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Abstract
Obtaining rigorous statistical guarantees for generalization under distribution shift remains an

open and active research area. We study a setting we call combinatorial distribution shift, where
(a) under the test- and training-distributions, the labels z are determined by pairs of features (x, y),
(b) the training distribution has coverage of certain marginal distributions over x and y separately,
but (c) the test distribution involves examples from a product distribution over (x, y) that is not
covered by the training distribution. Focusing on the special case where the labels are given by
bilinear embeddings into a Hilbert space H: E[z | x, y] = 〈f?(x), g?(y)〉H, we aim to extrapolate
to a test distribution domain that is not covered in training, or bilinear combinatorial extrapolation.

Our setting generalizes a special case of matrix completion from missing-not-at-random data,
for which all existing results require the ground-truth matrices to be either exactly low-rank, or
to exhibit very sharp spectral cutoffs. In this work, we develop a series of theoretical results that
enable bilinear combinatorial extrapolation under gradual spectral decay as observed in typical
high-dimensional data, including novel algorithms, generalization guarantees, and linear-algebraic
results. A key tool is a novel perturbation bound for the rank-k singular value decomposition
approximations between two matrices that depends on the relative spectral gap rather than the
absolute spectral gap, a result we think may be of broader independent interest.

1. Introduction

While statistical learning theory has classically studied out-of-sample generalization from training
data to test data drawn from the same distribution (e.g., Bartlett and Mendelson (2002); Vapnik
(2006)), in almost all practical settings, one wishes to ensure strong performance on data which
may be generated quite differently from the training data (Koh et al., 2021; Taori et al., 2020). This
paper studies formal guarantees for a type of out-of-distribution generalization we call combinato-
rial distribution shift. Informally, we consider predictions from pairs of features (x, y) such that:
(a) the marginal distributions of each of the features separately under the test data are covered by
the training distribution, but (b) the joint distribution of the features may not be covered. We refer to
combinatorial extrapolation as the process of generalization under combinatorial distribution shift.
Our setting may encompass a broad swath of applications including: computer vision tasks which
extrapolate to novel combinations of objects, backgrounds, and lighting conditions that have been
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Figure 1: Illustration of the combinatorial
extrapolation settings where the
marginal distributions of Dtest

is covered by Dtrain, while some
combinations of them are not
covered by Dtrain.

seen individually (Liu and Han, 2016); extrapolation to manipulating objects with novel combina-
tions of masses, shapes, and sizes in robotic manipulation (Tremblay et al., 2018); extrapolation to
predictions of the outcomes of medical intervention from one set of subgroups to others with novel
combinations of salient traits (Gilhus and Verschuuren, 2015). See Figure 1 for an illustration.

Bilinearity, low-rank structure & matrix completion. A popular technique for compositional
and combinatorial generalization is to embed features into a semantic vector space (Mikolov et al.,
2013). For example, CLIP (Radford et al., 2021) learns embedding words and text into an inner-
product space in order to achieve zero-shot generalization to new image classes. In this work, we
adopt a matrix-completion perspective to study the potential of these bilinear approaches. Indeed, if
the features (x, y) correspond to indices of a large data matrix, bilinear combinatorial extrapolation
may be understood as matrix completion: complete an entire matrix M ∈ Rn×m from observing
a subset Ω ⊂ [n] × [m] of its entries. The estimation of accurate bilinear embeddings, then, cor-
responds to finding a low-rank approximate factorization of the data. We detail this connection
in Appendix C. Whereas classical results study the missing-at-random (MAR) regime where Ω is
drawn uniformly at random (Candes and Recht, 2012; Recht, 2011; Hastie et al., 2015), the absence
of joint-distribution coverage makes our setting a special case of missing-not-at-random (MNAR)
recovery (see, e.g., Ma and Chen (2019)). There is a rich literature on MNAR matrix recovery (see a
detailed review in Appendix B). A common assumption in this literature of MNAR matrix recovery
is that, the data matrix M is either exactly low-rank, or exhibits sharp drop-offs between adjacent
singular values. This is in contrast to MAR matrix recovery, where it suffices that the singular
values of M are only summable (Koltchinskii et al., 2011). While it is widely accepted that real
data are approximately low-rank (Udell and Townsend, 2019), they tend to exhibit the more gradual
singular value decay required by MAR matrix recovery, than the rapid decay necessitated by the
existing MNAR-case results. Indeed, the spectra of random data matrices have continuous limiting
distributions (Bai and Silverstein, 2010), and thus their singular values do not exhibit sharp cutoffs.

Our contributions. This paper demonstrates conditions under which bilinear predictors are sta-
tistically consistent under combinatorial distribution shift. We assume real labels z can be pre-
dicted from pairs of features (x, y) ∈ X × Y via bilinear embeddings into a Hilbert space H:
E[z | x, y] = 〈f?(x), g?(y)〉H. We then state structural assumptions, inspired by a canonical case
of matrix completion with MNAR data (see Figure 2 and Appendix C), which facilitate extrapola-
tion from a training distribution Dtrain over pairs (x, y) that has a full coverage of certain marginal
distributions over x and y separately, to a test distribution Dtest containing samples from a product
distribution over (x, y) that is not covered by Dtrain. In contrast to the MNAR matrix comple-
tion literature described above, we analyze a setting more akin to the kernel least-squares literature
(Bissantz et al., 2007; Mendelson and Neeman, 2010), where a suitably defined feature covariance
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(a) (b) (c)

Figure 2: (a) Bilinear combinatorial extrapolation that satisfies the 2× 2 block decomposition; (b)
A basic case of (a) with discrete distributions, which can be viewed as matrix completion
with MNAR data, and the bilinear representation of the distribution naturally appears;
(c) An example of a matrix that does not satisfy Assumption 2.3 and thus fails to be
completed uniquely.

matrix Σ?
1⊗1 (Assumption 2.4) may exhibit spectral decay as gradual as λi(Σ?

1⊗1) ≤ Ci−(1+γ) for
some γ > 0 (Assumption 2.6). Our contributions are detailed as follows.

• Given finite-rank embeddings f̂ : X → Rr and ĝ : Y → Rr, we establish a meta-theorem,
Theorem 2, which establishes upper bounds for the excess riskR(f̂ , ĝ;Dtest) := EDtest [(〈f̂ , ĝ〉H−
〈f?, g?〉H)2] on Dtest by the excess risk on Dtrain, and the error on a sub-distribution D1⊗1

of Dtrain, which corresponds to a dense diagonal block matrix in MNAR matrix completion.

• Using the meta-theorem, we show in Theorem 3 that if (f̂ , ĝ) above are trained via a single
stage of supervised empirical risk minimization (ERM) (from a suitably expressive func-
tion class), then whenever it happens that (f̂ , ĝ) are well-conditioned (in a sense defined),
R(f̂ , ĝ;Dtest) scales with an inverse of some polynomials in the number of samples and in
the rank r, provided that the exponent γ in the polynomial decay satisfies γ > 3.

• Finally, we introduce a double-stage ERM procedure (Algorithm 1), which produces final
estimates (f̂ , ĝ) of the embeddings that (with high probability) are guaranteed to be well-
conditioned, and haveR(f̂ , ĝ;Dtest)→ 0 for any decay exponent γ > 0 (see Theorem 4).

1.1. Relative singular-gap perturbation bound for the SVD approximation

Before describing our overall proof strategy, we highlight a key technical ingredient that we believe
may be of more universal interest. Consider two real matrices M?, M̂ ∈ Rn×m, and let σk(·) denote
the k-th largest singular value. The celebrated Davis-Kahan Sine Theorem and its generalization,
Wedin’s Theorem (see, e.g., Stewart and Sun (1990)), states that the principal angles between their
(left or right) singular spaces scale with ‖M? − M̂‖F/δabs

k (M?), where δabs
k (M?) := σk(M

?) −
σk+1(M?) denotes the absolute singular gap. For the special case of multiplicative perturbations,
M̂ = (I + ∆1)M?(I + ∆2) with matrices ∆1,∆2 close to zero, the perturbation scales with the
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(possibly much smaller) relative singular value gap (Li, 1998),

δk(M
?) :=

σk(M
?)− σk+1(M?)

σk(M?)
. (1.1)

So far, we have reviewed bounds on the deviation in the singular value subspaces of the matrices
M? and M̂. But in many cases, we do not know about these subspaces, but instead, know about
the differences in the rank-k SVD approximations to these matrices. For this desideratum, we
establish a perturbation bound which depends only on the relative gap and which, unlike the singular
subspace bound of Li (1998), applies to generic, additive perturbations. Our result is as follows.

Theorem 1 (Perturbation of SVD Approximation with Relative Gap) Let M?, M̂ ∈ Rn×m. Fix
a k ≤ min{n,m} for which σk(M?) > 0 and the relative spectral gap δk(M

?) (Eq. (1.1)) is posi-
tive. Then, if ‖M? − M̂‖op ≤ ησk(M?)δk(M

?) for some η ∈ (0, 1), we have that the rank-k SVD
approximations of M? and M̂, denoted as M?

[k] and M̂[k], are unique, and satisfy

∥∥M̂[k] −M?
[k]

∥∥
F
≤ 9‖M̂−M?‖F

δk(M?)(1− η)
.

Theorem 1 is proven in Appendix D via a careful peeling argument. By contrast, a more
naive application of Wedin’s theorem incurs a dependence on absolute singular gap δabs

k (M?). Our
bound is significantly sharper: for example, consider σk(M?) ∼ Θ(2−k), then δabs

ki
= σki(M

?) −
σki+1(M?) is of order O(2−(ki+1)), while δki as defined in Eq. (1.1) is of order Ω(1). Having
highlighted this particular technical result, we now turn to an overview of the entire analysis.

1.2. Overview of proof techniques and notation.

Throughout, the key technical challenge, from a matrix completion perspective, is generalizing the
case with sharp spectral cutoffs to that with a gradual spectral decay. This challenge is considerably
more difficult for bilinear factorizations than that for linear predictors studied in typical RKHS
settings. Regarding the proof of our meta-theorem, Theorem 2: when distributions on (x, y) have
finite support, the bilinear combinatorial extrapolation problem for discrete distributions can be
reinterpreted as the completion of a block matrix M with blocks Mij , given data from blocks
{(1, 1), (1, 2), (2, 1)}. With a careful error decomposition, we argue that the extrapolation error is
controlled by the recovery of a factorization of the top-left block M11 (see Proposition 4.1). More
specifically, if we let M? = M11 and let M̂ correspond to the estimates of a bilinear predictor 〈f̂ , ĝ〉
on the (1, 1)-block, the key step is to show that if we can factor M? = A?(B?)> and M̂ = ÂB̂>,
then M̂ ≈ M? implies Â ≈ A?

[k] and B̂ ≈ B?
[k] in the sharpest possible sense, where k is some

target rank and (·)[k] denotes rank-k singular value decomposition (SVD) approximation of the
matrix. While factor recovery guarantees do exist (notably Tu et al. (2016, Lemma 5.14)), all prior
results require sharp spectral cutoffs. To this end, we provide a novel factor recovery guarantee
(Theorem 5); this, in turn, relies on Theorem 1 above, as well as a careful partition of the singular
values of a matrix we call the well-tempered partition (see Section 4.5). Limiting arguments pass
from the matrix/discrete-distribution case to arbitrary distributions (Appendix J).

Given Theorem 2, the instantiation to a single stage of ERM (Theorem 3) is straightforward.
Analyzing our double-stage ERM procedure (Algorithm 1) requires more care. Notably, the analysis
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depends on a careful characterization of what we term as the balancing operator – a linear algebraic
operator which determines the change-of-basis in which the positive-definite covariance matrices
are equal. Discussion of the algorithm and a proof sketch are given in Section 3.3, with a complete
proof deferred to Appendix F; properties of the balancing operator are studied in Appendix L.

Notation. For two probability measuresD,D′, we letD⊗D′ denote the product measure, and dD
dD′

the Radon–Nikodym derivative of D with respect to D′. Upper case bold letters A,B,M denote
matrices, lower case bold letters v,w denote vectors. Operators and elements of the Hilbert space
H are denoted by bold serafs as Σ and v, respectively. Adjoints and transposes are both denoted
with (·)>; e.g., v> and v> for v ∈ H, v ∈ Rd. The i-th entry of a vector v is denoted by v[i],
the i-th row of a matrix A by A[i, :], and the (i, j)-th entry by A[i, j]. The space of symmetric
(resp. positive semi-definite, resp. positive definite) d-by-d matrices are denoted as Sd, (resp. Sd+,
resp. Sd++). For M ∈ Rd×d, σi(M) ≥ 0 denotes its i-th largest singular value; for symmetric
M, λi(M) denotes its i-th largest eigenvalue, and if M � 0, M1/2 its matrix square-root; similar
notation applies to operators Σ on H. For n ∈ N, [n] denotes the set {1, · · · , n}, and for finite sets
S, |S| denotes its cardinality. For any Hilbert space V , we use 〈x, y〉V to denote the inner product
of x, y ∈ V , and ‖x‖H to denote the Hilbert norm defined by the product. When V is omitted, they
mean the inner-product and vector norm in the Euclidean space. log denotes the base-e logarithm.

2. Problem Formulation

In the bilinear combinatorial extrapolation problem, covariates (x, y) ∈ X×Y are regressed to real
labels z ∈ R. We are given access to a training distribution Dtrain and a test distribution Dtest on
X× Y× R. We assume that the Bayes optimal predictor is identical between the two distributions,
and is given by the inner product of bilinear embeddings defined below.

Assumption 2.1 (Bilinear Representation) There is a Hilbert space (H, 〈·, ·〉H) and two embed-
dings f? : X → H and g? : Y → H satisfying that h?(x, y) := 〈f?(x), g?(y)〉H is the Bayes
optimal predictor on Dtrain and Dtest, i.e., EDtrain [z | x, y] = EDtest [z | x, y] = h?(x, y). Also,
EDtrain [〈f?(x), g?(y)〉2] <∞.

Assumptions that facilitate extrapolation. The bilinear structure of h? is insufficient for general
combinatorial extrapolation; otherwise, in the finite-dimensional case, a matrix would have been
completable from a single entry. We, therefore, assume that our training distribution can be de-
composed into four blocks, such that the first three blocks, i.e., the blocks (1, 1), (1, 2), (2, 1), are
“covered” underDtrain, but the fourth block, i.e., the block (2, 2), may only be covered underDtest.
It is formally introduced in the following assumption.

Assumption 2.2 (Coverage Decomposition) There exist constants κtrn, κtst ≥ 1 and marginal
distributionsDX,1,DX,2 over X, andDY,1,DY,2 over Y, with their product measuresDi⊗j := DX,i⊗
DY,j , such that the following is true for all (x, y) ∈ X × Y: (a) Training Coverage: for pairs
(i, j) ∈ {(1, 1), (1, 2), (2, 1)}, dDi⊗j(x,y)

dDtrain(x,y) ≤ κtrn, and (b) Test Coverage: dDtest(x,y)∑
i,j dDi⊗j(x,y) ≤ κtst.

The above condition means that the only part ofDtest not covered byDtrain is the samples (x, y)
from D2⊗2. Thus, bilinear combinatorial extrapolation amounts to the generalization problem on
these pairs. This condition represents the simplest case of the Missing-Not-At-Random (MNAR)
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matrix completion; see Figure 2 (a & b) and Appendix C for illustration and further discussion.
As illustrated in Figure 2 (c), a unique completion requires that the top block has a rank equal to
the other three blocks. Intuitively, we require an assumption that ensures that every feature which
“appears” in D2⊗2 also “appears” in D1⊗1. We formalize this in the following assumption.

Assumption 2.3 (Change of Covariance) There exists κcov ≥ 1 such that Ex∼DX,2
[f?(x)f?(x)>] �

κcov · Ex∼DX,1
[f?(x)f?(x)>] and Ey∼DY,2

[g?(y)g?(y)>] � κcov · Ey∼DY,1
[g?(y)g?(y)>].

Spectral assumptions. In addition to the above conditions, we require some control on the rich-
ness of the embeddings f?, g?. We shall assume that the covariances Σf? := EDX,1

[f?(f?)>] and
Σg? := EDY,1

[g?(g?)>] are trace-class operators on H. We assume that we are in a basis of H for
which (f?, g?) are balanced in the following sense.

Assumption 2.4 (Balanced Basis) The ground truth embeddings f? and g? are in an appropriate
basis such that Σf? = Σg? =: Σ?

1⊗1 are trace-class.

The assumption Σf? = Σg? may seem restrictive, but is achievable more-or-less without loss of
generality by a change of basis (see Appendix L.3). Trace-class operators necessarily exhibit spec-
tral decay. Hence, a key object throughout is the low-rank projections of our embeddings.

Definition 2.1 (Low-Rank Approximations) Under Assumption 2.4, let P?
k denote the projection

onto the top-k eigenspace of Σ?
1⊗1

1, f?k := P?
kf

?, g?k := P?
kg
?, and h?k(x, y) = 〈f?k (x), g?k(y)〉H.

To take advantage of spectral decay, we shall reason extensively about the low-rank approximations
f?k , g

?
k to the ground-truth embeddings f?, g?. Our final condition ensures that low-rank approxima-

tions to h? perform well on all the training data.

Assumption 2.5 For all k ∈ N, EDtrain [(〈f?k , g?k〉H − h?)2] ≤ κapx · ED1⊗1 [(〈f?k , g?k〉H − h?)2].

We remark a sufficient (but strictly weaker) assumption which implies Assumption 2.5 is that
Dtrain is covered by the four-factor distributions in the sense that if dDtrain/(

∑2
i,j=1 dDi⊗j) ≤ κ̃trn;

then one can check that Assumption 2.5 holds with κapx = 4κ̃trnκ
2
cov if Assumption 2.3 holds. Note

that such a case is easily satisfied by the standard matrix completion case, i.e., when the embeddings
here are finite-dimensional. To make our results more concrete, we focus our attention on two
classical regimes of spectral decay:

Assumption 2.6 (Spectral Decay) There existC, γ > 0 such that either (a) λi(Σ?
1⊗1) ≤ Ci−(1+γ)

(the “polynomial decay regime”) or (b) λi(Σ?
1⊗1) ≤ Ce−γi (the “exponential decay regime”).

Notice that, for any γ > 0, the decay λi(Σ?
1⊗1) ≤ Ci−(1+γ) does indeed ensure Σ?

1⊗1 is trace-class.

1. When λk(Σ?
1⊗1) = λk+1(Σ?

1⊗1), P?k is non-unique; in this case, assumptions stated in terms of f?k , g
?
k can be chosen

to hold for any valid choice of P?k.
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Function approximation. As the spaces X ,Y are arbitrary, we require control of the statistical
complexity of the embeddings f?k , g

?
k. We opt for the simplest possible assumption: for each k ∈ N,

the low-rank embeddings f?k , g
?
k are captured by finite, uniformly bounded function classes.

Assumption 2.7 Let B be the upper bound in Assumption 2.4. By inflating B if necessary,
we assume that, for each k ∈ N, there exist finite-cardinality function classes Fk ⊆ {X →
Rk} and Gk ⊆ {Y → Rk} mapping into Rk, such that (a) supf∈Fk supx∈X ‖f(x)‖2 ≤ B and
supg∈Gk supy∈Y ‖g(y)‖2 ≤ B, and (b) There exist some (f, g) ∈ Fk ×Gk such that 〈f(x), g(y)〉 =
〈f?k (x), g?k(y)〉H for all (x, y) ∈ X× Y. We define Mk := log |Fk||Gk|, and assume without loss of
generality that Mk are non-decreasing as a function of k ∈ N. Lastly, we also assume that for some
B > 0, supx∈X,y∈Y |〈f?(x), g?(y)〉H| ≤ B2 and P(x,y,z)∼Dtrain

[|z| ≤ B2] = 1.

Assumption 2.7 can easily be relaxed to accommodate infinite function classes with bounded cov-
ering numbers, classes with bounded Rademacher complexities (Bartlett and Mendelson, 2002),
classes that satisfy more general tail conditions, and classes that only capture f?k , g

?
k up to some

error. As our bounds end up being polynomial in the log-cardinality of Mk, we find Assumption 2.7
to be sufficient in capturing the essence of the function approximation setting.

3. Algorithms and Main Results

Additional notation. For any inner-product space V (e.g., H or Rr for r ∈ N), we say (f, g)
are V-embeddings if f : X → V , g : Y → V; we say they are isodimensional embeddings
if (f, g) are V-embeddings for some V . Given a probability distribution D on (x, y) ∈ X × Y

pairs, we define the excess risk of the isodimensional V-embeddings (f̂ , ĝ) as R(f̂ , ĝ;D) :=
E(x,y)∼D[(〈f̂(x), ĝ(y)〉V − h?(x, y))2]. We often omit function dependence on (x, y) in expec-
tations, i.e., writing it asR(f, g;D) := ED[(〈g, f〉V − h?)2] for short. We further define

σi(f, g) := σi

(
EDX,1

[ff>]
1
2 · EDY,1

[gg>]
1
2

)
, (3.1)

and if (f, g) are Rr-embeddings, we say (f, g) are full-rank if σr(f, g) > 0. We adopt the shorthand
σ?i := λi(Σ

?
1⊗1), and for q ≥ 1, tail?q(k) :=

∑
i>k λi(Σ

?
1⊗1)q =

∑
i>k(σ

?
i )
q. We use a . b to

denote a ≤ c · b for some absolute constant c; we use a .? b to denote a ≤ c · b for some c that is
at most polynomial in the problem constants κcov, κtrn, κtst, κapx in Assumptions 2.2, 2.3 and 2.5.

3.1. A meta-theorem for bilinear combinatorial extrapolation

We now provide a meta-theorem on the risk bound for bilinear combinatorial extrapolation. The
bound depends on an upper bound εtrn on the risk of the learned embedding (f̂ , ĝ) on the training
distribution Dtrain, on ε1⊗1 that upper-bounds the risk on the top-block distribution D1⊗1, as well
as on σr(f̂ , ĝ) defined in Eq. (3.1).

Definition 3.1 (α-Conditioned & (εtrn, ε1⊗1)-Accurate Embeddings) Givenα ≥ 1 and εtrn, ε1⊗1 >
0, we say Rr-embeddings (f̂ , ĝ) are α-conditioned if σr(f̂ , ĝ)2 ≥ (σ?r)

2/α and (εtrn, ε1⊗1)-accurate
if R(f̂ , ĝ;Dtrain) ≤ ε2trn and infr′≥rR[r′](f̂ , ĝ;D1⊗1) ≤ ε21⊗1

2, where R[s] is the excess risk rela-
tive to h?s = 〈f?s , g?s〉, evaluated on D1⊗1:

R[s](f̂ , ĝ;D1⊗1) := E(x,y)∼D1⊗1
[(〈f̂(x), ĝ(y)〉 − h?s(x, y))2]. (3.2)

2. Because h?r′ converges to h? in L2(D1⊗1) as r′ →∞, infr′≥rR[r′](f̂ , ĝ;D1⊗1) ≤ R(f̂ , ĝ;D1⊗1).
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Theorem 2 (Main Risk Bound) Given α ≥ 1, suppose (f̂ , ĝ) are α-conditioned and (εtrn, ε1⊗1)-
accurate Rr-embeddings, where r ≤ σ?1/(40ε1⊗1). Then under Assumptions 2.1 to 2.4, we have

R(f̂ , ĝ;Dtest) .?
(
r4ε21⊗1 + αr2(σ?r+1)2 + tail?1(r)2

)
+ α

(
r6ε41⊗1 + ε4trn + tail?2(r)2

(σ?r)
2

)
(3.3)

Moreover, the condition ε21⊗1 ≤ (1− α−1)(σ?r)
2 ensures that σr(f̂ , ĝ)2 ≥ (σ?r)

2/α.

Theorem 2 is proved in Section 4; its implications are best understood through its instantiation
below. Here, we note an important point that the dependence on the “top-block” error ε21⊗1 is scaled
up by polynomial factors of r. It is from this fact that the benefits of double-stage ERM derive.

3.2. Single-stage empirical risk minimization

A natural algorithm is to fix a target rank r ∈ N and compute a single-stage empirical risk min-
imizer, i.e., to find (f̂SS, ĝSS) ∈ arg minf∈Fr,g∈Gr

∑n
i=1(〈f(xi), g(yi)〉 − zi)

2, where we draw

(xi, yi, zi)
i.i.d∼ Dtrain and function classes Fr,Gr are as given in Assumption 2.7. By combining

Theorem 2, the fact that ε1⊗1 ≤ κtrnεtrn by Assumption 2.2, and standard statistical learning argu-
ments to bound εtrn, we can obtain the following guarantee (whose proof is given in Appendix E.1).

Theorem 3 Fix δ ∈ (0, 1), α ≥ 1. Under Assumptions 2.1 to 2.5 and 2.7, with probability at least
1− δ, if (f̂SS, ĝSS) are α-conditioned, thenR(f̂SS, ĝSS;Dtest) .? ERRSS(r, n, δ) with

ERRSS(r, n, δ) := αAPXERRSS(r) + r4STATERRSS(r, n, δ) + αr6

(σ?r )2
STATERRSS(r, n, δ)2,

where STATERRSS(r, n, δ) := B4(Mr+log(1/δ))
n captures the statistical error, and where APXERRSS(r) :=

r4tail?2(r) + tail?1(r)2 + r2(σ?r+1)2 +
r6·tail?2(r)2

(σ?r )2
. Moreover, under Assumption 2.6,

APXERRSS(r) .?

{
C2(1 + γ−1)2r6−2γ (polynomial decay)
C2r6(γ−1 + r)2e−2γr (exponential decay).

(3.4)

To the best of our knowledge, Theorem 3 is the first result that establishes bilinear combinato-
rial extrapolation for (sufficiently fast) polynomial decay, γ > 3. However, the theorem has two
weaknesses: first, our upper bound on APXERRSS(r) does not decay to zero under polynomial de-
cay with γ ≤ 3. Second, α depends on the ratio of σr(f̂SS, ĝSS) to σ?r , and we do not (yet) know
a way to control this quantity, except in the special case when (σ?r)

2 > 2κapxκtrntail?2(r) (see Re-
mark E.1). To see the culprit, consider the (somewhat trivializing) case whereDtrain = D1⊗1. Then
ε21⊗1 = ε2trn, and by the Eckhart-Young theorem, ε21⊗1 ≥ R(f?r , g

?
r ;D1⊗1) = tail?2(r). In this case,

we have (a) the upper bound in Theorem 2 is no better than r6tail?2(r)2

(σ?r)2
, which scales like r6−2γ for

polynomial spectral decay, and (b) unless tail?2(r) < (σ?r)
2, we can not use Theorem 2 to ensure a

lower bound on α. These issues exactly arise from our consideration of the modest spectral decay
case, and would not cause trouble in a standard MNAR matrix completion case with a sharp spectral
cutoff. In the next section, we present a more involved algorithm to circumvent these limitations.
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3.3. Double-stage empirical risk minimization (ERMDS)

Given a desired rank cutoff rcut, we also develop a Double-Stage ERM (ERMDS) algorithm, which
learns Rr̂-embeddings (f̂DS, ĝDS) for a data-dependent r̂ such that ε1⊗1 � r3

cuttail?2(rcut), for which
tail?q(r̂) is not much larger than tail?q(rcut). Hence, we can instantiate Theorem 2 with r = rcut, but
without suffering from the prefactor powers of rcut premultiplying ε1⊗1. Our procedure relies on a
slightly stronger oracle:

Assumption 3.1 (Unlabeled D1⊗1-Oracle) In addition to being able to sample i.i.d. data (x, y, z) ∼
Dtrain, we can also sample unlabeled i.i.d. data (x, y) ∼ D1⊗1.

Moreover generally, Appendix E.3 shows that D1⊗1 can be replaced with any product distribution
on X× Y with bounded density with respect to D1⊗1.

We summarize the details of ERMDS in Algorithm 1. The algorithm has three spectral pa-
rameters: an overparametrized rank p, a spectral cutoff σcut, and a rank cutoff rcut. We first
train high-dimensional Rp-embeddings (f̃ , g̃), where ideally p � rcut is sufficiently large so that
tail?2(p) � r6

cuttail?2(rcut)
2/(σ?rcut)

2. We then perform an SVD-approximation of (f̃ , g̃), first by
estimating their covariance matrices, and then using these matrices to perform dimension reduction
(the routine DIMREDUCE in Algorithm 2). The dimension reduction routine reduces to a rank-at-
most-r̂ ≤ rcut predictor ĥRED, where r̂ is determined by the estimated covariances matrices and
spectral cutoff σcut. In a final distillation phase, we learn Rr̂-embeddings (f̂DS, ĝDS) by regular-
izing the supervised training error on labeled samples from Dtrain with empirical risk on samples
(x′, y′, ĥRED(x′, y′)), where (x′, y′) are drawn from D1⊗1 and labeled by ĥRED. This is similar to
the process of distillation in Hinton et al. (2015), where a larger deep network is used to supervise
the learning of a smaller one. Algorithm 1 enjoys the following guarantee, the detailed version of
which is given in Appendix E.2 and proved in Appendix F.

Theorem 4 For any rcut &? poly(C/σ?1, γ
−1) and ε > 0 and δ > 0, there exists a choice of σcut,

p .? (rcut)
c for some universal c > 0, and sample sizes n1, n2, n3, n4 .? poly(p,Mp, log(1/δ), B, ε−2),

such that, Algorithm 1 with λ = r4
cut and µ = B2/n1 satisfies that with probability at least 1− δ,

R(f̂DS, ĝDS;Dtest) .? ε
2 + C2(1 + γ−2)

{
r−2γ

cut (polynomial decay)
e−2γrcut (exponential decay)

.

Proof Sketch of Theorem 4. We first show, by analogy to Theorem 3, that R(f̃ , g̃;D1⊗1) .?
tail?2(p) +o(n1). We then learn a data-dependent r̂, chosen by the DIMREDUCE procedure, so as to
satisfy σ?r̂ & σcut, and to have lower bounded relative singular-value gap (σ?r̂−σ?r̂+1)/σ?r̂ & 1/rcut.
We then argue that ĥRED constructed in Line 4 is the correct analogue rank-r̂ SVD approxima-
tion of 〈f̃ , g̃〉, just as h?r̂ is the best rank-r̂ approximation of h? on D1⊗1. We then use our novel
relative-gap SVD perturbation bound (Theorem 1) and limiting arguments to show that our bound
R(f̃ , g̃;D1⊗1) = ED1⊗1 [(〈f̃ , g̃〉 − h?)2] implies ED1⊗1 [(ĥRED − h?r̂)2] .? r2

cut (tail?2(p) + o(n1)).
The factor of r2

cut arises from the relative singular-value gap at r̂ mentioned above. In addition,
we argue that DIMREDUCE chooses r̂ large enough such that the tails tail?q(r̂) and tail?q(rcut) are
close. Finally, we show that the distillation step with a large λ forces 〈f̂DS, ĝDS〉 to be close to
ĥRED ≈ h?r̂ onD1⊗1; this ensures that we can invoke Theorem 2 with ε21⊗1 = R[r̂](f̂DS, ĝDS;D1⊗1) ≈
ED1⊗1 [(ĥRED − h?r̂)2] .? r2

cut (tail?2(p) + o(n1)). In particular, by making p � rcut ≥ r̂, we can
ensure r̂3ε21⊗1 ≤ r3

cutε
2
1⊗1 � tail?2(rcut), as desired. �

9
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Algorithm 1 Double-Stage ERM (ERMDS)
1: Input: Sample sizes n1, . . . , n4; over-parameterized rank p, under-parameterized cutoff rcut,

parameter σcut, regularization parameters µ, λ > 0.
2: Overparametrized Training. Sample n1 labeled triples {(x1,i, y1,i, z1,i}i∈[n1] i.i.d. from
Dtrain, and set

(f̃ , g̃) ∈ arg min
(f,g)∈Fp×Gp

1

n1

n1∑
i=1

(〈f(x1,i), g(y1,i)〉 − z1,i)
2.

3: Covariance Estimation. Sample n2 unlabeled examples {(x2,i, y2,i)}i∈[n2] ∼ D1⊗1, and de-
fine covariance matrices Σ̂f̃ := 1

n2

∑n2
i=1 f̃(x2,i)f̃(x2,i)

>, Σ̂g̃ := 1
n2

∑n2
i=1 g̃(y2,i)g̃(y2,i)

>.
4: Dimension Reduction.

(r̂, Q̂r̂)← DIMREDUCE(Σ̂f̃ + µIp, Σ̂g̃ + µIp, rcut, σcut),

and ĥRED(x, y) := 〈f̃(x), Q̂r · g̃(y)〉
5: Distillation. Sample n3 labeled examples {(x3,i, y3,i, z3,i)}i∈[n3] ∼ Dtrain and
n4 unlabeled samples {(x4,i, y4,i)}i∈[n4] ∼ D1⊗1. Define the losses L̂(3)(f, g) =
1
n3

∑n3
i=1(〈f(x3,i), g(y3,i)〉 − z3,i)

2 and L̂(4)(f, g) = 1
n4

∑n4
i=1(〈f(x4,i), g(y4,i)〉 −

ĥRED(x4,i, y4,i))
2, and select

(f̂DS, ĝDS) ∈ arg min
(f,g)∈Fr̂×Gr̂

L̂(3)(f, g) + λL̂(4)(f, g).

Algorithm 2 DIMREDUCE(X,Y, r0, σ0)

1: Input: X,Y � 0, r0 ∈ N, σ0.
2: Compute W := X

1
2 (X

1
2 YX

1
2 )−

1
2 X

1
2 .

3: Compute Σ := W
1
2 YW

1
2 ; set r ← max

{
r ∈ [r0] : σr(Σ) ≥ σ0, σr(Σ)− σr+1(Σ) ≥ σr(Σ)

r0

}
.

4: Let Pr denote the projection onto the top r eigenvectors of Σ.
5: Return (r,Qr), where Qr ←W− 1

2 PrW
1
2 .

4. Proof Overview of the Meta-Theorem – Theorem 2

In this section, we provide an overview of the key techniques in our proof of the main result Theo-
rem 2, which is completed in Appendix M.7. As noted above, the proofs of Theorems 3 and 4 are
given in Appendix F.

4.1. Reformulation as matrix completion

To explain the intuition behind our proofs, it helps to consider the case when |X| and |Y| are fi-
nite, with elements {x1, . . . , xn} and {y1, . . . , ym}. For i, j ∈ {1, 2}, we define the probabil-
ities pi,` = PDX,i

[x = x`] and qj,k = PDY,j
[y = yk]. Because of the finite support of the

distributions, we can regard any H-embeddings (f, g) (including (f?, g?)) as embeddings into
H = Rd, d = max{n,m}, appending zeros if necessary. Define matrices Ai(f) ∈ Rn×d
and Bj(g) ∈ Rm×d by assigning the rows to the scaled values of the embeddings Ai(f)[`, :] =

10
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√
pi,`f(x`)

>, Bj(g)[k, :] =
√

qj,kg(yk)
>, and define Mi⊗j(f, g) = Ai(f)Bj(g)>. Each matrix

Mi⊗j(f, g) can be thought of as a look-up table, where Mi⊗j(f, g)[`, k] =
√

pi,`qj,k〈f(x`), g(yk)〉
is the prediction of 〈f, g〉, scaled by the square root probability of x` and yk. This reformulation
yields the following equivalences, verified in Lemma J.2.

Lemma 4.1 The following identities hold: (a) R(f, g;Di⊗j) = ‖Mi⊗j(f, g) −Mi⊗j(f
?, g?)‖2F

and (b) EDX,i
[ff>] = Ai(f)>Ai(f), and similarly for EDY,j

[gg>] = Bj(g)>Bj(g).

Most of our technical results are easiest to establish for the matrix factorization formulation, and
then are generalized to accommodate arbitrary distributions via some careful limiting arguments.

4.2. Balancing and singular value decomposition

Note that for any isodimensional embedding (f, g), any embedding (f ′, g′) = (T−>f,Tg) for
some invertible operator T satisfies 〈f ′, g′〉 ≡ 〈f, g〉. We thus focus on balanced embeddings.

Definition 4.1 (Balanced Embeddings) We say any isodimensional embeddings (f, g) are bal-
anced if the covariance EDX,1

[ff>] = EDY,1
[gg>]; given M ∈ Rn×m, we say (A,B) ∈ Rn×d ×

Rm×d is a balanced factorization of M if M = AB> and A>A = B>B.

Balancing is orthogonally invariant: for any orthogonal transformation U (of appropriate di-
mension), (f, g) are balanced if and only if (Uf,Ug) are. Similarly, (A,B) is a balanced fac-
torization of M if and only if (AU,BU) is. Moreover, when distributions are discrete, (f, g)
are balanced if and only if (A1(f),B1(g)) is a balanced factorization of M1⊗1(f, g). The matrix
factorization interpretation reveals many useful properties of balanced embeddings/factorizations.

