [0, 1]d). The probability that an edge 1(x,y) exists in the
graph is a function of the hidden variables of the endpoints. By using an edge probability
function which decreases with distance in the hidden variable space, this creates subgraphs
which are dense and concentrated within a small diameter subset of the space. The hidden
variables can correspond to spatial distance, or they can represent similarity in a wider
set of features. For example, the geometric random graph model has been used for social
networks, where the hidden variable represents a closeness in “social space” rather than
physical distance (Boguná et al., 2004). This model has also been studied in the context of
transportation networks, communication networks, and networks of neurons (Bullmore and
Sporns, 2009; Barthélemy, 2011).

Properties of geometric random graphs have been thoroughly explored; see Penrose
(2003) for comprehensive exposition. In the most common variant of the model, all vertices
are placed in a d-dimensional space according to some distribution. If the distance between
two vertices is less than r (where r is a parameter of the model), they are connected by an
edge; otherwise, they are not. We study a directed, soft geometric random graph where the
edge probability decays exponentially with squared distance, i.e., the Gaussian kernel. This
alternative model introduces asymmetry as well as long-range connections, both of which
are important for real-life networks.

1.1. Definition and Intuition

As a warm-up, we consider the infinite limit, i.e., the continuous interval [0, 1] in one
dimension. Then we turn to the discrete setting of graphs, with vertices chosen uniformly
from the d-dimensional unit cube. While d = 2, 3 apply to the coordinates of a neuron in
space, higher dimensions are also relevant and interesting, as vertex location could indicate
some set of relevant features (e.g., type of neuron).

A Continuous Process. A natural abstraction of the k-cap process on geometric random
graphs is to consider what happens when the number of vertices, n, goes to infinity. On
a finite graph, the input to a discrete vertex v is the sum of its edges from At ⊂ V =
{1/n, 2/n, . . . , 1}. In the infinite limit, we assume that At ⊂ [0, 1] is a set of measure α,
leading to a corresponding α-cap process. The input to a given point v ∈ [0, 1] is the integral
of the edge probability function over At and the α fraction of points with the highest input
will form At+1. The formal definition of this process is stated below:

Definition 1 (α-cap Process in 1-D) Let A0 be a finite union of intervals on [0,1].
For an integrable function g : [−1, 1] → R, let Ft(x) =

∫ 1
0 At(y)g(y − x) dy. Then, At+1 is

defined recursively:

At+1(x) =

{
1 if Ft(x) ≥ Ct

0 otherwise

where Ct is the solution to
∫ 1
0 At+1(x)dx = α = |A0|.
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This continuous abstraction leads to a clean convergence phenomenon. We find that At con-
verges to a single interval of length α. The speed of convergence depends on the derivative
of the edge probability function.

Theorem 2 Let A0 be a finite union of intervals in [0,1]. Let g : [−1, 1] → R+ be a
differentiable, even, nonnegative and integrable function with g′(x) < 0 for all x > 0. For
any such g, the α-cap process converges to a single interval of width α. Moreover, the
number of steps to convergence is

O

(
max[0,1] |g′(x)|
min[α

8
,1] |g′(x)|

)
.

Figure 2: (Top) The influence function,
F0(x), for an example starting
set A0. The edge weight func-
tion (g) is the Gaussian kernel
with σ = 0.1. (Bottom) The
evolution of the same A0 over
time. This example converges
at t = 4.

Note that the above conditions capture any
distance function that decays smoothly with the
distance between its endpoints, e.g., the Gaus-
sian kernel. This process is deterministic given
the initial choice of A0. We are able to bound
the convergence using a simple potential func-
tion: The distance between the medians of the
leftmost and rightmost intervals of At decreases.

In this way, the intervals are “squeezed” to-
gether until they collapse into one. In this
continuous version, any sub-interval in [0, 1] of
length α is a fixed point; if At = [a, b], then
At+1 = At. Moreover, a single interval is the
only possible fixed point.

This process is illustrated for an example
starting set in Figure 2. While A0 has five initial
intervals, F0 has only two local maxima, causing
the total number of intervals to reduce to 2 in
A1. In subsequent steps, the intervals become
increasingly unbalanced. They shift closer to-
gether until, ultimately, the larger interval gains
all the mass.

Formal Definition of the Discrete Process.
Now we turn to the main setting of this paper,
the k-cap process on a finite directed graph G.
The following symbols will be used for the rest of
the paper. Let n be the number of vertices in the
graph and k be the number of vertices activated
at each step. At represents the set of k vertices
activated at step t for t = 0, 1, 2, . . .. Let 1(x,y)
be the indicator variable for the directed edge
between two vertices x and y.
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Definition 3 (k-cap Process) Assume At ⊂ {1, 2, . . . , n}, and |At| = k. Let Ft :
{1, 2, . . . , n} → {0, 1, 2, . . . , k} be the synaptic input function at time t, defined as follows:

Ft(x) =
∑
y∈At

1(y,x)

Let Ct be the smallest integer such that |{x | Ft(x) > Ct}| ≤ k, and let At+1 = {x | Ft(x) >
Ct} ∪ A∗

t+1, where A∗
t+1 is a set of points sampled at random from {x | Ft(x) = Ct} such

that |At+1| = k.

In the k-cap process, At+1 is chosen as the k vertices with the highest degree from At. If
there are ties, the remaining vertices are chosen uniformly at random from the set of vertices
with the next highest degree. A0 can be instantiated in any way, but we assume that it is
chosen uniformly at random from the set of vertices.

We analyze the convergence of the k-cap process on a d-dimensional Gaussian geometric
random graph; the probability of an edge between two vertices with hidden variables x and
y is a Gaussian kernel, parameterized by σ. For simplicity, we use x to represent both the
vertex and its hidden variable in [0, 1]d. Throughout this paper, we will use the terms point
and vertex interchangeably.

Definition 4 (d-dim Gaussian Geometric Random Graph) Let G = Gσ = (V,E).
Let V = {v1, v2, . . . , vn} where each vertex is a point chosen uniformly at random in [0, 1]d.
Each directed edge (x, y) is present in the graph with probability

P(1(x,y)) = g(x, y) = e−
∥x−y∥22

2σ2

All edges are independent conditioned on the locations of the vertices. Unless otherwise
stated, assume ∥x− y∥ = ∥x− y∥2 is the Euclidean distance.

Convergence of the Discrete Process. 0The discrete process on graphs turns out to
exhibit much more complex behavior than the continuous variant. With the randomness
induced by the choice of edges, the convergence behavior also becomes probabilistic rather
than ending in a fixed set or distribution. We will prove that for an interesting range of
σ, the cap At converges with high probability to lie within a small ball (an interval when
d = 1). At will not be a fixed set of points for all t ≥ t∗, but will instead oscillate randomly
between vertices, with the firing probability dropping toward the edges of the ball. This
type of convergence is illustrated in Figure 1. It can also be seen in simulation, as shown
in Figure 3. This behavior is not only mathematically interesting, but it also matches the
observed behavior of assemblies (Durstewitz et al., 2000; Buzsáki, 2019).

Evolution of the k-cap. The evolution of the structure of At also reveals interesting
properties of the k-cap process on random graphs. In the first step, A0 is uniformly dis-
tributed. However, due to the the Poisson clumping phenomenon (Aldous, 2013), there
will be a several regions of the ball with a higher concentration than average. As we will
show, for σ sufficiently small, A1 will be concentrated within k1/4+o(1) balls which are small
compared to [0, 1]d (This result is described formally in Theorem 5). As t increases, all but
one of these balls will diminish and disappear. With high probability, each ball will shrink
by a fixed fraction at each step. After this, we will show that one ball will “win” over the
others. This is illustrated in 1 and 2-D in Figures 3 and 4.
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Figure 4: The k-cap at time steps 0, 3, 6, and 9, with parameters n = 20000 and k = 200.
Dots represent the location of firing neurons in 2-D space at time t.

Figure 3: The k-cap at 4 time steps, with pa-
rameters n = 90000 and k = 40.

Parameter Range. In this paper, we
focus on σ = Θ(1/k1/d). The justification
for this parameter range lies in the concen-
tration behavior of uniform random vari-
ables. The soft geometric random graph
model can be thought of as an approxima-
tion of an interval graph with radius Θ(σ).
Let U = {U1, U2, . . . Uk} be a set of k ran-
dom variables, each chosen uniformly at
random in [0, 1]d. For a given radius r,
we can compute the maximum number of
points which are likely to fall into a ball of
radius r (this result is described in Lemma
18). Note the expected number of points in
a ball I is kVol(I), and Vol(I) = Θ(rd); as r
increases, the maximum degree approaches
the expected value. This phenomenon means that the concentration behavior starts to dis-
appear as σ increases past 1/k1/d. On the other hand, as r decreases, the maximum degree
approaches 1. Therefore, we focus on an intermediate range of σ where the concentration
of A0 leads to interesting behavior.

Additionally, we assume that n is a sufficiently large polynomial function of k; n = kβ,
for a constant β ≥ 2 + d. When n is large and t = polylog(n), the points in At are likely
firing for the first time . This lets us make the simplifying assumption that, conditioned on
the positions of the vertices in [0, 1]d, Ft(x) is a sum of independent indicators.

1.2. Main Results

For clarity, we state the parameter range analyzed in this paper as an assumption and
reference it when applicable.

Assumption 1 The graph G is parameterized by n, σ, which have the following relation-
ships to k: n = kβ, for some constant β ≥ 2 + d, and σ = Θ(k−1/d).

We also assume that A0 is chosen uniformly at random from the set of vertices V .
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We have the following theorem describing points which have a significant probability of
exceeding the threshold at Step 0. By the assumption that σ = Θ(k−1/d), the set A1 is
contained in a small region relative to [0, 1]d.

Theorem 5 Suppose G fulfills Assumption 1, and A0 is chosen uniformly at random from
V . With high probability, A1 can be covered by k

1
4
+o(1) balls, each of radius O(σ

√
ln ln k)

and pairwise separated by a distance of at least 2σ
√
lnn.

Let pt(x) be the probability that x fires at step t, conditioned on the graph edges.
Figure 5 (a) shows an empirical demonstration of Theorem 5. Even at the first step, small
variation in the expected value lead to a significant imbalance in firing probability.

The next step of the analysis will show that At will gradually become concentrated in
a single ball of radius O(σ

√
ln k/k). The key idea is that each individual ball shrinks with

high probability at each step, almost in place.

Theorem 6 Suppose G fulfills Assumption 1, and A0 is chosen uniformly at random from
V . There exists a t∗ ≤ lnc k, for a constant c, such that At∗ can be covered by a single ball

of radius Θ
(
σ
√
ln k/k

)
.

This structure is, to within a log factor, the smallest subgraph we can expect At to
converge to. Within a region of radius O(σk−1/2), the edge probability is greater than
e−1/k; hence, within this ball, any vertex has a constant probability of having degree k
from At. Note that this directly implies the qualitative convergence behavior illustrated in
Figure 1.

Finally, we show that At remains concentrated in the infinite time horizon. Condi-
tioned on the structure of the graph, almost all of At is contained within a ball of radius
O(σk−1/3+ϵ) for all t ≥ t∗. Note that the diameter bound in Theorem 7 is necessarily weaker,
since At shifts randomly between k-vertex subsets of the small ball. Given exponential time,
there will likely be combinations which happen to activate outlier points. We argue that
these outliers cannot compound to split the firing set, and At remains concentrated.

Theorem 7 Suppose G fulfills Assumption 1, and A0 is chosen uniformly at random from
V . For all t ≥ t∗, with high probability, there exists a ball It with radius r = σk−1/3+ϵ, for
a constant ϵ > 0, such that |At ∩ It| > k − k2/3.

The proof of this theorem directly implies the following structural property of geometric
random graphs, which holds for all S ⊂ V of size k that are mostly contained in a small
ball in [0, 1]d. With high probability over all such sets, the set of k vertices with the highest
degree from S are also mostly contained in a small ball.

Corollary 8 Let G = (V,E) be a geometric random graph such that for every vertex x ∈ V ,
its location hx is chosen uniformly at random from [0, 1]d and for every pair x, y ∈ V ,

P((x, y) ∈ E) = e−∥hx−hy∥k2/d, where k = O(|V |
1

2+d ). Let r = k−1/d−1/3+ϵ for any ϵ > 0.
Then, with high probability (over the edges of G), for every set S ⊂ V of size k, if at least
k − k2/3 points of S are contained in a ball of radius r, then there exists a ball of radius r
which contains at least k−k2/3 points of S′, the set of k points with the highest degree from
S.
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Figure 5: Expected input and pt(x) at t = 0 (Left) and t = 2 (Right). Parameters used
are n = 20000 and k = 200. The probability pt(x) was estimated by fixing the
firing set, and then repeatedly redrawing the graph edges. The probability of x
is defined as the percentage of times x was chosen by the top-k function.

2. Analysis of the discrete k-cap process

In Appendix A, we will introduce a few general results on probability which play key roles
in the proof. In Section 2.1, we describe the structure of A1 given the random initial firing
set A0. Lastly, in Section 2.2, we investigate the evolution of At as t increases, and we prove
that the set of firing points at t converge to lie in a single small ball.

2.1. Characterization of A1

Since the initial firing set A0 is chosen uniformly at random from V , A1 is concentrated near
dense sections of A0. We argue that the probability that x ∈ A1 can be characterized by
conditioning on the number of points of A0 within Õ(σ) of x. By analyzing the distribution
of dense subsets of a set of uniform random variables, we show that A1 is contained within
a union of k1/4+o(1) small balls.

First, in Lemma 9, we give a lower bound on the first threshold, C0, by examining the
maximum number of uniform random points within a ball of radius r. There are, with high
probability, at least k vertices of V which connect to the every point in the intersection of
the ball with A0.

Next, Lemma 10 shows that if |{y ∈ A0 : ∥x − y∥ = O(σ
√
ln ln k)}| is not large, x has

a very small probability of achieving an input of C0. This implies that A1 must be solely
contained within high-density regions of A0.

Finally, we combine these two lemmas to prove Theorem 5 (stated above). Since the
number of high-density regions of A0 can be bounded using a combinatorial argument, A1

must be contained within k1/4+o(1) small balls. We note that the constant 1/4 may not be
optimal; however, a tighter bound would only effect the convergence time up to log factors.
The proofs of Theorem 5 and Lemma 10 are technical and will be deferred to the appendix.

Lemma 9 With probability 1− o(1), C0 ≥ ln k
ln ln k

(
1 + 1

4
ln(3) k
ln ln k

)
(where ln(3) k = ln ln ln k).
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Proof Consider a graph constructed on A0 as follows. For any a1, a2 ∈ A0, add an edge
if ∥a1 − a2∥ < 1

2σ
√
ln ln k. This is a geometric graph, and tight bounds on the maximum

degrees for such graphs are known (Penrose (2003), Theorem 6.10). The precise result we
use is stated in Appendix A, Lemma 18. Let ∆k be the maximum degree of the graph.
With high probability,

∆k ≥ ln k

ln ln k
(1 + η) = Mk where η =

ln(3) k

4 ln ln k

∆k + 1 is the maximum intersection of A0 with a ball of radius r = 1
2σ

√
ln ln k. Call

this ball I. The above result tells us that |I ∩A0| ≥ Mk almost surely.
The maximum distance within the ball is σ

√
ln ln k. For any x ∈ I, the probability that

x connects to Mk points is at least g(x, x + v)Mk , where v is a vector of size σ
√
ln ln k.

Substituting:

P(F0(x) ≥ Mk) ≥ exp

(
−(σ

√
ln ln k)2

2σ2

)Mk

= exp

(
− ln ln k

2

)(1+η) ln k
ln ln k

= k−
(1+η)

2

With a union bound argument, we can lower bound the number of vertices of V in I (stated
in Appendix A, Lemma 16).

|I ∩ V | = Ω

(
Vol(I) · n

log n

)
= Ω

(
σd(ln ln k)d/2 · n

log n

)
By the assumption that σ = Θ(k−1/d) and n = kβ, there are kβ−1−o(1) vertices of G in I.

The expected number of points with degree Mk from |A0∩I| is at least kβ−1−o(1)k−
(1+η)

2 ,
which is much greater than k. Therefore, there are at least k points with input Mk with
high probability. This implies that the threshold C0 is bounded from below by Mk.

Lemma 10 For any x ∈ [0, 1]d, define Br(x) = {y ∈ [0, 1]d : ∥x − y∥ < r}. Let
r = σ

√
24β ln ln k). Suppose that the overlap between Br(x) and A0 is at most 3 ln k

4 ln ln k .
Conditioned on this event, the probability that x ∈ A1 is at most 1

n3 .

2.2. Convergence of At

In this section, we will prove an induction step, Lemma 15, which will lead to the proof
of Theorem 6. In Theorem 5, we have proved that A1 can be covered by k1/4+o(1) balls of
radius O(σ

√
ln ln k), and separated by at least 2σ

√
lnn. There are three key properties of

this system which make the analysis tractable. First, the separation condition allows us to

analyze each interval as a separate system. If x ∈ Ia and y ∈ Ib, g(x, y) < exp
(
−4σ2 lnn

2σ2

)
=

n−2. Therefore, with high probability, the subgraphs defined by Ia and Ib are independent;
this means that all x ∈ At will not receive input from outside its interval. Second, since the
graph is directed, the edge 1(x,y) is independent of 1(y,x) conditioned on the positions of the

vertices x, y ∈ [0, 1]d. Thirdly, we prove in Lemma 12 that for any t = polylog(k), all points
which fire at t are ‘new’ (i.e., they have not fired at a previous step) with high probability.
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This lets us make the simplifying assumption that Ft(x) is a sum of independent indicators.
Using these three key simplifications, we prove that, with high probability, each separated
interval shrinks to a size of O(σ

√
ln k/k).

We will suppose that the hypothesis of Theorem 5 holds for a step t ≥ 1; At can be
covered by O(k1/4+o(1)) sufficiently separated balls. Then, we will prove that the separation
and coverage continue to hold by induction.

Define At ⊂ I1∪I2∪· · ·∪Ii, where each Ij is a ball of radius O(σ
√
ln ln k), and all pairs Ia,

Ib are separated by a gap of at least 2σ
√
lnn. Also define E[x] = EFt(x) =

∑
z∈At

g(x, z),
and V [x]2 = VarFt(x) =

∑
z∈At

g(x, z)(1 − g(x, z)). Note that E[x] and V [x] depend

implicitly on t. When the ball I is unambiguous, we will denote k̂ = |At ∩ I| to be the
number of firing points lying in I.

The following lemmas will be used to bound Ct at each time step. Using this, we can
get precise bounds on P(Ft(x) > Ct). First, we bound the gradient of E[x] in space.

Lemma 11 For any vector direction v and point x ∈ [0, 1]d, |∇vE[x]| < k
σ

√
d/e.

For this proof to be viable, we will need to show that Ft(x) is the sum of independent
indicators. By definition of the graph structure, each edge 1(y,x) is drawn independently.
However, we will also need to show that, for each y ∈ At, its edges 1(y,x) have not been
used in previous computations. This follows from the next lemma.

Lemma 12 Suppose t = O((ln k)c) for a constant c. Then, with probability at least 1 −
1

k1/2−o(1) , A0 ∩A1 ∩ · · · ∩At = ∅.

Lemma 12 implies that, conditioned on the set At, Ft(x) =
∑

z∈At
1(z,x) is a sum of

independent indicators (with no dependence on previous time steps). Therefore, Ct can be
bounded using standard concentration bounds as follows:

Lemma 13 At any step t = O((log k)c), assuming the conditions of Lemma 15, with high
probability, Ct ≥ maxxE[x]

Finally, we can use the above lemma to relate the probability that a point fires at time
t+ 1 to its expected value at time t.

Lemma 14 Let y ∈ Ij, and k̂ = |Ij ∩ At|. If there exists an x ∈ Ij such that EFt(x) >

EFt(y) +

√
6β(k̂ − EFt(y)) ln k, then P(Ft(y) > Ct) <

1
n3

Finally, we will prove Theorem 6. We will use an induction argument; the base case
was shown in Theorem 5, and the following Lemma will form the basis of the induction
hypothesis.

Lemma 15 Suppose that At can be covered by i balls, At ⊂ I1 ∪ · · · ∪ Ii, which obey the
following conditions:

• Count: i = O(k1/4+o(1)),

• Radius: for each j, Ij is a ball of radius rj, bounded by r(Ij) = Ω(σ
√
ln k/|Ij ∩At|)

and r(Ij) < Cσ
√
ln ln k for some constant C.
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• Separation: the distance between any two balls is at least 2(1− o(1))σ
√
lnn.

At the next step, with high probability, At+1 ⊂ I ′1∪I ′2∪· · ·∪I ′i, where d(Ij , I ′j) = maxx∈I′j miny∈Ij∥x−
y∥ < 5(r(Ij)− r(I ′j)), and r(I ′j) ≤ (1− 1

(ln k)c )r(Ij) for an absolute constant c.

This Lemma will show that the radius of each ball shrinks at each step; that is, At is
contained within a union of balls of radius rt, where rt is a decreasing function of t. The
main idea of the proof is to show that, regardless of the actual positions of points in At ∩ I,
vertices toward the center of I have a small advantage over vertices toward the edge. Thus,
either (1) the position of points in At∩ I is particularly unbalanced, and At+1 shifts toward
one side, or (2), the radius of I shrinks in all directions.

Figure 6: The division of the ball I into two subregions. In case 1, there exists a division
of I into two sub regions R1 and R2 such that R2 ∩ At < k̂/(ln k)α. We bound
the gradient of E[z] for all z in the region enclosed by the dotted line. In case 2,
no such division exists. We prove that for y between the outer and inner circles,
P(y < 1/n3). In both cases, we prove that At+1 falls in the orange circle with
high probability.

Proof [Abbreviated Proof of Lemma 15] Fix one ball I = Br(p). Let r = r(I) be the
radius of I, and let p be its center. Define Ft(x;S) =

∑
y∈At∩S 1(y,x), the input to x from

firing points in S. We will prove that with high probability, {x ∈ V : Ft(x; I) ≥ Ct} can be
covered by I ′ = Br′(p

′), where r′ = (1−1/(log k)c)r and maxz∈I′ dist(I, z) < 5(r(I)−r(I ′)).
Call this statement (*).

If statement (*) holds for each I = Ii, the lemma is proven. This holds by the separation
assumption; for x near I, Ft(x; I) is a good proxy for Ft(x). In particular, if dist(I, x) <
σ
√
lnn, then Ft(x; I) = Ft(x)− o(1) with high probability.

To prove this statement, we will consider two cases. In case 1, we suppose that the
distribution of At ∩ I is imbalanced. In particular, there exists a half space dividing I into
two spherical caps, with heights r/4 and 7r/4, such that the larger segment contains only
|At ∩ I|/(ln k)α points of At+1 (for an α ≥ 1). See Figure 6. We will show that given this
imbalance, statement (*) holds.

11
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In case 2, no such division exists. We will show that for any point z near the boundary
of I is disadvantaged compared to a point near the center. Thus, I ′ = Br′(p) for an
r′ = (1− 1/(log k)c)r, which implies statement (*). See Figure 6.

For both cases, the argument will use a bound on the gradient of E[z]. With this,
we will construct a point w such that E[w] − E[z] is large, and use Lemma 14 to argue
that P(z ∈ At+1) < 1/n3. The argument for this is technical, so it will be deferred to the
appendix.

This proves that at some t = (ln k)c, the firing points are contained within k1/4+o(1)

small, separated balls. Theorem 6 follows using a coupling argument which shows that one
small ball must ‘win’ all the points.

Proof [Proof of Theorem 6] By Theorem 5, the conditions of Lemma 15 hold at step 1.
Additionally, by the condition that each ball does not shift by more than 5(r(I)− r(I ′)) at
each step, the separation condition holds inductively for any t = polylog(k). The maximum

distance moved by a single ball by time t is 5(r(I
(0)
j ) − r(I

(t)
j )) = O(σ

√
ln ln k), which

maintains the separation of 2(1− o(1))σ
√
lnn. Therefore, applying Lemma 15 inductively,

the radius of I is reduced to O(σk̂−1/2
√
ln k) at t = polylog(k), where k̂ = |At ∩ I|. Recall

that there are k1/4+o(1) separated balls; a similar method will allow us to eliminate balls
that are σk̂−1/2

√
ln k in size.

By the pigeonhole principle, at least one ball receives k3/4−o(1) points. Given that the
size of the balls are small enough that most vertices within them are neighbors, Ct ≥
k3/4−o(1). Therefore, for each j, if Ij is not eliminated, there exists an x ∈ Ij such that
EFt(x) ≥ k3/4−o(1) (as always, the expectation is over the assignment of edges from At to
x, conditioned on the above instantiation of At).