Lemma 4.2 Suppose (f, g) are balanced H-embeddings, and X,Y are finite spaces. Let P[r]

denote the orthogonal projection onto the top-r eigenvectors of EDX,1
[ff>] = EDY,1

[gg>]. Then,
(a) A1(P[r]f) is equal to the rank-r SVD approximation of A1(f), and similarly for B1(P[r]g) and
B1(g); (b) M1⊗1(P[r]f,P[r]g) is equal to the rank-r SVD approximation of M1⊗1(f, g); and (c)
For any i ≥ 1, σi(M1⊗1(f, g)) = σi(A1(f))2 = σi(B1(g))2.

This lemma is a partial statement of a more complete result, Lemma J.2, given in the appendix.
Importantly, the appropriate SVD approximation for balanced embeddings can be computed by
projecting onto the top eigenvectors of the covariance matrix of f (or equivalently, of g). Via limiting
arguments in Appendix J, this characterization can be extended to the case where spaces X,Y are
continuous, and where the covariances can be computed from samples. One can also construct a
balanced embedding from a non-balanced one. This is most succinctly stated as finite-dimensional
full-rank embeddings; a more extensive statement and its proof are given in Appendix L.3.

Lemma 4.3 For full-rank Rr-embeddings (f̂ , ĝ), there exists a unique T ∈ Sr> for which (f̃ , g̃) =

(T−1f̂ ,Tĝ) is balanced; moreover, σr(EDX,1
[f̃ f̃>]) = σr(EDY,1

[g̃g̃>]) = σr(f̂ , ĝ).

11
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4.3. Error decomposition

We now specify our error decomposition result. First, we describe embeddings (f, g) intoH which
are consistent with the learned embedding (f̂ , ĝ), but are balanced, and are aligned with the top-k
eigenspace of Σ?

1⊗1. This allows us to reason about the differences between f − f? and g − g?.

Definition 4.2 (Aligned Proxies) We say ιr : Rr → H is an isometric inclusion if it preserves
inner products, i.e., 〈v, w〉 = 〈ιr(v), ιr(w)〉H. Fix a dimension r ∈ N, and some k ∈ N, and let
f̂ : X → Rr and ĝ : Y → Rr be full-rank. We say (f, g) are aligned k-proxies for (f̂ , ĝ) if: (a)
f = (ιr ◦ T−1)f̂ , g = (ιr ◦ T)ĝ, where ιr : Rr → H is an isometric inclusion, and T is the
balancing operator of Lemma 4.3, and (b) for3 P?

k being the projection onto the top k-eigenvectors
of Σ?

1⊗1, we have

range(P?
k) ⊆ range(EDX,1

[ff>]). (4.1)

Definition 4.3 (Key Error Terms) Given aligned k-proxies (f, g) of (f̂ , ĝ), we define

∆0(f, g, k) := max
{
ED1⊗1〈f?k , g?k − g〉2, ED1⊗1〈f?k − f, g?k〉2

}
(weighted error)

∆1(f, g, k) := max
{
EDX,1

‖f?k − f‖2, EDY,1
‖g?k − g‖2

}
(unweighted error)

∆train := R(f, g;Dtrain). (training error)

Proposition 4.1 (Main Error Decomposition) Suppose Assumptions 2.1 to 2.4 hold. Fix r ≥
k > 0, let (f, g) be aligned k-proxies for full-rank Rr-embeddings (f̂ , ĝ). Define the parameter
σ2 := min{σr(f̂ , ĝ)2, tail?2(k) + ∆0(f, g, k) + ∆train}. Then,

R(f̂ , ĝ;Dtest) = R(f, g;Dtest) .? (∆1(f, g, k))2 +
1

σ2
(tail?2(k) + ∆0(f, g, k) + ∆train)2.

The unweighted error, ∆1(f, g, k), measures how close the aligned proxies (f, g) track the best
rank-k approximation (f?k , g

?
k). The weighted error, ∆0(f, g, k), does the same, but only along the

directions of f?k and g?k which have spectral decay. Thus, one can expect the weighted errors to be
considerably smaller. This is important, because we pay for 1

σ2 (tail?2(k)+∆0(f, g, k)+∆train)2, so
we need to ensure that ∆0(f, g, k)2 � σ2 in order to achieve consistent recovery. Proposition 4.1
is proved, along with a more general statement, in Appendix M.

4.4. From error-terms to factor recovery, and concluding the proof of Theorem 2

We now aim for upper bounds on ∆i(f, g, k), i ∈ {0, 1} in terms of the parameter ε1⊗1 in Defini-
tion 3.1. In this section, we expose how to obtain the bound for distributions with finite support.
This result is equivalent to a guarantee for factor-recovery in matrix completion. In the sequel,
we adopt the finite-support setting, so that H = Rd. Define A? := A1(f?),B? := B1(g?)
so that M? := M1⊗1(f?, g?) = A?(B?)>, and similarly set Â = A1(f), B̂ = B1(g), M̂ =
M1⊗1(f, g) = ÂB̂>. We further let A?

[k],B
?
[k] denote the rank-k approximation of A?,B?, defined

3. In case of non-uniqueness, any choice of projection works.

12
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formally in Eq. (I.3). Lastly, for an orthogonal matrix R ∈ O(d), we define the following error
terms

∆0(R, k) = ‖(A?
[k] − ÂR)(B?

[k])
>‖2F ∨ ‖A?

[k](B
?
[k] − B̂R)>‖2F (4.2)

∆1(R, k) = ‖A?
[k] − ÂR‖2F ∨ ‖B?

[k] − B̂R‖2F. (4.3)

One can then check (see Appendix J.3) that for the matrices defined above and i ∈ {0, 1}, we
have ∆i(R, k) = ∆i(R

>f,R>g, k). Here, the matrix R allows us to rotate embeddings (f, g)
to minimize the factor error. In sum, we have shown that the error terms in Proposition 4.1 are
corresponding to the recovery of factors in matrix completion. We now establish an error bound on
these factory-recovery terms, which is the main technical effort of this paper.

Theorem 5 Let A?, Â ∈ Rn×d, B?, B̂ ∈ Rm×d, and suppose (A?,B?) and (Â, B̂) are balanced
factorizations of M? = A?(B?)>, and M̂ = ÂB̂>. Let r = rank(M̂). Fix ε > 0 and s ∈ N such
that s > 1, ε ≥ ‖M̂−M?‖F, and ε ≤ ‖M

?‖op
40s . Also, for q ≥ 1, let tailq(M; k) :=

∑
i>k σi(M)q.

Then, there exists an index k ∈ [min{r, s− 1}] and an orthogonal matrix R ∈ O(p) such that

∆0(R, k) + tail2(M?; k) . s3ε2 + s(σs(M
?))2 + tail2(M?; s)

∆1(R, k) . (
√
r + s2)ε+ sσs(M

?) + tail1(M?; s),

and moreover, range((ÂR)>ÂR) ⊃ range((A?
[k])
>(A?

[k])).

The above theorem is a specialization of a more extensive guarantee, Theorem 7, stated and proved
in Appendix I. There are a number of important points to make. First, the theorem requires spec-
ifying a target rank s, but the guarantee applies to a smaller rank k; this is explained in the proof
sketch below. Still, care is ensured to guarantee that the upper bounds on ∆i(R, k) depend only on
the tail-decay at s, but not k. Second, we observe that when instantiated with M? = M1⊗1(f?, g?)
as above, tailq(M

?; s) = tail?q(s), i.e., it is the tail of the spectrum of Σ?
1⊗1. Third, the guar-

antee applies to an orthogonal transformation R, and the guarantee of range((ÂR)>ÂR) ⊃
range((A?

[k])
>(A?

[k])) ensures that, for Â = A1(f) as instantiated above, the transformed embed-
dings (R>f,R>g) are aligned-k proxies. Lastly, observe that the weighted error is asymptotically
quadratically smaller in ε than the unweighted one; this is also explained in the proof sketch below.

To conclude the proof of Theorem 2, we first extend, via limiting arguments, to the setting of
bilinear embeddings with arbitrary distributions; this result, Theorem 8, and its proof, are given in
Appendix J. This provides an upper bound on ∆0(f, g, k),∆1(f, g, k) in terms of the term ε21⊗1 in
Definition 3.1. Finally, we conclude the proof of Theorem 2 in Appendix M.7 by plugging Theo-
rem 8 into Proposition 4.1 and substituting ∆train = R(f, g;Dtrain)← εtrn as in Definition 3.1.

4.5. Proof sketch of Theorem 5

The proof of Theorem 5 is our most technically innovative result; we sketch some of these tech-
niques here, deferring the formal proof to Appendix I. Though previous bounds for matrix recovery
exist (notably Tu et al. (2016, Lemma 5.14) as restated in Lemma I.5), these results assume matri-
ces to either have exactly low-rankness, or have sufficiently large spectral gap. Addressing more
gradual spectral decay requires a far more subtle treatment.

13
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Technical novelty #1: Relative singular-gap SVD perturbation. The first technical ingredient
is the perturbation for the rank-k SVD approximation, Theorem 1, highlighted in the introduction,
which replaces a dependence on absolute eigengap with one on relative eigengap.

Technique novelty #2: “Well-tempered” partition. Motivated by the advantages of considering
a relative (as opposed to absolute) singular gap, we construct a certain partition of the spectrum
of M?, which we call a “well-tempered partition” (Definition I.3). This partition splits the indices
of the top-s singular values of M? into intervals where: (a) the relative-singular gap separation
between the intervals is sufficiently large, and (b) all singular values are of similar magnitude.

Specifically, we denote the subsets in this partition as Ki = {ki + 1, ki + 2, . . . , ki+1}; we call
ki the pivot and each Ki a block. We show that the partition can be constructed so as to ensure that
the relative spectral gap δki(M

?), where for any k, is at least Ω(1/s). Here again, s is the target
rank in Theorem 5. As noted above, the absolute singular gaps can be arbitrarily smaller.

Given this partition, we decompose the factor matrices A?
[k],B

?
[k], Â, B̂ into a sum over block-

zero-masked matrices A?
Ki ,B

?
Ki , ÂKi , B̂Ki , with each block corresponding to one element Ki of

the well-tempered partition. We let M?
Ki = A?

Ki(B
?
Ki)
>, with M̂Ki being defined similarly. We

use the triangle inequality to relate ‖M̂Ki−M?
Ki‖F to maxj∈{ki,ki+1}{‖M̂[j]−M?

[j]‖F}, and bound
the latter two using our SVD perturbation result (Theorem 1). This is to our advantage, since our
choice of well-tempered partition guarantees that δj(M?) = Ω(1/s) for j ∈ {ki, ki+1}, and implies
via Theorem 1 that ‖M̂Ki −M?

Ki‖
2
F . s

2ε2. We then apply an existing matrix factorization lemma,
Tu et al. (2016, Lemma 5.14) to these blocks. The rotation matrix R aligns the block-masked factor
matrices to minimize factor error. Though Theorem 1 depends on relative gaps, the factor recovery
error in block i in Tu et al. (2016, Lemma 5.14) depends on absolute ones, scaling with

‖M̂Ki −M?
Ki‖

2
F

σki(M
?)

.
s2ε2

σki(M
?)
. (4.4)

For the unweighted error, we select the rank cutoff k to ensure σk(M?) is sufficiently large; trading-
off the tails tailq(k; M?) with σk(M?) leads to the unweighted error ∆1(R, k) to scale with ε, rather
than ε2. For the weighted error ∆0(R, k), we can weight the factor recovery errors in the i-th block
by σki−1+1 = max{σj(M?) : j ∈ Ki}. We then use the second property of the well-tempered
partition: all singular values indexed in Ki are of roughly constant magnitude; thus, weighting by
σki−1+1(M?) cancels out the denominator of σki(M

?) in Eq. (4.4), yielding a sharper estimate.

5. Conclusion

In sum, this paper explores the connection between combinatorial distribution shift and matrix com-
pletion, developing fundamental and novel technical tools along the way. Whether our results can be
extended to more general coverage assumptions than those depicted in Figure 1 remains an exciting
direction for future research.
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Part I

Organization, Related Work, Further
Discussion, and the SVD Perturbation bound
Appendix A. Organization of the Appendix

We detail the organization of our appendix as follows. Part I provides the overall organization of the
appendix in Appendix A, a detailed related work in Appendix B, especially on matrix completion,
and an elaboration on the connection between bilinear combinatorial extrapolation and matrix com-
pletion in Appendix C. In Appendix D, we prove Theorem 1, our main SVD perturbation bound.

Part II provides supplementary material regarding our guarantees for the single-stage and double-
stage ERM procedures. Appendix E provides the high-level proof of our guarantee for single-stage
ERM (Theorem 3), and a more detailed guarantee for double-stage ERM (Theorem 6), deriving
Theorem 4 from that more granular result. Appendix F provides the proof of Theorem 6, which in
turn contains as the single-stage ERM guarantee used by Theorem 3. These proofs in turn rely on
some general (though quite standard) learning-theoretic bounds, which are supplied in Appendix G.
Finally, Appendix H performs the computations which instantiates out single- and double-stage
ERM guarantees for the spectral decay regimes prescribed by Assumption 2.6.

Part III contains the supplementary results needed for the proof of the meta-theorem (Theo-
rem 2), as well as general-purpose linear algebraic results. Appendix I contains the proof of our main
technical endeavor - a bound on the error of factor recovery in low-rank matrix approximation. Ap-
pendix J extends the matrix factorization guarantee to its natural generalization to bilinear embed-
dings, applying suitable limiting arguments to accomodate distributions with infinite/uncountable
support. Most supporting linear algebraic results/proofs are deferred to Appendix K; notable, these
include the proof of our relative singular-value gap perturbation bound (Theorem 11). Results
pertaining to balancing (of both matrices and embeddings) are given in Appendix L. Finally, Ap-
pendix M provides the proof of the error decomposition (Proposition 4.1), as well as the derivation
of Theorem 2 from Proposition 4.1 and Theorem 8.

Appendix B. Detailed Related Work

This subsection provides a more detailed summary of related work, to the best of our knowledge.

B.1. Matrix completion

To facilitate comparison, we consider a ground-truth matrix M? ∈ RM×N as the matrix to be
completed. M ∈ RM×N is a noisy realization of M? with E[M] = M?, and we assume that
we are given observed matrix M̃ ∈ (R ∪ {?})M×N , where ‘?’ denotes an unseen entry, such that
M̃[ab] = M[ab] unless M̃[ab] = ?. We let D ∈ {0, 1}M×N denote the masking matrix of M̃:
D[ab] = I{M̃[ab] 6= ?}.

Missing-completely-at-random (MAR) matrix completion. In the MAR setting, it is assumed
that the entries of D are i.i.d. Bernoulli random variables with positive probability p > 0 and
independent of M; some existing works include Candès and Tao (2010); Recht (2011); Hastie et al.
(2015); Mazumder et al. (2010); Koltchinskii et al. (2011). More recent works study settings where
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M?
[ab] is generated by the bivariate function h?(xa, yb) = 〈f?(xa), g?(yb)〉 of features xa, yb; in (Xu,

2018), this encodes graphon structure, whereas in Song et al. (2016); Li et al. (2019), h?(x, y) is a
globally Lipschitz function, which admits learning via matrix completion by considering linearizing
expansions. Yu (2021) considers an extension to the “one-sided” covariate setting that is more
challenging, where only the first argument of h? is observed. A “one-bit” sensing model has also
been studied in Davenport et al. (2014), and refined under a latent variable model for features xa, yb
(Borgs et al., 2017). All aforementioned works consider the MAR setting.

Missing at random. In the missing-at-random setting, it is assumed that there exists a set of
observed covariatesO such that M ⊥ D | O, and that D[ab] | O are independent Bernoulli random-
variables with possibly different probabilities pab uniformly bounded below. See e.g., Schnabel et al.
(2016); Wang et al. (2018); Liang et al. (2016).

Missing-not-at-random (MNAR) matrix completion. Many works consider generative models,
relating missingness of entries to either ground-truth or realized values of the matrix via logistic
expressions (Sportisse et al., 2020; Yang et al., 2021). Guarantees obtained from this strategy typi-
cally depend on a lower bound on the minimal probability that an entry is revealed (Ma and Chen,
2019), dependence on which is also incurred in an alternative approach due to Bhattacharya and
Chatterjee (2022). Note that in our setting, we allow the entries of M?

2,2 to be entirely omitted from
M̃2,2, so these guarantees are vacuous here. Another approach due to Foucart et al. (2020) studies
reconstruction from MNAR data under weighting matrices that are suitably calibrated to the pattern
of missing entries. Again, in our setting, these results become vacuous.

Two more recent works establish recovery for entries that are indeed missing with probability
one. Shah et al. (2020) considers almost precisely our setting, where, motivated by reinforcement
learning, one attempt to recover M?

2,2 by observing the other blocks M?
1,2,M

?
2,1,M

?
2,2. However,

their results require that either (a) M? is an exactly low rank, or (b) that M? is an approximately low
rank, but that the error between M? and its rank-r SVD is very small entry-wise. This precludes the
much more gradual polynomial decay allowed by our main results. A second work, Agarwal et al.
(2021), considers far more general patterns of missing entries than we do in this work. However,
this comes at the cost of requiring even stronger assumptions on the spectrum (Agarwal et al., 2021,
Assumption 6), which again precludes approximately low-rank matrices with spectral decay.

B.2. Learning under distribution shift

In contrast to the well-established and classical statistical learning theory (Bartlett and Mendelson,
2002; Vapnik, 2006), our theoretical understanding of distribution shift is considerably more sparse.
Notably, recent work has given precise characterizations of the effects of covariate shift for certain
specific function classes, notably kernels (Ma et al., 2022) and Hölder smooth classes (Pathak et al.,
2022); still, these works focus on the regimes where the test-distribution has bounded density with
respect to the train distribution; in our bilinear combinatorial extrapolation setting, however, this is
no longer the case. Resilience to distribution shift has received considerable empirical attention in
recent years, see Miller et al. (2021); Taori et al. (2020); Santurkar et al. (2020); Koh et al. (2021);
Zhou et al. (2022) for example.
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Appendix C. Connection to Matrix Completion

Now we provide a connection of the bilinear combinatorial extrapolation problem to the problem of
matrix completion with MNAR data. Consider a bilinear combinatorial extrapolation setting where
the support sets X and Y have finite cardinalities, with elements {x1, . . . , xn} and {y1, . . . , ym}.
For i, j ∈ {1, 2}, define the probabilities pi,` = PDX,i

[x = x`] and qj,k = PDY,j
[y = yk]. Be-

cause of the finite support of the distributions, we can regard any H-embeddings (f, g) (including
(f?, g?)) as embeddings into Rd, d = max{n,m}, appending zeros if necessary. Then we can
define matrices Ai(f) ∈ Rn×d and Bj(g) ∈ Rm×d by assigning the rows to the scaled values
of the embeddings Ai(f)[`, :] =

√
pi,`f(x`)

>, Bj(g)[k, :] =
√

qj,kg(yk)
>, and the matrices

Mi⊗j(f, g) = Ai(f)Bj(g)>. Each matrix Mi⊗j(f, g) can be thought of as a look-up table, where
Mi⊗j(f, g)[`, k] =

√
pi,`qj,k〈f(x`), g(yk)〉 is the prediction of 〈f, g〉, scaled by the square root

probability of x` and yk. Then, one can see that the risk of f, g is precisely equal to the Frobenius-
norm error difference between the matrices Mi⊗j(f, g) and Mi⊗j(f

?, g?). For simplicity, we write
them as M and M? for short, respectively. Such a factorization inherently introduces the bilinear
embedding form as defined in Assumption 2.1, and is also illustrated figuratively in Figure 2.

Consider the bilinear combinatorial extrapolation setting where we can sample from the matrix
M? in the top three blocks, i.e., the block {(1, 1), (1, 2), (2, 1)}, where for convenience we partition

M? as M? =

[
M?

11 M?
12

M?
21 M?

22

]
, with M?

11 ∈ Rαn×βm, M?
12 ∈ Rαn×(1−β)m, M?

21 ∈ R(1−α)n×βm,

and M?
22 ∈ R(1−α)n×(1−β)m. Here we assume that α, β ∈ (0, 1) are chosen such that the dimen-

sions of these sub-matrices are positive integers. Our goal is to use the data uniformly sampled
from blocks {M?

11,M
?
12,M

?
21} to predict and generalize to the uniform distribution supported on

the bottom block M?
22. In this case, we know that

dD1⊗1

dDtrain
=

(1− α)β + (1− β)α+ αβ

αβ
,

dD1⊗2

dDtrain
=

(1− α)β + (1− β)α+ αβ

(1− β)α
(C.1)

dD2⊗1

dDtrain
=

(1− α)β + (1− β)α+ αβ

(1− α)β
,

dDtest∑
i,j dDi⊗j

= αβ, (C.2)

where we write dD1(x,y)
dD2(x,y) as dD1

dD2
for short since they are identical on the support with uniform distri-

butions. Note that Eqs. (C.1) and (C.2) instantiate the constants κtrn = (1−α)β+(1−β)α+αβ
min{(1−β)α,(1−α)β,αβ} and

κtst = αβ in Assumption 2.2.

Moreover, suppose that M? = A?(B?)> for some A? =

[
A?

1

A?
2

]
and B? =

[
B?

1

B?
2

]
that are

balanced, in the sense that (A?
1)>A?

1 = (B?
1)>B?

1. Also, suppose that with this block partition,
(A?

1)>A?
1 � κ1(A?

2)>A?
2 and (B?

1)>B?
1 � κ1(B?

2)>B?
2 for some κ1 > 0. Then we have that the

constant κcov in Assumption 2.3 satisfies that κcov ≥ 1/κ1. In addition, Assumption 2.6 now
becomes the spectral decay assumption on the matrix (A?

1)>A?
1 (and thus also (B?

1)>B?
1). Finally,

note that under this setting, we also have

dDtrain∑
i,j dDi⊗j

=
αβ(1− α)(1− β)

(1− α)β + (1− β)α+ αβ
=: κ̃trn,

24



TACKLING COMBINATORIAL DISTRIBUTION SHIFT:A MATRIX COMPLETION PERSPECTIVE

for some κ̃trn. Then, together with Assumption 2.3 with κcov = 1/κ1, we know that Assumption 2.5
is satisfied with

κapx = 4κ̃trnκ
2
cov =

4αβ(1− α)(1− β)

κ2
1 · [(1− α)β + (1− β)α+ αβ]

.

Appendix D. Relative-gap perturbations of the SVD

Theorem 1 (Perturbation of SVD Approximation with Relative Gap) Let M?, M̂ ∈ Rn×m. Fix
a k ≤ min{n,m} for which σk(M?) > 0 and the relative spectral gap δk(M

?) (Eq. (1.1)) is posi-
tive. Then, if ‖M? − M̂‖op ≤ ησk(M?)δk(M

?) for some η ∈ (0, 1), we have that the rank-k SVD
approximations of M? and M̂, denoted as M?

[k] and M̂[k], are unique, and satisfy

∥∥M̂[k] −M?
[k]

∥∥
F
≤ 9‖M̂−M?‖F

δk(M?)(1− η)
.

Proof [Proof of Theorem 1] We begin by expanding the Frobenius error:

‖M̂−M?‖2F = ‖M̂[k] −M?
[k] + (M̂>k −M?

>k)‖2F
= ‖M̂[k] −M?

[k]‖
2
F + ‖M̂>k −M?

>k‖2F + 2〈M̂[k] −M?
[k], M̂>k −M?

>k〉.

Hence,

‖M̂[k] −M?
[k]‖

2
F ≤ ‖M̂−M?‖2F + 2|〈M̂[k] −M?

[k], M̂>k −M?
>k〉|

(i)
= ‖M̂−M?‖2F + 2|〈M̂[k],M

?
>k〉 − 〈M?

[k], M̂>k〉|
(ii)

≤ ‖M̂−M?‖2F + 2|〈M̂[k],M
?
>k〉|+ 2|〈M?

[k], M̂>k〉|, (D.1)

where above (i) uses that the range of the rank-k SVD of a matrix and its complement are orthogo-
nal, and (ii) is just the triangle inequality. The following claim bounds the cross terms:

Claim D.1 Suppose σk(M̂) > σk+1(M?). Then,

|〈M̂[k],M
?
>k〉| ≤ 4‖M̂−M?‖2F ·

(1− σk+1(M?)

σk(M̂)

)−2

+ 4

 ,

Similarly, if σk(M?) > σk+1(M̂). Then,

|〈M?
[k], M̂>k〉| ≤ 4‖M̂−M?‖2F ·

(1− σk+1(M̂)

σk(M?)

)−2

+ 4

 .

The proof of Claim D.1 uses a careful peeling argument, and is deferred to the end. The key idea
is to parition the singular values of M? into blocks whose singular values are all within a constant
factor, and into one final block such corresponding to singular values j > k of M?. We then apply
a standard variant of Wedin’s theorem (Lemma D.2) to each block. The form of the matrix inner
product allows us to weight the contribution of each block by its associated singular value. The
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upshot is that this leads to gap-free bounds for all but the last-block (as all singular values in these
blocks are within a constant of eachother), and a similar argument leaves us only with dependence
on the relative singular gap for the final block.

We now specialize the above upper bound when ‖M̂−M?‖op is sufficiently small.

Claim D.2 Suppose ‖M̂−M?‖op ≤ ηδ?kσk(M?). Then,

|〈M̂[k],M
?
>k〉| ∨ |〈M?

[k], M̂>k〉| ≤ 4‖M̂−M?‖2F ·
(
(δ?k)

−2(1− η)−2 + 4
)
,

Proof If ‖M̂−M?‖op ≤ ηδ?kσk(M?),

1− σk+1(M?)

σk(M̂)
≥ 1− (1− ηδ?k)−1σk+1(M?)

σk(M?)

= 1− (1− ηδ?k)−1(1− δ?k)

=
1− ηδ?k − (1− δ?k)

1− ηδ?k
=

δ?k(1− η)

1− ηδ?k
≥ δ?k(1− η),

and

1− σk+1(M̂)

σk(M?)
≥ 1−

ηδ?kσk(M
?) + σk+1(M?)

σk(M?)

= 1− ηδ?k −
σk+1(M?)

σk(M?)
= (1− ηδ?k)− (1− δ?k) = δ?k(1− η).

Hence, in both cases, Claim D.1 yields.

|〈M̂[k],M
?
>k〉| ∨ |〈M̂[k],M

?
>k〉| ≤ 4‖M̂−M?‖2F ·

(
(δ?k)

−2(1− η)−2 + 4
)
,

which completes the proof.

To conclude, we recall Eq. (D.1) and apply the previous claim

‖M̂[k] −M?
[k]‖

2
F ≤ ‖M̂−M?‖2F + 2|〈M̂[k],M

?
>k〉|+ 2|〈M?

[k], M̂>k〉|

≤ ‖M̂−M?‖2F + 4(|〈M̂[k],M
?
>k〉| ∨ |〈M?

[k], M̂>k〉|)

≤ ‖M̂−M?‖2F + ‖M̂−M?‖2F ·
(
16(δ?k)

−2(1− η)−2 + 64
)

= ‖M̂−M?‖2F ·
(
16(δ?k)

−2(1− η)−2 + 65
)

≤ 81‖M̂−M?‖2F ·
(
(δ?k)

−2(1− η)−2
)
.

The bound follows.

Proof [Proof of Claim D.1] We prove the first statement of the claim; the second is analogous.
Consider a sequence of indices k0 > k1 > . . . k` = 0 as follows (For convenience, ki are decreasing,
unlike the pivots ki in the definition of the well-tempered parition Definition I.3).

• k0 = k.
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• Given ki, set ki+1 = max{j ≥ 1 : σj(M̂) ≥ 2σki(M̂)}. If no such j exists, set i + 1 = `
and k` = 0.

We also define the index sets and corresponding SVD of M̂ as

Ii := {j : ki ≥ j > ki+1}, M̂Ii := ÛIiΣ̂IiV̂
>
Ii ,

where ÛIi ∈ Rn×|Ii|, Σ̂Ii ∈ R|Ii|×|Ii|, V̂Ii ∈ Rm×|Ii| denote a compact SVD of M̂Ii correspond-
ing to singular values/vectors with indices in Ii (i.e. to the rows of Û corresponding to entries
j ∈ Ii, and similarly for Σ̂IiV̂

>
Ii). We then have

`−1∑
i=0

M̂Ii = M̂[k].

Using this decomposition, we write

|〈M̂[k],M
?
>k〉| =

∣∣∣〈`−1∑
i=0

M̂Ii ,M
?
>k〉
∣∣∣

≤
`−1∑
i=0

|〈M̂Ii ,M
?
>k〉|

=

`−1∑
i=0

|〈ÛIiΣ̂IiV̂>Ii ,U
?
>kΣ

?
>k(V

?
>k)
>〉|

=
`−1∑
i=0

|tr(V̂IiΣ̂IiÛ>IiU
?
>kΣ

?
>k(V

?
>k)
>)|

=
`−1∑
i=0

|tr(Σ̂IiÛ>IiU
?
>kΣ

?
>k(V

?
>k)
>V̂Ii)|

≤
`−1∑
i=0

‖Σ̂IiÛ>IiU
?
>k‖F‖Σ?

>k(V
?
>k)
>V̂Ii‖F

≤
`−1∑
i=0

‖Σ̂Ii‖op‖Σ?
>k‖op‖Û>IiU

?
>k‖F‖(V?

>k)
>V̂Ii‖F. (D.2)

Since Ii ⊆ [ki], we can bound

‖Û>IiU
?
>k‖F‖(V?

>k)
>V̂Ii‖F ≤ ‖Û>[ki]U

?
>k‖F‖(V?

>k)
>V̂[ki]‖F

≤ 1

2

(
‖Û>[ki]U

?
>k‖2F + ‖(V?

>k)
>V̂[ki]‖

2
F

)
.

In particular, since ki ≤ k, we see that as long as σk(M̂) > σk+1(M?), then by a standard variant
of Wedin’s theorem, Lemma D.2,

‖Û>IiU
?
>k‖F‖(V?

>k)
>V̂Ii‖F ≤

2

(σki(M̂)− σk+1(M?))2
‖M̂−M?‖2F.
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We furthe observe that ‖Σ?
>k‖op = σk+1(M?), and ‖Σ̂Ii‖op = σki+1−1(M̂) ≤ 2σki(M̂). Thus,

picking up from Eq. (D.2)

|〈M̂[k],M
?
>k〉| ≤ ‖M̂−M?‖2F ·

`−1∑
i=0

4σk+1(M?)σki(M̂)

(σki(M̂)− σk+1(M?))2

= ‖M̂−M?‖2F ·

(
4σk+1(M?)σk(M̂)

(σk(M̂)− σk+1(M?))2
+

`−1∑
i=1

4σk+1(M?)σki(M̂)

(σki(M̂)− σk+1(M?))2

)
(i)

≤ ‖M̂−M?‖2F ·

(
4σk+1(M?)σk(M̂)

(σk(M̂)− σk+1(M?))2
+

`−1∑
i=1

4σk(M̂)σki(M̂)

(σki(M̂)− σk(M̂))2

)
,

where in (i) we use that σk(M̂) ≥ σk+1(M?). Using that σki(M̂) ≥ 2σki−1
(M̂) ≥ . . . 2iσk0(M̂) =

2iσk(M̂), we find

`−1∑
i=1

4σk(M̂)σki(M̂)

(σki(M̂)− σk(M̂))2
=

`−1∑
i=1

4σk(M̂)

(σki(M̂)− σk(M̂))(1− σk(M̂)/σki(M̂))

≤
`−1∑
i=1

4σk(M̂)

(2i − 1)σk(M̂)(1− 2−i)
=

`−1∑
i=1

4

(2i − 1)(1− 2−i)

≤
∑
i≥1

4

(2i − 1)(1− 2−i)
≤ 16.

Hence, we conclude

|〈M̂[k],M
?
>k〉| ≤ ‖M̂−M?‖2F ·

(
4σk(M̂)2

(σk(M̂)− σk+1(M?))2
+ 16

)

= 4‖M̂−M?‖2F ·

(1− σk+1(M?)

σk(M̂)

)−2

+ 4

 ,

completing the proof.

D.1. Useful Variants of Wedin’s Theorem

Lemma D.1 (“Gap-Free” Davis Kahan, Lemma B.3, Allen-Zhu and Li (2016)) Let ‖ · ‖◦ de-
note any Schatten p-norm. Fix ε > 0, and suppose that X, X̃ are symmetric matrices with ‖X −
X̃‖◦ ≤ ε. Given µ ≥ 0 and τ ≥ 0, let U0 be an orthonormal matrix with columns being the
eigenvectors of X, whose corresponding eigenvalues have absolutely value ≤ µ, and Ũ1 be an
orthonormal matrix with columns being the eigenvectors of X̃, whose corresponding eigenvalues
have absolutely value ≥ µ+ τ . Then, ‖U>0 Ũ1‖◦ ≤ τ

ε .

Proof We follow the proof of Lemma B.3, Allen-Zhu and Li (2016), originally stated in the operator
norm (and for positive semidefinite matrices), to accommodate the Frobenius norm and absolute
value eigenvalue magnitudes. Next, write out compact diagonalizations

X = U0Σ0(U0)> + U1Σ1(U1)>

X̃ = Ũ0Σ̃0(Ũ0)> + Ũ1Σ̃1(Ũ1)>,
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where all entries of Σ0 lie in [−µ, µ], and entries of Σ1 lie in (−∞, µ) ∪ (µ,∞), all entries of Σ̃0

lie in (−(µ + τ), µ + τ), and entries of Σ̃1 are in (−∞,−(µ + τ)] ∪ [µ + τ,∞). Consider the
residual ∆ := X− X̃, we find that

Σ0U
>
0 = U>0 X = U>0 X̃ + U>0 ∆

implying Σ0U
>
0 Ũ1 = U>0 X̃Ũ1 + U>0 ∆Ũ1

= U>0 Ũ1Σ̃1 + U>0 ∆Ũ1.

Taking norms and applying the triangle inequality

‖Σ0(U0)>Ũ1‖◦ ≥ ‖(U0)>Ũ1Σ̃1‖◦ − ‖(U0)>∆Ũ1‖◦.

Since (Σ0)>(Σ0) � µ2I, and Σ̃>1 Σ̃1 � (µ + τ)2I, and since U0, Ũ1 are orthogonal, we estimate
‖Σ0(U0)>Ũ1‖◦ ≤ µ‖U>0 Ũ1‖◦, that ‖(U0)>Ũ1Σ̃1‖◦ ≥ (µ+τ)‖U>0 Ũ1‖◦, and ‖(U0)>∆Ũ1‖◦ ≤
‖∆‖◦. Thus

µ‖U>0 Ũ1‖◦ ≥ (µ+ τ)‖U>0 Ũ1‖◦ − ‖∆‖◦.

Rearranging concludes the proof.

Lemma D.2 (Variant of Wedin’s Theorem) Suppose that M, M̃ ∈ Rm×n. Given µ ≥ 0 and
τ ≥ 0, let U0,V0 be an orthonormal basis for left (resp. right) singular vectors of M whose
corresponding singular values are ≤ µ, and let Ũ1, Ṽ1 be the same for singular vectors of M̃
whose corresponding singular values are ≥ µ+ τ . Then,(

‖U>0 Ũ1‖2F + ‖V>0 Ṽ1‖2F
) 1

2 ≤ 2‖M− M̃‖F
τ

.

The same is true when the Frobenius norm is replaced by the operator norm.4

Proof Consider the matrices

X =

[
0 M

M> 0

]
, X̃ =

[
0 M̃

(M̃)> 0

]
.

Letting M = UΣV> and M̃ = ŨΣ̃Ṽ>, we observe that we can write

X = WΛW>, W :=
1√
2

[
U U
V −V,

]
, Λ :=

[
Σ 0
0 −Σ

]
and analogously for X̃. Letting M = U0Σ0V

>
0 + U1Σ1V

>
1 decompose into singular values ≤ µ

and those > µ, we can write

X = W0Λ0W
>
0 + W1Λ1W

>
1 ,

W0 =
1√
2

[
U0 0 U0 0
V0 0 −V0 0

]
, W1 =

1√
2

[
0 U1 0 U1

0 V1 0 −V1

]
,

4. A similar bound can be established for arbitrary Schatten p-norms, albeit with a slightly worse constant.
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where Λ0 has eigenvalues with absolute value ≤ µ, and Λ1 eigenvalues with absolute value > µ.
Applying a similar decomposition to X̃, we find that Lemma D.1 yields that, for ‖ · ‖◦ representing
either the operator norm or Frobenius norm,∥∥∥W>

0 W1

∥∥∥
◦
≤ ‖X− X̃‖F

τ
=

√
2‖M− M̃‖◦

τ
. (D.3)

On the other hand, we expand

∥∥∥W>
0 W1

∥∥∥
◦

=
1

2

∥∥∥∥∥
[
U0 0 U0 0
V0 0 −V0 0

]> [
0 Ũ1 0 Ũ1

0 Ṽ1 0 −Ṽ1

]∥∥∥∥∥
◦

=
1

2

∥∥[0 U>0 Ũ1 + V>0 Ṽ1 0 U>0 Ũ1 −V>0 Ṽ1

]∥∥
◦

=
1

2

∥∥[A + B A−B
]∥∥
◦ , A := U>0 Ũ1, B := V>0 Ṽ1.