If one ball contains a much larger proportion of firing points than any other, then it
‘wins’ all the mass at the next step with high probability. Suppose instead that there are
multiple balls at t with similar counts of firing points. In this case, conditioned on At−1,
the size of I1 ∩ At is a random variable over the edges from At−1 to I1. By Lemma 12, we
can assume this is independent from previous time steps, and it can vary by

√
E|I1 ∩At|

with constant probability. Consider two alternative scenarios, which can each occur with
constant probability. {

(1) maxx∈I1 EFt(x) = X −Θ(
√
X)

(2) maxx∈I1 EFt(x) = X +Θ(
√
X)

Let y = argmaxy∈I2 EFt(y). So, it is clear that in either scenario (1) or (2), the inputs to x
and y differ by the number of points added to I1.∣∣∣∣max

x∈I1
EFt(x)−max

y∈I2
EFt(y)

∣∣∣∣ = k3/8−o(1)

The distributions of sums of non-identical indicators are well studied, so we can use
known tail bounds to bound the ratio between P(Ft(z) > C1) and P(Ft(z) > C2) for two

thresholds C1, C2. Precisely,
P(Ft(z)>C1)
P(Ft(z)>C2)

> exp
(
(C2−C1)2

C2

)
. The result we use is stated and

proven in the Appendix A, Lemma 21. Since the two thresholds differ by Θ(
√
X), between

the two scenarios, either pt+1(z) increases by a constant factor for all z ∈ I1, or pt+1(w)

12
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decreases by a constant factor for all w ∈ I2. So, this implies that |EFt+1(x) − EFt+1(y)|
varies by Θ(1)mini∈{1,2}(|Ii ∩At|) between the two scenarios.

This is a significant variation; as in Lemma 13, for any x ∈ [n], Ct ≥ EFt+1(x). So, in
the case where x has more expected input, EFt+1(y) < EFt+1(x) − Θ(EFt+1(y)). By the
Chernoff bound (Lemma 19), the probability that Ft+1(y) will exceed Ct+1 is exponentially
small.

Pr (Ft+1(y) > Ct+1 = (1 + Θ(1))EFt+1(y)) < exp (−Θ(1)EFt+1(y)) < exp
(
−k3/4−o(1)

)
A similar argument applies if EFt+1(y) > EFt+1(x). Therefore, since there is a constant
probability that the two balls will deviate from each other, either I1 or I2 will be eliminated
in a constant number of steps.

The same argument applies to any pair of balls (Ii, Ij). Therefore, the number of balls
reduces by a constant factor within a constant number of steps. This leads to convergence
to a single ball within O(ln k) steps.

At this point, |I ∩ At| = k, so applying Lemma 15 again, we can conclude that At

converges to a single ball of size O(σk−1/2
√
ln k) in O((log k)c) steps.

Note that our results also imply that At does not converge to a fixed set; rather, it
shifts randomly, remaining inside a ball at each step (see Figure 1, with At converging in
the sense of (b)).

Claim 15.1 For t = polylog(k), At shifts between k−vertex subsets of a small ball.

This follows directly from Lemma 12, which states that A0∩A1∩· · ·∩At = ∅ with probability
at least 1− k−1/2+o(1) Finally, we prove that At remains concentrated for all t ≥ t∗, where
t∗ is the convergence time described in Theorem 6.

Proof [Abbreviated Proof of Theorem 7] Let A ⊂ V with |A| = k, and let I be any ball
surrounding k − k2/3 points of A. Assume that r = r(I) = σk−1/3+ϵ and I = Br(p).

We consider 2 cases, with minor differences to the proof of Lemma 15 (whose cases are
illustrated in Figure 6):

Case 1: There exists a half space dividing I into two spherical caps, R1 and R2, with
heights r/4 and 7r/4, such that |R2 ∩A| ≤ k/(ln k)2. In this case, the ball is “imbalanced”
in the sense that one portion of of the ball contains the vast majority of the points.

Case 2:No such imbalanced partition of I exists. For all x ∈ ∂I, denoting R2 = {z ∈ I :
x− z · ( x−p

∥x−p∥ > r/4), |R2 ∩A| ≥ k/(ln k)2. We show that for any z within ∆r = r/(ln k)3.

of the boundary of I, P(F (z;A) > C) < 1/n3.

We carefully construct two points, z and z′ whose expected inputs from A, conditioned
on the graph edges, are guaranteed to differ by a constant multiplicative fraction. E.g, let
Z = k−F (z;A); EZ ≈ k 2r2

σ2 by the assumption that A is well spread within a ball of radius

r. By the Chernoff Bound (Lemma 19), we can argue: P(Z < EZ −Θ(1)EZ) ≤ e−Θ(1)EZ ≤
e−Θ(1)k1/3+2ϵ

.

The probability that there exist k2/3 points which violate the condition is at most:(
n

k2/3

)
(e−Θ(1)k1/3+2ϵ

)k
2/3

< ek
2/3 logne−Θ(1)k1+2ϵ

13
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Since there are at most
(
n
k

)
= O(ek logn) possible k-subsets of V , this is true by the

union bound for all subsets A with high probability.

3. Conclusion and further questions

Plasticity. Our proof shows that plasticity is not necessary for the convergence of the
k-cap mechanism. Previous analysis of this process on random graphs studied a variant of
the problem where edges were given a weight, initially set to 1. If two neighboring vertices
fired consecutively, the weight of their edge was boosted by a factor of 1+β. In Erdős–Rényi
random graphs, this weight proved to be vital for convergence; it allowed a set of vertices
to become associated over time, causing them to fire together (Papadimitriou et al., 2020;
Dabagia et al., 2021). We have shown that, given sufficiently local graph structure, it is
possible for the process without plasticity to converge to a subset which is small compared to
n. This possibly indicates two distinct mechanisms which drive the convergence of assembly
projection in the brain (see Figure 1).

Further motivation from Neuroscience. As discussed above, the geometric model
embeds the nodes of the graph as points in space, and it strongly prefers to connect nodes
which are close to each other. Many real-world graphs have a spatial component and a
cost associated with long-range connections, so the geometric graph model has theoretical
guarantees which match empirical properties of graphs in many domains. One such property
is the clustering coefficient, which measures the prevalence of cliques between the immediate
neighborhood of the vertex (Boguná and Pastor-Satorras, 2003). In the graph model we
have discussed thus far, the clustering coefficient is quite high; in fact, within a small
neighborhood of any vertex the probability that the vertices form a clique is exponentially
likely. In particular, high clustering between neurons has been observed in the brain (Song
et al., 2005).

While the simplicity of the model makes the analysis tractable, there may be interesting
algorithmic insights which can be gleaned by mimicking other empirically observed struc-
tures. One relevant property is the power-law degree distribution (Bullmore and Sporns,
2009). There are a small set of ’hub’ neurons with very high degree (in the geometric ran-
dom graph, the degree distribution is fairly uniform). One concrete question is whether, in
a graph with a power-law degree distribution, the k-cap mechanism is likely to converge to
a set of vertices with high degree.
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Appendix A. Probability Preliminaries

The following lemma relates to the distribution of uniform random points in [0, 1]. It will
be referred to frequently throughout the proof.

Lemma 16 All balls of radius
√
d/2

[
6 logn

n

]1/d
contain at least one vertex of G with

probability at least 1− (3n2 log n)−1.

Proof Consider dividing [0, 1]d into n/(3 log n) boxes with side length [(3 log n)/n]1/d.
For any box, the probability that it receives no points of G is (1 − (3 log n)/n)n ≤

e−3 logn = n−3. There are n/(3 log n) boxes, so by the union bound, the probability that
there exists a box with no points of G is at most (3n2 log n)−1.

A ball of radius
√
d/2

[
6 logn

n

]1/d
contains a box of side length 6 logn

n . Any such box

contains at least one box of the partition of [0, 1]d. Thus, all balls of this radius contains a
vertex of G.

Lemma 17 (Balls into Bins (Raab and Steger, 1998)) Suppose m balls are assigned
uniformly at random to n bins, where n

polylog(n) ≤ m << n log n. Then, with probability

1− o(1), the maximum load is at least:

lnn

ln γ

[
1 + 0.9

ln(2) γ

ln γ

]
where γ = n logn

m .

Lemma 18 (Maximum Degree of Geometric Graph (Penrose, 2003), Theorem 6.10)
Let X = {x1, . . . , xn} be a set of n points chosen uniformly at random on [0, 1]d. Define a
graph G(X; r) such that there exists an edge between xi and xj if ∥xi − xj∥ ≤ r.

Define a sequence of radii (rn)n. Let ∆n be the maximum degree of G. Define kn =
logn

log(logn/(nrdn))
.

If nrdn/ log n → 0 and log(1/(nrdn))/ log(n) → 0 as n → ∞. Then:

lim
n→∞

∆n

kn
= 1 in probability

and

lim inf
n→∞

∆n

kn
≥ 1 Almost surely

Next, the following three lemmas contain different tail bounds for the sums of indepen-
dent indicators.

Lemma 19 (Chernoff Bound) Let X be a sum of independent random indicators with
mean µ. Then, for any δ ≥ 0:

P(X > (1 + δ)µ) ≤ exp

(
− µδ2

2 + δ

)
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P(X < (1− δ)µ) ≤ exp

(
−µδ2

2

)

Lemma 20 For any binomial random variable X with parameters k, p, we can bound the
probability that it exceeds M for any M > kp:

P(X > M) ≤ exp

(
−kD

(
M

k
|| p
))

where D (a || p) = a log a
p + (1− a) log 1−a

1−p .

Lemma 21 Let X =
∑k

i=1 Ii be the sum of k independent indicators with probabilities
P(Ii) = pi ∈ (0, 1). Let µ = EX, and let t1, t2 be integer values such that t1 ≥ ⌈µ⌉ and
t2 > t1. Then,

P(X ≥ t1)

P(X ≥ t2)
> exp

(
(t2 − ⌈µ⌉)2 − (t1 − ⌊µ⌋)2

2t2

)
> exp

(
(t2 − t1)

2

t2

)
Proof Duembgen et al (Dümbgen and Wellner, 2020) gives a bound on the ratio of two
consecutive probabilities. For any c with P(X = c− 1) > 0,

P(X = c+ 1)

P(X = c)
<

c

c+ 1

P(X = c)

P(X = c− 1)
(1)

The mode of X is either at ⌊µ⌋, ⌈µ⌉, or is equally attained at both (Darroch, 1964).
The probablity increases monotonically from X = 0 up to the mode(s) and then decreases
montonically up to X = k.

So, we have for any integer m > µ:

P(X = m+ 1)

P(X = m)
< 1 (2)

Using Equation 1 and 2, for any integer s ≥ ⌈µ⌉

P(X = s+ 1)

P(X = s)
<

s

s+ 1

P(X = s)

P(X = s− 1)
< . . . <

⌈µ⌉+ 1

s+ 1

P(X = ⌈µ⌉+ 1)

P(X = ⌈µ⌉)
<

⌈µ⌉+ 1

s+ 1

We can rewrite the ratio of P(X = t2) and P(X = t1) as the product of ratios with a
difference of 1:

P(X = t2)

P(X = t1)
=

P(X = t2)

P(X = t2 − 1)

P(X = t2 − 1)

P(X = t2 − 2)
· · · P(X = t1 + 1)

P(X = t1)

Substituting the bound above:

P(X = t2)

P(X = t1)
<

(⌈µ⌉+ 1)(t2−t1)

t2(t2 − 1)(t2 − 2) . . . (t1 + 1)
=

t2∏
s=t1+1

(
1− s− ⌈µ⌉ − 1

s

)
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Using the approximation 1− x ≤ e−x, this is at most:

≤ exp

(
−

t2∑
s=t1+1

s− ⌈µ⌉ − 1

s

)
≤ exp

(
−
∑t2

s=t1
s− ⌈µ⌉ − 1

t2

)

Expanding the sum in the numerator:

= exp

(
−
∑t2−⌈µ⌉−1

s=0 s−
∑t1−⌈µ⌉−1

s=0 s

t2

)

= exp

(
−(t2 − ⌈µ⌉ − 1)(t2 − ⌈µ⌉)− (t1 − ⌈µ⌉ − 1)(t1 − ⌈µ⌉)

2t2

)
≤ exp

(
−(t2 − ⌈µ⌉)2 − (t1 − ⌊µ⌋)2

2t2

)

This ratio decreases as t1 increases and t2 − t1 remains constant. This means that, for any

i > t2, we have P(X = i) < exp
(
− (t2−⌈µ⌉)2−(t1−⌊µ⌋)2

2t2

)
P(X = i− (t2 − t1))

P(X ≥ t2) =
k∑

i=µ+t2
√
µ

P(X = i)

<
k∑

i=µ+t2
√
µ

exp

(
−(t2 − ⌈µ⌉)2 − (t1 − ⌊µ⌋)2

2t2

)
P(X = i− (t2 − t1))

≤ exp

(
−(t2 − ⌈µ⌉)2 − (t1 − ⌊µ⌋)2

2t2

)
P(X ≥ t1)

Expanding (t2−⌈µ⌉)2− (t1−⌊µ⌋)2, we get t22− t21−2⌈µ⌉(t2− t1) = (t2− t1)(t2+ t1−2⌈µ⌉).
Since t2 > t1 ≥ ⌈µ⌉ by assumption, this exceeds 2(t2 − t1)

2.

Appendix B. Deferred Proofs

B.1. Characterization of A1

Proof [Proof of Lemma 10]

Let r = ασ
√
ln ln k. Suppose |Br(x) ∩A0| ≤ 3 ln k

4 ln ln k .

If x ∈ A1, then F0(x) ≥ C0 by definition. The bound on C0 in Lemma 9 implies
F0(x) ≥ ln k

ln ln k . Hence, by assumption, x ∈ A1 only if it achieves an input of M = ln k
4 ln ln k

from outside Br(x).

Conditioned on |Br(x)∩A0| = λk, the remaining (1−λ)k points are distributed uniformly
on [0, 1]d \Br(x).
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By definition, P(1(x,Y ) | Y = y) = g(x, y) = exp
(
−∥x− y∥2/2σ2

)
. Let fr be the

conditional distribution function of ∥y − x∥, which has support on (r,
√
d] (

√
d being the

longest diagonal of the hypercube [0, 1]d). Define ∂Br(x) = {y ∈ [0, 1]d : ∥x− y∥ = r} to be
the spherical shell of radius r around x.

fr(ρ) =
Vol(∂Bρ(x) ∩ [0, 1]d)

1−Vol(Br(x))

The boundaries of the hypercube make fr somewhat difficult to calculate. Therefore, we

will ignore the boundaries and set fr(ρ) <
Vol(∂Bρ(x))
1−Vol(Br(x))

. Note that Vol(∂Bρ(x)) =
2πd/2

Γ(d/2)ρ
d−1.

E[1(x,y) | y /∈ Br(x)] =

∫ √
d

r
e−ρ2/(2σ2)fr(ρ) dρ

≤ 1

1−Vol(Br(x))

∫ √
d

r
e−ρ2/(2σ2)Vol(∂Bρ(x)) dρ

≤ 2
2πd/2

Γ(d/2)

∫ ∞

r
ρd−1e−ρ2/(2σ2) dρ

=
4πd/2σd

Γ(d/2)

∫ ∞

r/σ
zd−1e−z2/2 dz

This integral can be estimated by observing that for r sufficiently large, zd−1e−z2/2 is
decreasing on [r/σ,∞]. Therefore,∫ ∞

r/σ
xd−1e−x2/2 dx ≤

(σ
r

)d−2
∫ ∞

r/σ
xe−x2/2 dz =

( r
σ

)d−2
e−r2/(2σ2) (3)

Returning to the original equation, for any d ≥ 1:

E[1(x,y) | y /∈ Br(x)] ≤
4πd/2σd

Γ(d/2)

( r
σ

)d−2
e−r2/(2σ2) = Θ(1)σd

( r
σ

)d−2
e−r2/2σ2

Substituting r = σα
√
ln ln k, this equals Θ(1)σd(ln k)−α2/2(

√
ln ln k)d−2. Again recalling

σd = Θ(1/k),

E[1(x,y) | y /∈ Br(x)] ≤ p = O(1/k)(ln k)−α2/2(α
√
ln ln k)d−2

. We can bound the distribution of F0(x) by a binomial with probability p. In particular,
P(F0(x) > C0) is bounded above by P

(
B > ln k

4 ln ln k

)
, where B ∼ Bin(k, p). This quantity

can be tightly bounded using a well-known entropy bound for tail probabilities, Lemma 20.

P
(
B >

ln k

4 ln ln k

)
≤ exp

(
−kD

(
ln k

4k ln ln k
|| p
))
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Bounding the divergence term:

D

(
ln k

4k ln ln k
|| p
)

=
ln k

4k ln ln k
ln

ln k

4kp ln ln k
+ (1− ln k

4k ln ln k
) ln

1− ln k
4k ln ln k

1− p

≥ ln k

4k ln ln k
ln

ln k

4kp ln ln k
+ p− ln k

4k ln ln k
using lnx ≥ 1− 1/x ∀x > 0

=
ln k

4k ln ln k
ln

ln k1+α2/2

O(1)(ln ln k)1+(d−2)/2
+Θ(

1

k
)(ln k)−α2/2(α

√
ln ln k)d−2 − ln k

4k ln ln k

≥ ln k

k

[
1 + α2/2

4
− 1 + (d− 2)/2

4

ln(3) k

ln ln k
− O(1)

ln ln k

]

Plugging this into the original bound, P
(
B > ln k

4 ln ln k

)
≤ k−

1+α2/2
4

+o(1)

Since n = kβ by definition, we can choose α =
√
24β. Then, P(F0(x) > C0) ≤

P
(
B > ln k

4 ln ln k

)
≤ 1/n3

Proof [Proof of Theorem 5]

We apply Lemma 10 and take the union bound over all x in the graph to conclude the
following: with probability, 1−1/n2, x ∈ A1 only if the ball Br(x), where r = σ

√
24β ln ln k,

contains more than 3 ln k
4 ln ln k points. Since 1/n2 is summable, this is true almost surely.

Since the expected number of points of A0 in Br(x) is k ∗ Vol(Br(x)) = O((ln ln k)d/2),
the number of such high density regions will be relatively small.

To argue this, we consider d + 1 overlapping partitions of [0, 1]d into boxes. Let L =
2σ

√
24β ln ln k. First, tile [0, 1]d with boxes of width L. Then, shift each interval by half its

width in each dimension, leading to d alternate partitions of [0, 1]d.

For any x, the ball Bσ
√
24β ln ln k(x) must be fully contained in a box Ii in at least one

partition for some index i. Consider the probability that a given box Ii contains 3 ln k
4 ln ln k

points of A0.

For each point in A0, the probability that it lands in Ii is Vol(Ii) = (2σ
√
24β ln ln k)d =

Θ(1)(ln ln k)d/2/k. Therefore, the number of points in Ii is |A0 ∩ Ii| ∼ Bin(k,Vol(Ii)).

Using a well-known entropy bound for the tail probabilities of the binomial distribution
(Lemma 20), the probability that |Ii ∩A0| exceeds 3 ln k/4 ln ln k is at most:

P
(
|Ii ∩A0| >

3 ln k

4 ln ln k

)
≤ exp

(
−kD

(
3 ln k

4k ln ln k
|| Vol(Ii)

))
(4)
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Bounding the divergence term (Using the inequality lnx ≥ 1− 1/x):

D

(
3 ln k

4k ln ln k
|| Vol(Ii)

)
=

3 ln k

4k ln ln k
ln

Θ(1) ln k

(ln ln k)1+d/2
+

(
1− 3 ln k

4k ln ln k

)
ln

1− 3 ln k
4k ln ln k

1−Θ(1)(ln ln k)d/2/k

≥ 3 ln k

4k
− O(1) ln k ln(3) k

k ln ln k
+

(
1− 3 ln k

4k ln ln k

)(
1− 1−Θ(1)(ln ln k)d/2/k

1− 3 ln k
4k ln ln k

)

≥ 3 ln k

4k
− O(1) ln k ln(3) k

k ln ln k
− 3 ln k

4k ln ln k
+Θ(1/k)(ln ln k)d/2

=
1

k

[
3

4
ln k − O(1) ln k ln(3) k

ln ln k

]

Substituting back into equation 4:

P (|Ii ∩A0| > ln k/ ln ln k) ≤ exp

(
−3

4
ln k +

O(1) ln k ln(3) k

ln ln k

)
= k−

3
4
+

O(1) ln(3) k
ln ln k

There are d+1
Vol(Ii)

= Θ
(

k
(ln ln k)d/2

)
such intervals. The size of |Bi ∩A0| for each partition

can be thought of as the loads in a ‘balls into bins’ problem; thus, the number of points in
non-overlapping boxes are negatively correlated.

With high probability, the number of such intervals with enough points is k1/4+o(1).
The loads of the bins Ii are invariant to permutation; therefore, the probability that

two intervals within a distance of 2σ
√
lnn have a large enough load is o(1).

The same can be said for each shifted partition. Therefore, the bins which achieve high
input are of size Θ(L) = Θ(σ

√
ln ln k) and separated by a distance of 2σ

√
lnn.

B.2. Convergence of At

The following lemmas will be used to bound Ct at each time step. Using this, we can get
precise bounds on P(Ft(x) > Ct).

Lemma 22 For any vector direction v and point x ∈ [0, 1]d, |∇vE[x]| < k
σ

√
d/e.

Proof [Proof of Lemma 11]
For any i ∈ {0, 1, . . . , d− 1}:

∂

∂xi
E[x] =

∑
z∈At

∂

∂xi
g(x, z) =

∑
z∈At

−xi − zi
σ2

exp

(
−∥x− z∥2

2σ2

)

Let x̂ = x−z
σ . The maximum of

∣∣∣x̂ exp(−x̂2

2

)∣∣∣ occurs at e−1/2. Thus, we have∣∣∣∣ ∂

∂xi
E[x]

∣∣∣∣ ≤ ∑
z∈At

|xi − zi|
σ2

exp

(
−∥x− z∥2

2σ2

)
<
∑
z∈At

1

σ
e−1/2 =

k

σ
e−1/2
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For any unit vector v:

|∇vE[x]| < k

σ
e−1/2v · 1 =

√
de−1/2 k

σ

For this proof to be viable, we will need to show that Ft(x) is the sum of independent
indicators. By definition of the graph structure, each edge 1(y,x) is drawn independently.
However, we will also need to show that, for each y ∈ At, its edges 1(y,x) have not been
used in previous computations. This follows from the next lemma.

Lemma 23 Suppose t = O((ln k)c) for a constant c. Then, with probability at least 1 −
1

k1/2−o(1)

A0 ∩A1 ∩ · · · ∩At = ∅

Proof Suppose at time s, {A0, A1 . . . As} are pairwise disjoint. Therefore, at time s, the
edges {1(y,x) : y ∈ As, x ∈ [n]} have not been examined by the k-cap function, and they are
conditionally independent.

Now, we will compute the probability that |As+1∩Ai| > 0 for some i ≤ s. By Lemma 16,
there are at least Θ(1)σdk−d/2n/ log n = Θ(kβ−d/2−1/ log n) points within σk−1/2 of x.
By Lemma 11, for all z ∈ Bσk−1/2(x), the expected input to z is not too far from the
expected input to x; EFs(z) > EFs(x)− (ek)1/2. For such a z, P(Fs(z) > Cs+1) differs from
P(Fs(x) > Cs+1) by at most a constant factor. Thus, the probability that any given x is
chosen is ps(x) < k−β+d/2+1+o(1) < k−3/2+o(1) by the definition of β. There are sk points in
A0∪A1∪· · ·∪As, so the probability that any given y ∈ A0∪A1∪· · ·∪As is in As+1 is at most
sk∗k−3/2+o(1) = O(k−1/2+o(1)). Therefore, the probability that (A0∪A1∪· · ·∪As)∩As+1 = ∅
is at least 1− 1

k1/2−o(1) .

The probability that this holds for all s < t is (1− 1
k1/2−o(1) )

t ≈ 1− t
k1/2−o(1) . Since t is

polylog(k), this is at least 1− 1
k1/2−o(1) .

Lemma 12 implies that, conditioned on the set At, Ft(x) =
∑

z∈At
1(z,x) is a sum of

independent indicators (with no dependence on previous time steps). Therefore, Ct can be
bounded using standard concentration bounds as follows:

Lemma 24 At any step t = O((log k)c), assuming the conditions of Lemma 15, with high
probability, Ct ≥ maxxE[x]

Proof [Proof of Lemma 24]
By Lemma 16, for any point x, there are Ω(n · (σk−1 log n)d) points of V in a radius of

σk−1 log n of x. By the assumption that n ≥ k2+d, this is Ω(k log n).
For any y ∈ Bσk−1 log n(x), Lemma 11 implies:

E[y] > E[x]−
√
d/e log n

Therefore, if Ct = E[x], then there are Ω̃(k) points where E[y] > Ct − O(log n). Here
we will use Lemma 12, which tells us that each Ft(y) is independent conditioned on At.
Hence, Chernoff type bounds apply; if P (Ft(y) > E[y] +O(log n)) = Θ(1), then with high
probability there are k points that exceed Ct.
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Using the loose bound given in (Volkova, 1996), we can bound P(Ft(x) > Ct) using the
CDF of the normal distribution. For any sum of independent indicators S with mean µ and
variance σ, the CDF can be approximated as follows:

sup
m

∣∣∣∣P(S ≤ m)−G

(
m+ 1/2− µ

σ

)∣∣∣∣ ≤ σ + 3

4σ3
<

1

σ2

Where G(x) = Φ(x) − γ
6σ3 (x

2 − 1) e
−x2/2
√
2π

, and γ = E[(S − µ)3] is the skewness. This holds

for any σ ≥ 10.