When ◦ denotes the Frobenius norm, we use∥∥[A + B A−B
]∥∥2

F
= 〈A + B,A + B〉+ 〈A−B,A−B〉
= 2〈A,A〉+ 2〈B,B〉
= 2

(
‖A‖2F + ‖B‖2F

)
.

Similarly, when ◦ denotes the operator norm,∥∥[A + B A−B
]∥∥2

op
= max

v:‖v‖=1
‖v>(A + B)‖22 + ‖v>(A−B)‖22

= max
v:‖v‖=1

2v>AA>v + 2v>BB>v + 2v>AA>v − 2v>AA>v

= max
v:‖v‖=1

2v>AA>v + 2v>BB>v

≤ 2
(
‖A‖2op + ‖B‖2op

)
.

Thus, ∥∥∥W>
0 W1

∥∥∥
◦
≤ 1√

2

(
‖U>0 Ũ1‖2◦ + ‖V>0 Ṽ1‖2◦

) 1
2
.

Plugging this into Eq. (D.3) concludes.
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Part II

Supplement for Single- and Double-Stage ERM
Appendix E. Addenda for Single- And Double-Stage ERM (Theorem 3)

E.1. Single-stage ERM

Proof [Proof of Theorem 3] The first part of Theorem 3 follows directly from combining Theorem 2
and using a standard statistical training guarantee, Lemma F.1, to bound ε1⊗1 and εtrn; Eq. (3.4) fol-
lows from a computation performed in Lemma E.1, below, and whose proof appears in Appendix H.

Lemma E.1 (Single Training Bound) Under Assumption 2.6, we have

APXERRSS(r) .

{
C2(1 + γ−1)2r6−2γ (polynomial decay)
C2r6(γ−1 + r)2e−2γr (exponential decay)

.

Remark E.1 (Sufficient Spectral Decay for α-Conditioning) . For sufficiently rapid spectral de-
cay, it is possible to ensure (f̂SS, ĝSS) are well-conditioned. From Lemma F.1, we have that with
probability at least 1− δ,

R(f̂SS, ĝSS;D1⊗1) ≤ κtrn(2κapxtail?2(r) +
352B4(Mr + log 2

δ )

n
).

In particular, if for a given α ≥ 1 it holds that

2κtrnκapxtail?2(r) ≤ (1− α−1)(σ?r)
2, (E.1)

then, by letting n ≥ 352αB4(Mr + log 2
δ )σ?r , we can take ε21⊗1 = R(f̂SS, ĝSS;D1⊗1) ≤ (1 −

(2α)−1)(σ?r)
2. By Theorem 2, this implies that (f̂SS, ĝSS) are 2α-conditioned. Thus, when the tail

of the spectrum at r is considerably smaller than (σ?r)
2, we can ensure that (f̂SS, ĝSS) are well-

conditioned.
Eq. (E.1) requires rather rapid spectral decay, and will not hold for polynomially decaying

singular values (e.g. σ?r = r−(1+γ)). Under the exponential decay regime of Assumption 2.6 (for
all n, σ?n ≤ Ce−γn), Lemma H.1 implies that tail?2(r) ≤ C2(1 + γ−1)e−2γ(r+1) (which is more-or-
less tight in the worst case). Thus, Eq. (E.1) holds as soon as

2κtrnκapx(1 + γ−1)e−2γ ≤ (1− α−1)e2γr

(
σ?

C

)2

. (E.2)

Now assume that a lower bound for spectral decay also holds: for some other constant c, we have
σ?r ≥ ce−rγ . Then, Eq. (E.2) holds as soon as

2κtrnκapx(1 + γ−1)e−2γ ≤ (1− α−1)
( c
C

)2
, (E.3)

which is true once γ > log(
2
√

2Cκtrnκapx
c(1−α−1)

). In summary, we can ensure well-conditioned (f̂SS, ĝSS)
when (a) there is rapid, exponential spectral decay and (b) a lower bound on the spectral decay as
well.
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E.2. Double-stage ERM (Theorem 4)

Here, we present Theorem 6, a more detailed version of Theorem 4 which specifies the necessary
setting of algorithm parameters. We then specialize Theorem 6 to Theorem 4 at the end of the
section. These two aforementioned conditions are specified in the following two conditions.

Condition E.1 (Algorithm Parameters) Let c1 be some unspecified parameter satisfying 1 ≤
c1 .? 1. We stipulate that the algorithm parameters (σcut, rcut, p) satisfy

(a) rcut ≥ c1 and tail?2(rcut) ≤ 1
c1
r2

cut(σcut)
2;

(b) tail?2(p) ≤ 1
c1

σ2
cut

r5cut
;

(c) σcut ∈ [2σ?rcut ,
2
3eσ

?
1].

Condition E.2 (Sample Size Conditions) Let c2 be some unspecified parameter satisfying c2 .?
1. We stipulate that, given δ ∈ (0, 1),

• The supervised sample sizes of n1, n3 satisfy

n1 ≥ p+B4c2(Mp + log
1

δ
)r4

cutσ
−2
cut, n3 ≥ c2B

4(Mrcut + log
1

δ
)σ−2

cut

• The unsupervised sample sizes n2, n4 satisfy

n2 ≥ 722r2
cutn

9
1 log(24p/δ), n4 ≥ r4

cutn1n3.

Note that when rcut ≤ p (and hence Mrcut ≤Mp), it suffices take ni .? poly(p,Mp, log(1/δ), B, σ−2
cut).

Our main detailed theorem is as follows, and its proof is given in Appendix F.

Theorem 6 Suppose Algorithm 1 is run with parameters σcut, rcut, p, sample sizes n1, . . . , n4, and
λ = r4

cut, µ = B2/n1 and fix a probability of error δ ∈ (0, 1). Then, as long σcut, rcut, p satisfy
Condition E.1 and n1:4 satisfy Condition E.2, it holds with probability at least 1− δ,

R(f̂ , ĝ;Dtest) .? ERRDT(rcut, σcut) := r2
cutσ

2
cut + tail?1(rcut)

2 +
tail?2(rcut)

2

(σcut)2
.

In Appendix H.2, we prove the following lemma. It gives an upper bound ERRDT(rcut, σcut),
as well as sufficient conditions for Condition E.1, under the spectral decay assumption in Assump-
tion 2.6.

Lemma E.2 (Double Training Decay Bounds) Suppose Assumption 2.6 holds, and that the algo-
rithm parameters σcut, rcut, p satisfy σcut ≤ 2

3eσ
?
1, and the following (feasible) constraints

rcut ≥ c1 ∨


3eC
σ?1√
c1(1 + 1

γ ) ∨ 1
γ log(3eC

σ?1
)

p ≥

c
− 1

1+2γ

1 r
7+5γ
1+2γ

cut

2rcut ∨ 1
γ log(r5

cutc1)
σcut ≥

{
2Cr

−(1+γ)
cut

2Ce−γrcut
,

where the top-case correponds to the polynomial-decay regime, and the bottom to exponential-
decay. Then, Condition E.1 holds and

ERRDT(rcut, σcut) . σ
2
cutr

2
cut + C2(1 + γ−2)

{
r−2γ

cut (polynomial decay)
e−2γrcut (exponential decay)

. (E.4)
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Proof [Proof of Theorem 4] For the target accuracy ε, set σcut = max{2Cr−(1+γ)
cut , ε/rcut} under

polynomial spectral decay, and σcut = max{2Ce−γrcut , ε/rcut}. From Eq. (E.5) and absorbing
absolute constants into ., it then follows that

ERRDT(rcut, σcut) . ε
2 + C2(1 + γ−2)

{
r−2γ

cut (polynomial decay)
e−2γrcut (exponential decay)

. (E.5)

From Lemma E.2, Condition E.1 holds as soon as rcut &? poly(C/σ?1, γ
−1) and p .? (rcut)

c for
a universal c > 0 (note that, in the constraint on p in polynomial case, the ratio 7+5γ

1+2γ is at most 7).
Moreover, there exist sample sizes n1, n2, n3, n4 .? poly(p,Mp, log(1/δ), B, ε−2) which ensure
Condition E.2. The result now follows from Theorem 6 above.

E.3. Generalizing unsupervised access to D1⊗1 (Assumption 3.1)

In this section, we argue that if we replace DX,1,DY,1 with any other distribution D̃X ,1, D̃Y,1 satis-
fying for some κ̃ ≥ 1 the inequalities

κ̃−1 ≤
dD̃X ,1(x)

dDX,1(x)
≤ κ̃, κ̃−1 ≤

dD̃Y,1(y)

dDY,1(y)
≤ κ̃, (E.6)

and if the function classes Fk,Gk are sufficiently expressive, then all of our problem assumptions
remain true, up to multiplicative constants in κ̃. In particular, this means that, for any target dis-
tributions DX,1,DY,1, we can replace the oracle in Assumption 3.1 with the one that samples from
D̃1⊗1 := D̃X ,1 ⊗ D̃Y,1. We now go through each assumption in sequence.

• First, Assumption 2.1 is unaffected.

• Second, let us consider the covariance Σf? = Ex∼DX,1

[
f?(x)f?(x)>

]
and Σg? = Ey∼DY,1

[
g?(y)g?(y)>

]
.

Uder assumption Assumption 2.4, Σf? = Σg? , and ‖f?(x)‖H ∨ ‖g?(x)‖H ≤ B. Introduce
as well Σ̃f? = Ex∼D̃X ,1

[
f?(x)f?(x)>

]
and Σ̃g? = Ey∼D̃Y,1

[
g?(y)g?(y)>

]
. Then, Eq. (E.6)

implies that

κ̃−1Σf? � Σ̃f? � κ̃Σf? , κ̃−1Σg? � Σ̃g? � κ̃Σg? . (E.7)

Using Σf? = Σg? , we have

κ̃−2Σ̃f? � Σ̃g? � κ̃2Σ̃f?

By generalizing Lemma L.1(i&iv) to linear operators, we can construct a transformation an
invertible W such that κ̃−1I �W � κ̃I and

WΣ̃f?W = Σ̃g?

Hence, if we define the operator T = W1/2 and set

f̃? := Tf?, g̃? := Tg?,
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then (f̃?, g̃?) are balanced:

Σ̃1⊗1 := Ex∼D̃X ,1
[
f?(x)f?(x)>

]
= Ey∼D̃Y,1

[
g̃?(y)g̃?(y)>

]
.

Moreover, as κ̃−1I �W � κ̃I, κ̃−1/2I � T � κ̃1/2I, so that

sup
x,y
‖f̃?(x)‖H ∨ ‖g̃?(x)‖H ≤

√
κ̃ sup
x,y
‖f?(x)‖H ∨ ‖g?(x)‖H ≤

√
κ̃B;

that is, Assumption 2.4 holds with upper bound B̃ =
√
κ̃B.

• One can directly check from Eq. (E.6) that replacingDX,1 ← D̃X ,1 andDY,1 ← D̃Y,1 ensures
Assumption 2.2 holds with κ̃trn = κ̃2κtrn and κ̃tst = κ̃2κtst.

• Similarly, one can check that Assumption 2.3 with κ̃cov ← κ̃κcov.

• The construction of Σ̃1⊗1 and Lemma L.1 (vii) imply

λi(Σ̃1⊗1) ≤ σi(Σ̃
1/2
f? Σ̃

1/2
g? ) ≤

√
λi(Σ̃f?)λi(Σ̃g?).

Using Eq. (E.7) to bound λi(Σ̃f?) ≤ κ̃λi(Σf?) = λi(Σ
?
1⊗1) and similarly for Σ̃g? , we find

λi(Σ̃1⊗1) ≤ κ̃λi(Σ?
1⊗1).

Thus, Assumption 2.6 holds after inflacting the constant C by a factor of κ̃.

• In can be directly checked that Assumption 2.5 holds after replacing κapx with κ̃apx :=
κ̃2κapx.

• The last assumption, Assumption 2.7 needs to be modified so as to ensure the function classes
Fk,Gk are rich enough to express the rank-k projections f̃?k , g̃

?
k (the analogues of f?k , g

?
k de-

fined in Section 2).

Appendix F. Analysis of the Algorithms

In this section, we provide analyses for the training algorithms we proposed. Appendix F.1 gives
guarantees for a single stage of supervised ERM. Appendix F.2 establishes our main guarantee
for Algorithm 1, Theorem 6, via a technical proposition Proposition F.1, whose proof is divided
between the subsequent three sections.

F.1. Statistical guarantee for single-stage ERM

We present an analysis of a single phase of empirical risk minimization, which we use both to
analyze the single-stage ERM, and to serve as the first step in our analysis of double-stage ERM.
The following is proved in Appendix G.3, using a standard analysis of empirical risk minimization
with the squared loss.
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Lemma F.1 Let (f̃ , g̃) ∈ Fp × Gp be empirical risk minimizers on n1 i.i.d. samples (xi, yi, zi) ∼
Dtrain. Then, for any δ ∈ (0, 1), the followings hold with probability at least 1− δ:

R(f̃ , g̃;Dtrain) ≤ 2R(f?p , g
?
p;Dtrain) +

352B4(Mp + log 2
δ )

n1

R(f̃ , g̃;Dtrain) ≤ 2κapxtail?2(p) +
352B4(Mp + log 2

δ )

n1

R(f̃ , g̃;D1⊗1) ≤ κtrn(2κapxtail?2(p) +
352B4(Mp + log 2

δ )

n1
).

F.2. Proof overview of Theorem 6

To prove Theorem 6, we first demonstrate that a certain technical proposition Proposition F.1 which
shows that (a) a good spectral event Espec holds, under which the rank r̂ chosen by Algorithm 2
satisfies various convenient spectral properties, and (b) that the regularized risk optimized in the last
line of Algorithm 1 is small. More precisely, we define:

Definition F.1 (Good Spectral Event) For parameters (σcut, rcut) used in Algorithm 1, we define
Espec(r̂, σcut, rcut) as the event that the following inequalities hold:

σ?r̂ ≥
3

4
σcut, σ?r̂+1 ≤ 3σcut, σ?r̂ − σ?r̂+1 ≥

σ?r̂
3rcut

tail?2(r̂) ≤ tail?2(rcut) + 9σ2
cutrcut, tail?1(r̂)2 ≤ 18r2

cutσ
2
cut + 2tail?1(rcut)

2.

Our technical proposition is as follows.

Proposition F.1 Suppose that the parameters in Algorithm 1 are chosen as µ = B2/n1, and other
parameters (p, σcut, rcut), the sample sizes n1, . . . , n4, and λ > 0 satisfy that for some C .? 1,

• σcut ∈ [2σ?rcut ,
2
3eσ

?
1], tail?2(p) ≤ σ2

cut

Cr2cut
, and p ≥ 2;

• n1 ≥ p+ Cσ−2
cutr

2
cut max{1, B4}(Mp + log 1

δ ), n2 ≥ 722r2
cutn

9
1 log(24p/δ), n4 ≥ λn1n3.

Then, with probability at least 1− δ, the event Espec(r̂, σcut, rcut) holds and

R(f̂DS, f̂DS;Dtrain) + λR[r](f̂DS, f̂DS;D1⊗1)

.? tail?2(rcut) + rcutσ
2
cut + λr2

cuttail?2(p) +
B4(Mrcut + log(1/δ))

n3
+
λr2

cutB
4(Mp + log(1/δ))

n1
.

We will prove Proposition F.1 in Appendices F.3 and F.4, addressing the first and second phases
of training in Algorithm 1 respectively. Using this result, we prove Theorem 6.
Proof [Proof of Theorem 6] Recall the statement of Theorem 2. It states that if (f̂DS, f̂DS) are
(εtrn, ε1⊗1)-accurate, that ε1⊗1 ≤ min{σ?1/40r̂,σ?r̂/4}, then we can bound α ≤ 2 and therefore
bound

R(f̂DS, f̂DS;Dtest) .?
{
r̂4ε21⊗1 + tail?1(r̂)2 + r̂2(σ?r̂+1)2

}
+

{
(r̂3ε21⊗1 + ε2trn + tail?2(r̂))2

(σ?r̂)
2

}
.
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In particular, recall we select r̂ ≤ rcut and λ = r4
cut. Then it suffices that ε1⊗1 ≤ min{σ?1/40rcut,σ

?
rcut/4}

to ensure

R(f̂DS, f̂DS;Dtest) .?
{
λε21⊗1 + tail?1(r̂)2 + r̂2(σ?r̂+1)2

}
+

{
(λε21⊗1 + ε2trn + tail?2(r̂))2

(σ?r̂)
2

}
.

On the event Espec(r, σcut, rcut), we can then bound

R(f̂DS, f̂DS;Dtest) .?
{
λε21⊗1 + r2

cutσ
2
cut + tail?1(rcut)

2 + r̂2σ2
cut

}
+

{
(λε21⊗1 + ε2trn + rcut(σcut)

2 + tail?2(rcut))
2

(σcut)2

}
.
{
λε21⊗1 + r2

cutσ
2
cut + tail?1(rcut)

2
}

(r̂ ≤ rcut)

+

{
(λε21⊗1 + ε2trn + rcut(σcut)

2 + tail?2(rcut))
2

(σcut)2

}
.

Next, we set ε2trn := R(f̂DS, f̂DS;Dtrain) and ε21⊗1 := R[r](f̂DS, f̂DS;D1⊗1). Then, on the event of
the conclusion of Proposition F.1, and using λ = r4

cut, we have

λε21⊗1 ≤ λε21⊗1 + ε2trn

.? tail?2(rcut) + rcutσ
2
cut + r6

cuttail?2(p) +
B4(Mrcut+log(1/δ))

n3
+

r6cutB
4(Mp+log(1/δ))

n1︸ ︷︷ ︸
≤2σ2

cut under Condition E.2

. tail?2(rcut) + rcutσ
2
cut + r6

cuttail?2(p).

Plugging the former display into the one before it, and suppressing constants, we have

R(f̂DS, f̂DS;Dtest) .?
{
r6

cuttail?2(p) + tail?2(rcut) + rcutσ
2
cut + r2

cutσ
2
cut + tail?1(rcut)

2
}

+

{
(r6

cuttail?2(p) + rcut(σcut)
2 + tail?2(rcut))

2

(σcut)2

}
.

In particular, if in addition it holds that

tail?2(p) ≤ (σcut)
2

r5
, (F.1)

then

R(f̂DS, f̂DS;Dtest) .? tail?2(rcut) + rcutσ
2
cut + r2

cutσ
2
cut + tail?1(rcut)

2 (rcut(σcut)
2 + tail?2(rcut))

2

(σcut)2

. tail?2(rcut) + r2
cutσ

2
cut + tail?1(rcut)

2 +
tail?2(rcut)

2

(σcut)2

. r2
cutσ

2
cut + tail?1(rcut)

2 +
tail?2(rcut)

2

(σcut)2
,

where in the last step, we use tail?1(rcut)
2 = (

∑
i>rcut

σ?i )
2 ≥

∑
i>rcut

(σ?i )
2 = tail?2(rcut). so that,

if the conditions on n1:4 and p of Proposition F.1 are met, and if ε1⊗1 ≤ min{σ?1/40r̂,σ?r̂/4}, and
if Eq. (F.1) holds, then with probability at least 1− δ,

R(f̂DS, f̂DS;Dtest) .? r
2
cutσ

2
cut + tail?1(rcut)

2 +
tail?2(rcut)

2

(σcut)2
.
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Checking the appropriate conditions. For Proposition F.1 to hold with λ = r4
cut, and for we

need that for some c0 .? 1,

n1 ≥ p+ c0σ
−2
cutr

2
cutB

4(Mp + log
1

δ
), p ≥ 2, tail?2(p) ≤ σ2

cut

c0r5
cut

, (F.2)

as well as

n2 ≥ 722r2
cutn

9
1 log(24p/δ), n4 ≥ r4

cutn1n3, µ = B2/n1. (F.3)

All these conditions are ensured by Conditions E.1 and E.2.
Let us conclude by making explicit conditions under which ε1⊗1 ≤ min{σ?1/40r̂,σ?r̂/4} holds,

provided the high-probablity event of Proposition F.1 holds. As r̂ ≤ rcut, on the Espec(r̂, σcut, rcut),
it is enough that, for some small universal constant c,

ε21⊗1 ≤ cmin

{
(σ?1)2

r2
cut

, σ2
cut

}
. (F.4)

On the event of Proposition F.1, we would like to have

ε21⊗1 .?
tail?2(rcut)

r4
cut

+
σ2

cut

r3
cut

+ r2
cuttail?2(p) +

B4(Mrcut + log(1/δ))

n3r4
cut

+
r2

cutB
4(Mp + log(1/δ))

n1
.

By modifying c0 .? 1 below if necessary, it suffices that for Eq. (F.4) that

max{σ
2
cut

r3cut
,

tail?2(rcut)

r4cut
, r2

cuttail?2(p),
B4(Mrcut+log(1/δ))

n3r4cut
,
r2cutB

4(Mp+log(1/δ))
n1

} ≤ 1

c0
min

{
(σ?1)2

r2
cut

, σ2
cut

}
.

We handle each term in sequence,

1. As σcut ≤ σ?1, we have σ2
cut

r3cut
≤ 1

c0
min

{
(σ?1)2

r2cut
, σ2

cut

}
as soon as rcut ≥ c0.

2. The term tail?2(rcut)

r4cut
is appropriately bounded as soon as tail?2(rcut) ≤ 1

c0
min

{
r2

cut(σ
?
1)2, r4

cutσ
2
cut

}
.

Under the condition that σcut ≤ σ?1, it suffices that tail?2(rcut) ≤ 1
c0
r2

cutσ
2
cut.

3. The term r2
cuttail?2(p) is appropriately bounded as soon as tail?2(p) ≤ 1

c0
min

{
(σ?1)2

r4cut
, σ2

cut/r
2
cut

}
.

As σcut ≤ σ?1, this holds when tail?2(p) ≤ σ2
cut

c0r5cut
.

4. The term B4(Mrcut+log(1/δ))

n3r4cut
is appropriately bounded as soon as

n3 ≥ c0B
4(Mrcut + log(1/δ))

{
1

(σ?1)2r2
cut

+
1

σ2
cutr

4
cut

}
.

5. Similarly, term r2cutB
4(Mp+log(1/δ))

n1
is appropriately bounded as soon as (adding an additive p

for convenience),

n1 ≥ p+B4c0(Mp + log(1/δ))

{
r4

cut

(σ?1)2
+
r2

cut

σ2
cut

}
.

For which, using σcut ≤ σ?1, it suffices that

n1 ≥ p+B4c0(Mp + log(1/δ))
r4

cut

σ2
cut

.
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All such bounds hold under Conditions E.1 and E.2. This completes the proof of Theorem 6.

F.3. Analysis of the first phase of double-stage ERM

We begin with a precise analysis of the first phase of the double-stage ERM Algorithm 1. Recall
that (f̃ , g̃) are the empirical risk minimizers on n1 i.i.d. samples (xi, yi, zi) ∼ Dtrain, and Q̂r̂ is the
balancing projection on the top r eigenvectors of Σ̂g̃. We define the following effective error term.

ε̃(p, n1, δ)
2 := κtrn

(
2κapxtail?2(p) +

354B4(Mp + log 6
δ )

n1

)
. (F.5)

We first show that (f̃ , Q̂r̂g̃) has small risk on the top block.

Proposition F.2 (Guarantee for Double-Training, First-Phase) Suppose σcut ∈ [2σ?rcut ,
2
3eσ

?
1],

n1 ≥ p ≥ 2, µ = B2/n1, and both n1 ≥ B2/σ2
cut and n2 ≥ 722r2

cutn
9
1 log(24p/δ). Further,

suppose

ε̃(p, n1, δ)
2 ≤ σ2

cut/(64r2
cut). (F.6)

Then, with probability at least 1− 2
3δ, we have

R[r̂](f̃ , Q̂r̂g̃;D1⊗1) ≤ 3000r2
cutε̃(p, n1, δ)

2.

Moreover, on this same event, both supx,y |〈f̃(x), Q̂r̂g̃(y)〉| ≤
√

2n1B
2 and Espec(r̂, σcut, rcut),

defined in Definition F.1, holds.

F.3.1. PROOF OVERVIEW

Our first step is to verify the performance of the overparametrized (f̃ , g̃) on the nominal distribution
D1⊗1. For convenience, we upper bound a slightly augmented quantity which absorbs errors from
regularizing the balancing covariances.

Lemma F.2 Recall ε̃(·) defined in Eq. (F.5). With probability at least 1 − 1
3δ, it holds that

R(f̃ , g̃;D1⊗1) + 2B4

n1
≤ ε̃(p, n1, δ)

2.

The above lemma is a direct consequence of the last line of Lemma F.1.
Our next goal is to find a good rank-r̂ projection of the functions (f̃ , g̃) which enjoys good

performance on D1⊗1. This projection is best computed in a coordinate system in which f̃ , g̃ are
balanced in the sense of Definition 4.1: that is, under a transformation T such that f = T−>f̃ and
g = Tg̃, it holds that EDX,1

[ff>] = EDY,1
[gg>]. To compute this transformation, we first introduce

sample and population covariance matrices.

Definition F.2 (Covariance Matrices) Let {(x2,i, x2,i)}n2
i=1

i.i.d∼ D1⊗1, we define the population
covariance matrices Σf̃ = EDX,1

[f̃ f̃>], Σg̃ = EDY,1
[g̃g̃>], and their finite sample analogues

using the n2 samples:

Σ̂f̃ =
1

n2

n2∑
i=1

f̃(x2,i)f̃(x2,i)
>, Σ̂g̃ =

1

n2

n2∑
i=1

g̃(x2,i)g̃(x2,i)
>.
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Balancing then finds a transformation T for which T−>Σf̃T
−1 = TΣg̃T

>. It is challenging
to establish a lower bound on λmin(Σf̃ ) and λmin(Σg̃), say when Σ?

1⊗1 has rapid spectral decay.

The matter only becomes worse when solving for T using the finite sample covariance matrices Σ̂f̃

and Σ̂g̃. As a consequence, we instead consider regularized covariance matrices, defined as follows:

Definition F.3 (Regularized Covariance Matrices) Let µ > 0. Define

Σf̃ ,µ = Σf̃ + µIp Σg̃,µ := Σg̃ + µIp Σ̂f̃ ,µ = Σ̂f̃ + µIp Σ̂g̃,µ = Σ̂g̃ + µIp.

Leveraging standard finite sample concentration inequality of matrices (see Lemma G.2 in the ap-
pendix), we ensure that the empirical and population covariance matrices concentrate.

Lemma F.3 Let {(x2,i, y2,i)}n2
i=1

i.i.d∼ D1⊗1, and define the following empirical and population
covariance operators. Then, with probability at least 1− 1

3δ, we have

max
{
‖Σg̃,µ − Σ̂g̃,µ‖op, ‖Σf̃ ,µ − Σ̂f̃ ,µ‖op

}
≤ εΣ(n2, δ) := B2

√
2 log(24p/δ)

n2
.

Moreover, for any Σ ∈ {Σg̃,µ, Σ̂g̃,µ,Σf̃ ,µ, Σ̂f̃ ,µ}, we have µIp � Σ � B2 + µIp.

The above bound is proved for the non-regularized covariances, and follows by adding and sub-
tracting µIp. The remainder of the proof has three components, each of which we give its own
subsection below.

(a) We first show that the regularized covariance matrices can be thought of as unregularized
covariance matrices corresponding to convolving the embeddings (f̃ , g̃) with isotropic noise.
We argue that the excess risk of these noisy embeddings, denoted by (f̃µ, g̃µ), is O (µ), and
always upper bounds the risk of the noise-free embeddings. Hence, we can analyze balancing
and projecting the noisy-embeddings as a proxy for the noise-free ones.

(b) We then analyze the performance of a balanced projection of the embeddings (f̃ , g̃), and that
of the projections of noisy embeddings (f̃µ, g̃µ).

(c) We analyze the empirical balancing operator obtained via samples, and conclude the proof of
Proposition F.2 by combining the above results.

F.3.2. INTERPRETING REGULARIZATION AS CONVOLUTION WITH NOISE

In this part of the proof, we illustrate how the regularized covariance matrices of (f̃ , g̃) correspond
to unregularized covariance matrices obtained by convolving (f̃ , g̃) with noise. LetKp := {−1, 1}p
denote the p-dimensional (boolean, centered) hypercube. We can augment DX,1 and DY,1 to form
distributions D̄X ,1 and D̄Y,1 over Y ×Kp and Y×Kp, where

x̄ = (x, x̌) ∼ D̄X ,1
dist
= x ∼ DX,1 ⊥ x̌ ∼ Unif[Kp]

ȳ = (y, y̌) ∼ D̄Y,1
dist
= y ∼ DY,1 ⊥ y̌ ∼ Unif[Kp].

(F.7)
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On these augmented distributions, we define

f̃µ(x, x̌) := f̃(x) +
√
µx̌, g̃µ(y, y̌) = g̃(y) +

√
µy̌.

We can readily verify that

Σf̃ ,µ := ED̄X ,1 [f̃µf̃
>
µ ] = Σf̃ + µIp, Σg̃,µ := ED̄Y,1 [g̃µg̃

>
µ ] = Σg̃ + µIp.

Two other observations are useful. In both, let D̄1⊗1 := D̄X ,1 ⊗ D̄Y,1 (by analogy to D1⊗1),
so thatR(f̃µ, g̃µ; D̄1⊗1) = E[(〈f̃µ(x̄), g̃µ(ȳ)〉 − h?(x, y))2]. Then, the following bounds the excess
risk of the regularized functions f̃µ, g̃µ in terms of that of f̃ , g̃:

Lemma F.4 The following holds for any B-bounded f̃ , g̃ and associated f̃µ, g̃µ:

R(f̃µ, g̃µ; D̄1⊗1) ≤ ε̃2µ := pµ2 + µB2 +R(f̃ , g̃;D1⊗1).

In particular, if n1 ≥ p, then for µ ≤ B2/n1, the functions (f̃ , g̃) as in Lemma F.2 satisfy

R(f̃µ, g̃µ; D̄1⊗1) ≤ ε̃2µ ≤ ε̃(p, n1, δ)
2,

with probability at least 1− δ/3.

Proof [Proof of Lemma F.4] Using independence of x, y, x̌, y̌ under D̄1⊗1, and and E[x̌x̌>] =
E[y̌y̌>] = Ip, we have

ED̄1⊗1
[(〈f̃µ(x̄), g̃µ(ȳ)〉 − h?(x, y))2]

= ED̄1⊗1
[(µ〈x̌, y̌〉+

√
µ〈x̌, g̃(y)〉+

√
µ〈f̃(x), y̌〉+ 〈f̃(x), g̃(y)〉 − h?(x, y))2]

= µ2ED̄1⊗1
[〈x̌, y̌〉2] + µED̄1⊗1

[〈x̌, g̃(y)〉2 + 〈y̌, f̃(x)〉2] + ED1⊗1 [(〈f̃(x), g̃(y)〉 − h?(x, y))2]

= tr(Ip)µ
2 + µED1⊗1 [‖f(x)‖2 + ‖g(y)‖2] + ED1⊗1 [(〈f̃(x), g̃(y)〉 − h?(x, y))2]

= pµ2 + µED1⊗1 [‖f(x)‖2 + ‖g(y)‖2] + ED1⊗1 [(〈f̃(x), g̃(y)〉 − h?(x, y))2]

≤ pµ2 + µB2 + E[(〈f̃(x), g̃(y)〉 − h?(x, y))2]︸ ︷︷ ︸
R(f̃ ,g̃;D1⊗1)

.

The second statement of the lemma follows from selecting µ ≤ B2/n1, using the assumption that
n1 ≥ p, and invoking Lemma F.2.

The second fact shows that weighted inner products involving the regularized functions are always
worse predictors than the corresponding unregularized functions:

Lemma F.5 The following inequality holds for any f̃ , g̃ and associated f̃µ, g̃µ, matrix A ∈ Rp×p,
and h : X × Y → R:

ED̄1⊗1
[(〈f̃µ(x̄),Ag̃µ(ȳ)〉 − h(x, y))2] ≥ ED1⊗1 [(〈f̃(x),Ag̃(y)〉 − h(x, y))2].

The lemma is a direct consequence of Jensen’s inequality, and the fact that ED̄1⊗1
[〈f̃µ(x̄),Ag̃µ(ȳ)〉 |

x, y] = 〈f̃(x),Ag̃(y)〉 for any A ∈ Rp×p.
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F.3.3. ANALYSIS UNDER AN EXACT BALANCED PROJECTION

We now analyze the performance of an idealized balanced projection of (f̃ , g̃), and as a corollary,
state a guarantee for deviations from this idealized projection. We accomplish this by analyzing
the performance of the projections of noisy embeddings (f̃µ, g̃µ) as a proxy, and then applying
Lemma F.5 to return to the noise-free embeddings.

It is useful for us to formalize balancing as a general operation on matrices.

Definition F.4 (Balancing Operator) Let X,Y ∈ Sp>. We define the balancing operator

Ψbal(Y; X) := X
1
2 (X

1
2 YX

1
2 )−

1
2 X

1
2 ∈ Sp>.

It is shown in Lemma L.1 that W = Ψbal(Y; X) is the unique positive definite operator satis-
fying X = WYW. As a consequence, given (f̃µ, g̃µ), the functions (f̃µ,bal, g̃µ,bal) defined as

f̃µ,bal = W
− 1

2
bal,µf̃µ, g̃µ,bal = W

1
2
bal,µg̃µ, Wbal,µ := Ψbal(Σg̃,µ; Σf̃ ,µ)

satisfy (using Wbal,µ = W>
bal,µ)

ED̄X ,1 [f̃µ,bal(f̃µ,bal)
>] = W

− 1
2

bal,µΣf̃ ,µW
− 1

2
bal,µ = W

1
2
bal,µΣg̃,µW

1
2
bal,µ︸ ︷︷ ︸

:=Σbal,µ

= ED̄Y,1 [g̃µ,bal(g̃µ,bal)
>],

(F.8)

as well as trivially 〈f̃µ,bal, g̃µ,bal〉 ≡ 〈f̃µ, g̃µ〉. That is, the transformation

(f̃µ, g̃µ) 7→ (W
− 1

2
bal,µf̃µ,W

1
2
bal,µg̃µ)

balances (f̃µ, g̃µ). We now introduce an operator expressing the covariance matrix of the balanced
functions (in our case, Σbal,µ above).

Definition F.5 (Balanced Covariance) Given X,Y ∈ Sp>, we define

CovBal(X,Y) = Ψbal(Y; X)
1
2 ·Y ·Ψbal(Y; X)

1
2 .

We remark that CovBal(X,Y) = CovBal(Y,X), as illustrated in Eq. (F.8). In particular,

Σbal,µ = CovBal(Σg̃,µ,Σf̃ ,µ) = CovBal(Σf̃ ,µ,Σg̃,µ).

We can now define our main object of interest: the operator which performs a singular value
decomposition of the factorization f̃µ, g̃µ in the coordinate system in which they are balanced.

Definition F.6 (Balancing Projection) Given X,Y ∈ Sp>, for any r ∈ [p], we define

Projbal(r,X,Y) := W− 1
2 PrW

1
2 ,

where W = Ψbal(Y; X), and Pr̂ is the orthogonal projection onto the top-r eigenvectors of
CovBal(Y,X) = W

1
2 YW

1
2 . We say that Qr̂ = Projbal(r,X,Y) is unique if the aforementioned

projection Pr̂ is unique, that is, if σr(CovBal(Y,X)) > σr+1(CovBal(Y,X)). Note that when
r = p, this projection is trivially unique.
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In particular, suppose we consider Qr̂ := Projbal(r̂,Σf̃ ,µ,Σg̃,µ). This performs a rank-r̂ pro-
jection in the coordinates in which f̃µ, g̃µ are balanced, and transforming 〈f̃µ, g̃µ〉 to 〈f̃µ,Qr̂g̃µ〉 is
equivalent to computing a rank-r̂ SVD of the matrices. Thus, the error between 〈f̃µ,Qr̂g̃µ〉 and
〈f?r̂ , g?r̂ 〉 can be analyzed in terms of the error between the rank-r̂ SVD approximations of two ma-
trices which are close by. We use this insight to prove a perturbation bound, which we describe
below.

The following lemma establishes three useful bounds: (a) an `2-deviation bound between the
spectrum of Σbal,µ and the spectrum of Σ?

1⊗1; (b) a suboptimality guarantee for applying the ex-
act balanced projection Qr̂ = Projbal(r,Σf̃ ,µ,Σg̃,µ) to (f̃µ, g̃µ), where (f̃µ, g̃µ) are the noise-
convolved functions defined in the previous section; and (c) a perturbation inequality for applying
an approximation Q′ of Qr̂ to (f̃µ, g̃µ), and the subsequent guarantee when applying this projection
to the original (non-noisy) functions (f̃ , g̃).

Lemma F.6 (Accuracy of Balancing Projections) Recall the definition of ε̃2µ from Lemma F.4.
Then,

(a) It holds that
∑

i≥1(σi(Σbal,µ)− σ?i )
2 ≤ ε̃2µ.