We can assume that the variance of y, V [y]2, exceeds (log k)2; otherwise, E[y] =∑
y∈At

= k(1− o(1/k)), so we can assume that Ct = k.

Fix y ∈ Bσk−1 logn(x). From the above equation, we find that for any t > 0:

P (Ft(y) > E[y] + tV [y]− 1/2) > 1−
[
G(t) +

1

V [y]2

]
Substituting the value of G:

P (Ft(y) > E[y] + tV [y]− 1/2) > 1− Φ(t) +
γ(t2 − 1)

6
√
2πV [y]3

e−t2/2 − 1

V [y]2

Here, we will make two approximations. First, the exact value of γ is
∑

z∈At
g(y, z)(1 −

g(y, z))(1 − 2g(y, z)). Therefore, γ > −V [y]2, so γ(t2 − 1) > −V [y]2t2. Second, we will
substitute the lower tail bound for 1−Φ(t); 1−Φ(t) ≥ 1√

2π

(
t−1 − t−3

)
e−t2/2 ≥ 1

t
√
8π
e−t2/2

for t ≥ 2.

This leaves us with:

P (Ft(y) > Ct = E[y] + tV [y]− 1/2) >
1

t
√
8π

e−t2/2 − t2

6
√
2πV [x]

e−t2/2 − 1

V [y]2

Setting t = O(1), this occurs with constant positive probability.

Finally, we can use the above lemma to relate the probability that a point fires at time t+1
to its expected value at time t.

Lemma 25 Let y ∈ Ij, and k̂ = |Ij ∩ At|. If there exists an x ∈ Ij such that EFt(x) >

EFt(y) +

√
6β(k̂ − EFt(y)) ln k, then P(Ft(y) > Ct) <

1
n3

Proof

Let X = k̂ − Ft(y). By Lemma 19, P(X < (1− ϵ)EX) ≤ exp
(
−ϵ2EX/2

)
.

Thus, setting ϵ = C−Ft(y)
EX , we have

P(Ft(y) > C) = P(X < EX − (C − EFt(y)) ≤ P(X < EX(1− ϵ)) ≤ exp

(
−ϵ2EX

2

)
By Lemma 13, Ct ≥ EFt(x) for all x. Hence, by the assumption, C − EFt(y) ≥ EFt(x) −
EFt(y) >

√
6βEX ln k. Substituting this value for ϵEX,
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P(Ft(y) > C) ≤ exp

(
−6β ln k

2

)
= k−3β = n−3

Now, we are ready to prove Lemma 15. This lemma will show that the radius of each
ball shrinks at each step; that is At is contained within a union of balls of radius rt, where
rt is a decreasing function of t. The main idea of the proof is to show that, regardless of the
actual positions of points in At ∩ I, vertices toward the center of I have a small advantage
over vertices toward the edge. Thus, either (1) the position of points in At∩I is particularly
unbalanced, and At+1 shifts toward one side, or (2), the radius of I shrinks in all directions.

Proof [Proof of Lemma 15]

Fix one ball I = Br(p). Let r be the radius of I and p be its center.

To assist with the proof, we will define the following values. Let k̂ = |At ∩ I|; we
can assume that k̂ > k3/4−o(1), since an interval with asymptotically fewer points will
be eliminated at the next step. Define dist(I, z) = miny∈I∥y − z∥. Finally, for any set
S ⊂ [0, 1]d, let Ft(z;S) =

∑
y∈At∩S 1(y,z).

We will prove that with high probability, {x ∈ [0, 1]d : Ft(x; I) ≥ Ct} can be covered by
I ′ = Br′(p

′), where r′ = (1− 1/(log k)c)r and maxz∈I′ dist(I, z) < 5(r(I)− r(I ′)). Call this
statement (*).

If statement (*) holds for each I = Ii, the lemma is proven. This holds by the separation
assumption; for x near I, Ft(x; I) is a good proxy for Ft(x). In particular, if dist(I, x) <
σ
√
lnn, then Ft(x; I) = Ft(x)− o(1) with high probability.

To prove this statement, we will consider two cases. In case 1, we suppose that the
distribution of At ∩ I is imbalanced. In particular, there exists a half space dividing I
into two spherical caps, with heights r/4 and 7r/4, such that the larger segment contains
only k̂/(ln k)α points of At+1 (for an α ≥ 1). See Figure 6. We will show that given this
imbalance, statement (*) holds.

In case 2, no such division exists. We will show that for any point z near the boundary
of I is disadvantaged compared to a point near the center. Thus, I ′ = Br′(p) for an
r′ = (1− 1/(log k)c)r. See Figure 6.

For both cases, the argument will use a bound on the gradient of E[z]. With this, we
will construct a point w such that E[w] − E[z] is large, and use Lemma 14 to argue that
P(z ∈ At+1) < 1/n3.

Consider two cases:

Case 1: there exists a half space dividing I into two spherical caps, R1 and R2, with heights
r/4 and 7r/4, such that |R2 ∩ At| ≤ k̂/(ln k)α, where α = 1 + max(2r2/(σ2 ln ln k), 1). In
this case, the ball is “imbalanced” in the sense that one portion of of the ball contains the
vast majority of the points.

Without loss of generality, let p = [r, 0, 0, . . . , 0], R1 = {y ∈ I : y1 ≤ r/4}, and R2 =
{y ∈ I : y1 > r/4} (as illustrated in Figure 6). Let z = [z1, z2, . . . , zn] where z1 ≥ 3r/8 and
dist(I, z) = O(min{r, σk̂−1/5}).

Then we can bound the derivative with respect to the first coordinate:
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∂

∂z1
EFt(z; I) =

∑
y∈At∩I

∂

∂z1
g(y, z) =

∑
y∈At∩I

−z1 − y1
σ2

g(y, z) (5)

=
∑

y∈R1∩At

−z1 − y1
σ2

g(y, z) +
∑

y∈R2∩At

−z1 − y1
σ2

g(y, z) (6)

The partial derivative ∂
∂z1

g(y, z) is minimized at z1−y1 = σ and maximized at z1−y1 = −σ.
The lower bound on the derivative depends on r as follows:

• If 2r ≥ σ:

miny∈R2

z1−y1
σ2 g(y, z) > − 1

σe
−1/2, and

miny∈R1

z1−y1
σ2 g(y, z) > r

8σ2 exp
(
−(2r+min{r,σk̂−1/5})2

2σ2

)
= r

8σ2 exp
(
−2r2−o(σ2)

σ2

)
• If 2r < σ,

miny∈R2

z1−y1
σ2 g(y, z) > − 2r

σ2 exp
(
−2r2/σ2

)
, and

miny∈R1

z1−y1
σ2 g(y, z) > r

8σ2 exp
(
−(2r+O(min{r,σk̂−1/5})2

2σ2

)
= r

8σ2 exp
(
−O(1)r2

2σ2

)
Returning to Equation 11,

∂

∂z1
EFt(z; I) ≤ −|At ∩R1| min

y∈R1

z1 − y1
σ2

g(y, z) + |At ∩R2|max
y∈R2

y1 − z1
σ2

g(y, z) (7)

By assumption, |At ∩R2| ≤ k̂/(ln k)α. Replacing this:

• If 2r ≥ σ:

∂

∂z1
EFt(z; I) ≤ −k̂(1− o(1))

r

8σ2
exp

(
−2r2

σ2
− o(1)

)
+

k̂

(ln k)α
1

σ
e−1/2

By the definition of α, (ln k)−α = e−α ln ln k ≤ 1
ln ke

−2r2/σ2
. Hence,

∂

∂z1
E[z] ≤ − k̂

σ

[
(1− o(1))

r

8σ
exp

(
−2r2

σ2

)
− 1

ln k
exp

(
−2r2

σ2

)
e−1/2

]

∂

∂z1
EFt(z; I) ≤ − k̂r

8σ2
exp

(
−2r2

σ2

)
(1− o(1))

• If 2r < σ,

∂

∂z1
EFt(z; I) ≤ − r

8σ2
e−O(1)r2/σ2

k̂ +
2r

σ2

k̂

ln k
= −Θ(1)

k̂r

σ2
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Let z′ = [z′1, z
′
2, . . . , z

′
n] where z′1 ≥ r/2 and dist(I, z′) < min{r/8, σk̂−1/5}. Consider

the point w = z′ − [min{r/8, σk̂−1/5}, 0, 0, . . . , 0]. By definition, the derivative bounds
above apply for all points on the line between w and z′. This gives us a lower bound on
E[w]−E[z′]. While w /∈ V almost surely, by Lemma 16 there exists a point w′ ∈ V within
a radius of O((log n/n)1/d) of w. Applying 11, E[w′]− E[z′] > E[w]− E[z′]− o(1). Then,
we will apply Lemma 14 to show that P(z′ ∈ At+1) < 1/n3.

The condition of Lemma 14 holds if

E[w]− E[z′] ≥
√
6β(k̂ − E[z]) ln k (8)

• If 2r ≥ σ:

E[w] ≥ E[z′] + σk̂−1/5 · k̂r

8σ2
exp

(
−2r2

σ2

)
(1− o(1))

Since r = O(σ
√
ln ln k), exp

(
2r2/σ2

)
= Õ(1). Thus, E[w] − E[z] = Ω̃(k̂4/5). Clearly

this exceeds

√
6βk̂ ln k, so by Lemma 14, P(z′ ∈ At+1) < 1/n3.

• If 20σk̂−1/5 < 2r < σ:

For the same reasons as above, we can obtain a similar bound:

E[w] ≥ E[z′] + σk̂−1/5 · k̂ r

6σ2
e−2r2/σ2

(1− o(1)) = E[z] + k̂4/5−o(1) r

σ

Since r = Ω(σk̂−1/5), this exceeds

√
6βk̂ ln k, so by Lemma 14, P(z′ ∈ At+1) < 1/n3.

• If 2r ≤ 20σk̂−1/5:

E[w] ≥ E[z′] +
r

8
· k̂ r

8σ2
e−2r2/σ2

(1− o(1)) = E[z] + Θ(1)k̂
r2

σ2

In this case, we can bound k̂ − E[z];

k̂ − E[z] ≤ k̂(1− e−2r2/σ2
) ≤ k̂

2r2

σ2

Therefore, the condition can be bounded:

√
6β(k̂ − E[z]) ln k ≤ r

σ

√
12βk̂ ln k.

There exists a constant C such that for 10σk̂−1/5 > r > Cσ

√
ln k/k̂, E[w] − E[z] =

Θ(1)k̂ r2

σ2 > r
σ

√
12βk̂ ln k. By Lemma 14, P(z′ ∈ At+1) < 1/n3.
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Finally, we will argue that for any z with dist(I, z) > r/20, P(z ∈ At+1) < 1/n3. Let u
be the unit vector parallel to z − p:

∇uE[z] =
∑
y∈At

∇ug(y, z) =
∑
y∈At

(
u · y − z

σ2

)
g(y, z)

≥ dist(I, z)

σ2

∑
y∈At

g(y, z)

=
dist(I, z)

σ2
E[z]

Let w be a point along the line z − p, with dist(I, w) = dist(I, z)/2. Again, while w /∈ V
almost surely, by Lemma 16 there exists a point w′ ∈ V within a radius of O((log n/n)1/d)
of w. Applying 11, E[w′]−E[z′] > E[w]−E[z′]− o(1). Dividing this again into two cases:

• If r ≥ 2σ:

There exists a point y in I with E[y] = Ω(k̂/(ln ln k)d/2). This is due to the pigeonhole
principle; the volume of I is Θ(rd) = O((ln ln k)d/2/k̂). Therefore, there exists a
smaller ball of radius σ in I with k̂/(ln ln k)d/2 points. For y in this smaller ball,
E[y] = Ω(k̂/(ln ln k)d/2).

If E[z] = Ω̃(k̂), then E[w] − E[z] > dist(I, z)2/(2σ)2E[z] = Ω̃(k̂), and by Lemma
14, P(z ∈ At+1) < 1/n3. Otherwise, E[y] − E[z] = Ω̃(k̂), and again by Lemma 14,
P(z ∈ At+1) < 1/n3.

• If r < 2σ:

There exists a point y in R1 with E[y] ≥ e−r2/8σ2
k̂ ≥ k̂(1− r2/8σ2).