(b) Given a given r̂ ∈ N for which σ?r̂ > 0, define δ?r̂ := 1 − σ?r̂+1

σ?r̂
. If ε̃µ ≤ ησ?r̂δ

?
r̂ for a given

η ∈ [0, 1), then

R[r̂](f̃µ,Qr̂ · g̃µ; D̄1⊗1) ≤
81ε̃2µ

(δ?r̂(1− η))2
,

where we define Qr̂ = Projbal(r̂,Σf̃ ,µ,Σg̃,µ).

(c) Under the assumptions of (b), if Q̂ ∈ Rp×p is any other matrix, then, assuming µ ≤ B2/p,

R[r̂](f̃ , Q̂ · g̃;D1⊗1) ≤ R[r̂](f̃µ, Q̂ · g̃µ; D̄1⊗1) ≤ 8B2‖Q̂−Qr̂‖op +
162ε̃2µ

(δ?r̂(1− η))2
.

Proof [Proof of Lemma F.6] The functions f̃µ,bal, g̃µ,bal are balanced under D̄1⊗1: ED̄X ,1 [f̃µ,bal(f̃µ,bal)
>] =

ED̄Y,1 [g̃µ,bal(g̃µ,bal)
>] = Σbal,µ. Moreover, by Lemma F.4,

R(f̃µ,bal, g̃µ,bal; D̄1⊗1) = R(f̃µ, g̃µ; D̄1⊗1) ≤ ε̃2µ.

Further, we have

〈f̃µ,Qr̂g̃µ〉 = 〈f̃µ,bal,Pr̂g̃µ,bal〉,

where Pr̂ is the projection onto the top r̂ eigenvectors of Σbal,µ. Hence, we can invoke5 Theorem 11
to find both (a)

∑
i≥1(σi(Σbal,µ) − σ?i )

2 ≤ ε̃2µ and (b) ED̄1⊗1
[(〈f̃µ,Qr̂ · g̃µ〉 − 〈f?r̂ , g?r̂ 〉)2] ≤

81ε̃2µ
(δ?r̂(1−η))2

. For part (c), the first inequality is a special case of Lemma F.5. Moreover,

ED̄1⊗1
[(〈f̃µ, Q̂ · g̃µ〉 − 〈f?r̂ , g?r̂ 〉)2] = ED̄1⊗1

[(〈f̃µ, (Q̂−Qr̂) · g̃µ〉+ 〈f̃µ,Qr̂ · g̃µ〉 − 〈f?r̂ , g?r̂ 〉)2]

≤ 2ED̄1⊗1
[〈f̃µ, (Q̂−Qr̂) · g̃µ〉2] + 2ED̄1⊗1

(〈f̃µ,Qr̂ · g̃µ〉 − 〈f?r̂ , g?r̂ 〉)2].

5. We note that while Theorem 11 is stated in terms of the non-augmented distributionD1⊗1, it holds for D̄1⊗1 as well,
as the augmented distribution preserves the covariance and balancing of the ground truth embeddings.
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As the second term above is controlled by part (b) of the lemma, it remains to bound ED̄1⊗1
[〈f̃µ, (Q̂−

Qr̂) · g̃µ〉2]. Using independence of x, y, x̌, y̌ under D̄1⊗1, and and E[x̌x̌>] = E[y̌y̌>] = Ip,

ED̄1⊗1
[〈f̃µ, (Q̂−Qr̂) · g̃µ〉2]

= ED̄1⊗1
[〈f̃(x) +

√
µx̌, (Q̂−Qr̂)(g̃(y) +

√
µy̌)〉2]

= tr(ED̄1⊗1
[(f̃(x) +

√
µx̌)(f(x) +

√
µx̌)>(Q̂−Qr̂)(g(x) +

√
µy̌)(g̃(y) +

√
µy̌)>(Q̂−Qr̂)

>]

= tr((EDX,1
[f̃(x)f̃(x)>] + µIp)(Q̂−Qr̂)(EDY,1

[g̃(y)g̃(y)>] + µIp)(Q̂−Qr̂)
>]

= tr(EDX,1
[f̃(x)f̃(x)>](Q̂−Qr̂)EDY,1

[g̃(y)g̃(y)>](Q̂−Qr̂))

+ µtr((EDX,1
[f̃(x)f̃(x)>] + EDY,1

[g̃(y)g̃(y)>])(Q̂−Qr̂)(Q̂−Qr̂)
>)

+ µ2tr((Q̂−Qr̂)(Q̂−Qr̂)
>).

Using tr(EDX,1
[f̃(x)f̃(x)>]) ∨ tr(EDY,1

[g̃(y)g̃(y)>]) ≤ B2 due to f̃ ∈ Fp, g̃ ∈ Gp and Assump-
tion 2.7, (and using various standard trace inequalities), the above is atmost

B4‖Q̂−Qr̂‖2op + 2µ2B2‖Q̂−Qr̂‖2op + µ4tr((Q̂−Qr̂)(Q̂−Qr̂)
>)

≤ (B4 + 2µB2 + µ2p)‖Q̂−Qr̂‖2op ≤ 4B2‖Q̂−Qr̂‖2op

where the last inequality takes µ ≤ B2/p.

F.3.4. ANALYSIS OF EMPIRICAL BALANCING OPERATOR

Definition F.7 Given Σ ∈ Sp≥, r0 ∈ [p], σ > 0, the separated-rank at (r0, σ) (if it exists) is

sep-rank(r0, σ; Σ) := max

{
r ∈ [r0] : σr(Σ) ≥ σ, σr(Σ)− σr+1(Σ) ≥ σr(Σ)

r0

}
. (F.9)

We say the separated-rank is well-defined if the above maximum exists.

We next provide the result on the perturbation of the balancing projections, whose proof is
deferred to Appendix L.5.

Proposition F.3 (Perturbation of Balancing Projections) Let r0 ∈ N, matrices X,X′,Y,Y′ ∈
Sp>, and positive numbers σ > 0 and (σ̄i)i∈[r0+1] satisfy the following conditions:

(a) For any A ∈ {X,X′,Y,Y′}, µIp � A �MIp.

(b) max{‖X−X′‖op, ‖Y −Y′‖op} ≤ ∆, where ∆ ≤ µ
32r0

(µ/M)2.

(c) maxi∈[r0+1] |σ̄i − σi(Σ)| ≤ σ/8r0, where Σ = CovBal(X,Y).

(d) σ ∈ [max{µ, 2σ̄r̂0}, 2
3e σ̄1].

Define Σ′ = CovBal(X′,Y′), r = sep-rank(r0, σ; Σ′), Q = Projbal(r; X,Y) and Q′ = Projbal(r; X
′,Y′).

Then, r is well defined, Q and Q′ are unique, and the following bounds hold:

‖Q′ −Q‖op ≤
19r0(M/µ)5/2∆

µ
, max{‖Q‖op, ‖Q′‖op} ≤

√
M/µ.

Moreover, σ̄r ≥ 3
4σ, σ̄r+1 ≤ 3σ, and σ̄r − σ̄r+1 ≥ σ̄r̂

3r0
.
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F.3.5. CONCLUDING THE PROOF OF PROPOSITION F.2

Proof [Proof of Proposition F.2] Throughout suppose that the high probability events of Lemma F.3
and Lemma F.4 hold, with have a total failure probability of 2δ/3. We instantiate Proposition F.3
with

(1) X = Σf̃ ,µ, X′ = Σ̂f̃ ,µ, Y = Σg̃,µ, and Y′ = Σ̂g̃,µ.

(2) r0 ← rcut, σ ← σcut, r̂ ← sep-rank(rcut, σcut; Σ̂bal,µ), and

Q′ ← Q̂r̂ := Projbal

(
r; Σ̂f̃ ,µ, Σ̂g̃,µ

)
, Q← Qr̂ := Projbal

(
r; Σf̃ ,µ,Σg̃,µ

)
.

(3) µ ← B2/n1 and M ← 2B2. By assumption, n1 ≥ p, so µ = B2/p satisfies the conditions
of Lemma F.6.

(4) On the event of Lemma F.3, we have max{‖X−X′‖op, ‖Y−Y′‖op} ≤ ∆ for ∆ = εΣ(n2) =

B2
√

2 log(24p/δ)
n2

. This holds with probability at least 1− δ/3.

(5) σ̄i ← σ?i , and σi = σi(Σbal,µ) = σi(CovBal(Σf̃ ,µ,Σg̃,µ)).

We now check that the conditions (a)-(d) of Proposition F.3 are met.

(a) The PSD inequality holds by Lemma F.3 .

(b) ∆ ≤ µ
32r0

(µ/M)2 holds for n2 ≥ r2
cut2

11(n1)6 log(24p/δ), on the event of Lemma F.3.

(c) By Lemma F.6(a), it is enough that ε̃2µ ≤
σ2
cut

64r2cut
. On the event of Lemma F.4, it is enough that

ε̃(p, n1, δ)
2 ≤ σ2

cut

64r2cut
.

(d) Substituting in µ = B2/n1, σ ← σcut and σ̄i ← σ?i the condition σ ∈ [max{µ, 2σ̄r̂0}, 2
3e σ̄1]

holds for n1 ≥ B2/σ2
cut and σcut ∈ [2σ?rcut ,

2
3eσ

?
1].

Note that the suffcient conditions in (b)-(d) are all guaranteed by Proposition F.2. With the above
substitutions, we achieve

(i) σ?r̂+1 ≤ 3σcut, σ?r̂ ≥ 3σcut/4, and δ?r̂ =
σ?r̂−σ

?
r̂+1

σ?r̂
≥ 1

3rcut
, and thus δ?r̂σ

?
r̂ ≥ σcut/(4rcut).

(ii) The upper bound on ‖Q̂r̂ −Qr̂‖op is given by

‖Q̂r̂ −Qr̂‖op ≤
19rcut(M/µ)5/2∆

µ
= 19

√
2 log(24p/δ)rcut ·

√
n7

1/n2 ≤
1

n1

for n2 ≥ 722r2
cutn

9
1 log(24p/δ) (achieved under the proposition).

From Lemma F.6 with η = 1/8, we have that as long as ε̃µ ≤ σcut/(16rcut) ≤ σ?r̂δ
?
r̂/4,

R[r̂](f̃ , Q̂r̂ · g̃;D1⊗1) ≤ 4B2‖Q̂r̂ −Qr̂‖op +
324ε̃2µ
(δ?r̂)

2

≤ 4B2

n1
+ 2898r2

cutε̃
2
µ.

44



TACKLING COMBINATORIAL DISTRIBUTION SHIFT:A MATRIX COMPLETION PERSPECTIVE

where the last line follows by invoking items (i) and (ii) above. On the event of Lemma F.4, we
may upper bound ε̃2µ by ε̃(p, n1, δ)

2, as in Lemma F.2, giving

R[r̂](f̃ , Q̂r̂ · g̃;D1⊗1) ≤ 4B2

n1
+ 2898r2

cutε̃(p, n1, δ)
2 ≤ 3000r2

cutε̃(p, n1, δ)
2

We conclude by checking the two statements in the last line of Proposition F.2. To show the first,
we note that, due to Proposition F.3, we find ‖Q̂r̂‖op ≤

√
M/µ =

√
2n1. Using Assumption 2.7

and the fact that f̃ ∈ Fp and g̃ ∈ Gp concludes that

|〈f̃(x), Q̂r̂g̃(y)〉| ≤ B2 · ‖Q̂r̂‖op ≤
√

2n1B
2.

To show the second, we note that, due to Proposition F.3, σ?r̂+1 ≤ 3σcut, from which the inequalities
tail?2(r̂) ≤ tail?2(rcut) + 9σ2

cutrcut and tail?1(r̂)2 ≤ 18r2
cutσ

2
cut + 2tail?1(rcut)

2 are straightforward
to verify. Together with Proposition F.3, these verify that the event Espec(r, σcut, rcut), defined in
Definition F.1, holds.

F.4. Analysis of the second stage of double-stage ERM

The following lemma, which is established in Appendix G.4, handles the error on the second phase
of double-stage ERM in terms of the first. Recall that we choose

(f̂DS, f̂DS) ∈ arg min
(f,g)∈Fr̂×Gr̂

L̂(3)(f, g) + λL̂(4)(f, g)

L̂(3)(f, g) =
1

n3

n3∑
i=1

(〈f(x3,i), g(y3,i)〉 − z3,i)
2

L̂(4)(f, g) =
1

n4

n4∑
i=1

(〈f(x4,i), g(y4,i)〉 − 〈f̃(x4,i), Q̂r̂ · g̃(y4,i)〉)2.

Lemma F.7 Suppose it holds that ‖Q̂r̂‖op ≤
√

2n1, as in the proof of Proposition F.2. Then, with
probability at least 1− δ/3 over the samples collected in Line 5 of Algorithm 1,

R(f̂DS, f̂DS;Dtrain) +
λ

2
R[r](f̂DS, f̂DS;D1⊗1)

≤ 2κapxtail?2(r̂) + 3λR[r](f̃ , Q̂r̂ · g̃;D1⊗1) + 352

(
1 +

λn1n3

n4

)
B4(Mr̂ + log(12/δ))

n3
.

We can now conclude the proof of our main theorem for double-stage ERM as follows.
Proof [Proof of Proposition F.1] First, we bound the regularized riskR(f̂DS, f̂DS;Dtrain)+λR[r](f̂DS, f̂DS;D1⊗1).
Using Proposition F.2 in Lemma F.7, we have

R(f̂DS, f̂DS;Dtrain) + λR[r](f̂DS, f̂DS;D1⊗1)

. κapx(tail?2(r̂) + λκtrnr
2
cuttail?2(p)) +

(
1 +

λκtrnn1n3

n4

)
B4(Mr̂ + log(1/δ))

n3
+
λκtrnr

2
cutB

4(Mp + log(1/δ))

n1

.? tail?2(rcut) + rcutσ
2
cut + λr2

cuttail?2(p) +

(
1 +

λn1n3

n4

)
B4(Mr̂ + log(1/δ))

n3
+
λr2

cutB
4(Mp + log(1/δ))

n1

≤ tail?2(r̂) + rcutσ
2
cut + λr2

cuttail?2(p) +

(
1 +

λn1n3

n4

)
B4(Mrcut + log(1/δ))

n3
+
λr2

cutB
4(Mp + log(1/δ))

n1
,
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where in the second to last line, we use.? to suprress polynomials in problem dependend constants,
and in the last line, we use the assumptions that K 7→MK is non-decreasing (see Assumption 2.7).
For our choice of n4 ≥ λn1n3, the above simplifies further to

R(f̂DS, f̂DS;Dtrain) + λR[r](f̂DS, f̂DS;D1⊗1)

.? tail?2(rcut) + rcutσ
2
cut + λr2

cuttail?2(p) +
B4(Mrcut + log(1/δ))

n3
+
λr2

cutB
4(Mp + log(1/δ))

n1
.

That the good spectral event Espec holds also follows from Proposition F.2. Lastly, we gather
the necessary conditions in order for the conclusion of Proposition F.2 to hold, µ = B2/n1, n1 ≥
max{p,B2/σ2

cut} n2 ≥ 722r2
cutn

9
1 log(24p/δ), and finally, we require Eq. (F.6). Stated succinctly,

this last condition stipulates that for some constant C .? 1,

tail?2(p) +
B4(Mp + log 1

δ )

n1
≤ σ2

cut

Cr2
cut

.

Doubling C by a factor 2, it is enough that tail?2(p) ≤ σ2
cut

Cr2cut
and n1 ≥

r2cutB
4(Mp+log 1

δ
)

σ2
cut

. The bound
follows.

Appendix G. Learning Theory and Proofs in Appendix F

In this section, we review some fundamental while important results from learning theory, and
related proofs in Appendix F.

G.1. Concentration inequalities

We begin with Bernstein’s inequality (see e.g., (Boucheron et al., 2005, Chapter 2)).

Lemma G.1 (Bernstein Inequality) Let Z1, . . . , Zn ∈ R be i.i.d. random variables with |Zi| ≤
M and Var[Zi] ≤ σ2. Then, with probability at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

Zi − E[Zi]

∣∣∣∣∣ ≤
√

2σ2 log(1/δ)

n
+
M log(1/δ)

3n
.

The following is a simplification of (Mackey et al., 2014, Corollary 4.2).

Lemma G.2 (Matrix Hoeffding) Let Y1, . . . ,Yn ∈ Rd×d be i.i.d. symmetric matrices with
E[Yi] = 0 and ‖Y‖2op ≤M . Then, with probability at least 1− δ,∥∥∥∥∥ 1

n

n∑
i=1

Yi

∥∥∥∥∥
op

≤M
√

2 log(2d/δ)

n
.
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G.2. Learning with finite function classes

Lemma G.3 Let Φ be a finite class of functions φ : W→ Rk, and let φ?(w) be a nominal function,
possibly not in Φ. Let M > 0 be a constant such that supw∈W maxφ∈Φ ‖(φ− φ?)(w)‖2 ≤M , and
let D be a distribution over pairs (w, z) ∈ W × Rk such that ‖z− φ?(w)‖2 ≤ M and E[z | w] =
φ?(w). Define R(φ) := Ew∼D[‖φ(w)− φ?(w)‖2], L̂n(φ) := 1

n

∑n
i=1 ‖φ(wi)− φ?(wi)‖2, and set

R̂n(φ) = L̂n(φ)− L̂n(φ?). Then, for any δ ∈ (0, 1), with probability at least 1− δ:

• The following guarantee holds simultaneously for all φ ∈ Φ and all α > 0:

|R(φ)− R̂n(φ)| ≤ αR(φ)

2
+

(
9

α
+ 1

)
· M

2 log(2|Φ|/δ)
n

.

• All empirical risk minimizers φ̂ ∈ arg minφ∈Φ L̂n(φ) = arg minφ∈Φ R̂n(φ) satisfy

R(φ̂) ≤ 2 inf
φ′∈Φ

ED[(φ′(w)− φ?(w))2] +
78M2 log(2|Φ|/δ)

n
.

Proof Throughout, all expectations are taken under spaces from D. We expand

R̂n(φ) =
1

n

n∑
i=1

Zi(φ), Zi(φ) := ‖φ(wi)− zi‖2 − ‖φ?(wi)− zi‖2.

By expanding

Zi(φ) := ‖(φ− φ?)(wi)‖2 + 2〈(φ− φ?)(wi), (φ?(wi)− zi)〉,

we see that

∀φ, E[Zi(φ)] = R(φ), w.p. 1, |Zi(φ)| ≤ 3M2.

Furthermore, for all φ,

E[Zi(φ)2] = E[(‖(φ− φ?)(wi)‖2 + 2〈(φ− φ?)(wi), (φ?(wi)− zi)〉)2]

≤ E[(‖(φ− φ?)(wi)‖2 + 2‖(φ− φ?)(wi)‖‖φ?(wi)− zi‖)2]

≤ E[(3M‖(φ− φ?)(wi)‖)2] = 9M2R(φ).

Thus, by Bernstein’s inequality (Lemma G.1) and a union bound over all φ ∈ Φ, the following holds
with probability at least 1− δ:

∀φ ∈ Φ, |R(φ)− R̂n(φ)| ≤
√

18M2R(φ) log(2|Φ|/δ)
n

+
M2 log(2|Φ|/δ)

n
.

Therefore, by AM-GM inequality, the following holds for all fixed α > 0:

∀φ ∈ Φ, |R(φ)− R̂n(φ)− R̂n(φ?)| ≤
αR(φ)

2
+

(
9

α
+ 1

)
· M

2 log(2|Φ|/δ)
n

.

This establishes the first statement of the lemma.
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To prove the second statement, let φ̃ ∈ arg minφ∈ΦR(φ). Then, we have that on the event of
the previous display,

R(φ̂)−R(φ̃) = R(φ̂)−Rn(φ̂) + R̂n(φ̂)− R̂n(φ̃)︸ ︷︷ ︸
≤0

+R̂n(φ̃)−R(φ̃)

≤ α

2
(R(φ̂) +R(φ̃)) + 2

(
9

α
+ 1

)
· M

2 log(2|Φ|/δ)
n

≤ αR(φ̂) + 2

(
9

α
+ 1

)
· M

2 log(2|Φ|/δ)
n

.

Selecting α = 1/2 and rearranging

1

2
R(φ̂) ≤ R(φ̃) + 2(18 + 1) · M

2 log(2|Φ|/δ)
n

.

The bound follows.

G.3. Proof of Lemma F.1

The first inequality is a direct consequence of Lemma G.3. Here, we take the function class Φ =
Fp × Gp, so log |Φ| = Mp. Moreover, by Assumption 2.7, we can take

M = sup
Fp∈F ,g∈Gp

sup
x,y

(〈f(x), g(y)〉 − 〈f?(x), g?(y)〉) ≤ 2B2.

The second inequality uses Assumption 2.5 to bound R(f?p , g
?
p;Dtrain) ≤ κapxR(f?p , g

?
p;D1⊗1),

and noting the fact that R(f?p , g
?
p;D1⊗1) = tail?2(p) by Lemma M.4. The third inequality uses

Assumption 2.2, incurring an addition factor of κtrn. �

G.4. Proof of Lemma F.7

Let Φ := {(x, y) 7→ 〈f(x), g(y)〉, (f, g) ∈ Fr × Gr}. Further, define

φ3,? := 〈f?(x), g?(y)〉, φ4,? := 〈f̃(x), Q̂rg̃(y)〉.

We define D3 as the distribution of (x, y, z) ∼ Dtrain, and D4 as the distribution of (x′, y′, z′),
where (x′, y′) ∼ D1⊗1 and z′ = φ4,?(x

′, y′). We compute that, using Assumptions 2.4 and 2.7, and
the last statement of Proposition F.2,

sup
x,y

max
φ
‖φ(x, y)− φ3,?(x, y)‖ ≤ 2B2

sup
x,y

max
φ
‖φ(x, y)− φ4,?(x, y)‖ ≤ (1 +

√
2n1)B2,

and

log |Φ| = log |Fr||Gr| = Mr.
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For i ∈ {3, 4}, let Ri and L̂i,ni , R̂i,ni denote the corresponding excess risks as in Lemma G.3,
the following holds with probability at least 1− δ/3 for all φ ∈ Φ

|R3(φ)− R̂3,n3(φ)| ≤ 1

4
R3(φ) + (19 · 4)

B4(Mr + log(12/δ))

n3

|R4(φ)− R̂4,n4(φ)| ≤ 1

4
R4(φ) + (19 · (2 + 2n1))

B4(Mr + log(12/δ))

n4
,

where we set α = 1/2 in the first statement of Lemma G.3. Set Rλ(φ) = R3(φ) +λR4(φ). Then if
φ̂ ∈ arg minφ∈Φ L̂3,n3(φ) + λL̂4,n4(φ) = arg minφ∈Φ R̂3,n3(φ) + λR̂4,n4(φ), we see that for any
other φ̃ ∈ arg minφ∈ΦRλ(φ),

Rλ(φ̂)−Rλ(φ̃) ≤ 1

4
(Rλ(φ̂) +Rλ(φ̃)) + 2(19 · 4)

B4(Mr + log(12/δ))

n3
+ 2λ(19 · (2 + 2n1))

B4(Mr + log(12/δ))

n4

≤ 1

2
Rλ(φ̂) + 176

(
1 +

λn1n3

n4

)
B4(Mr + log(12/δ))

n3
.

Rearranging,

Rλ(φ̂) ≤ 2Rλ(φ̃) + 352

(
1 +

λn1n3

n4

)
B4(Mr + log(12/δ))

n3
.

To conclude, we handle the terms Rλ(φ̂) and Rλ(φ̃). First,

Rλ(φ̃) = inf
φ∈Φ

Rλ(φ)

= inf
(f,g)∈Fr×Gr

R(f, g;Dtrain) + λED1⊗1 [(〈f, g〉 − 〈f̃ , Q̂r · g̃〉)2]

≤ R(f?r , g
?
r ;Dtrain) + λED1⊗1 [(〈f?r , g?r 〉 − 〈f̃ , Q̂r · g̃〉)2] ((f?r , g

?
r ) ∈ Fr × Gr)

≤ κapxR(f?r , g
?
r ;D1⊗1) + λED1⊗1 [(〈f?r , g?r 〉 − 〈f̃ , Q̂r · g̃〉)2] (Assumption 2.5)

= κapxtail?2(r) + λR[r](f̃ , Q̂r · g̃;D1⊗1).

Second,

R(f̂ , ĝ;Dtrain) +
λ

2
R[r](f̂ , ĝ;D1⊗1)

= R(f̂ , ĝ;Dtrain) +
λ

2
ED1⊗1 [(〈f̂ , ĝ〉 − 〈f?r , g?r 〉)2]

≤ R(f̂ , ĝ;Dtrain)︸ ︷︷ ︸
=R3(φ̂)

+λED1⊗1 [(〈f̃ , Q̂r · g̃〉 − 〈f̂ , ĝ〉)2]︸ ︷︷ ︸
R4(φ̂)

+λED1⊗1 [(〈f̃ , Q̂r · g̃〉 − 〈f?r , g?r 〉)2]︸ ︷︷ ︸
=R[r](f̃ ,Q̂r·g̃;D1⊗1)

= Rλ(φ̂) + λR[r](f̃ , Q̂r · g̃;D1⊗1).

In sum, we conclude

R(f̂ , ĝ;Dtrain) +
λ

2
R[r](f̂ , ĝ;D1⊗1)

≤ 2κapxtail?2(r) + 3λR[r](f̃ , Q̂r · g̃;D1⊗1) + 352

(
1 +

λn1n3

n4

)
B4(Mr + log(12/δ))

n3
,

which completes the proof. �
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Appendix H. Proof of Rate Instantiations

This section gives the proofs of Lemmas E.1 and E.2, the instantiations of our error bounds under the
spectral decay assumptions stipulated in Assumption 2.6. We begin by establishing the following
two spectral decay bounds.

Lemma H.1 (tail?q Bounds) Suppose Assumption 2.6 holds. Then,

tail?1(r) ≤

{
C(1 + γ−1)(r + 1)−γ (polynomial decay)
C(1 + γ−1)e−γ(r+1) (exponential decay)

tail?2(r) ≤

{
2C2(r + 1)−1−2γ (polynomial decay)
tail?2(r) ≤ C2(1 + γ−1)e−2γ(r+1) (exponential decay)

Lemma H.2 Suppose Assumption 2.6 holds, and σ?r > 0. Then,

tail?2(r)2

(σ?r)
2
≤

{
3C2r−2γ (polynomial decay)
C2(1 + γ−1 + r)2e−2γr (exponential decay)

.

The above lemmas are proved in Lemma H.1 and Appendix H.4 respectively. We give the proof of
Lemmas E.1 and E.2 in the following two sections.

H.1. Proof of Lemma E.1

In both decay regimes, we apply Lemmas H.1 and H.2. Under the polynomial decay, we have

APXERRSS(r) := r4 · tail?2(r) + tail?1(r)2 + r2(σ?r+1)2 +
r6 · tail?2(r)2

(σ?r )
2

≤ 2C2r4r−1−2γ + C2(1 + γ−1)2r−2γ + C2r2−2(1+γ) + 3C2r6−2γ

. C2(1 + γ−1)2r6−2γ .

In the exponential case, a similar argument applies.

H.2. Proof of Lemma E.2

Again, let ψ(r) be equal to ψ(r) = Cr−(1+γ) for polynomial decay, and ψ(r) = Ce−rγ for expo-
nential decay; thus, under Assumption 2.6, ψ(r) ≥ σ?r .

Claim H.1 Suppose we take σcut ≥ 2ψ(rcut). Then, if ψ(rcut) ≤ 1
3eσ

?, Condition E.1(c) holds.

Proof [Proof of Claim H.1] Observe that, if we select σcut = 2ψ(rcut), then if ψ(rcut) ≤ 1
3eσ

?, thn

2σ?rcut ≤ 2ψ(rcut) = σcut, σcut = 2ψ(rcut) ≤
2

3e
σ?.

Therefore, Condition E.1(c) holds.
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Polynomial Decay. From Lemma H.1, we have tail?1(r) ≤ C(1 +γ−1)(rcut + 1)−γ and tail?2(r) ≤
2C2(rcut + 1)−(1+2γ), and by definition of ψ, σcut ≥ 2ψ(rcut) = 2Cr

−(1+γ)
cut . We then bound

ERRDT(rcut, σcut) := r2
cutσ

2
cut + tail?1(rcut)

2 +
tail?2(rcut)

2

(σcut)2

≤ r2
cutσ

2
cut + C2(1 + γ−1)2r−2γ

cut +
4C2r

−2(1+2γ)
cut

4C2r
−2(1+γ)
cut

≤ r2
cutσ

2
cut + C2(1 + (1 + γ−1)2)r−2γ

cut . r
2
cutσ

2
cut + C2(1 + γ−2)r−2γ

cut .

Let us check each of the conditions of Condition E.1.

Claim H.2 Suppose that rcut ≥ max{c1,
3eC
σ?1
} and p ≥ c

− 1
1+2γ

1 r
7+5γ
1+2γ

cut . Then, Condition E.1 holds,

and the interval [2Cr
−(1+γ)
cut , 2

3eσ
?] is nonempty.

Proof [Proof of Claim H.2] For Condition E.1(a), we need rcut ≥ c1, and tail?2(rcut) ≤ 1
c1
r2

cutσ
2
cut =

4
c1
r2

cut(σ
2
cut). It suffices that 2C2(rcut+1)−(1+2γ) ≤ 4C2

c1
r

2−2(1+γ)
cut = 4C2

c1
r−2γ

cut . As rcut+1 ≥ rcut,
it is enough that 1 ≤ (2/c1)r−2γ+1+2γ

cut = (2/ct)rcut, which holds for rcut ≥ c1. For Con-
dition E.1(b), we need tail?2(p) ≤ 1

c1

σ2
cut

r5cut
. We have tail?2(p) ≤ 2C2p−(1+2γ), and 1

c1
· σ

2
cut

r5cut
=

1
c1
· 4C2r

−2(1+γ)−5
cut = 1

c1
· 4C2r

−(7+5γ)
cut . Hence, it is enough that p−(1+2γ) ≤ r

−(7+5γ)
cut , i.e.

p ≥ c
− 1

1+2γ

1 r
7+5γ
1+2γ

cut . For Condition E.1(c), Claim H.1 requires the choice of ψ(rcut) ≤ 1
3eσ

?
1, i.e.

Cr
−(1+γ)
cut ≤ 1

3eσ
?
1. For this, it is enough that rcut ≥ 3eC

σ?1
.

Exponential Decay. From Lemma H.1, we have tail?1(r) ≤ C(1 + γ−1)e−γr, tail?2(r) ≤ C2(1 +
γ−1)e−2γr, and by definition of ψ, σcut ≥ 2ψ(rcut) = 2Ce−γr. Then,

ERRDT(rcut, σcut) := r2
cutσ

2
cut + tail?1(rcut)

2 +
tail?2(rcut)

2

(σcut)2

≤ σ2
cutr

2
cut + C2(1 + γ−1)2e−2γrcut +

C4(1 + γ−1)2e−4γrcut

4C2e−2γrcut

≤ σ2
cutr

2
cut + C2(1 + γ−1)2e−2γrcut +

C4(1 + γ−1)2e−4γrcut

4C2e−2γrcut

. σ2
cutr

2
cut + C2(1 + γ−2)e−2γrcut

We conclude by checking Condition E.1

Claim H.3 Suppose that rcut ≥ max{c1,
√
c1(1 + γ−1), 1

γ log(3eC
σ?1

)} and p ≥ max{2rcut,
1
γ log(r5

cutc1)}.
Then, Condition E.1 holds, and the interval [2Ce−γrcut , 2

3eσ
?] is nonempty.

Proof [Proof of Claim H.3] For Condition E.1(a), we need rcut ≥ c1, and tail?2(rcut) ≤ 1
c1
r2

cutσ
2
cut =

4
c1
r2

cut(σ
2
cut). It suffices that C2(1 + γ−1)e−2γrcut ≤ 4C2

c1
r2

cute
−2γrcut . For this, it suffices that

rcut ≥
√
c1(1 + γ−1.
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For Condition E.1 (b), we need tail?2(p) ≤ 1
c1

σ2
cut

r5cut
. We have tail?2(p) ≤ (1 + γ−1)C2e−2γp, and

1
c1
· σ

2
cut

r5cut
= 1

r5cutc1
· 4C2e−2γrcut . Hence, it is enough that e−2γ(p−rcut) ≤ 4

r5cutc1
. For p ≥ 2rcut, it is

enough that e−γp ≤ 4
r5cutc1

. Thus, it suffices that p ≥ max{2rcut,
1
γ log(r5

cutc1)}. For Condition E.1

(c), Claim H.1 requires the choice of ψ(rcut) ≤ 1
3eσ

?
1, i.e. Ce−γr ≤ 1

3eσ
?
1. For this, it is enough

that rcut ≥ 1
γ log(3eC

σ?1
).

This concludes the proof. �

H.3. Proof of Lemma H.1

We begin with the polynomial decay case, where σ?r ≤ Cr−(1+γ). We compute

tail?1(r) = C

∞∑
n>r

n−(1+γ)

≤ C(r + 1)−(1+γ) +

∫ ∞
x=r+1

x−(1+γ)dx

≤ C(1 + γ−1)(r + 1)−γ .

and

tail?2(r) = C2
∞∑
n>r

n−2(1+γ)

≤ C2(r + 1)−2(1+γ) + C2

∫ ∞
x=r+1

x−2(1+γ)dx

≤ C2(1 +
1

1 + 2γ
)(r + 1)−1−2γ ≤ 2C2(r + 1)−1−2γ .

We now turn to the exponential decay case, where σ?r ≤ C exp(−γr). We have

tail?1(r) = C
∞∑
n>r

e−γn

≤ Ce−γ(r+1) + C

∫ ∞
x=r+1

e−γxdx

≤ C(1 + γ−1)e−γ(r+1).

and

tail?2(r) = C2
∞∑
n>r

e−2γn

≤ (Ce−γ(r+1))2 + C

∫ ∞
x=r+1

e−2γxdx

≤ C2(1 +
1

2
γ−1)(e−γ(r+1))2

≤ C2(1 + γ−1)(e−γ(r+1))2.

�
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H.4. Proof of Lemma H.2

Let ψ(r) := Cr−(1+γ) under polynomial decay, and ψ(r) = Ce−γr under exponential decay. We
start with a useful claim, and then turn to the polynomial and exponential decay regimes in sequence.
Going forward, set ∆ = σ?r , and let r̄ := inf{i ∈ N : ψ(i) ≤ ∆}.

Claim H.4 tail?2(r) ≤ r̄∆2 + tail?2(r̄) and tail?1(r) ≤ (r̄ − 1)∆ + tail?1(r̄).

Proof [Proof of Claim H.4] ψ(r) ≥ σ?r = ∆ implies r ≤ r̄.

tail?2(r) =
∑
n>r

(σ?r )
2 =

r̄∑
n=r+1

(σ?r )
2 +

∑
n>r̄

(σ?r )
2

≤ (r̄ − 1)(σ?r+1)2 +
∑
n>r̄+1

(σ?r )
2 = r̄(σ?r )

2 + tail?2(r̄)

≤ (r̄ − 1)∆2 + tail?2(r̄),

where we use that σ?r+1 ≤ ∆.

Polynomial decay. For polynomial decay, we consider ψ(i) = Ci−(1+γ). Then r̄+ 1 = 1. inf{i :

C(i)−(1+γ) ≤ ∆} = 1 + inf{i : i ≥ (∆/C)
− 1

1+γ }. Hence, r̄ ≥ (∆/C)
− 1

1+γ and r̄ + 1 ≤
(∆/C)

− 1
1+γ . By Lemma H.1, we have

tail?2(r̄ + 1) ≤ 2C2(1 +
1

1 + 2γ
)(r̄ + 1)−1−2γ ≤ 2C2(∆/C)

1+2γ
1+γ . (H.1)

Thus, by Claim H.4, the above display, and the bound r̄ ≤ (∆/C)
− 1

1+γ ,

tail?2(r) ≤ (r̄ − 1)∆2 + 2C2(∆/C)
1+2γ
1+γ

≤ (∆/C)
− 1

1+γ ∆2 + 2C2(∆/C)
1+2γ
1+γ

= ∆
1+2γ
1+γ C

1
1+γ + +2C2(∆/C)

1+2γ
1+γ

= 3C2(∆/C)
1+2γ
1+γ := 3C2(σ?r/C)

1+2γ
1+γ

Thus, using the above display and σ?r ≤ Cr−(1+γ).

tail?2(r)2

(σ?r)
2
≤ 3C2(σ?r/C)

2(1+2γ)
1+γ

−2
= 3C2(σ?r/C)

2γ
1+γ ≤ 3C2r−2γ

Exponential decay. For polynomial decay, we consider ψ(i) = Ce−γi. Then r̄ = inf{i :
Ce−γi ≤ ∆} = inf{i : i ≥ γ−1 log C

∆}. Hence,

r̄ ≥ γ−1 log
C

∆
, r̄ − 1 ≤ γ−1 log

C

∆
.