If E[z] = k̂(1− γr2/σ2), the bound for Lemma 14 is:√
6β(k̂ − E[z]) ln k =

r

σ

√
6βγ ln k

For any r = Ω(σ

√
ln k/k̂), E[w] − E[z] ≥ Θ(r2/σ2k̂) = Ω(ln k). There exists a

constant C such that for any r > Cσ

√
ln k/k̂, this exceeds the bound of Lemma 14,

and P(z ∈ At+1) < 1/n3.

In conclusion, we have determined that the set of points z ∈ I such that P(z ∈ At+1) >
1/n3 are contained within a region R = {z : z1 ≤ r/2, dist(I, z) < r/20}. The radius of
R is r/20 plus the width of {z ∈ I : z1 ≤ r/2}. Using a geometric argument, this set has
width

√
R2 − (R/2)2 = R

√
3/2. This region can be enclosed by a ball I ′ defined as follows

(illustrated as an orange circle in Figure 6):
Let I ′ = B19r/20(p

′) for p′ = [3r/4, 0, 0, . . . , 0] and r(I ′) = 19
20r(I). It is simple to check

that B19r/20(p
′) contains R;

max
z∈R

∥p− z∥ = r

√
(
√
3/2 + 1/20)2 + 1/42 < 19r/20
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Additionally, maxz∈B19r/20(p
′) dist(z, I) < maxz∈Br(p′) dist(z, I) < r/4. Therefore, d(I, I ′) <

r/4 < 5(r(I)− r(I ′)).
Case 2: In this section, we assume that no such imbalanced partition of I exists. For
all x ∈ ∂I, denoting R2 = {z ∈ I : (x − z) · x−p

∥x−p∥ > r/4}, |R2 ∩ At| ≥ k̂/(ln k)α, where

α = 1 + max{2r2/(σ2 ln ln k), 1}. We will show that for any z within ∆r of the boundary
of I, P(z ∈ At+1 < 1/n3).

Fix x, and assume without loss of generality that p = [r, 0, 0, . . . , 0] and x = [0, 0, . . . , 0]
Let z = [z1, 0, 0, . . . , 0] where−σ log n < z1 < ∆r = O(r/ ln k). Then, maxy∈R1

z1−y1
σ2 g(y, z) =

z1
σ2 exp

(
−z21
2σ2

)
< ∆r

σ2 exp
(
−(∆r)2

2σ2

)
(Note that by construction ∆r < σ). Also, separately tak-

ing the minima of y1− z1 and g(y, z), miny∈R2

y1−z1
σ2 g(y, z) > r/4−z1

σ2 exp
(
−2r2

σ2

)
. Returning

to Equation 11:

∂

∂z1
E[z] ≥ −|At ∩R1|

∆r

σ2
exp

(
−(∆r)2

2σ2

)
+ |At ∩R2|

r/4− z1
σ2

exp

(
−2r2

σ2

)
(9)

By assumption, |At ∩R2| ≥ k̂/(ln k)α. Replacing this:

∂

∂z1
E[z] ≥ −k̂

[
1− 1

(ln k)α

]
∆r

σ2
exp

(
−(∆r)2

2σ2

)
+

k̂

(ln k)α
r/4−∆r

σ2
exp

(
−2r2

σ2

)
Define ∆r = r/(ln k)2α. Again, note that (ln k)−α = e−α ln ln k ≤ 1

ln ke
−2r2/σ2

. So,

e−2r2/σ2 ≥ (ln k)1−α

∂

∂z1
E[z] ≥ −k̂

[
1− 1

(ln k)α

]
r

σ2(ln k)2α
exp

(
−(∆r)2

2σ2

)
+

k̂

(ln k)2α−1

r

5σ2

∂

∂z1
E[z] ≥ k̂r

σ2(ln k)2α
[1− o(1) + ln k]

Suppose z = [z1, 0, 0, . . . , 0] where z1 < ∆r/2. Let w = z1 + [∆r/2, 0, 0, . . . , 0]. Using
the lower bound on the derivative,

E[w] ≥ E[z] +
∆r

2
· k̂r

σ2(ln k)2α
[1− o(1) + ln k] ≥ E[z] +

1

2

k̂r2

σ2
ln k

For r = Ω(σk̂−1/4), this exceeds

√
6βk̂ ln k, so by Lemma 14, P(z ∈ At+1) < 1/n3.

For r = o(σk̂−1/4), we can bound k̂ − E[z];

k̂ − E[z] ≤ k̂(1− e−2r2/σ2
) ≤ k̂

2r2

σ2

Therefore, the condition can be bounded:

√
6β(k̂ − E[z]) ln k ≤ r

σ

√
12βk̂ ln k.

Then, for σk̂−1/4 ln k > r > σ

√
ln k/k̂, E[w] − E[z] = 1

2
k̂r2

σ2 ln k > r
σ

√
12βk̂ ln k. By

Lemma 14, P(z′ ∈ At+1) < 1/n3.
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In summary, there are two cases: in case 1, there exists a partition of I such that the
vast majority of At is located in R1. In this case, we have shown that {z : P(z ∈ At+1) >
1/n3} ⊂ {z : z1 ≤ r/2}. A symmetric argument showed that for any z such that the
distance from z to I is at most r/20, P(z ∈ At+1) < 1/n3 Therefore, At+1 is contained
within a ball I ′ = B19r/20(p

′), where d(I, I ′) < r/4
In case 2, for all x ∈ ∂I, |At ∩ R2| is sufficiently large. In this case, We have shown

that for all z = x + λ p−x
∥p−x∥ where λ < r/polylog(k), P(z ∈ At+1) < 1/n3. This applies for

all x ∈ δI. Therefore, I ′ ⊂ Br(1−1/(ln k)c)(p).
By the assumption that each ball is sufficiently separated, we can conclude that, with

high probability, At+1 ⊂ I ′1 ∪ I ′2 ∪ · · · ∪ I ′i, where the radius of I ′j is smaller than the radius
of Ij by at least a factor of 1/polylog(k).

Now, we are ready to prove Theorem 6.
Proof [Proof of Theorem 6] By Theorem 5, the conditions of Lemma 15 hold at step 1.
Additionally, by the condition that each ball does not shift by more than 5(r(I)− r(I ′)) at
each step, the separation condition holds inductively for any t = polylog(k). The maximum

distance moved by a single ball by time t is 5(r(I
(0)
j ) − r(I

(t)
j )) = O(σ

√
ln ln k), which

maintains the separation of 2(1−o(1))σ
√
lnn). Thus, we can apply the Lemma inductively.

By Lemma 15, the radius of I is reduced by a factor of 1 − 1
polylog(k) in a single step;

thus, to reach O(σk̂−1/2
√
ln k), the number of steps required is polylog(k).

This shows that in polylog(k) time, the radius of each sufficiently separated ball will be
reduced to at most k̂−1/2

√
ln k. Recall that there are k1/4+o(1) separated balls; a similar

method will allow us to eliminate balls that are σk̂−1/2
√
ln k in size.

If the number of balls is greater than 1, |I1∩At| can fall anywhere in the range M±
√
M

with constant probability, where M = E|I1 ∩ At|. By the pigeonhole principle, at least
one ball receives k3/4−o(1) points. Since the size of the balls are at most σk̂−1/2

√
ln k <

σk−3/8
√
ln k, Ct ≥

(
k3/4−o(1)

)
. Therefore, for each j, if Ij is not eliminated, there exists an

x ∈ Ij such that EFt(x) ≥ k3/4−o(1). Consider two alternative scenarios, which can each
occur with constant probability.{

(1) maxx∈I1 EFt(x) = X −Θ(
√
X)

(2) maxx∈I1 EFt(x) = X +Θ(
√
X)

Let y = argmaxy∈I2 EFt(y). So, it is clear that in either scenario (1) or (2), the inputs to x
and y differ by the number of points added to I1.∣∣∣∣max

x∈I1
EFt(x)−max

y∈I2
EFt(y)

∣∣∣∣ = k3/8−o(1)

In scenario 2, x receives an extra input of Θ
(√

X
)
. The increased input in this scenario

could affect Ct; however, either EFt(x) becomes closer to Ct by k3/8−o(1), or EFt(y) becomes
further from Ct by the same amount.

The distributions of sums of non-identical indicators are well studied, so we can use
known tail bounds to bound the ratio between P(Ft(z) > C1) and P(Ft(z) > C2) for two
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thresholds C1, C2. Precisely,
P(Ft(z)>C1)
P(Ft(z)>C2)

> exp
(
(C2−C1)2

C2

)
. The result we use is stated and

proven in the Appendix A, Lemma 21. Since the two thresholds differ by Θ(
√
X), between

the two scenarios, either pt+1(z) increases by a constant factor for all z ∈ I1, or pt+1(w)
decreases by a constant factor for all w ∈ I2. So, this implies that |EFt+1(x) − EFt+1(y)|
varies by Θ(1)mini∈{1,2}(|Ii ∩At|) between the two scenarios.

This is a significant variation; as in Lemma 13, for any x ∈ [n], Ct ≥ EFt+1(x). So, in
the case where x has more expected input, EFt+1(y) < EFt+1(x) − Θ(EFt+1(y)). By the
Chernoff bound (Lemma 19), the probability that Ft+1(y) will exceed Ct+1 is exponentially
small.

Pr (Ft+1(y) > Ct+1 = (1 + Θ(1))EFt+1(y)) < exp (−Θ(1)EFt+1(y)) < exp
(
−k3/4−o(1)

)
By the Chernoff bound, the probability that Ft+1(y) will exceed Ct+1 is exponentially

small. A similar argument applies if EFt+1(y) > EFt+1(x). Therefore, since there is a
constant probability that the two balls will deviate from each other, either I1 or I2 will be
eliminated in a constant number of steps.

The same argument applies to any pair of balls (Ii, Ij). Therefore, the number of balls
reduces by a constant factor within a constant number of steps. This leads to convergence
to a single ball within O(ln k) steps.

At this point, k̂ = k, so applying Lemma 15 again, we can conclude that At converges
to a single ball of size O(σk−1/2

√
ln k) in O((log k)c) steps.

Finally, we prove that the set At, with high probability, remains within a small subset for
all t ≥ t∗.

Proof [Proof of Theorem 7] Let A ⊂ V with |A| = k, and let I be a ball surrounding
k − k2/3 points of A. Assume that r = r(I) = σk−1/3+ϵ and I = Br(p).

We consider 2 cases, identically to the proof of Lemma 15:

Case 1: There exists a half space dividing I into two spherical caps, R1 and R2, with
heights r/4 and 7r/4, such that |R2 ∩A| ≤ k/(ln k)2. In this case, the ball is “imbalanced”
in the sense that one portion of of the ball contains the vast majority of the points.

Without loss of generality, let p = [r, 0, 0, . . . , 0], R1 = {y ∈ I : y1 ≤ r/4}, and R2 =
{y ∈ I : y1 > r/4} (as illustrated in Figure 6). We define E[z] = F (z;A) =

∑
y∈A g(y, z).

Then we can bound the derivative with respect to the first coordinate:

∂

∂z1
E[z] =

∑
y∈A∩I

∂

∂z1
g(y, z) =

∑
y∈A∩I

−z1 − y1
σ2

g(y, z) +
∑

y∈A\I

−z1 − y1
σ2

g(y, z) (10)

=
∑

y∈R1∩A
−z1 − y1

σ2
g(y, z) +

∑
y∈R2∩A

−z1 − y1
σ2

g(y, z) +
∑

y∈A\I

−z1 − y1
σ2

g(y, z) (11)

Let z = [z1, z2, . . . , zn] where z1 ≥ 3r/8 and dist(I, z) = O(r). This implies:

miny∈R2

z1−y1
σ2 g(y, z) > − 2r

σ2 exp
(
−2r2/σ2

)
miny∈R1

z1−y1
σ2 g(y, z) > r

8σ2 exp
(
−O(1)r2

2σ2

)
, and
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miny∈[0,1]d\I
z1−y1
σ2 g(y, z) > − 1

σe
−1/2

Returning to Equation 11:

∂

∂z1
E[z] ≤ −|At∩R1| min

y∈R1

z1 − y1
σ2

g(y, z)−|At∩R2| min
y∈R2

z1 − y1
σ2

g(y, z)−|At\I| min
y∈[0,1]d

z1 − y1
σ2

g(y, z)

(12)
By assumption, |At ∩R2| ≤ k/(ln k)2 and |At \ I| = k2/3. Replacing this:

∂

∂z1
E[z] ≤ − r

8σ2
e−O(1)r2/σ2

k +
2r

σ2

k

ln k2
+

Θ(1)k2/3

σ
= −Θ(1)

kr

σ2

Let z′ = [z′1, z
′
2, . . . , z

′
n] where z′1 ≥ r/2 and dist(I, z′) < r/8. Consider the point

w = z′ − r/8. By definition, the derivative bounds above apply for all points on the line
between w and z′. This gives us a lower bound on E[w]−E[z′]. While w /∈ V almost surely,
by Lemma 16 there exists a point w′ ∈ V within a radius of O((log n/n)1/d) of w. Applying
11, E[w′]− E[z′] > E[w]− E[z′]− o(1).

We will prove an analogous result to Lemma 13 for sets A contained mostly within a
ball of radius r.

Lemma 26 Let I be a ball of radius r = σk−1/3+ϵ, for some constant ϵ > 0, surrounding
k − k2/3 points of A. Let C be the threshold when the k-cap function is applied to A. With
high probability, for all such sets A ⊂ V with |A| = k, C ≥ maxxE[x].

Proof [Proof of Lemma 13]
The derivative of E[x] is, for any dimension i:

∂

∂xi
E[x] =

∑
z∈At

∂

∂xi
g(x, z) =

∑
z∈At

−xi − zi
σ2

exp

(
−∥x− z∥2

2σ2

)

Let x̂ = x−z
σ . The maximum of

∣∣∣x̂ exp(−x̂2

2

)∣∣∣ occurs at e−1/2. For y ∈ I, this is maximized

at x̂ = 2r
σ . Thus, we have∣∣∣∣ ∂

∂xi
E[x]

∣∣∣∣ ≤ ∑
z∈At

|xi − zi|
σ2

exp

(
−∥x− z∥2

2σ2

)
<

e−1/2k2/3

σ
+ k

2r

σ2
=

2k2/3+ϵ

σ
(1 + o(1))

Therefore, the directional derivative, as in Lemma 11, is at most this value, times a factor
of

√
d. For any y ∈ Bσk−1+ϵ(x), the difference between E[y] and E[x] can be bounded:

E[y] = E[x]− o(1)

By Lemma 16, for any point x, there are Ω((n/ log n) · σdk−d+dϵ) points in a radius of
σk−1+ϵ of x. By the assumption that n ≥ k2+d, this is Ω̃(k1+dϵ).

Therefore, if C = E[x], then there are Ω̃(k1+dϵ) points where E[y] > Ct − O(1). Since
each edge is chosen independently, Chernoff type bounds apply; if P (Ft(y) > E[y] +O(1)) =
Θ(1), then with high probability there are k points that exceed Ct.

Using the loose bound given in (Volkova, 1996), we can bound P(Ft(x) > Ct) using the
CDF of the normal distribution. For any sum of independent indicators S with mean µ and
variance σ, the CDF can be approximated as follows:
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sup
m

∣∣∣∣P(S ≤ m)−G

(
m+ 1/2− µ

σ

)∣∣∣∣ ≤ σ + 3

4σ3
<

1

σ2

Where G(x) = Φ(x) − γ
6σ3 (x

2 − 1) e
−x2/2
√
2π

, and γ = E[(S − µ)3] is the skewness. This holds

for any σ ≥ 10.
We can assume that V [y] > 10; otherwise, E[y] =

∑
y∈At

= k(1 − o(1/k)), so we can
assume that C = k.

Fix x ∈ [n]. From the above equation, we find that for any t > 0:

P (Ft(x) > E[x] + tV [x]− 1/2) > 1−
[
G(t) +

1

V [x]2

]
Substituting the value of G:

P (Ft(x) > E[x] + tV [x]− 1/2) > 1− Φ(t) +
γ(t2 − 1)

6
√
2πV [x]3

e−t2/2 − 1

V [x]2

Here, we will make two approximations. First, the exact value of γ is
∑

z∈At
g(x, z)(1−

g(x, z))(1− 2g(x, z)). Therefore, γ > −V [x]2, so γ(t2 − 1) > −V [x]2t2

Second, we will substitute the lower tail bound for 1− Φ(t) ≥ 1√
2π

(
t−1 − t−3

)
e−t2/2 ≥

1
t
√
8π
e−t2/2 for t ≥ 2.

This leaves us with:

P (Ft(x) > E[x] + tV [x]− 1/2) >
1

t
√
8π

e−t2/2 − t2

6
√
2πV [x]

e−t2/2 − 1

V [x]2

Setting t = Θ(1)/V [x], this occurs with constant positive probability p.

The probability that there are not k points which exceed C = E[x] is at least
(
k1+dϵ

k

)
(1−

p)k
1+d/2−k = (1− p)k

1+dϵ(1−o(1)).
The number of possible subsets A is at most

(
n
k

)
< nk = ek logn.

By the union bound, this holds for all subsets A with high probability.

Returning to the proof of the original theorem, we recall that there exists a point w
such that:

E[w] ≥ E[z′] +
r

8
· k r

8σ2
e−2r2/σ2

(1− o(1)) = E[z] + Θ(1)k
r2

σ2
= E[z′] + Θ(k1/3+2ϵ)

Comparing this to k − E[z′]

k − E[z′] ≤ k(1− e−2r2/σ2
) ≤ k

2r2

σ2
= 2k1/3+2ϵ

We can apply Lemma 19 to k−E[z′]; let Z = k−F (z′;A). Then, P(Z < (1− δ)EZ]) ≤
e−δ2EZ/2. So,

P(Z < EZ −Θ(1)EZ) < e−Θ(1)k1/3+2ϵ

The probability that there exist k2/3 points which violate the condition is at most:
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(
n

k2/3

)
(e−Θ(1)k1/3+2ϵ

)k
2/3

< ek
2/3 logne−Θ(1)k1+2ϵ logn

Since there are at most
(
n
k

)
= O(ek logn) possible k-subsets of V , this is true by the

union bound for all subsets A with high probability.
Case 2: In this section, we assume that no such imbalanced partition of I exists. For all
x ∈ ∂I, denoting R2 = {z ∈ I : x − z · ( x−p

∥x−p∥ > r/4), |R2 ∩ A| ≥ k/(ln k)2. We will show

that for any z within ∆r of the boundary of I, P(F (z;A) > C) < 1/n3.
Fix x, and assume without loss of generality that p = [r, 0, 0, . . . , 0] and x = [0, 0, . . . , 0]
Let z = [z1, 0, 0, . . . , 0] where−σ log n < z1 < ∆r = r/(ln k)3. Then, maxy∈R1

z1−y1
σ2 g(y, z) =

z1
σ2 exp

(
−z21
2σ2

)
< ∆r

σ2 exp
(
−(∆r)2

2σ2

)
= ∆r

σ2 (1−o(1)) Also, separately taking the minima of y1−z1

and g(y, z), miny∈R2

y1−z1
σ2 g(y, z) = r

4σ2 (1− o(1)). Bounding the derivative again:

∂

∂z1
E[z] ≥ −|A ∩R1|

∆r

σ2
(1− o(1)) + |A ∩R2|

r

4σ2
(1− o(1))− |A \ I|O(1)

σ
(13)

By the assumption of the case, |A∩R2| ≥ k/(ln k)2. Also, by the assumption of the theorem
|A \ I| = O(k2/3). Replacing this:

∂

∂z1
E[z] ≥ −k

∆r

σ2
(1− o(1)) +

kr

4σ2(ln k)2
(1− o(1))− O(k2/3)

σ

Substituting ∆r

∂

∂z1
E[z] ≥ −k(1− o(1))

r

σ2(ln k)3
+

Θ(k)r

σ2(ln k)2
− O(k2/3)

σ
=

kr

σ2(ln k)3
[1− o(1) + Θ(ln k)]

Suppose z = [z1, 0, 0, . . . , 0] where z1 < ∆r/2. Let w = z1 + [∆r/2, 0, 0, . . . , 0]. Using
the lower bound on the derivative,

E[w] ≥ E[z] +
∆r

2
· kr

σ2(ln k)3
[1− o(1) + ln k] ≥ E[z] +

1

4

kr2

σ2
ln k

Using the same bound as above for k − E[z]:

k − E[z] ≤ k(1− e−2r2/σ2
) ≤ k

2r2

σ2

We can apply Lemma 19 to k − E[z]; let Z = k − F (z;A). Then, P(Z < (1 − δ)EZ]) ≤
e−δ2EZ/2. So,

P(Z < EZ −Θ(1)EZ) < e−Θ(1)k1/3+2ϵ

The probability that there exist k2/3 points which violate the condition is at most:(
n

k2/3

)
(e−Θ(1)k1/3+2ϵ

)k
2/3

< ek
2/3 logne−Θ(1)k1+2ϵ

Since there are at most
(
n
k

)
= O(ek logn) possible k-subsets of V , this is true by the

union bound for all subsets A with high probability.
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B.3. Continuous α-cap process

First, we will prove that single intervals of width α are the only possible fixed points.

Theorem 27 (Fixed Points) For any even, differentiable, nonnegative, and integrable
function g : [−1, 1] → ℜ+ with g′(x) < 0 for all x > 0, the only fixed points (At+1 = At) of
the α-cap Process are single intervals of width α.

The next lemma follows from the properties of g.

Lemma 28 The following holds for all b > a:∫ b

a
g(y − a) dy =

∫ b

a
g(y − b) dy

We proceed to the proof of the fixed point characterization.
Proof [Proof of Theorem 27] First, we show that if At = [a, b] is a single interval, then it is
a fixed point. Since At is 1 on the interval and 0 elsewhere, we can rewrite Ft(x) as follows:

Ft(x) =

∫ b

a
g(y − x) dy (14)

Define the threshold Ct = Ft(a)
∫ b
a g(y − a) dy. If x ∈ [a, b],

Ft(x) =

∫ b

a
g(y − x) dy ≥

∫ b

a
g(y − a) dy = Ct

It’s easiest to see this by breaking Ft(x) into two integrals,
∫ b
a g(y − x) dy =

∫ x
a g(y −

x) dy +
∫ b
x g(y − x) dy. By Lemma 28,

∫ x
a g(y − x) dy =

∫ x
a g(y − a) dy. Then, since a < x,

g(y − x) > g(y − a) for all y ∈ [x, b]. This implies
∫ b
x g(y − x) dy ≥

∫ b
x g(y − a) dy

Therefore, Ft(x) ≥ Ft(a) = Ct for all x ∈ [a, b].
Similarly, if x < a or x > b,

Ft(x) =

∫ b

a
g(y − x) dy <

∫ b

a
g(y − a) dy = Ct

This implies that if Ct is chosen in this way, then At+1 = [a, b] = At.
Next, let At be the union of finite intervals. Let At =

⋃n
j=1[aj , bj ] where for all j < n,

aj < bj < aj+1 < bj+1, and n > 1. We will show that this is not fixed.
Ft(x) can be expressed as the following:

Ft(x) =
n∑

j=1

∫ bj

aj

g(y − x) dy

Consider Ft(an) and Ft(bn).

Ft(an) =

∫ bn

an

g(y − an) dy +
n−1∑
j=1

∫ bj

aj

g(y − an) dy
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Ft(bn) =

∫ bn

an

g(y − bn) dy +
n−1∑
j=1

∫ bj

aj

g(y − bn) dy

By Lemma 28,
∫ bn
an

g(y − an) dy =
∫ bn
an

g(y − bn) dy. Also, since an < bn,
∫ bj
aj

g(y − an) dy >∫ bj
aj

g(y − bn) dy for all j < n. Therefore, Ft(an) > Ft(bn).

Notice that by definition, if At+1 = At, then Ct ≤ Ft(x) for all x ∈ At+1. In particular,
Ct ≤ Ft(bn) < Ft(an). However, since Ft(x) is a continuous function, Ct < Ft(x) in some
small window [an − ϵ, an]. By definition, an − ϵ ∈ At+1, but an − ϵ /∈ At for small enough ϵ.
This implies At ̸= At+1.

Now, we will prove the main convergence theorem.

Theorem 2 Let A0 be a finite union of intervals in [0,1]. Let g : [−1, 1] → R+ be a
differentiable, even, nonnegative and integrable function with g′(x) < 0 for all x > 0. For
any such g, the α-cap process converges to a single interval of width α. Moreover, the
number of steps to convergence is

O

(
max[0,1] |g′(x)|
min[α

8
,1] |g′(x)|

)
.