Then, by Lemma H.1,

tail?2(r̄) ≤ C2(1 + γ−1)(e−γ(r̄+1))2 ≤ (1 + γ−1)∆2 ≤ C2(1 + γ−1)∆2. (H.2)
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Thus by Claim H.4,

tail?2(r) ≤ C2(1 + γ−1 + log
C

∆
)∆2 = C2(1 + γ−1 + γ−1 log

C

σ?r
)(σ?r)

2

Hence,

tail?2(r)2

(σ?r)
2
≤ C2(1 + γ−1 + γ−1 log

C

σ?r
)2(σ?r)

2

As x log(1/x) is increasing in x, and as σ?r ≤ Ce−γr, the above is at most

tail?2(r)2

(σ?r)
2
≤ C2(1 + γ−1 + r)2e−2γr.

�

Part III

Supplement for the Meta-Theorem
Appendix I. Factor Recovery for Matrix Factorization

We recall the setup for matrix factor recovery; its relation to the bilinear embeddings is described in
Section 4.4. For matrices A?, Â ∈ Rn×d, B?, B̂ ∈ Rm×d, and matrices M?, M̂, and for orthogonal
matrices R ∈ O(d), consider the error terms

∆0(R, k) = ‖(A?
[k] − ÂR)(B?

[k])
>‖2F ∨ ‖A?

[k](B
?
[k] − B̂R)>‖2F (I.1)

∆1(R, k) = ‖A?
[k] − ÂR‖2F ∨ ‖B?

[k] − B̂R‖2F, (I.2)

where A?
[k] and B?

[k] are the rank-k approximations of A? and B?; formally6

A?
[k] = A?P?

[k], B?
[k] = B?P?

[k], P?
[k] ∈ projection on top-k eigenspace of (A?)>A? = (B?)>B?.

(I.3)

Our guarantee for controlling these matrix error terms is perhaps the most challenging technical
ingredient of the paper. We state the following theorem, of which Theorem 5 is a specialization.

Theorem 7 Let A?, Â ∈ Rn×d, B?, B̂ ∈ Rm×d, and suppose (A?,B?) and (Â, B̂) are balanced
factorizations of M? = A?(B?)>, and M̂ = ÂB̂>. Let r = rank(M̂). Fix ε > 0 and s ∈ N such
that s > 1, ε ≥ ‖M̂−M?‖F, and ε ≤ ‖M

?‖op
40s . Also, for q ≥ 1, let tailq(M; k) :=

∑
i>k σi(M)q.

Then,

6. While P?
[k] is non-unique in general, Theorem 7 ensures that there is a spectral gap at rank k, ensuring P?

[k] is indeed
unique.
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(a) There exists an index k ∈ [min{r, s− 1}] and an orthogonal matrix R ∈ O(d) such that

(weighted error) ∆0(R, k) . ε2 · s2`?(ε, s) (I.4a)

(unweighted error) ∆1(R, k) . (
√
r + s2)ε+ sσs(M

?) + tail1(M?; s), (I.4b)

where we define `?(ε, s) := min
{

1 + log
‖M?‖op

40sε , s
}

.

(b) Moreover, the index k satisfies

tail2(M?; k) . s3ε2 + s(σs(M
?))2 + tail2(M?; s).

(c) The matrix R and k satisfy (ÂR)>ÂR � 39εP?
[k] and σk(M?)− σk+1(M?) ≥ 40ε/s.

Explanation of Theorem 7. There are a few essential points to the theorem, which we outline
below.

• The parameter ε2 upper bounds ‖M?− M̂‖2F. When instantiated as in Section 4.4, ε2 bounds
‖M1⊗1(f, g)−M1⊗1(f?, g?)‖2F = R(f, g;D1⊗1). BecauseDtrain coversD1⊗1, this ensures
that we can choose ε sufficiently small for non-vacuous bounds.

• The theorem guarantees the existence of some index k ∈ [s − 1] for which the error terms
with respect to the rank-k approximation is small. It may not be the case that k = s − 1,
and indeed the construction of this index k can be subtle. Fortunately, this index k is only
important for the analysis, and need not be known by the algorithm. Such an index k leads
to a partition of the singular values that enable us to better control the relative spectral gap
(see formal definition in Appendix I.1). This is the key to obtaining our improved bounds
compared to the literature.

• Part (a) of the theorem bounds ∆0 and ∆1. Our bound on ∆0 is much smaller than that on ∆1,
scaling quadratically in ε instead of linearly. This emphasizes the importance of weighting by
the co-factors A?

[k] and B?
[k] in Eq. (I.1), or equivalently (via the discussion in Section 4.4),

by the rank-reduced embeddings f?k , g
?
k in Definition 4.3.

• Part (b) stipulates that truncating the spectrum of M? at the index k is not much worse
than truncating the spectrum at the stipulated index s. Note that tail2(M?; k) corresponds
to tail?2(k) (in Proposition 4.1) under the choices in Section 4.4. Hence, this is useful for
handling the term tail?2(k) that emerges in the risk decomposition therein.

• Finally, the statement ensures that, even though M? may not have a spectral gap at its s-
singular value, the stipulated index k does ensure σk(M?)−σk+1(M?) ≥ 40ε/s. Moreover, it
also ensures that, after the rotation R, the column-space of ÂR contains the column space of
A?; this corresponds to Eq. (4.1), and ensures that the chosen rotation R makes (R>f,R>g)
aligned proxies. This latter statement also gives some quantitative wiggle room when apply-
ing limiting arguments for continuous distributions (see more details in Appendix M).
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I.1. Proof roadmap

Technical challenges. The key challenge throughout the proof of Theorem 7 is that many classical
matrix perturbation bounds (e.g. Wedin’s theorem) require some form of separation (i.e. gaps)
among the singular values of the matrix to which it is being applied. In sharp contrast, we assume
no such condition on gaps in the spectrum of M?.

Specifically, we appeal to a lemma due to Tu et al. (2016) (see the restatement in Lemma I.5),
which controls (up to a rotation) the Frobenius error of the factors X1−RX2, Y1−RY2 in terms
of the Frobenius error between their outer products Z1 = X1Y

>
1 and Z2 = X2Y

>
2 . When applied

directly to M̂ = ÂB̂> and M? = A?(B?)>, Lemma I.5 has numerous limitations: (a) it requires
the factorization of M̂ and M? to have the same rank k; (b) it requires a sufficiently large spectral
gap on σk(M?)− σk+1(M?); (c) the error bounds scale with the inverse of this gap, which can be
very loose when σk(M?) becomes small.

Our techniques. Instead of applying Lemma I.5 directly, we construct a certain partition of the
spectrum of M?, what we call a “well-tempered partition” (Definition I.3), which partitions the
indices [s] of the top-s singular values of M? into intervals where (a) all singular values are of
similar magnitude, and (b) the separation between the intervals is sufficiently large. Condition (b)
is necessary for applying gap-dependent perturbation bounds, but condition (a) allows us to refine
these bounds tremendously.

Specifically, we denote the subsets in this partition as Ki = {ki + 1, ki + 2, . . . , ki+1}; we call
ki the pivot. We show that the partition ensures that the relative gap

δki =
σki(M

?)− σki+1(M?)

σki(M
?)

(I.5)

is at least Ω(1/s). By contrast, note that with exponentially decaying singular values, the absolute
gap σki(M

?)− σki+1(M?) can be exponentially small.
With a careful change-of-basis, the above spectral partition induces a decomposition of A?

[k],B
?
[k]

and Â, B̂ into blocks according to the indices in the set Ki. We then apply Lemma I.5 separately
along each block, arguing that the factorization error is small block-wise. This significantly sharp-
ens our control over ∆0 (recall the definition in Eq. (I.1)) because we weight the error in block i by
the largest singular value in that block. Working through the algebra, we end up only paying for the
relative gap, which as noted above is Ω(1/s).

For both ∆0 and ∆1, the above partition also has the advantage (indeed, necessity) that, by
restricting to each set Ki in the partition, we only need to consider the factorizations of the same
rank, and lower-bounded relative spectral gap. Recall that Lemma I.5 establishes error bounds
on factors in terms of error bounds on their outer-product. By decomposing our matrices into
their restriction to the singular values index by Ki, we therefore need some way of controlling the
following: Denote by M?

Ki , M̂Ki the SVDs of M?, M̂ containing only singular values indexed by
j ∈ Ki. How large is ‖M?

Ki − M̂Ki‖F, in terms of ‖M? − M̂‖F?
Again, our control over relative spectral gaps come to the rescue. Here, we invoke Theorem 1,

which shows that the error in the SVDs between these objects grows only with the relative spectral
gap, which as we have stressed, is well-controlled. This again reduces the dependence on the small
singular values of M?, which improves our bounds.

The formal proof is quite involved. Hence, we begin with an extensive setup of preliminaries,
simplification and useful notation before diving into the main arguments. But to summarize, the key
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tools are: (a) Lemma I.5 due to Tu et al. (2016), (b) our novel construction of the “well-tempered
partition” of the spectrum of M?, and (c) our novel relative-error perturbation bound.

I.2. Proof preliminaries

Singular value notation. We introduce the following notation for the singular values of M? and
their relative gaps:

σ?k := σk(M
?), σ?0 = +∞, δ?k := 1− σk+1(M?)

σk(M?)
, δ?0 = 1.

Explicit factorization. We argue that, without loss of generality, we can pick factors Â, B̂,A?,B?

of a canonical form. Construct the SVDs of M̂ and M? as

M̂ = ÛΣ̂V̂>, M? = U?Σ?(V?)>,

where Û,U? ∈ Rn×d, V̂,V? ∈ Rm×d, and Σ̂,Σ? ∈ Rp×d are diagonal matrices with non-negative
entries arranged in (non-strictly) descending order. Note that p ≤ min{n,m}. We now argue that
we may assume the factor matrices take the following form, without loss of generality:

Â = ÛΣ̂
1
2 , B̂ = V̂Σ̂

1
2 , A? = U?(Σ?)

1
2 , B? = V?(Σ?)

1
2 . (I.6)

One can check that a valid choice of rank-k SVD for M? is given by A?
[k](B

?
[k])
>, where

A?
[k] = U?(Σ?

[k])
1
2 , B?

[k] = V?(Σ?
[k])

1
2 ,

and Σ?
[k] zeroes out all but the first k entries of Σ?. The assumption that the matrices take the above

form is justified by the following lemma, which shows that any bounds on ∆0,∆1 hold for the
factorization in Eq. (I.6).

Lemma I.1 Assume that Â, B̂,A?,B? take the form Eq. (I.6). Let (Â′, B̂′) and (A?′,B?′) be
any other rank-d balanced factorizations of the matrices M̂ and M?, respectively. Then, for any
R′ ∈ O(d), there exists a R ∈ O(d) such that

‖(A?
[k] − ÂR)(B?

[k])
>‖2F = ‖(A?′

[k] − Â′R′)(B?′
[k])
>‖2F, ‖A?

[k](B
?
[k] − B̂R)>‖2F = ‖A?′

[k](B
?′
[k] − B̂′R′)>‖2F

‖A?
[k] − ÂR‖2F = ‖A?′

[k] − Â′R′‖2F, ‖B?
[k] − B̂R‖2F = ‖B?′

[k] − B̂′R′‖2F.
Moreover, if

rowspace
(

(Â[k]R)>(Â[k]R)
)
⊇ rowspace

(
(A?

[k])
>(A?

[k])
)
,

then

rowspace
(

(Â′[k]R
′)>(Â′[k]R

′)
)
⊇ rowspace

(
(A?′

[k])
>(A?′

[k])
)
.

The above lemma is proved with the following fact.

Lemma I.2 Let (A,B) be a rank-at-most-d balanced factorization of a matrix M ∈ Rn×m. De-
note a SVD M = UΣV> (with Σ ∈ Rd×d). Then, there exists a rotation matrix R ∈ O(d) such
that A = UΣ1/2R and B = VΣ1/2R. Moreover, this R satisfies A[k] = UΣ

1/2
[k] R, where Σ[k]

masks the all but the first k entries of Σ, where A[k] is consistent with the definition of SVD as
Eq. (I.3). We similarly define B[k].

The proofs of Lemmas I.1 and I.2 are given in Appendix K.1.
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Masking. It will be convenient to have compact notation for masking entries of matrices. Recall
that the index d refers to the “inner dimension”, e.g. Â ∈ Rn×d.

To begin, we define masking for square matrices. For matrices X ∈ Rp×d, and K ⊆ [d], define
the matrix XK ∈ Rp×d by masking X’s entries in K:

(XK)ij = I{i ∈ K and j ∈ K} ·Xij .

We also define the shorthand notation

X>k := X[d]\[k],

with the convention that X[0] = 0.

Next, we define masking for factors matrices. Given a matrix of the form A = UΣ
1
2 , where

U ∈ Rn×d and Σ ∈ Rp×d is diagonal, we define

AK := UΣ
1
2
K, A[k] = UΣ

1
2

[k], A>k = UΣ
1
2
>k, (A,U,Σ) ∈ {(A?,U?,Σ?), (Â, Û, Σ̂)}.

We define analogous notation for B̂,B?. Finally, we define

MK = AKB>K, M[k] = A[k]B
>
[k], M>k = A>kB

>
>k

(A,B,M) ∈ {(A?,B?,M?), (Â, B̂, M̂)}.

In particular, M[k] is the rank-k approximation of M, for M ∈ {M̂,M?}.

Partitions & Compatibility. Importantly, we consider the setK which partitions the inner dimen-
sion d into disjoint intervals. We call these sets monotone partitions.

Definition I.1 (Monotone Partitions) We say that (Ki)`i=1 is a partition of [d] if
⋃`
i=1Ki = [d],

and the sets {Ki}`i=1 are pairwise disjoint. We say that it is a monotone partition if there exists
integers 0 = k1 < · · · < k` < k`+1 = p such that Ki = {ki + 1, . . . , ki+1}. In particular, this
means K` = {k` + 1, . . . , p}. We call the entries ki the pivots of the monotone partition, and call
the entry k` the final pivot.

Definition I.2 (Compatibility) We say a matrix X ∈ Rd×d is compatible with a partition (Ki)`i=1

of [d] if X =
∑`

i=1 XKi .

In particular, if (Ki)`i=1 is a monotone partition, then compatibility means that X is a block-diagonal
matrix whose blocks corresponding to the indices in the sets Ki for all i = 1, · · · , `.

I.3. Key error decomposition results

The following lemma decomposes the error across the partitions:

Lemma I.3 Let (Ki)`i=1 be a monotone partition, and let R ∈ Rp×d be compatible with (Ki)`i=1.
Then

(A?
[k`]
− ÂR)(B?

[k`]
)> =

`−1∑
i=1

(
A?
Ki − ÂKiRKi

)
(B?
Ki)
>, (I.7a)

(A?
[k`]
− ÂR) =

`−1∑
i=1

(
A?
Ki − ÂKiRKi

)
− Â>k`R>k` , (I.7b)

with the analogous composition being true for (B?
[k`]
− B̂R) and A?

[k`]
(B?

[k`]
− B̂R)>.
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In what follows, we choose the matrix R above to be orthogonal. However, orthogonality of R is
not strictly necessary the decomposition in Lemma I.3. Conveniently, the decomposition of (A?

[k`]
−

ÂR)(B?
[k`]

)> does not incur a dependence on the tail Â>k`R>k` of Â, thereby avoiding all singular
values after the final pivot. This is one of the reasons why the weighted error ∆0 ends up being
smaller than the unweighted ∆1. The proof of Lemma I.3 is given in Subsubsection K.2.1.

In our analysis, we consider partitions of [d] that enjoy favorable spectral properties: first, every
pivot ki has large relative spectral gap δ?ki (for M?), and second, the largest singular value in each
partition is at most a constant times that of the pivot of the next partition.

Definition I.3 (Well-Tempered Partition) We say a partition (Ki)`i=1 is (δ, µ)-well-tempered if it
is monotone, and for all i ∈ [`], the corresponding pivots ki = mink{k − 1 : k ∈ Ki} satisfy

(a) δ?ki ≥ δ;

(b) max{σ?k′ : k′ ∈ Ki} ≤ µ · σ?ki+1
.

For such a partition, we define the constants

Mspace :=
∑̀
i=1

(δ?ki)
−2, and Mspec :=

∑̀
i=1

(σ?ki)
−1.

At the end of the proof, we show that a well-tempered partition always exists with µ = O (1) and
δ = 1/k, and where Mspace and Mspec are well-behaved. For now, let us carry the analysis out in
terms of the properties of the supposed partition. The key object in the analysis is the normalized
error:

Definition I.4 (Normalized Factored Error) Let (Ki)`i=1 be a monotone partition. We define the
normalized error term for i ∈ [`] as

Ei(R) :=
{

(δ?ki ∧ δ?ki+1
)2(σ?ki+1

)
}
·max

{
‖A?
Ki − ÂKiRKi‖2F, ‖B?

Ki − B̂KiRKi‖2F
}
.

We now bound our given error terms in terms of the Ei-quantities. The proof of the following
lemma is given in Subsubsection K.2.2.

Lemma I.4 Let R ∈ O(d) be compatible with a (δ, µ)-well-tempered partition (Ki)`i=1 with pivots
{ki}i∈[`]. Then

∆0(R, k`) ≤ 2µ ·Mspace · max
i∈[`−1]

Ei(R) (I.8a)

∆1(R, k`) ≤
Mspec

δ2
· max
i∈[`−1]

Ei(R) +
∑
i>k`

σi(M̂). (I.8b)

I.4. Controlling the normalized errors

As shown in Lemma I.4, bounds on both ∆0 and ∆1 amount to bounding (suitably rotated) er-
rors between the factorizations of the ground-truth and estimated matrix. To do so, we invoke the
following factorization lemma due to Tu et al. (2016).
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Lemma I.5 ((Tu et al., 2016), Lemma 5.14) Let (A,B) and (A′,B′) be rank-r balanced factor-
ization of matrices M and M′, respectively. Suppose that ‖M −M′‖op ≤ 1

2σr(M). Then, there
exists an orthogonal matrix O ∈ O(r) such that

‖A−A′O‖2F + ‖B−B′O‖2F ≤ c0
‖M−M′‖2F
σr(M)

,

where c0 = 2√
2−1

.

As a consequence, we can deduce the following bound on the normalized error terms.

Lemma I.6 Let (Ki)`i=1 be a (δ, µ)-well-tempered partition with pivots {ki}i∈[`]. Define

ε̃op := max
i∈[`+1]

δ?ki‖M̂[ki] −M?
[ki]
‖op, ε̃fro := max

i∈[`+1]
δ?ki‖M̂[ki] −M?

[ki]
‖F. (I.9)

Then, if ε̃op ≤
δσ?k`

4 , there exists a R ∈ O(d) which is compatible with (Ki)`i=1 such that

max
i∈[`]

Ei(R) ≤ 4c0ε̃
2
fro . ε̃

2
fro,

where c0 = 2√
2−1

.

To prove the above lemma, we invoke Lemma I.5 to bound ‖A?
Ki − ÂKiRKi‖F and ‖B?

Ki −
B̂KiRKi‖F in terms of ‖M?

Ki − M̂Ki‖F. Then we notice that M̂Ki = M̂[ki+1]− M̂[ki] and M?
Ki =

M?
[ki+1] −M?

[ki]
, so we can derive a bound directly in terms of the differences between rank-ki

SVDs. The proof is given in Subsubsection K.2.3. In applying Lemma I.6, we crudely bound
ε̃op ≤ ε̃fro, but the above lemma is stated so that a more refined analysis may be possible.

We now bound ε̃fro using a generic bound for the SVD decomposition, which we state below.

Theorem 1 (Perturbation of SVD Approximation with Relative Gap) Let M?, M̂ ∈ Rn×m. Fix
a k ≤ min{n,m} for which σk(M?) > 0 and the relative spectral gap δk(M

?) (Eq. (1.1)) is posi-
tive. Then, if ‖M? − M̂‖op ≤ ησk(M?)δk(M

?) for some η ∈ (0, 1), we have that the rank-k SVD
approximations of M? and M̂, denoted as M?

[k] and M̂[k], are unique, and satisfy

∥∥M̂[k] −M?
[k]

∥∥
F
≤ 9‖M̂−M?‖F

δk(M?)(1− η)
.

Taking η = 1/10, and noting that δ?ki ≥ δ and σ?ki ≥ σ
?
k`

for all pivots in a (δ, µ)-well-tempered
partition, we have the following corollary.

Corollary I.1 Suppose (Ki)`i=1 is (δ, µ)-well-tempered, and ‖M̂ −M?‖op ≤ σ?k`δ/10. Then,
ε̃fro ≤ 10‖M̂−M?‖F.

Combining with Lemma I.6, and then Lemma I.4, we obtain the following guarantee.
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Proposition I.1 Suppose (Ki)`i=1 is (δ, µ)-well-tempered, and ‖M̂ −M?‖F ≤ δσ?k`/40. Then,
there exists an orthogonal matrix R ∈ O(d) compatible with (Ki)`i=1 such that

max
i∈[`]

Ei(R) ≤ 400c0‖M̂−M?‖2F . ‖M̂−M?‖2F.

Therefore, by Lemma I.4, this orthogonal R and index k` satisfy

∆0(R, k`) . µMspace‖M̂−M?‖2F, (I.10a)

∆1(R, k`) .
Mspec

δ2
‖M̂−M?‖2F +

√
r‖M? − M̂‖F + tail1(M?; k`). (I.10b)

Proof If ‖M̂−M?‖F ≤ δσ?k`/40, then also ‖M̂−M?‖op ≤ σ?k`δ/10, so ε̃fro ≤ 10‖M̂−M?‖F.
Hence, ε̃op ≤ ε̃fro ≤ 10‖M̂ −M?‖F ≤ δσ?k`/4. Thus, by Lemma I.6 followed by Corollary I.1,
there exists an orthogonal matrix R ∈ O(d) compatible with (Ki)`i=1 for which

max
i∈[`]

Ei(R) ≤ 4c0ε̃
2
fro ≤ 400c0‖M̂−M?‖2F . ‖M̂−M?‖2F.

Eq. (I.10a) now follows directly from Lemma I.4. To achieve Eq. (I.10b), we see that directly from
Lemma I.4,

∆1(R, k`) .
Mspec

δ2
‖M̂−M?‖2F +

∑
i>k`

σi(M̂). (I.11)

Using that rank(M̂) = r, we have

∑
i>k`

σi(M̂) =

r∑
i=k`+1

σi(M̂) ≤
r∑

i=k`+1

σi(M
?) +

r∑
i=k`+1

|σi(M?)− σi(M̂)|

≤
r∑

i=k`+1

σi(M
?) +

√√√√r
r∑

i=k`+1

|σi(M?)− σi(M̂)|2

≤
r∑

i=k`+1

σi(M
?) +

√
r‖M? − M̂‖F Lemma K.3

:= tail1(M?; k`) +
√
r‖M? − M̂‖F.

The desired bound follows by combining with Eq. (I.11).

I.5. Existence of well-tempered partition

To conclude the proof, it suffices to demonstrate the existence of a well-tempered partition of the
singular values of M?, for which Mspace, 1/δ, µ,Mspec are all of reasonable magnitude. To do so,
we focus on the pivots. One important subtlety is that, for any given k ∈ N, δ?k may be very small,
indeed even equal to zero.

Hence, to construct the well-tempered partition, we take in a target rank ki+1, and show that we
can use a slightly smaller rank ki for which δ?ki ≥ 1/ki+1. We then argue that we can construct
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a sequence of pivots k1, k2, . . . for which singular values within those pivots are within a constant
factor (the µ-parameter for well-temperedness), the δ?ki parameters are lower bounded (hence lower
bounding the δ parameter). In addition, this partition ensures that the singular values at the pivot
points grow at least geometrically. This is helpful to control Mspace and Mspec. The following
technical lemma is proved in Subsubsection K.3.1.

Lemma I.7 (Singular Value Spacing) Fix any s ∈ N and σ ∈ [σ?s , σ
?
1]. Then, there exists integer

` ∈ N, and an increasing sequence 0 = k1 < k2 · · · < k` < k`+1 = s such that the following is
true:

(a) For i ∈ [`], δ?ki ≥ 1/ki+1 ≥ 1/s.

(b) For i = `, σ?ki+1 ≤ 2eσ, and for i ∈ [`− 1], σ?ki+1 ≤ 2e2σ?ki+1
.

(c) For i = `, σ?ki ≥ σ, and for i ∈ [`− 1], σ?ki ≥ eσ
?
ki+1

.

With this technical lemma in hand, we can demonstrate the existence of a well-tempered parti-
tion with a number of desirable properties. The following is proved in Subsubsection K.3.2.

Proposition I.2 (Well-Tempered Partition) Fix any s ∈ N and σ ∈ [σ?s , σ
?
1]. There exists a

partition (Ki)`i=1 of [s], which is (δ, µ)-well-tempered with parameters satisfying

(a) δ ≥ 1/s and µ ≤ 2e2.

(b) k` < s, σ?k` ≥ σ, and Mspec ≤ (σ)−1

1−e−1 .

(c) Mspace ≤ `σ,s · s2, where `σ,s := min{1 + dlog
‖M?‖op

σ e, s}.

(d) tail1(M?; k`) ≤ 2esσ + tail1(M?; s) and tail2(M?; k`) ≤ 4e2sσ2 + tail2(M?; s).

I.6. Proof of Theorem 7

We recall the theorem here for convenience.

Theorem 7 Let A?, Â ∈ Rn×d, B?, B̂ ∈ Rm×d, and suppose (A?,B?) and (Â, B̂) are balanced
factorizations of M? = A?(B?)>, and M̂ = ÂB̂>. Let r = rank(M̂). Fix ε > 0 and s ∈ N such
that s > 1, ε ≥ ‖M̂−M?‖F, and ε ≤ ‖M

?‖op
40s . Also, for q ≥ 1, let tailq(M; k) :=

∑
i>k σi(M)q.

Then,

(a) There exists an index k ∈ [min{r, s− 1}] and an orthogonal matrix R ∈ O(d) such that

(weighted error) ∆0(R, k) . ε2 · s2`?(ε, s) (I.4a)

(unweighted error) ∆1(R, k) . (
√
r + s2)ε+ sσs(M

?) + tail1(M?; s), (I.4b)

where we define `?(ε, s) := min
{

1 + log
‖M?‖op

40sε , s
}

.

(b) Moreover, the index k satisfies

tail2(M?; k) . s3ε2 + s(σs(M
?))2 + tail2(M?; s).
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(c) The matrix R and k satisfy (ÂR)>ÂR � 39εP?
[k] and σk(M?)− σk+1(M?) ≥ 40ε/s.

Proof [Proof of Theorem 7] Fix any s ∈ N. To tune the bound, we also fix a parameter σ ∈
[σs(M

?), ‖M?‖op]. We shall tune σ at the end of the proof such that the following inequality is
satisfied

ε ≤ σ

40s
. (I.12)

Extracting the balanced partition. Consider the balanced partition that arises from applying
Proposition I.2 with parameter s and singular value parameter σ, and let k` be the resulting last
pivot. Note that σ?k` ≥ σ, δ?k` ≥ 1/s, and k` < s; i.e. k` ∈ [s − 1]. We shall ultimately choose the
promised k in the main theorem to be k`, but retain the `-subscript for clarity in the proof below.

As a consequence of Eq. (I.12), we have

ε ≤
σ?k`
40s

. (I.13)

Note that Eq. (I.13) implies k` ≤ r, because

σk`(M̂) ≥ σ?k` − ‖M̂−M?‖op ≥ σ?k` − ε > 0.

Moreover, we have

(Ki)`i=1 is (δ, µ)-well tempered for δ = 1/s, µ ≤ 2e2 = O (1) . (I.14)

In particular,

ε ≤
δσ?k`
40

. (I.15)

We shall use Eq. (I.15) as the sufficient condition to invoke Proposition I.1. In addition, due to
Weyl’s inequality and Eq. (I.13),

σk`(M̂) ≥ σ?k` − ‖M̂−M?‖op ≥
39

40
σ?k` ≥ 39ε > 0. (I.16)

We shall use this lower bound to verify the positive semi-definite domination of P?
[k] at the end of

the proof. Finally, we can also check that σ?k` − σ
?
k`+1
≥ 40ε/s via similar manipulations.

Applying the error bounds. In addition, Eq. (I.15) allows us to apply Proposition I.1. This means
that there exists an orthogonal matrix R ∈ O(d) which is compatible with (Ki)`i=1 such that the
following holds

∆0(R, k`) . ε
2 · µ ·Mspace . ε

2s2`σ,s (µ . 1, Mspace . s2`σ,s)

∆1(R, k`) .
√
rε+ δ2Mspecε

2 + tail1(M?; k`)

.
√
rε+

ε2s2

σ
+ sσ + tail1(M?; s)

(δ ≥ 1/s, Mspec . 1/σ, tail1(M?; s) . sσ + tail1(M?; s))

.
√
rε+

σ2s2

σs2
+ sσ + tail1(M?; s) (ε ≤ σ/(40s) due to Eq. (I.12))

.
√
rε+ sσ + tail1(M?; s).
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Above, we used Proposition I.2 which affords µ . 1, Mspace . s2`σ,s, δ ≥ 1/s, Mspec . 1/σ,
and tail1(M?; s) . sσ + tail1(M?; s). To summarize,

∆0(R, k`) . ε
2 · µ ·Mspace . ε

2s2`σ,s, ∆1(R, k`) ≤
√
rε+ sσ + tail1(M?; s). (I.18)

In addition, note from Proposition I.2 that

tail2(M?; k`) . sσ
2 + tail2(M?; s).

Tuning parameter σ. We choose

σ = max{σ?s , 40sε}. (I.19)

This ensures that two of our constraints on σ are satisfied: i.e. σ ≥ σ?s , and that ε ≤ σ
40s . For our

third constraint, σ ≤ σ?1 , to hold, this requires that ε ≤ σ?1/40s, which is ensured by the condition
of the theorem.

Applying our choice of σ to the error bounds. For this choice of σ, we have

`σ,s := min

{
1 + dlog

‖M?‖op

σ
e, s
}

≤ min

1 + dlog
‖M?‖op

40sε︸ ︷︷ ︸
≥1

e, s

 . min

{
1 + log

‖M?‖op

40sε
, s

}
:= `?(ε, s).

Thus, by Eq. (I.18)

∆0(R, k`) . ε
2 · s2`?(ε, s).

Similarly, Eq. (I.18),

∆1(R, k`) .
√
rε+ smax{σ?s , 40sε}+ tail1(M?; s)

. (
√
r + s2)ε+ sσ?s + tail1(M?; s).

Finally, using σ = max{σ?s , 40sε}, we bound

tail2(M?; k`) . sσ
2 + tail2(M?; s) . s3ε2 + s(σ?s)

2 + tail2(M?; s).

We conclude by setting k = k`.

Checking PSD domination. Lastly, we check the relevant PSD relation. Recall our choice k =
k`. Let Vk denote the range of the projection P?

[k], which is the span of the first k basis vectors under
Eq. (I.6). Let v = (v1 +v2) ∈ Rp be such that v1 ∈ Vk, and v2 is supported on the remaining p−k
basis vectors. Then, since R is orthogonal and compatible with (Ki)`i=1 and since

⋃`
i=1Ki = [k],

we have

R · (v1 + v2) = (w1 + w2)
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where ‖w1‖ = ‖v1‖, ‖w2‖ = ‖v2‖, and again (w1,w2) decomposes into the first k and remaining
p− k coordinates. Using Eq. (I.6), moreover, Â>Â = Σ̂. Hence,

v>R>Â>ÂRv = (w1 + w2)>Σ̂(w1 + w2)

≥ σk(Σ̂)‖w1‖2 = σk`(Σ̂)‖v1‖2

= σk(Σ̂)v>1 P?
[k]v1 = σk(Σ̂)v>P?

[k]v,

as v1 is the projection of v onto P?
[k]. Lastly, as Â is balanced, σk(Σ̂) = σk(M̂) := σk`(M̂) ≥ 39ε

due to Eq. (I.16). This completes the proof of our Theorem 7.

Appendix J. From Matrix Factorization to Bilinear Embeddings

This section gives the limiting arguments that proceed from results about matrices to results about
Hilbert-space embeddings under potentially non-discrete distributions. Specifically, we prove the
following

Theorem 8 (Error on D1⊗1) Suppose (f̂ , ĝ) are Rr-embeddings. Then, for any s ∈ N and error
bound ε > 0 such that (i) ε2 ≥ infs′≥s−1R[s′](f̂ , ĝ;D1⊗1) and (ii) s < ‖Σ?1⊗1‖op

40ε , then we have:
(a) if (f̂ , ĝ) are full-rank, then there exists an index k ∈ [min{r, s− 1}] and functions f : X → H
and g : Y→ H such that (f, g) are aligned k-proxies and the error terms are bounded by

(weighted error) ∆0(f, g, k) + tail?2(k) . s3ε2 + s(σ?s)
2 + tail?2(s), (J.1a)

(unweighted error) ∆1(f, g, k) . (
√
r + s2)ε+ sσ?s + tail?1(s); (J.1b)

and (b) if ε21⊗1 ≤ (1 − α−1)(σ?r)
2 for some α ≥ 1, then (f̂ , ĝ) are necessarily full-rank, and

σr(f̂ , ĝ)2 ≥ (σ?r)
2/α, where we recall the definition of σr(f̂ , ĝ) in Eq. (3.1).

Remark 9 A few remarks are in order. The condition ε2 ≥ infs′≥s−1R[s′](f̂ , ĝ;D1⊗1) is for tech-
nical convenience; for intuition, one should think of ε2 = R(f̂ , ĝ;D1⊗1) as the risk on the “top-
block”. Next, we observe the differences in scaling: due to the weighting, ∆0(f, g, k) + tail?2(k)
scales with ε2, and with the squares of singular values, whereas ∆1(f, g, k) scales with ε, and `1-
sums of singular values. This is essential, because it means that the term 1

σ2 (tail?2(k)+∆0(f, g, k)+
∆train)2 in Proposition 4.1 can decay to zero. Lastly, our theorem gives us sufficient conditions on
which σr(f̂ , ĝ), which appears in the aforementioned Proposition 4.1, is indeed lower bounded.

We begin in Appendix J.1 by stating an intermediate guarantee for Theorem 8, Theorem 10, to
whose proof the majority of this appendix is devoted, and provide preliminaries and review proof-
specific notation in Appendix J.2.

To prove Theorem 10, we adopt the standard technique of approximation by so-called simple
functions:

Definition J.1 (Simple Functions) Let Z be an abstract domain. We say that a function ψ : Z →
Rp is simple if its image ψ(Z) is a set of finite cardinality.
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In Appendix J.3, we show that our factorization theorem for matrices (i.e. Theorem 7) directly
implies Theorem 10. Subsequently, Appendix J.4 extends the guarantees to arbitrary (possible non-
simple) functions, but with the restriction that they have a finite-dimensional range. The idea is
to approximate our actual functions f, f?, g, g? as the limit of simple functions. The steps in this
section are mostly routine, but some care must be taken to ensure all the simple functions can be
balanced under D1⊗1 in the sense of Definition 4.1; recall that (f, g) are balanced (under D1⊗1) if

EDX,1
[ff>] = EDY,1

[gg>].

To facilitate this, we show that when all the embeddings have we can approximate f, f?, g, g? by
simple functions whose range is “smaller” than the limiting function they approximate. Care must
also be taken to handle the rotation matrices which align the functions (f?, g?) with their estimates
(f, g).

Finally, Appendix J.5 removes the restriction of a finite dimensional range, thereby concluding
the proof of Theorem 10. Subsubsection J.6.1 contains the proof of all supporting claims. Lastly,
Theorem 11 provides the generalization of our main SVD perturbation lemma, Theorem 1, to gen-
eral distributions.

J.1. Factor recovery for one block, Theorem 8

We first prove a variant of Theorem 8, from which that theorem can be readily derived.

Theorem 10 Suppose that (f̂ , ĝ) embeddings ED1⊗1 [(〈f̂ , ĝ〉 − 〈f?, g?〉)2] ≤ ε2, and pick any

positive s ∈ N and s > 1 such that s <
‖Σ?1⊗1‖op

40ε . Then, (f̂ , ĝ) are full-rank, there exists a
k ∈ [s− 1] and functions f : X→ H and g : Y→ H such that

(a) 〈f(x), g(y)〉 = 〈f̂(x), ĝ(y)〉 for all (x, y).

(b) The functions (f, g) are valid proxies for f̂ , ĝ in the sense of Definition 4.2.

(c) The following error terms

∆0(f, g, k) := max
{
ED1⊗1

[
〈f?k , g?k − g〉2

]
, ED1⊗1

[
〈f?k − f, g?k〉2

]}
∆1(f, g, k) := max

{
EDX,1

‖f?k − f‖2, EDY,1
‖g?k − g‖2

}
are bounded by

∆0(f, g, k) + tail2(Σ?
1⊗1; k) . s3ε2 + s(σ?s)

2 + tail2(Σ?
1⊗1; s)

∆1(f, g, k) . (
√
r + s2)ε+ sσ?s + tail1(Σ?

1⊗1; s),

(d) For any j, σj(f̂ , ĝ) ≥ σj(Σ?)− ε.

Moreover, if instead of assuming (f̂ , ĝ) are full-rank, but in addition we assume that ε < σr(Σ
?
1⊗1),

then (f̂ , ĝ) are guaranteed to be full-rank so that the conclusion of the above theorem holds.

66



TACKLING COMBINATORIAL DISTRIBUTION SHIFT:A MATRIX COMPLETION PERSPECTIVE

Let us now prove Theorem 8.
Proof [Proof of Theorem 8] Fix any s. Consider any s′ ≥ s−1, and define f̄? := f?s′ and ḡ? := g?s′ .
Define ∆̄0(f, g, k), ∆̄1(f, g, k) and Σ̄1⊗1analogously, with f?, g? replaced by f̄?, ḡ?. Finally, set
ε2 := ED1⊗1 [(〈f, g〉−〈f̄?, ḡ?〉)2]. Applying Theorem 10 with f?, g? ← f̄?, ḡ?, we find the existence
of f, g satisfying points (a), (b), as well as well as

∆̄1(f, g, k) . (
√
r + s2)ε+ sσs(Σ̄1⊗1) + tail1(Σ̄1⊗1; s)

∆̄0(f, g, k) + tail2(Σ̄1⊗1; k) . s3ε2 + sσs(Σ̄1⊗1)2 + tail2(Σ̄1⊗1; s),

where above we bounded `?(ε, s) ≤ s. Observe that k ∈ [s− 1], it holds that f̄?k = f?k and ḡ?k = g?k.
Moreover, since Σ̄1⊗1 � Σ?

1⊗1 (since the former is an SVD approximation of the latter), and since
σs(Σ̄1⊗1)2 ≤ σs(Σ?

1⊗1)2,

∆̄1(f, g, k) . (
√
r + s2)ε+ sσ?s + tail1(Σ?

1⊗1; s)

∆̄0(f, g, k) + tail2(Σ̄1⊗1; k) . s3ε2 + s(σ?s)
2 + tail2(Σ?

1⊗1; s) + ε2 · s3.

Lastly, notice that

tail2(Σ?
1⊗1; k) = tail2(Σ̄1⊗1; k) +

∑
i>s′

(σ?i )
2

≤ tail2(Σ̄1⊗1; k) + (σ?s)
2 + tail2(Σ?

1⊗1; s)

. s3ε2 + s(σ?s)
2 + tail2(Σ?

1⊗1; s),

where above we use s′ ≥ s − 1. Hence, these differences get absorbed by the above bound on
tail2(Σ̄

?
; k), yielding

∆0(f, g, k) + tail2(Σ̄
?
; k) . s3ε2 + s(σ?s)

2 + tail2(Σ?
1⊗1; s).

Since the above was true for any s′ ≥ s− 1, we can replace ε with any ε satisfying

ε2 ≥ inf
s′≥s−1

ED1⊗1 [(〈f, g〉 − 〈f?s′ , g?s′〉)2],

as needed. Finally, the last part of Theorem 8 is directly implied by Theorem 10(d).

J.2. Proof preliminaries

For the majority of the proof, we assume thatH = Rp; that is, the embeddings are finite dimensional
(recall that all finite dimensional Hilbert spaces are isomorphic). This restriction is the simplest to
remove, so we save removing it till the end of the argument. We also study balanced functions f, g
directly, and remove the balancing requirement at the end.

Setup. Let DX and DY be distributions over X and Y which have finite support, and let D⊗ :=
DX ⊗ DY denote the product measure. We consider functions f, f? : X → Rp and g, g? : Y → Rp
whose inner products have squared error ε2pred:

ε2pred = ED⊗ [(〈f, g〉 − 〈f?, g?〉)2], D⊗ := DX ⊗DY.
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Key objects. When reasoning about functions of random variables, we no longer have finite ma-
trices whose singular values we can reason about. Instead, it is more convenient to describe spectral
via expected outer-products. The following objects are central to our consideration:

Σ := EDX
[ff>] = EDY

[gg>]

Σ? := EDX
[(f?)(f?)>] = EDY

[(g?)(g?)>]

tailq(Σ; k) :=
∑
i>k

σi(Σ)q, q ≥ 1, Σ ∈ Rp×p

f?k := P?
kf, g?k := P?

kg

fk := Pkf, gk := Pkg,

where P?
k is the projection onto any top-k eigenspace of Σ? (unique when σk(Σ?) > σk+1(Σ?)),

and P̂k is the projection onto any top-k eigenspace of Σ.
We consider the following error terms:

∆0(R, k) = ED⊗ [〈f?k −Rf, g?k〉2] ∨ ED⊗ [〈f?k ,Rg − g?k〉2]

∆1(R, k) = EDX
[‖f?k −Rf‖2] ∨ EDY

[‖Rg − g?k‖2]

ε2 ≥ ED1⊗1 [(〈f, g〉 − 〈f?, g?〉)2] (J.2)

ε2pred,k := ED1⊗1 [(〈fk, gk〉 − 〈f?k , g?k〉)2].

Outer product notation. To reduce notational clutter, we introduce a compact notation for vector
outer products. Given a vector v ∈ Rp, or more generally, functions f : X → Rp and g : Y → Rp,
we let v×©2 := vv>, f ×©2 := ff>, g×©2 := gg>. Notice that the typesetting of ×©2 differs from
the standard tensor product ⊗ so as to avoid confusion with tensor-products of distributions, as in
DX ⊗DY.

J.3. Guarantee for simple functions

For simple functions, Theorem 10 items (a)-(d) translate to the following guarantees.

Proposition J.1 Suppose that (f, g) and (f?, g?) are simple functions, and balanced under D⊗ =

DX ⊗ DY. Further, suppose ε as in Eq. (J.2) and s ∈ N satisfies ε ≤ ‖Σ
?‖op

40s . Then, there exists an
index k ∈ [s− 1] and an orthogonal matrix R ∈ O(p) such that

∆0(R, k) . ε2 · s2`?(ε, s) (J.3a)

∆1(R, k) . (
√
r + s2)ε+ sσs(Σ

?) + tail1(Σ?; s), (J.3b)

where we define `?(ε, s) := min
{

1 + log
‖Σ?‖op

40sε , s
}

. Second, the index k satisfies

tail2(Σ?; k) . s3ε2 + s(σs(Σ
?))2 + tail2(Σ?; s).

Third, R and k satisfy

RΣR> � εP?
k, σk(Σ

?)− σk+1(Σ?) ≥ 40ε/s,

and lastly maxj |σj(Σ?)− σj(Σ)| ≤ ε.
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The key property of simple functions we use is that their expectations can be reduced to those
over finitely-supported distributions. The following is proved in Subsubsection J.6.1.

Lemma J.1 Let f1, . . . , fa : X → Rp and g1, . . . , gb : Y → Rp be simple functions, and let DX

and DY be measures over X and Y, respectively. Then, there exist finitely-supported distributions
D̄X and D̄Y such that, for all functions Ψ : Rp(a+b) → VΨ mapping to some Euclidean space VΨ

(possibly different for each Ψ), we have

EDX⊗DY
[Ψ(f1(x), . . . , fa(x), g1(y), . . . , gb(y))] = ED̄X⊗D̄Y

[Ψ(f1(x), . . . , fa(x), g1(y), . . . , gb(y))].

We now turn to the proof of Proposition J.1.
Proof [Proof of Proposition J.1]

By Lemma J.1, we may assume without loss of generality thatDX andDY are distributions with
finite support; indeed, by appropriate choices of Ψ, the discretization preserves expected outer-
products (e.g. Σ?), balancing, the projection P?

k, and ∆0,∆1.
Continuing, assume n = |supp(DX)| and m = |supp(DY)|. By augumenting the support

with probability-zero points, we may assume without loss of generality that p ≤ min{n,m}. Let
x1, . . . , xn and y1, . . . , ym denote the elements of supp(DX) and supp(DY). For i ∈ [n] and
j ∈ [m], define pi := Px∼DX

[x = xi] and qj = Py∼DY
[y = yj ]. We define the matrices M?, M̂ ∈

Rn×m via

M?
ij =
√

piqj · 〈f?(xi), g?(yj)〉, M̂ij =
√

piqj · 〈f(xi), g(yj)〉.

Further, define matrices A?, Â ∈ Rn×p and B?, B̂ ∈ Rm×p via their rows:

A?
(i,:) =

√
pif

?(xi)
>, B?

(j,:) =
√

qjg
?(yj)

>, Â(i,:) =
√

pif(xi)
>, B̂(j,:) =

√
qjg(yj)

>.

We readily check that

M? = A?(B?)> M̂ = ÂB̂>.

Proposition J.1 follows directly from Theorem 7, after invoking the substitutions invoked by the
following lemma (and taking R← R>):

Lemma J.2 The following identities hold.

(a) σi(M?) = σi(Σ
?) and σi(M̂) = σi(Σ).

(b) ‖M? − M̂‖2F = EDX⊗DY
[(〈f?(x), g?(y)〉 − 〈f(x), g(y)〉)2] := ε2pred ≤ ε2. Consequently, by

Weyl’s inequality, |σi(Σ?)− σi(Σ)| ≤ ‖M? − M̂‖op ≤ ‖M? − M̂‖F ≤ ε.

(c) (A?)>A? = EDX
[(f?)(f?)>], (B?)>B? = EDY

[(g?)(g?)>], so that (A?)>A? = (B?)>B?.
Similarly, Â>Â = EDX

[ff>] and B̂>B̂ = EDY
[gg>], so that Â>Â = B̂>B̂.

(d) Using SVD approximations in the sense of Eq. (I.3), we have that A?
k’s i-th row is

√
pi ·

f?k (xi)
> and B?

k’s j-th row is √qj · g?k(yj)> (notice, the k is in the subscript). Similarly, we
have that Âk’s i-th row is

√
pi · fk(xi)> and B̂k’s j-th row is√qj · gk(yj)>.

(e) ∆0(R, k) = ‖(A?
[k] − ÂR>)(B?

[k])
>‖2F ∨ ‖A?

[k](B
?
[k] − B̂R>)>‖2F.
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(f) ∆1[R, k] = ‖A?
[k] − ÂR>‖2F ∨ ‖B?

[k] − B̂R>‖2F.

Proof The proof of point (a) relies on point (c), namely (A?)>A? = (B?)>B? (the argument is not
circular, because the proof of point (c) does not rely on point (a)). Using this, we see (A?)>A? =
(B?)>B?. Thus, from Lemma I.2, σi(M?) = σi((A

?)>A?). Invoking point (c) again, we find
σi(M

?) = σi(EDX
[(f?)×©2]) := σi(Σ

?). A similar argument applies to showing σi(M̂) = σi(Σ).
The proof of points (b)-(f) rely on the same sorts of computations. We prove point (b) as an

illustration.

‖M? − M̂‖2F =
∑
ij

(
√

piqj · 〈f?(xi), g?(yj)〉 −
√

piqj〈f(xi), g(yj)〉)2

=
∑
ij

piqj(〈f?(xi), g?(yj)〉 − 〈f(xi), g(yj)〉)2

= EDX⊗DY
(〈f?(x), g?(y)〉 − 〈f(x), g(y)〉)2.

The remaining points can be proved analogously.

This concludes the proof of Proposition J.1.

J.4. Extension beyond simple functions

We now extend the guarantees of the previous section to the case beyond simple functions. The
analogue of Proposition J.1 is as follows:

Proposition J.2 Suppose that f, g, f?, g? map to Rp, and are balanced under D⊗ = DX⊗DY, but
are not necessarily simple functions. Further, suppose ε as in Eq. (J.2) and s ∈ N satisfies

ε <
‖Σ?‖op

40s
(strict inequality). (J.4)

Then, there exists an index k ∈ [s− 1] and an orthogonal matrix R ∈ O(p) such that

∆0(R, k) . ε2 · s3 (J.5a)

∆1(R, k) . (
√
r + s2)ε+ sσs(Σ

?) + tail1(Σ?; s). (J.5b)

Second, the index k satisfies

tail2(Σ?; k) . s3ε2 + s(σs(Σ
?))2 + tail2(Σ?; s).

Third, R and k satisfy

R>ΣR � εP?
k, Σ := ED1⊗1 [ff>],

and lastly maxj∈[p] |σj(Σ?)− σj(Σ)| ≤ ε.

Before proving the above two propositions, we review some facts about L2 convergence, and
some basic results for measure-theoretic probability theory which can be found in any standard
reference (e.g. Çinlar (2011)).
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L2 convergence. We first review the definition of L2 convergence.

Definition J.2 (L2 Convergence) Let D be a measure on Z. We say that ψ : Z→ Rp is in L2(D)
if ED[‖ψ‖2] < ∞. Let (ψτ )τ≥1 be a sequence of functions in L2(D), ψ ∈ L2(D), and let D be a
measure on Z. We say that ψτ converges to ψ in L2(D), denoted

ψτ
L2(D)→ ψ,

if limτ→∞ ED‖ψτ − ψ‖2 = 0.

The following lemma is standard in probability theory (again, see e.g., (Çinlar, 2011, Section 2)).

Lemma J.3 Let D be a measure on Z. Given any ψ ∈ L2(D), there exists a sequence of simple

functions ψτ ∈ L2(D) such that ψτ
L2(D)→ ψ.

We shall often use the following lemma, which is easy to check.

Lemma J.4 If ψτ
L2(D)→ ψ, then limτ→∞ E[ψ×©2

τ ] = E[ψ×©2].

The following fact is also useful.

Lemma J.5 If ψτ
L2(D)→ ψ and if range(E[ψ×©2

τ ]) ⊆ range(E[ψ×©2]) for all τ , then there exists
some τ0 such that, for all τ ≥ τ0, range(E[ψ×©2

τ ]) = range(E[ψ×©2]).

Proofs of Lemmas J.4 and J.5 are given in Subsubsection J.6.2.

Approximation by simple functions. Using the machinery introduced above, we approximate
f, g, f?, g? by a sequence of simple functions. Our approximation preserves an important property
regarding the ranges of their covariances.

Lemma J.6 There exists a sequence of simple functions f(τ), g(τ) f
?
(τ), g

?
(τ) such that

f(τ)
L2(DX)→ f, g(τ)

L2(DY)→ g, f?(τ)

L2(DX)→ f?, g?(τ)

L2(DY)→ g?,

and, the covariances

Σ(τ),f := E[(f(τ))
×©2], Σ(τ),g := E[(g(τ))

×©2], Σ?
(τ),f := E[(f?(τ))

×©2], Σ?
(τ),g := E[(g?(τ))

×©2],

satisfy range(Σ(τ),f )∪range(Σ(τ),g) ⊆ range(Σ) and range(Σ?
(τ),f )∪range(Σ?

(τ),g) ⊆ range(Σ?).

The above lemma is proved in Subsubsection J.6.3.
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Constructing the balanced functions. We cannot invoke Proposition J.1 directly on the simple
functions constructed above because they are not balanced. Below we show that we can balance
them, and that the matrices which achieve this converge to the identity.

Lemma J.7 There exists a sequence of invertible p×p-matrices (T[τ ])τ≥1 and (T?
[τ ])τ≥1 such that

(a) For all τ sufficiently large, EDX
[(T[τ ]f(τ))

×©2)] = EDY
[(T−>[τ ] g(τ))

×©2)] and EDX
[(T?

[τ ]f
?
(τ))

×©2)] =

EDY
[((T?

[τ ])
−>g?(τ))

×©2)].

(b) limτ→∞T[τ ] = limτ→∞T?
[τ ] = Ip.

The above lemma is proved in Subsubsection J.6.4. With these balancing matrices, we devise a new
sequence of balanced functions and associated quantities:

f[τ ] = T[τ ]f(τ), g[τ ] = T−>[τ ] g(τ), Σ[τ ] := EDX
[(f[τ ])

×©2)]

f?[τ ] = T?
[τ ]f

?
(τ), g?[τ ] = (T?

[τ ])
−>g?(τ), Σ?

[τ ] := EDX
[(f?[τ ])

×©2)],

and, letting P?
k,[τ ] project onto the top k singular values of Σ?

[τ ] and defining Pk,[τ ] analogously, we
set

f?k,[τ ] = P?
k,[τ ]f

?
[τ ], g?k,[τ ] = P?

k,[τ ]f
?
[τ ]

fk,[τ ] = Pk,[τ ]f[τ ], gk,[τ ] = Pk,[τ ]g[τ ].

We also define the errors

ε2[τ ] := ED⊗ [(〈f[τ ], g[τ ]〉 − 〈f?[τ ], g
?
[τ ]〉)

2], ε2k,[τ ] := ED⊗ [(〈f[τ ], g[τ ]〉 − 〈f?[τ ], g
?
[τ ]〉)

2].

Lastly, we define

∆0,[τ ](R, k) = ED⊗ [〈f?k,[τ ] −Rf[τ ], g
?
k,[τ ]〉

2] ∨ ED⊗ [〈f?k,[τ ],Rg[τ ] − g?k,[τ ]〉
2]

∆1,[τ ](R, k) = EDX
[‖f?k,[τ ] −Rf[τ ]‖2] ∨ EDY

[‖g?k,[τ ] −Rg[τ ]‖2],

and recall

∆0(R, k) = ED⊗ [〈f?k −Rf, g?k〉2] ∨ ED⊗ [〈f?k ,Rg − g?k〉2],

∆1(R, k) = EDX
[‖f?k −Rf‖2] ∨ EDY

[‖Rg − g?k‖2].

Analyzing the balanced functions. In order to conclude the proof, we establish numerous useful
properties of the balanced function sequence. The following lemma is proved in Subsubsection
J.6.5.

Lemma J.8 The followings are true:

(a) The sequences of balanced functions converge to their targets in L2:

f[τ ]
L2(DX)→ f, g[τ ]

L2(DY)→ g, f?[τ ]

L2(DX)→ f?, g?[τ ]

L2(DY)→ g?.

More generally, if Rτn is a convergent subsequence converging to R, then Rτnf[τn]
L2(DX)→

Rf and Rτng[τn]
L2(DY)→ Rg as n→∞.
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(b) We have limτ→∞Σ?
[τ ] = Σ?. Hence, by Weyl’s inequality, limτ→∞ tailq(Σ

?
[τ ]; k) = tailq(Σ

?; k)
for any q, k ≥ 1 (note that we have assumed here finite-dimensional embeddings, so the co-
variance operators are matrices and thus the sense of convergence is unambiguous).

(c) Similarly, limτ→∞Σ[τ ] = Σ. More generally, if Rτn is a convergent subsequence converging
to R, then limn→∞RτnΣ[τn]R

>
τn = RΣR>.

(d) For any k for which σk(Σ?) > σk+1(Σ?), limτ→∞P?
k,[τ ] = P?

k, where P?
k projects onto the

top k-eigenspace of Σ?. Similarly, for any k for which σk(Σ) > σk+1(Σ), limτ→∞Pk,[τ ] =
Pk, where Pk projects onto the top k-eigenspace of Σ.

(e) For any k for which σk(Σ?) > σk+1(Σ?),

f?k,[τ ]

L2(DX)→ f?k , g?k,[τ ]

L2(DY)→ g?k.

Similarly, for any k for which σk(Σ) > σk+1(Σ),

fk,[τ ]
L2(DX)→ fk, gk,[τ ]

L2(DY)→ gk.

(f) For any R ∈ O(p), and k for which σk(Σ?) > σk+1(Σ?), limτ→∞∆0,[τ ](R, k) = ∆0(R, k)
and limτ→∞∆1,[τ ](R, k) = ∆1(R, k). More generally, if Rτn is a convergent subsequence
converging to R, then we have limn→∞∆i,[τn](Rτn , k) = ∆i(R, k), i ∈ {0, 1}.

(g) limτ→∞ ε
2
[τ ] = ε2pred ≤ ε2 and, for any k satisfying both σk(Σ?) > σk+1(Σ?) and σk(Σ) >

σk+1(Σ) (supposing such a k exists), limτ→∞ ε
2
k,[τ ] = ε2pred,k.

(h) For some η sufficiently small, and for ε chosen to satisfy Eq. (J.4) for some s ∈ N and s > 1,
there exists some τ0 such that, for all τ ≥ τ0 sufficiently large,

ε2[τ ] ≤ (1 + η)ε2 ≤ 2ε2 ∨
‖Σ?

[τ ]‖
2
op

402s2
.

Concluding the proof. We are now in a position to complete the proofs of Proposition J.2 and Lemma J.10.
Proof [Proof of Proposition J.2] By applying Proposition J.1 to the functions f[τ ], g[τ ], f

?
[τ ], g

?
[τ ] with

ε2 ← (1 + η)ε2 ≥ ε2[τ ] and invoking Lemma J.8 part (h), the following claim is immediate:

Claim J.1 For all τ ≥ τ0, there exists a Rτ and kτ ∈ [s− 1] such that

∆0,[τ ](Rτ , kτ ) . ε2 · s3· (J.6)

∆1,[τ ](Rτ , kτ ) . (
√
r + s2)ε+ sσs(Σ

?
[τ ]) + tail1(Σ?

[τ ]; s). (J.7)

7 Moreover, the index kτ satisfies

tail2(Σ?
[τ ]; kτ ) . s3ε2 + s(σs(Σ

?
[τ ]))

2 + tail2(Σ?
[τ ]; s).

Above, we note . hides universal constants independent of τ . Morever,

RτΣ[τ ]R
>
τ � εP?

k,[τ ], σkτ (Σ?
[τ ])− σkτ+1(Σ?

[τ ]) ≥ 40ε/s.

Lastly, maxj∈[p] |σj(Σ?
[τ ])−Σ[τ ]| ≤ ε[τ ].

7. A literal invocation of Proposition J.1 would take `?,[τ ](ε, s) := min {1 + log
‖Σ?[τ]‖op
40(1+η)sε

, s}. Here, we use (1+η) ≥
1.
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We may now conclude the proof of Proposition J.2. Since [s−1] is a finite set, and O(p) is compact,
there exists a subsequence (Rτn , kτn) so that τn ≥ τ0 for all n, kτn = k for some fixed k ∈ [s− 1],
and Rτn → R for some fixed R ∈ O(p). By Lemma J.8 part (b) and Weyl’s inequality, it must be
the case that this k satisfies σk(Σ?)− σk+1(Σ?) ≥ 40ε/s > 0. Hence,

∆0(R, k) = lim
n→∞

∆0,[τn](Rτn , kτn) (Lemma J.8 part (f))

. ε2 · s2 · lim
n→∞

`?,[τn](ε, s) (Claim J.1)

= ε2 · s2 · lim
n→∞

min

{
1 + log

‖Σ?
[τn]‖op

40sε
, s

}
(see Claim J.1)

= ε2 · s2 ·min

{
1 + log

‖Σ?‖op

40sε
, s

}
︸ ︷︷ ︸

=`?(ε,s)

, (Lemma J.8 part (b))

and,

∆1(R, k) = lim
n→∞

∆1,[τn](Rτn , kτn) (Lemma J.8 part (f))

. (
√
r + s2)ε+ lim

n→∞

(
sσs(Σ

?
[τn]) + tail1(Σ?

[τn]; s)
)

(Claim J.1)

≤ (
√
r + s2)ε+ sσs(Σ

?) + tail1(Σ?; s). (Lemma J.8 part (b))

Second,

tail2(Σ?; k) = lim
n→∞

tail2(Σ?
[τn]; kτn) (Lemma J.8 part (b))

. s3ε2 + lim
n→∞

(
s(σs(Σ

?
[τn]))

2 + tail2(Σ?
[τn]; s)

)
(Claim J.1)

. s3ε2 + s(σs(Σ
?))2 + tail2(Σ?; s). (Lemma J.8 part (b))

Third,

RΣR> = lim
n→∞

RτnΣ[τn]R
>
τn (Lemma J.8 part (c))

� ε lim
n→∞

P?
k,[τn] (Claim J.1)

= εP?
k. (Lemma J.8 part (d))

Finally, by parts (b) and (c), the fact that maxj∈[p] |σj(Σ?
[τ ])−Σ[τ ]| ≤ ε[τ ] due to Lemma J.8, and

Weyl’s inequality. This concludes the proof of Proposition J.2.

J.5. From finite to infinite dimensional embeddings: Proof of Theorem 10

We give the proof of Theorem 10 from Proposition J.2. Fix any f̂ : X → Rr and ĝ : Y → Rr that
satisfy

ED1⊗1 [(〈f̂ , ĝ〉Rr − 〈f?, g?〉H)2] ≤ ε2 <
‖Σ?

1⊗1‖2op

(40s)2
. (J.8)
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Now, fix a p ∈ N, which we shall take sufficiently large. Since Σ?
1⊗1 is trace class, we may assume

without loss of generality that the space spanned by its top p eigenvectors is unique.8 Let V?p denote
the eigenspace spanned by these eigenvectors, and note that V?p is isomorphic to Rp. Finally, let let
ι : Rr → V?p ⊂ H by an isometric inclusion in the sense of Definition 4.2.

Suppose first that (f̂ , ĝ) are full-rank, and let T be the balancing operator guaranteed by Lemma 4.3.
As ι is an isometry, Eq. (J.8) implies

ED1⊗1 [(〈ι(Tf̂), ι(T−1ĝ)〉H − 〈f?, g?〉H)2] ≤ ε2.

as well as the following equality, which can be checked by evaluating the induced quadratic forms.

Σι := EDX,1
[ι(f̂)ι(f̂)>] = EDY,1

[ι(ĝ)ι(ĝ)>], (J.9)

so that ι(f̂) and ι(ĝ) are balanced and take values in V?p. A standard expansion and Cauchy-Schwartz
inequality imply that

ED1⊗1 [(〈ι(f̂), ι(ĝ)〉H − 〈f?p , g?p〉H)2]

= ED1⊗1 [(〈f̂ , ĝ〉Rr − 〈f?p , g?p〉H)2]

≤ ED1⊗1 [(〈f̂ , ĝ〉Rr − 〈f?, g?〉H)2] + ED1⊗1 [(〈f?, g?〉H − 〈f?p , g?p〉H)2]

+ 2
√
ED1⊗1 [(〈f̂ , ĝ〉Rr − 〈f?, g?〉H)2]ED1⊗1 [(〈f?, g?〉H − 〈f?p , g?p〉H)2]

= ε2 + 2tail?2(p)1/2ε+ tail?2(p) (Lemma M.4)

= ε2 + 2tail?2(p)1/2ε+ tail?2(p) := ε2[p]. (J.10)

Recall that ε2 <
‖Σ?1⊗1‖2op

(40s)2
. Hence, by choosing some p ≥ s sufficiently large, we can ensure

tail?2(p) is small enough that

ε[p] <
‖Σ?

1⊗1‖op

40ε
, ε2[p] ≤ 2ε2. (J.11)

As ‖Σ?
1⊗1‖op = ‖Σ?

p‖op due to Eq. (J.13), we then have

ε[p] <
‖Σ?

p‖op

40ε
. (J.12)

Continuing the proof, let Σ?
[p] denote ED1⊗1 [f?p (f?p )>], viewed as an operator on V?p, and notice

that Σ? = ED1⊗1 [g?p(g
?
p)
>] by Assumption 2.4, and that

σi(Σ
?
[p]) =

{
σi(Σ

?
1⊗1) i ∈ [p]

0 i > p
. (J.13)

Viewing V?p as isomorphic to Rp, define the error terms consider by Proposition J.2:

∆0(R, k) = ED⊗ [〈f?k −Rι(Tf̂), g?k〉2V?p ] ∨ ED⊗ [〈f?k ,Rι(T−1ĝ)− g?k〉2V?p ]

∆1(R, k) = EDX
[‖f?k −Rι(Tf̂)‖2V?p ] ∨ EDY

[‖Rι(T−1ĝ)− g?k‖2V?p ],

8. If rank(Σ?
1⊗1) is finite, let p equal the rank. Otherwise, the eigenvectors must have decay so for any p, there exists

some p′ ≥ p which has eigengap.
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where above the norms and inner products are the standard Euclidean inner product on V?p, and
where R is an orthogonal transformation of V?p. From Eqs. (J.11) and (J.12), we can apply Proposi-
tion J.2 to find that there exists an orthogonal operator R for which

∆0(R, k) . ε2[p] · s
3

∆1(R, k) . (
√
r + s2)ε[p] + sσs(Σ

?
[p]) + tail1(Σ?

[p]; s).

Moreover, the index k satisfies

tail2(Σ?
[p]; k) . s3ε2[p] + s(σs(Σ

?
[p]))

2 + tail2(Σ?
[p]; s).

Lastly, R and k satisfy

RΣιR
> � ε[p]P?

[k], (J.14)

where P?
[k] is the projection onto the top-k singular space of Σ?

[p], namely V?p, and were Σι is as in
Eq. (J.9). We now argue that for this transformation R, the embeddings (f, g) defined by9

f := Rι(Tf̂), g := Rι(T−1ĝ),

satisfy the conclusion of Theorem 10.
Proof of part (a). This follows from direct computation, as ι and multiplication by R are

isometries.
Proof of part (b). This follows from the definition of f and g, and from Eq. (J.14).
Proof of part (c). By Eq. (J.13), we have

tailj(Σ
?
[p]; k) ≤ tail?j (k), i ∈ {1, 2}.

Combining this and the facts that p ≥ s and that ε[p] . ε (see Eq. (J.10)),

∆1(R, k) . (
√
r + s2)ε+ sσs(Σ

?
1⊗1) + tail?1(s), (J.15)

as well as ∆0(R, k) . ε2 · s3. Similarly, the index k satisfies

tail2(Σ?
[p]; k) . s3ε2 + s(σs(Σ

?
1⊗1))2 + tail?2(s).

Moreover, from Eq. (J.13), we see tail?2(k) = tail2(Σ?
[p]; k) + tail?2(p). Since p ≥ s,

tail?2(k) . s3ε2 + s(σs(Σ
?
1⊗1))2 + tail?2(s) + tail?2(p)

. s3ε2 + s(σs(Σ
?
1⊗1))2 + tail?2(s). (J.16)

Thus,

tail?2(k) + ∆0(R, k) . s3ε2 + s(σs(Σ
?
1⊗1))2 + tail?2(s). (J.17)

To conclude

∆0(R, k) = ED⊗ [〈f?k − f, g?k〉2V?p ] ∨ ED⊗ [〈f?k , g − g?k〉2V?p ], (J.18)

∆1(R, k) = EDX
[‖f?k − f‖2V?p ] ∨ EDY

[‖g?k − g‖2V?p ]. (J.19)

Hence, part (c) of Theorem 10 follows from the above identification, and Eqs. (J.15) and (J.17).
Proof of part (d). Applying the last part of Proposition J.2 and using p ≥ r implies that

σj(EDX,1
[ι(f̃)ι(f̃)>]) > σj(Σ

?
[p])− ε = σj(Σ

?)− ε.
9. under the natural inclusion of Rι(f̂) from V?p toH
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Removing the full-rank assumption f̂ , ĝ. To replace the assumption that (f̂ , ĝ) is full-rank with
the assumption that ε < σr(Σ

?), apply Lemma L.8 to show that there exist f̃ , g̃ such that (a) (f̃ , g̃)
is full-rank if and only if (f̂ , ĝ) is, (b) 〈f̂ , ĝ〉 = 〈f̃ , g̃〉 almost surely on DX,1, and (c)

EDX,1
[f̃ f̃>] = EDY,1

[g̃g̃>], σr(EDX,1
[f̃ f̃>]) = σ̂.

It suffices to show that f̃ , g̃ is full-rank. To this end, let ι be an isometric embedding of Rr → V?p

for p ≥ r, and note we have that ED1⊗1 [(〈f̂ , ĝ〉Rr − 〈f?, g?〉H)2] ≤ ε2, and since ι is an isometry,

EDX,1
[ι(f̃)ι(f̃)>] = EDY,1

[ι(g̃)ι(g̃)>].

Applying the last part of Proposition J.2 and using p ≥ r implies that

σr(EDX,1
[ι(f̃)ι(f̃)>]) > σr(Σ

?
[p])− ε = σr(Σ

?)− ε,

which is striclty positive for ε < σr(Σ
?). Since ι is an isometry, we have shown that (f̃ , g̃) are

full-rank, which implies that (f̂ , ĝ) are also full-rank.

J.6. Proof of supporting claims

J.6.1. PROOF OF LEMMA J.1

Proof Define subsets of Rp by Uf =
⋃a
i=1{fi(X)} andWg =

⋃b
j=1{gj(Y)}. Since fi and gj are

simple, Uf andWf are finite. Define the sets

Xu :=
a⋂
i=1

f−1
i (u(i)), u = (u(1), . . . ,u(a)) ∈ (Uf )a

Yw :=
b⋂

j=1

g−1
j (w(j)), w = (w(1), . . . ,w(b)) ∈ (Wg)

b.

Let Uf := {u ∈ (Uf )a : Xu 6= ∅} and Wg := {w ∈ (Wg)
b : Yw 6= ∅}. Note that Uf and Wg are

finite sets (since Uf andWf are). By construction, for each u ∈ Uf (resp. w ∈Wg), there exists
an xu ∈ X (resp. yw ∈ Y) such that for all i ∈ [a] and j ∈ [b],

fi(xu) = u(i), gj(yw) = w(j).

By construction, we also see that the sets Xu and Yw indexed by u ∈ Uf and w ∈ Wg form a
partition of X and Y, so we may define functions φX and φY by

φX(x) := xu, x ∈ Xu, u ∈ Uf

φY(y) := yw, y ∈ Yw, w ∈Wg.

Note that since xu ∈ Xu, φX is idempotent: φX = φX ◦ φX; similarly, φY = φY ◦ φY.
By definition of Xu and Yw, it holds for all x ∈ Xu and y ∈ Yw that

fi(x) = fi ◦ φX(x), gj(y) = gj ◦ φY(y).
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Hence, for any Ψ, Ψ(f1(x), . . . , fa(x), g1(y), . . . , gb(y)) can be written as some function Ψ̃(φX(x), φY(y)).
To conclude, let D̄X denote the distribution of φX(x) under DX and D̄Y denote the distribution of
φY(y) under DY. Then,

EDX⊗DY
[Ψ(f1(x), . . . , fa(x), g1(y), . . . , gb(y))]

= EDX⊗DY
[Ψ̃(φX(x), φY(y))]

= EDX⊗DY
[Ψ̃(φX ◦ φX(x), φY ◦ φY(y))] (Idempotence of φX, φY)

= ED̄X⊗D̄Y
[Ψ̃(φX(x), φY(y))]

= ED̄X⊗D̄Y
[Ψ(f1(x), . . . , fa(x), g1(y), . . . , gb(y))].

This completes the proof.

J.6.2. PROOF OF LEMMAS J.4 AND J.5

Proof [Proof of Lemma J.4] We bound

‖E[ψ×©2
τ ]− E[ψ×©2]‖2F

=
∥∥∥E[ψ(ψτ − ψ)>] + E[(ψτ − ψ)ψ>] + E[(ψτ − ψ)(ψτ − ψ)>]

∥∥∥2

F

≤ 3‖E[ψ(ψτ − ψ)>]‖2F + 3‖E[(ψτ − ψ)ψ>]‖2F + 3‖E[(ψτ − ψ)(ψτ − ψ)>]‖2F
≤ 3E[‖ψ(ψτ − ψ)>‖2F] + 3E[‖(ψτ − ψ)ψ>‖2F] + 3E[‖(ψτ − ψ)(ψτ − ψ)‖2F].

(Jensen’s Inequality)

≤ 6E[‖ψ‖2‖ψτ − ψ‖2] + 3E[‖ψτ − ψ‖4]

≤ 6E[‖ψ‖2]E[‖ψτ − ψ‖2] + 3E[‖ψτ − ψ‖4]. (Cauchy Schwartz)

This last term goes to 0 as τ →∞ by definition of L2 convergence.

Proof [Proof of Lemma J.5] Let r := rank(E[ψ×©2]), so that σr(E[ψ×©2]) > 0. By Lemma J.4,
there exists some τ0 so that for all τ ≥ τ0 sufficiently large, E[ψ×©2

τ ] � E[ψ×©2]− σr
2 Ip. For all such

τ ≥ τ0, and any v ∈ range(E[ψ×©2]) \ {0}, we have

v>E[ψ×©2
τ ]v ≥ v>E[ψ×©2]v − σr‖v‖2/2 = σr‖v‖2/2 > 0.

Thus, dim(nullspace(E[ψ×©2
τ ])) ≤ dim(nullspace(E[ψ×©2])). Hence,

dim(range(E[ψ×©2
τ ])) ≥ dim(range(E[ψ×©2])).