Proof [Proof of Theorem 2] At a given step t ≥ 0, At is a union of finite intervals on [0,1].
We will show that if the number of intervals is greater than 1, the distance between the
midpoints of the first and last intervals decreases at each step, and this decrease is not
diminishing.
Let At =

⋃n
j=1[aj , bj ] where the intervals are disjoint and increasing; for all j < n, 0 ≤

aj < bj < aj+1 < bj+1 ≤ 1. Define the midpoint of the kth interval mk = ak+bk
2 . By 27, if

n = 1, then the process has converged (i.e. At+1 = At). If n > 1, [a1, b1] and [an, bn] are
the first and last intervals in At, respectively. We will show that the distance between the
midpoints, mn −m1, decreases by at least a constant.

Suppose the first local maximum of Ft occurs at a value m1 + δ. This proof will show
that the shift in the midpoint m1 is bounded from below by a constant depending on δ.

Recall the definition of Ft and write its derivative:

Ft(x) =
n∑

k=1

∫ bk

ak

g(y − x) dy

dFt

dx
=

n∑
k=1

g(ak − x)− g(bk − x)

Since g is assumed to be decreasing on [0, 1], if x < mk, then g(ak − x) > g(bk − x). This
implies Ft is increasing on [0,m1), so the first local maximum must occur at m1 + δ > m1.
For ease of notation, we will define the following points; let m1 + δ be the smallest local
maximum of Ft. Let z = m1 − ϵ be the minimum value where Ft(x) ≥ Ct. Finally, let
z′ = m1+ ϵ+ ϵ′ be the smallest value such that z′ > z, Ft(z

′) = Ft(z) = Ct, and Ft(x) > Ct

for all x ∈ (z, z′).
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Claim 28.1 If z ≥ m1 (that is, ϵ < 0), then [z,m1 + δ] ⊂ At+1. Hence, the midpoint of
the first interval of At+1 is greater than m1 +

δ
2 .

If z < m1, the proof is more involved.

For the rest of this section, note that ϵ > 0. Note that it is possible that z = m1−ϵ < a1,
such that the left end of the interval decreases. However, the midpoint of the interval will
always increase. The influence on Ft from the first interval is the same for m1 − ϵ and
m1 + ϵ.

∫ b1

a1

g(y − (m1 − ϵ)) dy =

∫ m1+ϵ

−m1+ϵ
g(z) dz

= −
∫ −m1−ϵ

m1−ϵ
g(−z) dz

=

∫ m1−ϵ

−m1−ϵ
g(z) dz =

∫ b1

a1

g(y − (m1 + ϵ)) dy

For any [ak, bk] where m1 < ak < bk,

∫ bk

ak

g(y − (m1 + ϵ)) dy =

∫ bk−m1−ϵ

ak−m1−ϵ
g(z) dz

>

∫ bk−m1+ϵ

ak−m1+ϵ
g(z) dz

=

∫ bk

ak

g(y − (m1 − ϵ)) dy

This implies that Ft(m1 + ϵ) > Ft(m1 − ϵ) for any ϵ > 0. Since Ft is continuous, there is a
small value ϵ′ > 0 such that Ft(m1 + ϵ+ ϵ′) = Ct, and Ft(x) > Ct in between. At At+1, the
first interval becomes [m1 − ϵ,m1 + ϵ+ ϵ′], which has the midpoint m1 +

ϵ′

2 .

Therefore, the midpoint of the first interval increases. A symmetric argument shows
that the midpoint of the last interval must decrease. Next, we will show that ϵ′ is bounded
below by a constant factor of δ.

Claim 28.2 Let ϵ, ϵ′ be the values defined above. Assume without loss of generality that
b1 − a1 ≤ α

2 (If [a1, b1] is large, a symmetric argument applies to [an, bn]).

ϵ′ ≥ α

2
min{α

4
, ϵ}

miny∈[α
4
,1] |g′(y)|

g(0)− g(1)
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Figure 7: An illustration of the terms defined in this proof. The grey box represents the
first interval, [a1, b1]. The curve is Ft.

Proof Let m be the median of At; by the assumption, m /∈ [a1, b1], so m ≥ a2.

Ft(m1 + ϵ)− Ft(m1 − ϵ) =

n∑
k=1

∫ bk

ak

g(y − (m1 + ϵ)) dy −
n∑

k=1

∫ bk

ak

g(y − (m1 − ϵ)) dy

=

n∑
k=2

∫ bk

ak

g(y − (m1 + ϵ))− g(y − (m1 − ϵ)) dy

=

∫ bn

a2

[g(y − (m1 + ϵ))− g(y − (m1 − ϵ))]At(y) dy

≥
∫ bn

m
[g(y − (m1 + ϵ))− g(y − (m1 − ϵ))]At(y) dy

≥ α

2
[ min
y∈[m,bn]

g(y − (m1 + ϵ))− g(y − (m1 − ϵ))]

By the assumption that b1 − a1 < α
2 , for any y > m, y −m1 ≥ m −m1 > α

4 . If ϵ is small
enough that m1 + ϵ < m,

g(y − (m1 + ϵ))− g(y − (m1 − ϵ)) > g(y −m1)− g(y − (m1 − ϵ)) ≥ ϵ min
z∈[0,ϵ]

|g′(y −m1 + z)|

If ϵ > m−m1, then for any y such that m < y < m1 + ϵ,

g(y − (m1 + ϵ))− g(y − (m1 − ϵ)) ≥ g(ϵ)− g(y − (m1 − ϵ)) ≥ [y −m1] min
z∈[0,y−m1]

|g′(ϵ+ z)|

In both cases, Ft(m1 + ϵ) − Ft(m1 − ϵ) can be bounded by restricting g′. Let c1 =
miny∈[α

4
,1] |g′(y)|. Since g′ is strictly decreasing, c1 ≤ miny∈[m−m1,bn+ϵ−m1] |g′(y)|. For ϵ
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small (ϵ < m−m1):

Ft(m1 + ϵ)− Ft(m1 − ϵ) ≥ α

2
[ min
y∈[m,bn]

g(y − (m1 + ϵ))− g(y − (m1 − ϵ))]

≥ αϵ

2
min

y∈[m,bn]
min
z∈[0,ϵ]

g′(y −m1 + z)

≥ αϵ

2
min

y∈[m,bn+ϵ]
g′(y −m1)

≥ α

2
ϵc1

For ϵ large (ϵ ≥ m−m1):

Ft(m1 + ϵ)− Ft(m1 − ϵ) ≥ α

2
[ min
y∈[m,bn]

g(y − (m1 + ϵ))− g(y − (m1 − ϵ))]

≥ α

2
min

y∈[m,bn]
[y −m1] min

z∈[0,y−m1]
|g′(ϵ+ z)|

≥ α

2

α

4
min

z∈[0,bn−m1]
|g′(ϵ+ z)|

≥ α

2

α

4
c1

Combining both cases,

Ft(m1 + ϵ)− Ft(m1 − ϵ) ≥ α

2
min{α

4
, ϵ}c1 (15)

Let c2 = g(0)− g(1). Since g is continuous and decreasing, c2 > 0 and∣∣∣∣dFt

dx

∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

g(ak − x)− g(bk − x)

∣∣∣∣∣ ≤ c2 (16)

To recall, we define ϵ and ϵ′ such that Ft(m1 − ϵ) = Ft(m1 + ϵ+ ϵ′) = Ct. By 15,

Ft(m1 + ϵ)− Ft(m1 + ϵ+ ϵ′) ≥ α

2
min{α

4
, ϵ}c1

and by 16,
Ft(m1 + ϵ)− Ft(m1 + ϵ+ ϵ′) ≤ c2ϵ

′

Combining these two equations implies,

ϵ′ ≥ α

2
min{α

4
, ϵ}c1

c2

The only unbounded value in this equation is ϵ. Recall that m1 + δ is defined to be the
earliest local maximum of Ft; in the case of small ϵ, [m1 − ϵ,m1 + δ] is a subset of the first
interval of At+1. If ϵ ≤ δ

2 , then the midpoint is at least m1 +
δ
4 .

Combining this fact with Claim 28.1, the shift of the midpoint of the first interval is a
constant multiple of δ. We will show that δ is also bounded from below by a constant value.
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Claim 28.3 Under the assumption that b1 − a1 <
α
2 ,

δ ≥
miny∈[α

8
,1] |g′(y)|

maxz∈[0,1] |g′(z)|
· α
8

Proof By assumption, at m1 + δ, dFt
dx = 0.

n∑
j=1

g(aj − (m1 + δ))− g(bj − (m1 + δ)) = 0

Since g is decreasing and symmetric, the sign of g(aj−(m1+δ))−g(bj−(m1+δ)) depends on
whether m1+δ is closer to aj or bj . Suppose this term is negative for j = 1, ..., k and positive
for j = k+1, ..., n. Additionally, assume that δ < α

8 ; since b1−a1 <
α
2 , m1+ δ < a1+

α
4 +

α
8

(Recall that m is defined as the median of At, so by definition m ≥ a1 + α/2). Using this,
we can assume that ak+1 ≤ m.

Again, since g is decreasing, g(aj − x)− g(bj − x) ≥ (bj − aj)miny∈[aj ,bj ] |g′(y − x)|.

n∑
j=k+1

g(aj − (m1 + δ))− g(bj − (m1 + δ)) ≥
n∑

j=k+1

(bj − aj) min
y∈[aj ,bj ]

|g′(y − (m1 + δ)|

≥ α

2
min

y∈[m,1]
|g′(y − (m1 + δ)|

≥ α

2
min

y∈[α
8
,1]
|g′(y)|

For j = 1...k, g(aj − (m1 + δ))− g(bj − (m1 + δ)) < 0.

k∑
j=1

g(bj − (m1 + δ))− g(aj − (m1 + δ)) ≤ g(bk − (m1 + δ))− g(a1 − (m1 + δ))

≤ (|a1 − (m1 + δ)| − |bk − (m1 + δ)|) max
z∈[0,1]

|g′(z)|

≤ (2(m1 + δ)− bk − a1)) max
z∈[0,1]

|g′(z)|

Recall that since dFt
dx = 0, we have:

k∑
j=1

g(bj − (m1 + δ))− g(aj − (m1 + δ)) =

n∑
j=k+1

g(aj − (m1 + δ))− g(bj − (m1 + δ))

Combining the two equations above:

(2(m1 + δ)− bk − a1)) max
z∈[0,1]

|g′(z)| ≥ min
y∈[α

8
,1]
|g′(y)|α

2

Therefore, δ is bounded:

δ ≥
miny∈[α

8
,1] |g′(y)|

maxz∈[0,1] |g′(z)|
· α
4
+

a1 + bk
2

−m1
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Since bk ≥ b1, the midpoint of a1 and bk is greater than m1. Combining this fact with
the earlier assumption that δ < α

8 , we have

δ ≥
miny∈[α

8
,1] |g′(y)|

maxz∈[0,1] |g′(z)|
· α
8

This implies that in the case where b1 − a1 ≤ α
2 , the change in mn − m1 is bounded

below by a constant value. A symmetric argument applies if bn − an ≤ α
2 . Since mn −m1

decreases at each step, the process must converge to a single interval in finite steps.

This theorem indicates that the speed of convergence depends on the function g and the
size of A0 (α). This process converges to a fixed point in at most

O

(
max[0,1] |g′(x)|
min[α

8
,1] |g′(x)|

)

steps. For example, consider the Gaussian function g(x) = exp(−x2

2σ2 ). We have g′(x) =

− x
σ2 exp(

−x2

2σ2 ). The maximum is:

max
[0,1]

|g′(x)| = |g′(σ)| = 1

σ
exp(−1/2)

The minimum can occur at either endpoint depending on α and σ:

min
[α
8
,1]
|g′(x)| = min

(∣∣∣g′ (α
8

)∣∣∣ , ∣∣g′(1)∣∣) ≈ min

(
α

8σ2
,
1

σ2
exp

(
−1

2σ2

))

If α < 8
( −1
2σ2

)
, the lower bound on the number of convergence steps is

O

(
1
σ exp(−1/2)
1
σ2 exp

( −1
2σ2

)) ≈ O(σ)

Otherwise, the bound is

O

(
1
σ exp(−1/2)

α
8σ2

)
≈ O(

σ

α
)

Another example is the inverse square distance g(x) = 1
c+x2 for a value c > 0. We have

g′(x) = −2x
(c+x)2

. The maximum occurs at max[0,1] |g′(x)| = −3
√
3

8 c−3/2. The minimum occurs

at one of the endpoints:

min
[α
8
,1]
|g′(x)| = min{|g′(α/8)|, |g′(1)|} ≈ min

(
α

4c2 + cα
,

2

(c+ 1)2

)
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Therefore, the lower bound on the number of convergence steps when c is not small is
approximately:

O

(
c−3/2(c2 + cα)

α

)
= O

(
c1/2

α
+ c−1/2

)
For sufficiently small c, this gives:

O
(
c−3/2(c+ 1)2

)
= O(c−3/2)
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