On the other hand, by assumption, range(E[ψ×©2
τ ]) ⊆ range(E[ψ×©2]). Hence, range(E[ψ×©2

τ ]) =
range(E[ψ×©2]).
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J.6.3. PROOF OF LEMMA J.6

Proof We give the construction of the sequence f(τ), the others are similar. By Lemma J.3, there

exists a sequence of functions fτ such that fτ
L2(DX)→ f , i.e. limτ→∞ EDX

‖fτ − f‖2 = 0. Let P
denote the orthogonal projection onto range(Σ). Then, Pf = f DX-almost surely by Lemma L.7.
Hence,

lim
τ→∞

EDX
‖Pfτ − f‖2 = lim

τ→∞
EDX
‖P(fτ − f)‖2

≤ lim
τ→∞

EDX
‖fτ − f‖2 (P is an orthogonal projection)

= 0. (fτ
L2(DX)→ f )

Hence, let f(τ) := Pfτ
L2(DX)→ f . Moreover, Σ(τ),f := E[(f(τ))

×©2] = PE[(fτ )×©2]P>, which
ensures the inclusion of the rowspaces.

J.6.4. PROOF OF LEMMA J.7

We demonstrate the existence of T[τ ], and note that the existence of T?
[τ ] is similar. Recall from

Lemma J.6 that Σ(τ),f := E[(f(τ))
×©2], and Σ(τ),g := E[(g(τ))

×©2], and range(Σ(τ),f )∪range(Σ(τ),g) ⊆
range(Σ). By Lemma J.6 and Lemma J.4, it follows that

lim
τ→∞

Σ(τ),f = lim
τ→∞

Σ(τ),g = Σ

and for some τ0, range(Σ(τ),f ) = range(Σ(τ),g) = range(Σ) (taking τ0 to be the maximum of
the two τ0,f and τ0,g required for Σ(τ),f and Σ(τ),g individually ). Let r = dim(range(Σ)). By
inflating τ0 if necessary, we can ensures σr(Σ(τ),f ) = σr(Σ(τ),g) > σr(Σ)/2 for all τ ≥ τ0.
Hence, by Lemma L.2, for all τ ≥ τ0, there exist some T[τ ] ∈ Sp> such that

T[τ ]Σ(τ),fT[τ ] = T−1
[τ ] Σ(τ),gT

−1
[τ ] ,

satisfying

max{‖T[τ ]‖op, ‖T−1
[τ ] ‖op} ≤ (1 + ∆)1/4, where ∆ :=

‖Σ(τ),f −Σ(τ),g‖op

2σr(Σ)

τ→∞
→ 0 .

Notice that T[τ ] = T>[τ ] (Sp> contains only symmetric matrices), we also have

E[(T[τ ]f(τ))
×©2] = T[τ ]Σ(τ),fT

>
[τ ] = T−>[τ ] Σ(τ),gT

−1
[τ ]E[(T−>[τ ] g(τ))

×©2],

and that since limτ→∞max{‖T[τ ]‖op, ‖T−1
[τ ] ‖op} = 1, limτ→∞T[τ ] = Ip.

J.6.5. PROOF OF LEMMA J.8

Part (a). We have

EDX
‖f[τ ] − f‖2 = EDX

‖T[τ ]f(τ) − f‖2

≤ 2EDX
‖(T[τ ] − Ip)f(τ)‖2 + 2EDX

‖f(τ) − f‖2

≤ 2‖T[τ ] − Ip‖2op · EDX
‖f(τ)‖2 + 2EDX

‖f(τ) − f‖2.
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Since f(τ)
L2(DX)→ f , supτ EDX

‖f(τ)‖2 ≤M for some M <∞. Hence, by Lemmas J.6 and J.7,

lim
τ→∞

EDX
‖f[τ ] − f‖2 ≤ lim

τ→∞
2‖T[τ ] − Ip‖2opM + lim

τ→∞
2EDX

‖f(τ) − f‖2 = 0.

The proofs of the other guarantees are similar.

Parts (b) and (c). These follow from part (a) and Lemma J.4.

Part (d). Set ζ := σk(Σ
?) − σk+1(Σ?), and assume ζ > 0. By part (b), limτ→∞Σ?

[τ ] = Σ?.
Hence, by Weyl’s inequality, there exists some τ0 such that for all τ ≥ τ0, σk+1(Σ?

[τ ]) < σk(Σ
?)−

ζ/2. The convergence then follows by Wedin’s Theorem (see e.g. Lemma D.2). The convergence
of Pk,[τ ] to Pk is analogous.

Part (e). This follows from parts (a) and (d).

Part (f). This can be checked by using parts (a) and (e), together with standard applications of
Cauchy Schwartz and/or Jensen’s inequality.

Part (g). The first statement can be checked by using part (a), together with standard applications
of Cauchy Schwartz and/or Jensen’s inequality. The second uses part (e) instead of part (a).

Part (h). Since limτ→∞
‖Σ?

[τ ]
‖2op

402s2
=
‖Σ?‖2op
402s2

by part (b) and Weyl’s inequality, part (h) follows
from part (g) and Eq. (J.4). This completes the proof. �

J.7. SVD perturbation for distribution embeddings

In this section, we reiterate the limiting analysis to establish an embedding analogue of our main
perturbation result for the singular-value decomposition (Theorem 1). Specifically, the main result
of this section is:

Theorem 11 Let (f, g) be balanced embeddings, with Σ = EDX,1
[ff>] = EDY,1

[gg>], and let
ED1⊗1 [(〈f̂ , ĝ〉 − 〈f?, g?〉)2] ≤ ε2. Then,

(e) Let Σ = E[ff>]. Then,
∑

i≥1 |σi(Σ)− σ?i |2 ≤ ε2

(f) Fix k ∈ N, and let Pk denote the projection onto the top k eigenvectors of Σ.10 Set δ?k :=

1− σ?k+1

σ?k
, and suppose that σ?k > 0. Then, if ε ≤ ησ?kδ

?
k for a given η ∈ [0, 1). Then

ED1⊗1 [(〈Pkf,Pkg〉 − 〈f?k , g?k〉2)] ≤ 81ε2

(δ?k(1− η))2
.

Our proof follows by approximation to simple functions.

Lemma J.9 Ssuppose that (f, g) and (f?, g?) are simple functions embedding into Rp, and bal-
anced under D⊗ = DX ⊗DY, and that ε is as in Eq. (J.2). Then

(a) It holds that
∑

i≥1 |σi(Σ)− σi(Σ?)|2 ≤ ε2.

10. Under the conditions of this statement, it holds that Pk is unique.
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(b) Suppose σk(Σ?) > 0, and set δ?k := 1 − σk+1(Σ?)
σk(Σ?) and suppose that ε ≤ ησk(Σ

?)δ?k, where
η ∈ [0, 1). Then

ε2pred,k ≤
81ε2

(δ?k(1− η))2
.

Proof [Proof of Lemma J.9] For the first point, we have∑
i≥1

|σi(Σ)− σi(Σ?)|2 =
∑
i≥1

|σi(M̂)− σi(M?)|2 (Lemma J.2, part (a))

≤ ‖M̂−M?‖2F (Lemma K.3)

≤ ε2. (Lemma J.2, part (b))

For the second point, we can verify from Lemma J.2 part (c) and the same computation as in the
proof of part (b) that

EDX⊗DY
[(〈f?k (x), g?k(y)〉 − 〈fk(x), gk(y)〉)2] = ‖M?

[k] − M̂[k]‖2F, (J.20)

where M?
[k] and M̂[k] denote the rank-k SVD approximation of M? and M̂, respectively. We

now invoke our main SVD perturbation bound, Theorem 1. This states that if σk(M?) > 0 and
δ = 1− σk+1(M?)/σk(M

?) > 0, and if ‖M? − M̂‖op ≤ ησk(M?)δ for some η ∈ (0, 1), then the
Frobenius norm error between the rank-k SVD’s of M? and M̂ is bounded by

‖M̂[k] −M?
[k]‖

2
F ≤

81‖M̂−M?‖2F
δ2(1− η)2

.

Using the correspondences in Lemma J.2, we can take δ = δ?k := 1 − σk+1(Σ?)
σ?k(Σ?) , and that it is

sufficient that ε ≤ ησk(Σ
?)δ?k (since σk(M?) = σk(Σ

?) and ε = ‖M? − M̂‖F ≥ ‖M? − M̂‖op).
Using Eq. (J.20) and Lemma J.2 part (b), we conclude that for ε ≤ ησ?kδ?k,

EDX⊗DY
[(〈f?k (x), g?k(y)〉 − 〈fk(x), gk(y)〉)2] = ‖M?

[k] − M̂[k]‖2F ≤
81ε2

(δ?k(1− η))2
.

This completes the proof.

Next, we remove the requirement of simple functions.

Lemma J.10 Suppose that (f, g) and (f?, g?) are pairs of embeddings into Rp, and are balanced
under D⊗ = DX ⊗DY, but are not necessarily simple functions, and that ε is as in Eq. (J.2). Then

(a) It holds that
∑

i≥1 |σi(Σ)− σi(Σ?)|2 ≤ ε2.

(b) Suppose σk(Σ?) > 0, and set δ?k := 1 − σk+1(Σ?)
σk(Σ?) and suppose that ε ≤ ησk(Σ

?)δ?k, where
η ∈ [0, 1). Then

ε2pred,k ≤
81ε2

(δ?k(1− η))2
.
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Proof [Proof of Lemma J.10] Let’s start with part (a). By invoking Lemma J.9 part (a) for each τ ,∑
i≥1

|σi(Σ?
[τ ])− σi(Σ[τ ])|2 ≤ ε2[τ ].

Taking τ →∞, Lemma J.8 parts (b) and (c) ensure Σ?
[τ ] → Σ?, Σ[τ ] → Σ. Thus, Weyl’s inequality

implies that limτ→∞
∑

i≥1 |σi(Σ?
[τ ])− σi(Σ[τ ])|2 =

∑
i≥1 |σi(Σ?)− σi(Σ)|2. Lemma J.8 part (g)

gives ε2[τ ] → ε2pred ≤ ε2, completing the proof of the statement.
Next, let’s turn to part (b). Fix a k for which σk(Σ?) > 0. From part (a) and the condition

that ε < σk(Σ
?), it also follows that σk(Σ) > 0. Define δ?k,[τ ] := 1 −

σk+1(Σ?
[τ ]

)

σk(Σ?
[τ ]

) . Lemma J.8

part (b) ensures Σ?
[τ ] → Σ?, so that (again using Weyl’s inequality), δ?k,[τ ] is well defined for all τ

sufficiently large, and converges to δ?k := 1− σk+1(Σ?)
σk(Σ?) . Using Lemma J.8 again, the assumption that

ε ≤ ησk(Σ
?)δ?k implies that there is a sequence of ηk,[τ ] ↓ η such that εk,[τ ] ≤ ηk,[τ ]σk(Σ

?
[τ ])δ

?
k,[τ ]

for all τ sufficiently large. Invoking Lemma J.9 part (b) for these τ ,

ε2k,[τ ] ≤
81ε2

(δ?k,[τ ](1− ηk,[τ ]))2
.

Taking limits τ →∞ and again calling Lemma J.8 concludes the proof.

The proof of Theorem 11 follows by extending Lemma J.10 to infinite dimensional embeddings
along the lines of Appendix J.5. Details are similar (though considerably simpler) and are omitted
for brevity. �

Appendix K. Supporting Linear Algebraic Proofs

K.1. Balancing without loss of generality

Proof [Proof of Lemma I.2] Let A = UAΣAV>A and B = UBΣBV>B where ΣA,ΣB are diagonal
matrices with elements ranked in descending order, and VA,VB ∈ Rd×d. Since the ΣA,ΣB and
VA,VB can be constructed from any eigen-decomposition of A>A and B>B, and since both are
equal, we have ΣA = ΣB = Σ and we can choose the basis VB such that VA = VB . Moreover,
VA = VB = R for some R ∈ O(d), since they are d × d matrices with orthonormal columns.
Hence, A = UAΣR and B = VBΣR for some R ∈ O(d).

To justify A[k] = UΣ
1
2

[k]R, set Ā := AR> = UΣ; defined B[k] and B̄[k] similarly. Then,

it can be checked that P̄[k] projects onto the top k eigenspace of Ā>Ā, so that P[k] = R>P̄[k]R

projects onto the top k eigenspace of A>A. Hence,

A[k] = AP[k] = ĀR ·R>P̄[k]R = UΣ
1
2

[k]R,

as needed. Similar argument holds for B[k].

Proof [Proof of Lemma I.1] From Lemma I.2, there exists a R̂ ∈ O(d) for which Â′ = ÂR̂, B̂′ =
B̂R̂, and a R? ∈ O(d) for which A?′ = A?R?,B?′ = B?R?, and for which we can take A?′

[k] =
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A?
[k]R

?,B?′
[k] = B?

[k]R
?. Given R′ ∈ O(d), we choose our orthogonal matrix to apply to the

non-primed terms as R = R̂R′(R?)−1 ∈ O(d). We compute

‖(A?
[k] − ÂR)(B?

[k])
>‖2F = ‖(A?

[k] − ÂR̂R′(R?)−1)(B?
[k])
>‖2F

= ‖(A?
[k] − Â′R′(R?)−1)(B?

[k])
>‖2F

= ‖(A?′
[k](R

?)−1 − Â′R′(R?)−1)(B?′
[k](R

?)−1)>‖2F
= ‖(A?′

[k] − Â′R′)(R?)−1(R?)−>(B?′
[k])
>‖2F

= ‖(A?′
[k] − Â′R′)(B?′

[k])
>‖2F,

where the second-last line uses that (R?)−1(R?)−> = Ip for R? ∈ O(d). The equality ‖A?
[k](B

?
[k]−

B̂R)>‖2F = ‖A?′
[k](B

?′
[k] − B̂′R′)>‖2F can be verified similarly.

Moreover,

‖A?
[k] − ÂR‖2F = ‖A?′

[k](R
?)−1 − Â′R̂−1 · R̂R′(R?)−1‖2F

= ‖(A?′
[k] − Â′R′)(R?)−1‖2F = ‖A?′

[k] − Â′R′‖2F,

where the last line uses the unitary invariant property of the Frobenius norm. The equality ‖B?
[k] −

B̂R‖2F = ‖B?′
[k] − B̂′R′‖2F follows similarly.

Lastly, since R = R̂R′(R?)−1, we have R′ = R̂−1RR?. Then

rowspace
(

(Â′[k]R
′)>(Â′[k]R

′)
)

= rowspace
(

(Â′[k]R̂
−1RR?)>(Â′[k]R̂

−1RR?)
)

= rowspace
(

(Â[k]RR?)>(Â[k]RR?)
)

= rowspace
(

(R?)>(Â[k]R)>(Â[k]R)R?
)

(i)

⊇ rowspace
(

(R?)>(A?
[k])
>(A?

[k])R
?
)

= rowspace
(

(A?
[k]R

?)>(A?
[k]R

?)
)

= rowspace
(

(A?′
[k])
>(A?′

[k])
)
,

where in (i), we use that rowspace
(

(Â[k]R)>(Â[k]R)
)
⊇ rowspace

(
(A?

[k])
>(A?

[k])
)

, and that
R is a rotation matrix.

K.2. Supporting proofs for error decomposition

K.2.1. PROOF OF LEMMA I.3

We first state the following facts.

Fact K.1 Let K := (Ki)`i=1 be a monotone partition of [d] for some d ≤ min{n,m}, and consider
A = UΣ and B′ = V′Σ′. Then,
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(a) Any diagonal matrix Σ ∈ Rd×d is compatible with K. Hence, A =
∑`

i=1 AKi , and similar
for B′.

(b) If R ∈ Rd×d is compatibile with K, then AR =
∑`

i=1 AKiRKi .

(c) For any 1 ≤ i 6= j ≤ `, ΣKiΣ′Kj = 0. Hence, AKi(B
′
Kj )
> = 0, and also (AKiRKi)(B

′
Kj )
> =

0.

(d) AKi(B
′)> = (AKi)(B

′
Ki)
> for any 1 ≤ i ≤ `.

If in addition (Ki)`i=1 is a monotone partition with pivots 0 = k1 < k2 · · · < k` < k`+1 = p, then
A[k`] =

∑`−1
i=1 AKi , and similarly for B′.

Proof We use the facts above to prove Lemma I.3:

(A?
[k`]
− ÂR)(B?

[k`]
)> =

(
(

`−1∑
i=1

A?
Ki)− (

∑̀
i=1

ÂKiRKi)

)
(B?

[k`]
)>

=
`−1∑
i=1

(
A?
Ki − ÂKiRKi

)
(B?

[k`]
)> − (ÂK`RK`)(B

?
[k`]

)>

=
`−1∑
j=1

`−1∑
i=1

(
A?
Ki − ÂKiRKi

)
(B?
Kj )
> −

`−1∑
j=1

(ÂK`RK`)(B
?
Kj )
>

︸ ︷︷ ︸
=0

=
`−1∑
i=1

(
A?
Ki − ÂKiRKi

)
(B?
Ki)
>.

Proofs for the compositions of (A?
[k`]
− ÂR), (B?

[k`]
− B̂R) and A?

[k`]
(B?

[k`]
− B̂R)> follow anal-

ogously.

K.2.2. PROOF OF LEMMA I.4

Proof [Proof of Lemma I.4] For simplicity, we abbreviate Ei = Ei(R). Let us prove the bound on
∆0(R, k`) first. Recall ∆0(R, k`) = ‖(A?

[k`]
− ÂR)(B?

[k`]
)>‖2F ∨ ‖A?

[k`]
(B?

[k`]
− B̂R)>‖2F. We

explicitly bound the first term ‖(A?
[k`]
− ÂR)(B?

[k`]
)>‖2F, and note that a similar argument bounds

the second term.
Invoking Eq. (I.7a)

‖(A?
[k`]
− ÂR)(B?

[k`]
)>‖2F =

∥∥∥∥∥
`−1∑
i=1

(
A?
Ki − ÂKiRKi

)
(B?
Ki)
>

∥∥∥∥∥
2

F

=
`−1∑
i=1

∥∥∥(A?
Ki − ÂKiRKi

)
(B?
Ki)
>
∥∥∥2

F

+

`−1∑
i,j=1,i 6=j

〈(
A?
Ki − ÂKiRKi

)
(B?
Ki)
>,
(
A?
Kj − ÂKjRKj

)
(B?
Kj )
>
〉

︸ ︷︷ ︸
=0

.
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Here, the second term vanishes because (B?
Ki)
>B?
Kj = 0 = (Σ?

Ki)
1
2 (V?)>V?(Σ?

Kj )
1
2 = (Σ?

Ki)
1
2 (Σ?

Kj )
1
2 =

0, since Ki ∩ Kj = ∅ for i 6= j. Continuing,

`−1∑
i=1

∥∥∥(A?
Ki − ÂKiRKi

)
(B?
Ki)
>
∥∥∥2

F
≤

`−1∑
i=1

‖B?
Ki‖

2
op‖A?

Ki − ÂKiRKi‖2

=
`−1∑
i=1

max{σ?k′ : k′ ∈ Ki} · ‖A?
Ki − ÂKiRKi‖2

≤
`−1∑
i=1

(µσ?ki+1
) · ‖A?

Ki − ÂKiRKi‖2 ((δ, µ)-well-tempered)

= µ
`−1∑
i=1

(δ?ki ∧ δ?ki+1
)−2 · (δ?ki ∧ δ?ki+1

)2(σ?ki+1
)‖A?

Ki − ÂKiRKi‖2︸ ︷︷ ︸
≤Ei

≤ µ(

`−1∑
i=1

(δ?ki ∧ δ?ki+1
)−2) · max

i∈[`−1]
Ei

≤ µ(
`−1∑
i=1

(δ?ki)
−2 + (δ?ki+1

)−2) · max
i∈[`−1]

Ei

= µ(
`−1∑
i=1

(δ?ki)
−2 +

∑̀
i=2

(δ?ki)
−2) · max

i∈[`−1]
Ei.

By convention, δ?0 = 1 ≥ δ?ki (all relative gaps are at most 1). Thus,
∑`

i=2(δ?ki)
−2 ≤∑`

i=1(δ?ki)
−2, and the above is at most 2µ(

∑`
i=1(δ?ki)

−2) maxi∈[`]Ei = 2µMspace maxi∈[`]Ei.
This completes the proof of the first argument.

Let’s now turn to ∆1(R, k`) = ‖A?
[k`]
−ÂR‖2F∨‖B?

[k`]
−B̂R‖2F. Again, we focus on ‖A?

[k`]
−

ÂR‖2F. From Eq. (I.7b)

‖A?
[k`]
− ÂR‖2F =

∥∥∥∥∥
`−1∑
i=1

(
A?
Ki − ÂKiRKi

)
− Â>k`R>k`

∥∥∥∥∥
2

F

=

`−1∑
i=1

∥∥∥A?
Ki − ÂKiRKi

∥∥∥2

F
+ ‖Â>k`R>k`‖

2
F

+

`−1∑
i 6=j

〈
A?
Ki − ÂKiRKi ,A

?
Kj − ÂKjRKj

〉
︸ ︷︷ ︸

=0

−
`−1∑
i=1

〈
A?
Ki − ÂKiRKi , Â>k`R>k`

〉
︸ ︷︷ ︸

=0

,
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where the terms on the second line vanish because they involve inner products of matrices whose
columns have disjoint support. We bound

`−1∑
i=1

∥∥∥A?
Ki − ÂKiRKi

∥∥∥2

F
=

`−1∑
i=1

1

(δ?ki ∧ δ?ki+1
)2(σ?ki+1

)
· (σ?ki+1

)(δ?ki ∧ δ?ki+1
)2
∥∥∥A?
Ki − ÂKiRKi

∥∥∥2

F︸ ︷︷ ︸
≤Ei

≤ δ−2
`−1∑
i=1

1

σ?ki+1

Ei (partition is (δ, µ)-well-tempered)

≤ δ−2 max
i∈[`−1]

Ei ·
`−1∑
i=1

1

σ?ki+1

=
Mspec

δ2
max
i∈[`−1]

Ei.

Finally, using R ∈ O(d) and Â>k` = ÛΣ̂
1
2
>k`

for ‖Û‖op = 1, we have that

‖Â>k`R>k`‖
2
F ≤ ‖Â>k`‖

2
F ≤ ‖Σ̂

1
2
>k`
‖2F =

∑
i>k`

‖Σ̂
1
2
i ‖

2
F =

∑
i>k`

σi(M̂).

In sum,

‖A?
[k`]
− ÂR‖2F =

∥∥∥∥∥
`−1∑
i=1

(
A?
Ki − ÂKiRKi

)
− Â>k`R>k`

∥∥∥∥∥
2

F

=

`−1∑
i=1

∥∥∥A?
Ki − ÂKiRKi

∥∥∥2

F
+ ‖Â>k`R>k`‖

2
F

≤ Mspec

δ2
max
i∈[`−1]

Ei +
∑
i>k`

σi(M̂),

as needed.

K.2.3. PROOF OF LEMMA I.6

Proof [Proof of Lemma I.6] We observe that for any monotone (in particular, well-tempered) parti-
tion,

M̂Ki = M̂[ki+1] − M̂[ki], M?
Ki = M?

[ki+1] −M?
[ki]
,

where we let M?
[k1] = M?

[0] = 0. Thus, ◦ = {op,F},

max
i∈[`]

(δ?ki ∧ δ?ki+1
)‖M̂Ki −M?

Ki‖◦ ≤ max
i∈[`]

δ?ki‖M̂[ki] −M?
[ki]
‖◦ + δ?ki+1

‖M̂[ki+1] −M?
[ki+1]‖◦

≤ 2 max
i∈[`+1]

δ?ki‖M̂[ki] −M?
[ki]
‖◦ =: 2ε̃◦.

Next, for a matrix of the form AKi ∈ Rn×d, let A〈Ki〉 ∈ Rn×|Ki| denote its canonical compact
representation. We observe then that

Â〈Ki〉B̂
>
〈Ki〉 = M̂Ki , A?

〈Ki〉(B
?
〈Ki〉)

> = M?
Ki .
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Further, observe that σ|Ki|(M
?
Ki) = min{σ?k′ : k ∈ Ki} = σ?ki+1

. Hence, Lemma I.5 implies the

following: for a given i ∈ [`], if 2ε̃op ≤ δ
σ?k`
2 ≤

(δ?ki
∧δ?ki+1

)σ?ki+1

2 , then there exists an orthogonal
matrix Oi ∈ O(|Ki|) such that

‖Â〈Ki〉Oi −A?
〈Ki〉‖

2
F + ‖B̂〈Ki〉Oi −B?

〈Ki〉‖
2
F ≤

c0

σ|Ki|(M
?
Ki)
‖M̂Ki −M?

Ki‖
2
F

=
c0

σ?ki+1

‖M̂Ki −M?
Ki‖

2
F.

Multiplying both sides of the above inequality by (δ?ki ∧ δ?ki+1
)2σ?ki+1

, there exists a Oi ∈ O(|Ki|)
such that

(δ?ki ∧ δ?ki+1
)2σ?ki+1

(
‖Â〈Ki〉Oi −A?

〈Ki〉‖
2
F ∨ ‖B̂〈Ki〉Oi −B?

〈Ki〉‖
2
F

)
≤ c0(δ?ki ∧ δ?ki+1

)2‖M̂Ki −M?
Ki‖

2
F

≤ 4c0ε̃
2
fro.

Now, let R be the block matrix compatible with (Ki)`i=1, such that R〈Ki〉 = Oi (that is, the
block of R corresponding to the set Ki is the matrix Oi). Since R is a block-orthogonal matrix, it
is orthogonal. Moreover, it is straightforward that

‖Â〈Ki〉Oi −A?
〈Ki〉‖F = ‖ÂKiRKi −A?

Ki‖F,

and analogously for the “B”-factors. Hence, for all i ∈ [`]

Ei = (δ?ki ∧ δ?ki+1
)2σ?ki+1

(
‖ÂKiRKi −A?

Ki‖
2
F ∨ ‖B̂KiRKi −B?

Ki‖
2
F

)
≤ 4c0ε̃

2
fro.

This completes the proof.

K.3. Existence of well-tempered partition

K.3.1. PROOF OF LEMMA I.7

We first restate the lemma as below.

Lemma I.7 (Singular Value Spacing) Fix any s ∈ N and σ ∈ [σ?s , σ
?
1]. Then, there exists integer

` ∈ N, and an increasing sequence 0 = k1 < k2 · · · < k` < k`+1 = s such that the following is
true:

(a) For i ∈ [`], δ?ki ≥ 1/ki+1 ≥ 1/s.

(b) For i = `, σ?ki+1 ≤ 2eσ, and for i ∈ [`− 1], σ?ki+1 ≤ 2e2σ?ki+1
.

(c) For i = `, σ?ki ≥ σ, and for i ∈ [`− 1], σ?ki ≥ eσ
?
ki+1

.

Define

k̃1 =

{
max

{
k′ < s : δ?k′ ≥

1
s , σ

?
k′ ≥ σ

}
if such a k′ ≥ 0 exists

0 otherwise.
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And for i ≥ 1, define

k̃i+1 =

{
max

{
k′ < k̃i : δ?k′ ≥

1
k̃i
, σ?k′ ≥ eσ?k̃i

}
if such a k′ ≥ 0 exists

0 otherwise.

We terminate this recursive definition of k̃i the first time there is some k̃i = 0. Thus, let ` :=
{i ≥ 1 : k̃i = 0} (which is a unique index). Finally, for i ∈ [`], choose ki = k̃`+1−i.

We now verify this sequence satisfies the desired properties. Items (a) and (c) clear from the
definition.

Item (b). We mainly prove the argument that for i ∈ [`− 1], σ?ki+1 ≤ 2e2σ?ki+1
.

We may assume ki+1 6= 1, since otherwise ki = 0 = k1, i.e. i = 1, and ki + 1 = 0 + 1 = 1 =
ki+1, and the bound is vacuous. Continuing, fix an index i, and let k̄i := max{k′ < ki+1 : σ?k′ ≥
eσ?ki+1

}. Notice that in particular σ?
k̄i+1

< eσ?ki+1
. Then, we can equivalently express

ki =

{
max

{
k′ < k̄i + 1 : δ?k′ ≥

1
ki+1

}
if such a k′ ≥ 0 exists

0 otherwise.

In particular, if ki + 1 > k̄i, then ki = k̄i, and thus σ?ki+1 = σ?
k̄i+1

< eσ?ki+1
≤ 2e2σ?ki+1

, we are
finished.

Otherwise, if ki + 1 ≤ k̄i, we know that for all

∀j ∈ [ki + 1, k̄i], δ?j ≤
1

ki+1
. (K.1)

Hence,

σ?ki+1 = σ?k̄i+1

 k̄i∏
j=ki+1

σ?j
σ?j+1


= σ?k̄i+1

 k̄i∏
j=ki+1

1

1− δ?j

 (
σ?j+1

σ?j
= 1− δ?j )

≤ σ?k̄i+1

 k̄i∏
j=ki+1

1

1− 1/ki+1

 (Eq. (K.1))

≤ σ?k̄i+1 · (1− 1/ki+1)−(k̄i−(ki+1))

≤ σ?k̄i+1 · (1− 1/ki+1)−ki+1 ≤ eσ?ki+1
· (1− 1/ki+1)−ki+1 . (σ?

k̄i+1
≤ eσ?ki+1

)

Using the elementary inequality (1− 1
n)n ≥ e−1(1− 1

n) for n ≥ 1, and the fact that ki+1 ≥ 2, we
obtain that (1− 1/ki+1)−ki+1 ≤ 2e. Hence, σ?ki+1 ≤ 2e2σ?ki+1

.
Proof for the argument that σ?k`+1 ≤ 2eσ is nearly identical, by introducing notation k̄`, defined

as k̄` := max{k′ < s : σ?k′ ≥ σ} and noticing that k` can be equivalently expressed as

k` =

{
max

{
k′ < k̄` + 1 : δ?k′ ≥

1
s

}
if such a k′ ≥ 0 exists

0 otherwise,

and the rest of the proof follows the same argument. �
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K.3.2. PROOF OF PROPOSITION I.2

We let (Ki)`i=1 denote the partition whose pivots are given by the points in Lemma I.7.

Item (a). From item’s (a) and (b) of Lemma I.7, the partition is (δ, µ)-well-tempered for δ ≥ 1/s
and µ ≤ 2e2.

Item (b). σ?k` ≥ σ follows from Lemma I.7, part (c). From that same lemma, we also see that for
i ∈ [`], σ?ki ≥ e

`−iσ?k` ≥ e
`−iσ. Hence

Mspec =
∑̀
i=1

(σ?ki)
−1 ≤

∑̀
i=1

e−(`−i)σ−1 ≤ σ−1
∑
i≥0

e−i =
σ−1

1− e−1
.

Item (c). Finally, we develop bounds on Mspace. We bound

Mspace =
∑̀
i=1

(δ?ki)
−2 ≤ `max

i∈[`]
(δ?ki)

−2 ≤ `s2.

Clearly ` ≤ s. Moreover, from Lemma I.7, part (c), since σki grow geometrically by factors of e,
we must have that ` ≤ 1 + dlog

‖M?‖op
σ e. Hence, ` ≤ `σ,s := min{1 + dlog

‖M?‖op
σ e, s}.

Item (d). We bound

tail2(M?; k`) =
∑
j>k`

(σ?j )
2 =

s∑
j=k`+1

(σ?j )
2 +

∑
j>s

(σ?j ) =
s∑

j=k`+1

(σ?j )
2 + tail2(M?; s)

≤ s(σ?k`+1)2 + tail2(M?; s)

≤ 4e2sσ2 + tail2(M?; s),

where in the last line, we used Lemma I.7, part (b). The bound on tail1(M?; k`) is analogous. �

K.4. Useful linear algebra facts

We conclude the section by several useful facts about the linear algebra.

Lemma K.1 (Eq. (1), Li and Strang (2020)) Let M,M′ ∈ Rn×m where rank(M′) = r. Then,

∀i ∈ {1, . . . ,min{n,m} − r}, σi(M−M′) ≥ σi+r(M).

Lemma K.2 (Theorem A.14, Bai and Silverstein (2010)) Let M = AB> have rank (at most) r.
Then,

∑r
i=1 σi(M) ≤

∑r
i=1 σi(A)σi(B).

Lemma K.3 (Theorem A.37 (ii), Bai and Silverstein (2010)) For any M,M′ ∈ Rn×m,
ν∑
i=1

(σi(M)− σi(M′))2 ≤ ‖M−M′‖2F,

where the above holds for ν = min(n,m), and thus, also holds for any 1 ≤ ν ≤ min(n,m).
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Appendix L. The Balancing Operator

L.1. Properties of the balancing operator

Definition F.4 (Balancing Operator) Let X,Y ∈ Sp>. We define the balancing operator

Ψbal(Y; X) := X
1
2 (X

1
2 YX

1
2 )−

1
2 X

1
2 ∈ Sp>.

The uniqueness of W = Ψbal(Y; X) (and hence the well-definedness of the map Ψbal) is a
consequence of the following lemma.

Lemma L.1 Let X,Y ∈ Sp>. The balancing operator has the following properties:

(i) Uniqueness: There is a unique W = Ψbal(Y; X) is the unique positive definite matrix
satisfying X = WYW, so that Ψbal is well-defined.

(ii) Positive scaling: Ψbal(αY; X) = α−
1
2 Ψbal(Y; X).

(iii) Anti-monotonicity: If Y � Y′, then Ψbal(Y; X) � Ψbal(Y
′; X).

(iv) Comparison with X: If Y � τX, then Ψbal(Y; X) � τ−
1
2 Ip, similarly, if Y � τX,

Ψbal(Y; X) � τ−
1
2 Ip.

(v) Comparison with identity: If Y � τIp, then Ψbal(Y; X) � τ−
1
2 X

1
2 ; similarly, if Y � τIp,

Ψbal(Y; X) � τ−
1
2 X

1
2 .

(vi) Inverse symmetry: Ψbal(Y; X) = Ψbal(X; Y)−1.

(vii) Let Z = W
1
2 YW

1
2 = W− 1

2 XW− 1
2 . Then, there exist orthogonal matrices O1,O2 ∈ O(p)

such that Z � 1
2(O1XO>1 + O2YO>2 ). Moreover, λi(Z) = σi(X

1
2 Y

1
2 ).

Proof Item (i). One can directly check that W = Ψbal(Y; X) satisfies X = WYW. For unique-
ness, W satisfying X = WYW satisfies Ip = W′(X

1
2 YX

1
2 )W′, where W′ := X−

1
2 WX−

1
2 .

Thus (W′)−2 = X
1
2 YX

1
2 , so that (W′)2 = (X

1
2 YX

1
2 )−1. Note that X

1
2 YX

1
2 � 0, and since

we stipulate W � 0, W′ � 0. Thus, by (Horn and Johnson, 2012, Theorem 7.2.6), it follows
that W′ = (X

1
2 YX

1
2 )−

1
2 is the unique positive definite square root of (X

1
2 YX

1
2 )−1. Solving for

W = X
1
2 W′X

1
2 , we see W = X

1
2 (X

1
2 YX

1
2 )−

1
2 X

1
2 .

Item (ii). This is a straightforward computation.

Item (iii). Let Y � Y′. Then, X
1
2 YX

1
2 � X

1
2 Y′X

1
2 . The mapping Z 7→ Z−

1
2 is operator

anti-monotone on Sp≥ ((Horn and Johnson, 2012, Corollary 7.7.4)). Thus,

(X
1
2 YX

1
2 )−

1
2 � (X

1
2 Y′X

1
2 )−

1
2 .

Therefore,

Ψbal(Y; X) = X
1
2 (X

1
2 YX

1
2 )−

1
2 X

1
2 � X

1
2 (X

1
2 Y′X

1
2 )−

1
2 X

1
2 = Ψbal(Y

′; X).
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Items (iv) and (v) Fix a r ∈ R. Then

Ψbal(τX
r; X) = X

1
2 (X

1
2 · (τXr)X

1
2 )−

1
2 X

1
2 = X

1
2 (τXr+1)−

1
2 X

1
2 = τ−

1
2 X

1−r
2

In particular, if r = 1, Ψbal(τX
r; X) = τ−

1
2 Ip, whereas if r = 0, Ψbal(τIp; X) = τ−

1
2 X

1
2 . The

conclusion follows from monotonicity.

Item (vi) If W satisfies X = WYW, then W′ = W−1 satisfies Y = W′XW′. The result
follows from the uniqueness of Ψbal.

Item (vii) We start with the following claim:

Claim L.1 Consider a PSD matrix Λ = LL> ∈ Sp> with L ∈ Rp×p, we have Λ
1
2 = O>L> = LO

for some O ∈ O(p).

Proof Let L = UΣV> be an SVD of L. Then, Λ = UΣ2U>, Λ
1
2 = UΣU> = UΣV>VU> =

L(VU>). Similarly, Λ
1
2 = UV>L> = O>L>.

Now, set Z = W− 1
2 XW− 1

2 = W
1
2 YW

1
2 . Then, by the above claim there exist orthogonal matri-

ces O1,O2 such that O1X
1
2 W− 1

2 = (W− 1
2 XW− 1

2 )
1
2 = Z

1
2 and W

1
2 Y

1
2 O2 = (W

1
2 YW

1
2 )

1
2 =

Z
1
2 . Hence,

Z = O1X
1
2 W− 1

2 W
1
2 Y

1
2 O2 = O1X

1
2 Y

1
2 O2.

Thus, for any v ∈ Rp,

v>Zv = v>O1X
1
2 Y

1
2 O2v

≤ ‖v>O1X
1
2 ‖ · ‖Y

1
2 O2v‖

≤ 1

2

(
‖v>O1X

1
2 ‖2 + ‖Y

1
2 O2v‖2

)
=

1

2
v>
(
O1XO>1 + O2YO>2

)
v.

Moreover, since Z ∈ Sp>, we have λi(Z) = σi(Z) = σi(O1X
1
2 Y

1
2 O2) = σi(X

1
2 Y

1
2 ).

L.2. Balancing “close” covariances

Lemma L.2 Let Σ,Σ′ ∈ Sp≥ be two matrices with range(Σ) = range(Σ′). Then, there exists a
transformation T ∈ Sp> such that

TΣT = T−1Σ′T−1, and, since T = T>, TΣT> = T−1Σ′T−>.

Moreover, this transformation satisfies, for r = rank(Σ),

max{‖T‖op, ‖T−1‖op} ≤ (1 + ∆)1/4, where ∆ :=
‖Σ−Σ′‖op

λr(Σ) ∧ λr(Σ′)
,

σi(TΣT) = σi(TΣT>) = σi(Σ
1
2 Σ
′ 1
2 ) (L.1)

Lastly, if rank(Σ) = rank(Σ′) = p, then T is unique and given by

T = Ψbal(Σ
′; Σ)

1
2 =

(
Σ

1
2 (Σ

1
2 Σ′Σ

1
2 )−

1
2 Σ

1
2

) 1
2
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Proof The last part of the theorem, when rank(Σ) = rank(Σ′) = p, is a direct consequence of
Lemma L.1. We now handle the case when rank(Σ) = rank(Σ′) < p. Let U ∈ Rp×r consist
of columns which form an orthonormal basis for range(Σ) = range(Σ′). Set X = U>ΣU and
Y = U>Σ′U. Then,

‖X−
1
2 YX−

1
2 ‖op ≤ 1 +

‖Σ−Σ′‖op

λr(Σ)
, ‖Y−

1
2 XY−

1
2 ‖op ≤ 1 +

‖Σ−Σ′‖op

λr(Σ′)
.

Thus, setting ∆ :=
‖Σ−Σ′‖op

λr(Σ)∧λr(Σ′) , we have

Y � (1 + ∆)X, X � (1 + ∆)Y.

Let W := Ψbal(Y; X). Then, from Lemma L.1.(iv),

max{‖W‖op, ‖W−1‖op} ≤
√

1 + ∆. (L.2)

Moreover, from Lemma L.1.(vii),

σi(W
1
2 YW

1
2 ) = σi(W

− 1
2 XW− 1

2 ) = σi(X
1
2 Y

1
2 )

= σi((U
>ΣU)

1
2 (U>Σ′U)

1
2 )

= σi(Σ
1
2 Σ
′ 1
2 ), i ∈ [r] (L.3)

where the last equality can be verified by a diagonalization argument, and using the fact that U is a
basis for the row space of Σ,Σ′.

To construct the transformation T, set

T = UW− 1
2 U> + (Ip −UU>), so that T−1 = UW

1
2 U> + (Ip −UU>).

Note that T ∈ Sp>, since W ∈ Sr> and U is orthonormal. Since (Ip−UU>)Σ = Σ(Ip−UU>) = 0
(and similarly with Σ′),

TΣT = UW− 1
2 U>ΣUW− 1

2 U>

= UW− 1
2 XW− 1

2 U>

= UW
1
2 YW

1
2 U> (L.4)

= UW
1
2 U>Σ′UW

1
2 U>

= T−1Σ′T−1.

Moreover, by Eq. (L.2),

max{‖T‖op, ‖T−1‖op} = max{1, ‖UW− 1
2 U>‖op, ‖UW

1
2 U>‖op} ≤ (1 + ∆)1/4.

Finally, by Eq. (L.4) followed by Eq. (L.3),

σi(TΣT) = σi(UW− 1
2 XW− 1

2 U>) = σi(W
− 1

2 XW− 1
2 ) = σi(Σ

1
2 Σ
′ 1
2 ), i ∈ [r],

whereas, for i > r, we verify that W− 1
2 XW− 1

2 = 0. Since Σ,Σ′ share the same range and have
rank r, we have σi(Σ

1
2 Σ
′ 1
2 ) = 0 for i > r.
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L.2.1. PERTURBATION OF THE BALANCING OPERATOR

Lemma L.3 (Perturbations of Ψbal, Relative Error) Fix ε ∈ (0, 1). Then,

(a) Let X,Y,Y′ ∈ Sp>, with (1− ε)Y � Y′ � (1 + ε)Y. Then,

(1 + ε)−
1
2 Ψbal(Y; X) � Ψbal(Y

′; X) � (1− ε)−
1
2 Ψbal(Y; X).

(b) Similarly, if X,X′,Y ∈ Sp>, with (1− ε)X � X′ � (1 + ε)X. Then,

(1− ε)
1
2 Ψbal(Y; X) � Ψbal(Y; X′) � (1 + ε)

1
2 Ψbal(Y; X).

(c) Finally, X,X′,Y,Y′ ∈ Sp>, with (1−ε)X � X′ � (1+ε)X and (1−ε)Y � Y′ � (1+ε)Y,
then

(1− 2ε) Ψbal(Y; X) � Ψbal(Y
′; X′) �

(
1 +

2ε

1− ε

)
Ψbal(Y; X).

Proof [Proof of Lemma L.3] By anti-monotonicity of Ψbal(·; X) and the explicit formula for Ψbal,

Ψbal(Y
′; X) � Ψbal((1 + ε)Y; X) = (1 + ε)−

1
2 Ψbal(Y; X).

By the same token,

(1 + ε)−
1
2 Ψbal(Y; X) � Ψbal(Y

′; X) � (1− ε)−
1
2 Ψbal(Y; X).

Hence, the result follows from the inverse symmetry of Ψbal (Lemma L.1.(vi)).
Finally, combining the first two parts of the lemma, we have

Ψbal(Y
′; X′) � (1 + ε)−

1
2 Ψbal(Y; X′) � (1− ε)

1
2 (1 + ε)−

1
2 Ψbal(Y; X),

and

Ψbal(Y
′; X′) � (1− ε)−

1
2 Ψbal(Y; X′) � (1− ε)−

1
2 (1 + ε)

1
2 Ψbal(Y; X).

To conclude, we bound

(1− ε)
1
2 (1 + ε)−

1
2 =

√
1− ε
1 + ε

=

√
1− 2ε

1 + ε
≥
√

1− 2ε ≥ 1− 2ε.

and

(1 + ε)
1
2 (1− ε)−

1
2 =

√
1 + ε

1− ε
=

√
1 +

2ε

1− ε
≤ 1 +

2ε

1− ε
.

concluding the proof.
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Lemma L.4 (Additive Perturbation of Balancing Operator) Let X,X′,Y,Y′ ∈ Sp> be matri-
ces such that µIp � X,X′,Y,Y′ � MIp, and ‖X −X′‖op, ‖Y −Y′‖op ≤ ∆ ≤ µ/3 for some
∆ > 0. Then,

‖Ψbal(Y
′; X′)−Ψbal(Y; X)‖op ≤ 3∆ ·

√
M/µ

µ
.

Moreover, ‖Ψbal(Y
′; X′)‖op, ‖Ψbal(Y; X)‖op ≤

√
M/µ and Ψbal(Y

′; X′),Ψbal(Y; X) �
√
µ/MIp.

Proof [Proof of Lemma L.4] Under the above conditions, it holds that (1 − µ−1∆)X � X′ �
(1 + µ−1∆)X, and similarly for Y and Y′. Applying Lemma L.3 with ε = ∆/µ ≤ 1/3, we have

(1− 2ε)Ψbal(Y; X) � Ψbal(Y
′; X′) � (1 + 3ε)Ψbal(Y; X).

This gives

‖Ψbal(Y
′; X′)−Ψbal(Y; X)‖op ≤ 3

∆

µ
‖Ψbal(Y; X)‖op.

Lastly, since Y � µ/MX (as Y � µIp and X � MIp), it holds ‖Ψbal(Y; X)‖op ≤
√
M/µ by

Lemma L.1.(iv). Thus,

‖Ψbal(Y
′; X′)−Ψbal(Y; X)‖op ≤ 3∆ ·

√
M/µ

µ
.

A similar computation also shows ‖Ψbal(Y
′; X′)‖op ≤

√
M/µ, and Ψbal(Y

′; X′),Ψbal(Y; X) �√
µ/MIp.

We recall the definition of the balanced covariance.

Definition F.5 (Balanced Covariance) Given X,Y ∈ Sp>, we define

CovBal(X,Y) = Ψbal(Y; X)
1
2 ·Y ·Ψbal(Y; X)

1
2 .

Remark 12 (Symmetry of CovBal) Note that, from definition of Ψbal, we also have CovBal(X,Y) =

Ψbal(Y; X)
1
2 YΨbal(Y; X)

1
2 = Ψbal(X; Y)−

1
2 YΨbal(X; Y)−

1
2 = CovBal(Y,X).

Lemma L.5 (Perturbation of Balanced Covariance) Let X,X′,Y,Y′ ∈ Sp> be the matrices
such that µIp � X,X′,Y,Y′ � MIp, and ‖X − X′‖op, ‖Y − Y′‖op ≤ ∆ ≤ µ/3 for some
∆ > 0. Then,

‖CovBal(X′,Y′)− CovBal(X,Y)‖op ≤ 4(M/µ)2∆.

Moreover, we have

‖Ψbal(Y
′; X′)−

1
2 −Ψbal(Y; X)−

1
2 ‖op ∨ ‖Ψbal(Y

′; X′)
1
2 −Ψbal(Y; X)

1
2 ‖op ≤

3

2µ
(M/µ)3/4∆.
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Proof [Proof of Lemma L.5] We have

‖CovBal(X′,Y′)− CovBal(X,Y)‖op

= ‖Ψbal(Y
′; X′)

1
2 Y′Ψbal(Y

′; X′)
1
2 −Ψbal(Y; X)

1
2 YΨbal(Y; X)

1
2 ‖op

≤ ‖Ψbal(Y
′; X′)

1
2 (Y′ −Y)Ψbal(Y

′; X′)
1
2 ‖op

+ ‖Ψbal(Y
′; X′)

1
2 −Ψbal(Y; X)

1
2 ‖op‖Y‖op(‖Ψbal(Y

′; X′)
1
2 ‖op + ‖Ψbal(Y; X)

1
2 ‖op)

≤ ∆
√
M/µ+ 2M(M/µ)1/4‖Ψbal(Y

′; X′)
1
2 −Ψbal(Y; X)

1
2 ‖op.

We now require following perturbation inequality for the matrix square root.

Lemma L.6 (Perturbation of Matrix Square Root, Lemma 2.2. in Schmitt (1992)) Let A1,A2 ∈
Sp> satisfy A1,A2 � γIp. Then, ‖A

1
2
1 −A

1
2
2 ‖op ≤ 1

2
√
γ ‖A1 −A2‖op.

Using Ψbal(Y
′; X′)

1
2 ,Ψbal(Y; X)

1
2 �

√
µ/MIp, Lemma L.6 followed by Lemma L.4 implies

‖Ψbal(Y
′; X′)

1
2 −Ψbal(Y; X)

1
2 ‖op ≤

1

2
(M/µ)1/4‖Ψbal(Y

′; X′)−Ψbal(Y; X)‖op

≤ 3

2µ
(M/µ)3/4∆. (L.5)

Thus, we conclude the first part of the lemma:

‖CovBal(X′,Y′)− CovBal(X,Y)‖op ≤ ∆
√
M/µ+ 3(M/µ)2∆ ≤ 4(M/µ)2∆.

The second bound in the lemma was derived above, and the bound on ‖Ψbal(Y
′; X′)

1
2−Ψbal(Y; X)

1
2 ‖

is precisely Eq. (L.5). The bound ‖Ψbal(Y
′; X′)

−1
2 −Ψbal(Y; X)

−1
2 ‖ follows from the inverse sym-

metry of the balancing operator (Lemma L.1.(vi)).

L.3. Balancing of finite-dimensional embeddings

Lemma L.7 Let DX be a distribution over X, let Σ = EDX
[ff>], and let P be the orthogonal

projection on range(Σ). Then Pf = f DX-almost surely; that is, PDX
[f(x) ∈ range(Σ)] = 1.

Proof It suffices to show E[‖(Ip −P)f‖2] = 0. As PΣ = ΣP, we have

E[‖(Ip −P)f‖2] = tr[E[((Ip −P)f)((Ip −P)f)>]] = tr(Σ−PΣ−ΣP> + PΣP>) = 0

= tr(Σ−Σ−Σ + Σ) = 0.

Lemma L.8 For any pair of embeddings f̂ : X → Rr and ĝ : Y → Rr, there exists embeddings
f̃ : X→ Rr and g̃ : Y→ Rr such that
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(a) 〈f̂ , ĝ〉 = 〈f̃ , g̃〉 almost surely, and

EDX,1
[f̃ f̃>] = EDY,1

[g̃g̃>].

(b) For all i ∈ N, σi(f̂ , ĝ) = σi(EDX,1
[f̃ f̃>]) = σi(EDX,1

[f̃ f̃>]), where we recall σi(·, ·) defined
in Eq. (3.1)

(c) (f̃ , g̃) is full-rank if and only if (f̂ , ĝ) is, and in this case T is uniqely given by

T = Ψbal(Σg; Σf )
1
2 =

(
Σ

1
2
f (Σ

1
2
f ΣgΣ

1
2
f )−

1
2 Σ

1
2
f

) 1
2

, (L.6)

where Σf = E[f̂ f̂>] and Σg = E[ĝĝ>].

Proof Given (f̂ , ĝ), let us construct a sequence of embeddings (f̂i, ĝi)i≥0, with covariances Σf,i :=

EDX,1
[f̂i(f̂i)

>] and Σg,i := EDY,1
[ĝi(ĝi)

>], and minimum rank

ri := min{rank(Σf,i,Σg,i}

Lastly, set Pf,i to be the orthogonal projection on the range of Σf,i and Pg,i the same for Σg,i. We
define

(f̂0, ĝ0) = (f̂ , ĝ), (f̂i+1, ĝi+1) =

{
(Pg,if̂i, ĝi) rank(Σf,i) ≥ rank(Σg,i)

(f̂i,Pg,iĝi) otherwise

We establish three claims.

Claim L.2 For any n, (f̂n, ĝn) is full-rank if and only if (f̂ , ĝ) is, which is true if and only if f̂n = f̂
and ĝn = g.

Proof We argue by induction that (f̂n, ĝn) is full-rank if and only if (f̂n+1, ĝn+1). The “if” follows
since rank(Σ·,n) ≤ rank(Σ·,n+1). The “only if” follows since if (f̂n, ĝn) is full-rank, Pf,n = Pg,n

are the identity, and thus, f̂n+1 = f̂n, ĝn+1 = ĝn.

Claim L.3 For any n, let holds that 〈f̂n, ĝn〉 = 〈f̂ , ĝ〉 almost-surely under D1⊗1.

Proof We prove by induction on n. The base case n = 0 is immediate. Assume now that 〈f̂n, ĝn〉 =
〈f̂ , ĝ〉 holds almost-surely under D1⊗1. Assume that without los of generality rank(Σf,n) ≥
rank(Σg,n), so that (f̂n+1, ĝn+1) = (Pg,nf̂n, ĝn). Then, by symmetry of the projection Pg,n,
we have

〈f̂n+1, ĝn+1〉 = 〈Pg,nf̂n, ĝn〉 = 〈f̂n,Pg,nĝn〉.

By Lemma L.7, Pg,nĝn = ĝn almost surely, and the result follows.
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Claim L.4 Let

n := inf{i ∈ N : rank(Σf,n) = rank(Σf,n+1) and rank(Σg,n) = rank(Σg,n+1)}

Then n is finite, and range(Σf,n) = range(Σg,n).

Proof That n is finite follows since the ranks of the covariances rank(Σ·,i+1) ≤ rank(Σ·,i)} are
non-increasing. Next, without loss of generality, assume that rank(Σf,n) ≥ rank(Σg,n), so that
(f̂n+1, ĝn+1) = (Pg,nf̂n, ĝn). Then, Σg,n = Σg,n+1, and

Σf,n+1 = Pg,nΣf,nPg,n, so range(Σf,n+1) ⊂ range(Pg,n) = range(Σg,n).

On the other hand,

rank(Σg,n) ≤ rank(Σf,n) = rank(Σf,n+1) = rank(Pg,nΣf,nPg,n),

which implies that range(Σf,n+1) ⊂ range(Σg,n) = range(Σg,n+1).

Hence, let T denote the (symmetric) positive definite transformation assured by applying Lemma L.2
to

Σ← Σf,n+1, Σ′ ← Σg,n+1; (L.7)

these matrices have the same range by the above claim. Take f̃ := Tf̂n+1 and g̃ := T−1ĝn+1. We
show all desired properties holds.

Part (a). The transformation T ensures that

EDX,1
[f̃ f̃>] = TΣf,n+1T = T−1Σg,n+1T

−1 = EDY,1
[g̃g̃>],

Moreover, symmetry of T and Claim L.3 imply that, almost surely,

〈f̃ , g̃〉 = 〈Tf̂n+1,T
−1ĝn+1〉 = 〈f̂n+1,T

>T−1ĝn+1〉 = 〈f̂n+1, ĝn+1〉 = 〈f̂ , ĝ〉,

Part (b). This is a consequence of Eq. (L.1) in Lemma L.2, noting that for Σ,Σ′ defined in
Eq. (L.7) that σr(f̂ , ĝ) := σr(Σ

1/2(Σ′)1/2)).

Part (c). Note that if f̂ , ĝ are full-rank, Σf,n+1 = Σf and Σg,n+1 = Σg, so that T is uniquely
given by Eq. (L.6) due to Lemma L.1. Note that (f̃ , g̃) is full-rank if and only if (f̂n+1, ĝn+1), which
by Claim L.2 is full-rank if and only if (f̂ , ĝ) is.

L.4. Analysis of separation rank

Definition F.7 Given Σ ∈ Sp≥, r0 ∈ [p], σ > 0, the separated-rank at (r0, σ) (if it exists) is

sep-rank(r0, σ; Σ) := max

{
r ∈ [r0] : σr(Σ) ≥ σ, σr(Σ)− σr+1(Σ) ≥ σr(Σ)

r0

}
. (F.9)

We say the separated-rank is well-defined if the above maximum exists.
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Lemma L.9 (Properties of Separated Rank) Given r0 ∈ [p] and σ ∈ [σr0(Σ), ‖Σ‖op/e], sep-rank(r0, σ; Σ)
enjoys the following properties:

(a) sep-rank(r0, σ; Σ) is well-defined: i.e. for some r ∈ [r0], it holds that σr(Σ) − σr+1(Σ) ≥
σr(Σ)
r0

and σr(Σ) ≥ σ.

(b) For r = sep-rank(r0, σ; Σ), we have σr+1(Σ) ≤ eσ.

Proof To prove part (a), we observe that since σ ≥ σr0(Σ), there must exist some maximal rmax ∈
[r0] for which σrmax(Σ) ≤ σ. Now suppose that, for the sake of contradiction, for all r ≤ rmax, it
holds that σr(Σ) − σr+1(Σ) < σr(Σ)

r0
. Then, ‖Σ‖op = σ1(Σ) ≤ (1 + 1/r0)rmaxσrmax+1(Σ) ≤

(1 + 1/r0)rmaxσ ≤ eσ. This contradicts our condition that σ ≤ ‖Σ‖op/e.
To prove part (b), again let rmax ≤ r0 be as in the proof of part (a). We must have that

r = sep-rank(r0, σ; Σ) ≤ rmax. If r = rmax, then σr+1(Σ) ≤ σ. Otherwise, for any r′ ∈
{r + 1, r + 2, . . . , rmax}, it holds that σr′(Σ) ≤ (1 + 1/r0)σr′+1(Σ). Hence, σr+1 ≤ (1 +
1/r0)rmax−rσrmax+1 ≤ eσrmax+1 ≤ eσ.

L.5. Proof of Proposition F.3

Lemma L.10 Fix Σ,Σ′, r0 ∈ [p] and suppose ‖Σ −Σ′‖op ≤ σ/4r0. Lastly, assume that one of
the two hold

(i) σ ∈ [4
3σr0(Σ), 4

5e‖Σ‖op].

(ii) There exists positive numbers σ̄r0 and σ̄1 satisfying max{|σ̄r0−σr0(Σ)|, |σ̄1−σ1(Σ)|} ≤ σ/4
for which σ ∈ [2σ̄r0 ,

2
3e σ̄1].

Let r = sep-rank(r0, σ; Σ′), and let Pr and P′r denote the projections onto the top-r singular
spaces of Σ and Σ′. Then, for any Schatten p-norm ‖ · ‖◦, Pr and Pr′ are unique, and

‖Pr −P′r‖◦ ≤ 4r0
‖Σ−Σ′‖◦

σ
.

The lemma also holds under the following more general condition:

Proof Set ∆ = ‖Σ−Σ′‖op. We shall show that under both conditions of the lemma, it holds that

σ ∈ [σr0(Σ′), ‖Σ′‖op/e],

so that the conditions of Lemma L.9 are met.
Condition (i). By Weyl’s inequality and our assumption on ∆ and the first assumption on σ,

σ − σr0(Σ′) ≥ σ(1− 1
4r0

)− σr0(Σ) ≥ 3σ
4 − σr0(Σ) ≥ 0

‖Σ′‖op/e− σ ≥ ‖Σ‖op/e− (1 + 1
4r0

)σ ≥ 0,

so that σ ∈ [σr0(Σ′), 1
e‖Σ

′‖op].
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Condition (ii). We are given σ̄r0 and σ̄1 satisfying max{|σ̄r0 − σr0(Σ)|, |σ̄1 − σ1(Σ)|} ≤ σ/4
for which σ ∈ [2σ̄r0 ,

2
3e σ̄1]. Thus,

σ − σr0(Σ′) ≥ σ(1− 1
4r0
− 1

4)− σ̄r0(Σref) ≥ σ/2− σ̄r0 ≥ 0

‖Σ′‖op/e− σ ≥ σ̄1 − (1 + 1
4r0

+ 1
2)σ ≥ 0.

Next, set µ = σr(Σ
′)−∆. Then σr(Σ′) ≥ µ, and by Weyl’s inequality, σr(Σ) ≥ σr(Σ′)−∆ =

µ. Moreover, the definition of sep-rank ensures that σr(Σ′) ≥ σ as well as

σr+1(Σ′) ≤ σr(Σ′)(1− 1/r0) = µ+ ∆− σr(Σ′)/r0 ≤ µ+ ∆− σ/r0.

Again, by Weyl’s inequality, σr+1(Σ) ≤ µ+2∆−σ/r0. Thus, for ∆ ≤ σ/4r0, max{σr+1(Σ′), σr+1(Σ)} ≤
µ−τ, where τ = σ/2r0. It follows from Lemma D.1 that if U′r is an orthonormal basis correspond-
ing to the top r eigenvalues of Σ′, and U′>r is an orthonormal basis corresponding to eigenvalues
r+ 1, . . . , p, and defining Ur,U>r analogously for Σ. Then, one has that, for any Schatten-p norm
‖ · ‖◦

max{‖(U′r)>U>r‖◦, ‖(U′>r)>Ur‖◦} ≤ 2r0
‖Σ−Σ′‖◦

σ
.

On the other hand, if Pr,P
′
r denote the projections onto the top-r eigenspaces of Σ,Σ′, we have

‖P′r −Pr‖◦ ≤ ‖P′r(P′r −Pr)‖◦ + ‖(Ip −P′r)(P
′
r −Pr)‖◦

= ‖P′r −P′rPr‖◦ + ‖(Ip −P′r)Pr‖◦
= ‖P′r(Ip −Pr)‖◦ + ‖(Ip −P′r)Pr‖◦
= ‖(U′r)>U>r‖◦ + ‖(U′>r)>Ur‖◦

≤ 4r0
‖Σ−Σ′‖◦

σ
.

Proposition F.3 (Perturbation of Balancing Projections) Let r0 ∈ N, matrices X,X′,Y,Y′ ∈
Sp>, and positive numbers σ > 0 and (σ̄i)i∈[r0+1] satisfy the following conditions:

(a) For any A ∈ {X,X′,Y,Y′}, µIp � A �MIp.

(b) max{‖X−X′‖op, ‖Y −Y′‖op} ≤ ∆, where ∆ ≤ µ
32r0

(µ/M)2.

(c) maxi∈[r0+1] |σ̄i − σi(Σ)| ≤ σ/8r0, where Σ = CovBal(X,Y).

(d) σ ∈ [max{µ, 2σ̄r̂0}, 2
3e σ̄1].

Define Σ′ = CovBal(X′,Y′), r = sep-rank(r0, σ; Σ′), Q = Projbal(r; X,Y) and Q′ = Projbal(r; X
′,Y′).

Then, r is well defined, Q and Q′ are unique, and the following bounds hold:

‖Q′ −Q‖op ≤
19r0(M/µ)5/2∆

µ
, max{‖Q‖op, ‖Q′‖op} ≤

√
M/µ.

Moreover, σ̄r ≥ 3
4σ, σ̄r+1 ≤ 3σ, and σ̄r − σ̄r+1 ≥ σ̄r̂

3r0
.
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Proof [Proof of Proposition F.3] Throughout, we also set Σ = CovBal(X,Y), W = Ψbal(Y; X),
and W′ = Ψbal(Y

′; X′). We further let Pr and P′r denote the projections onto the top-r singular
spaces of Σ and Σ′, respectively.

By Lemma L.5 and that ∆ ≤ µ
32r0

(M/µ)2 implies ∆ ≤ µ/3, we have that

‖Σ−Σ′‖op ≤ 4(M/µ)2∆.

Hence, for ∆ ≤ µ
32r0

(M/µ)2, it holds that

‖Σ−Σ′‖op ≤
µ

8r0
≤ σ

8r0
. (L.8)

Moreover, condition (d) of the present proposition matches condition (ii) of Lemma L.10 (recall
that lemma only requires one of conditions (i) or (ii) to be met). Thus, Lemma L.10 implies

‖Pr −P′r‖op ≤ 4r0
‖Σ−Σ′‖op

σ
≤ 16r0(M/µ)2∆

σ
≤ 16r0(M/µ)2∆

µ
.

Thus, combining the above bound with Lemma L.5 and the norm bounds on W,W′, as well as
their inverses due to Lemma L.4, it follows that

‖Q′ −Q‖op

= ‖(W′)−
1
2 P′r(W

′)
1
2 −W− 1

2 PrW
1
2 ‖op

≤ ‖(W′)−
1
2 (P′r −Pr)(W

′)
1
2 ‖op + ‖(W′)

1
2 Pr((W

′)
1
2 − (W)

1
2 )‖op + ‖((W′)

1
2 −W

1
2 )Pr(W)

1
2 ‖op

≤ ‖P′r −Pr‖op‖W′‖op + 2 max{‖W‖op, ‖W′‖op}1/2 · ‖(W′)
1
2 − (W)

1
2 ‖op

≤ 16r0(M/µ)2∆

µ
· (M/µ)1/2 + 2 · (M/µ)1/4 3

2µ
(M/µ)3/4∆

≤ 19r0(M/µ)5/2∆

µ
.

Second, using ‖W‖op ∨ ‖W−1‖op ≤
√
M/µ from Lemma L.4,

‖Q‖op = ‖W− 1
2 PrW

1
2 ‖op ≤

√
‖W‖op‖W−1‖op‖Pr‖ ≤

√
M/µ,

and similarly for ‖Q′‖op. Finally, we have from the assumption on σ?r and Weyl’s inequality and
Eq. (L.8) that

σ?r ≥ σr(Σ)− σ/4 ≥ σr(Σ′)− ‖Σ−Σ′‖op −
σ

8r0
≥ σr(Σ′)−

σ

4r0

σ?r+1 ≤ σr+1(Σ) + σ/4 ≤ σr+1(Σ′) + ‖Σ−Σ′‖op +
σ

8r0
≤ σr+1(Σ′) +

σ

4r0
.

From Lemma L.9, we have σr(Σ′) ≥ σ and σr+1(Σ′) ≤ eσ, so using r0 ≥ 1, we have σ?r ≥ 3σ/4
and σ?r+1 ≤ (e+ 1

4)σ ≤ 3σ. Finally, from the definition of sep-rank (Definition F.7),

(1− 1

r0
)σr(Σ

′)− σr+1(Σ′) ≥ 0.
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Using the previous display this implies

(1− 1
r0

)σ?r − σ?r+1 ≥ −(1− 1
r0

)
σ

4r0
− σ

4r0
≥ − σ

2r0
,

so rearranging, and using σ ≤ 4σ?r/3 as derived above,

σ?r − σ?r+1 ≥
σ?r
r0
− σ

2r0
≥ σ?r
r0
− 2σ?r

3r0
=

σ?r
3r0

.

This completes the proof.

Appendix M. Supporting Proofs for Error Decomposition

In this section, we prove a slightly more specific statement of Proposition 4.1, which makes depen-
dencies on the problem parameters explicit. We also state and prove an error decomposition result
under more general assumptions which allow for additive slack, as described below.

The remainder of the section is structured as follows.

(a) Appendix M.1 states our main results, both under Assumptions 2.2 and 2.3, as well as under
more general assumptions (Assumptions M.1, 2.2b and 2.3b) which allow for additive slack.

(b) Appendix M.2 sketches the main steps of the proof. The proofs of the constituent lemmas are
deferred to subsequent sections. This section focuses on Proposition 4.1a, and mentions the
modifications for Proposition 4.1b at its end in Subsubsection M.2.1.

(c) Appendix M.3 outlines helpful lemmas we refer to as “change of measure” lemmas. One key
lemma uses the covariance-relation, Assumption 2.3, to relate certain expectation underDi⊗2

and D2⊗j to those under Di⊗1 and D1⊗j .

(d) Appendices M.4 to M.6, prove the various lemmas given in Appendix M.2.

(e) Appendix M.7 derives Theorem 2 from Proposition 4.1 and Theorem 8.

M.1. Main results

We now give risk decomposition results which make dependencies on problem parameters explicit.
Our granular guarantee under Assumptions 2.2 and 2.3 is as follows.

Proposition 4.1a (Final Error Decomposition, Explicit Dependence) Suppose Assumptions 2.2
and 2.3 hold. For any k ≤ r with some fixed integer r > 0, and any aligned k-proxies (f, g) of the
Rr-embeddings (f̂ , ĝ), denote ∆0 = ∆0(f, g, k) and ∆1 = ∆1(f, g, k). Let σ ≤ σr(f̂ , ĝ) be a
lower bound on σr(f̂ , ĝ) as defined in Eq. (3.1), which satisfies σ2 ∈ (0, tail?2(k) + ∆0 + ∆train].
Then,

R(f, g;Dtest) . κtstκ
2
cov

(
(∆1)2 +

1

σ2
(∆apx + ∆0 + κcovκtrn∆train)2

)
.
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In particular, suppressing polynomial dependence on κtrn, κcov, we recover

R(f, g;Dtest) .? (∆1)2 +
1

σ2
(tail?2(k) + ∆0 + ∆train)2.

The same bound holds more generally when tail?2(k)+∆0 +∆train is replaced with an upper bound
M , and when σ2 need only satisfy σ2 ≤M . Moreover, it also holds that

R(f, g;D1⊗1) ≤ κtrnR(f, g;Dtrain).

M.1.1. ERROR DECOMPOSITION UNDER ADDITIVE REMAINDERS

The above error decomposition holds under slightly more general conditions, which allow for addi-
tive additive remainders in the multiplicative approximations in Assumptions 2.3 and 2.4.

Assumption 2.2b (Coverage Decomposition with Additive Slack) There exists κtst, κtrn > 0
and ηtst, ηtrn ∈ (0, 1] such that Dtrain covers all pairs Di⊗j with (i, j) = (1, 1), (i, j) = (1, 2), and
(i, j) = (2, 1), and Dtest is continuous with respect to the mixture of all pairs Di⊗j . Formally, for
all (x, y) ∈ X× Y,

PDi⊗j

[
dDi⊗j(x, y)

dDtrain(x, y)
> κtrn

]
≤ ηtrn, (i, j) ∈ {(1, 1), (1, 2), (2, 1)} (Train Coverage)

PDtest

[
dDtest(x, y)∑

i,j∈{1,2} dDi⊗j(x, y)
> κtst

]
≤ ηtst. (Test Coverage)

Assumption 2.3b (Change of Covariance with Additive Slack) There exists a κcov ≥ 1 and
ηcov ≥ 0 such that, for any v ∈ H,

Ex∼DX,2
[〈f?(x), v〉2H] ≤ κcov · Ex∼DX,1

[〈f?(x), v〉2H] + ηcov‖v‖2H
Ey∼DY,2

[〈g?(y), v〉2H] ≤ κcov · Ey∼DY,1
[〈g?(y), v〉2H] + ηcov‖v‖2H.

For additive slack, we further require uniform boundedness of the embeddings (rather than just
their inner products.)

Assumption M.1 (Boundedness) There exists an upper bound B > 0 such that

max

{
sup
x∈X
‖f(x)‖H ∨ ‖f?(x)‖H, sup

y∈Y
‖g(y)‖H ∨ ‖g?(y)‖H

}
≤ B.

We now state the general analogue of our error decomposition, Proposition 4.1b, which allows
for additive slack terms. For simplicity, we assume ηcov, ηtst, ηtrn ≤ 1.

Proposition 4.1b (Final Error Decomposition with Additive Slack) For any k ≤ r with some
fixed integer r > 0, and any aligned k-proxies (f, g) of the Rr-embeddings (f̂ , ĝ), denote ∆0 =
∆0(f, g, k) and ∆1 = ∆1(f, g, k). Let σ = σr(f̂ , ĝ) (as in Eq. (3.1)), and let σ satisfy σ2 ∈
(0, tail?2(k) + ∆0]. Then, under Assumptions M.1, 2.2b and 2.3b, we have

R(f, g;Dtest) . κtstκ
2
cov

(
(∆1)2 +

1

σ2
(∆apx + ∆0 + κcovκtrn∆train)2

)
+B4poly(κcov, κtst, κtrn) · (ηtst + ηtrn + ηcov).
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M.2. Overview of proof

For now, we focus on Proposition 4.1a, which assumes Assumptions 2.2 and 2.3. The modification
of Proposition 4.1b, under Assumptions M.1, 2.2b and 2.3b are described at the end. Each of the
lemmas in this section is proved under these more general conditions.

Fix any embeddings f : X → H and g : Y → H. We shall ultimately enforce that f, g are
aligned k-proxies (Definition 4.2) for some (f̂ , ĝ), though this is only necessary for one step of the
proof. We begin by recalling the error terms from Definition 4.3, and introducing a few other terms
in our analysis.

Definition M.1 (Key Error Terms) Given functions f : X → H and g : X → H and k ∈ N,
define

∆0(f, g, k) := max
{
ED1⊗1

[
〈f?k , g?k − g〉2

]
, ED1⊗1

[
〈f?k − f, g?k〉2

]}
(weighted error)

∆1(f, g, k) := max
{
EDX,1

‖f?k − f‖2, EDY,1
‖g?k − g‖2

}
(unweighted error)

∆2(f, g, k) := max
{
EDX,2

‖f?k − f‖, EDY,2
‖g?k − g‖2

}
(D2⊗2-recovery error)

∆apx(k) := R(f?k , g
?
k;D1⊗1). (approximation error)

When it is clear from the context, we will use the shorthand notation ∆0,∆1,∆2 and ∆apx, respec-
tively, for convenience.

Above, ∆0(f, g, k) captures differences g?k − g (resp f?k − f ) weighted by f?k (resp. g?k) under
D1⊗1. ∆1 captures the unweighted differences (i.e. in ‖ · ‖) under D1⊗1, and ∆2 does the same
under D2⊗2. Since f? and g? have spectral decay, we expect the unweighted errors ∆1,∆2 to be
larger than the weighted one ∆0.

Bounding Dtest-risk with D2⊗2-risk. We begin the proof with a lemma which bounds the risk
under Dtest by the risk under the bottom-right block D2⊗2, plus the risk under Dtrain (i.e. ∆train).
The following is proved in Appendix M.4.

Lemma M.1 (Error Decomposition on Dtest) Under Assumption 2.2, the following holds for any
f : X→ H and g : Y→ H:

R(f, g;Dtest) ≤ κtst (R(f, g;D2⊗2) + 3κtrnR(f, g;Dtrain)) .

Bounding the D2⊗2-risk. The difficulty is now in handling the error on the bottom-right block
D2⊗2. Our analysis reveals that the leading order term is precisely the weighted error ∆0, with the
unweighted errors ∆1 and ∆2 entering only in a quadratic way (i.e. at most second order) into the
error. The following is proved in Appendix M.5.

Lemma M.2 (Error Decomposition on D2⊗2) Under Assumptions 2.2 and 2.3, for any f : X →
H, g : Y→ H, and k ∈ N

R(f, g;D2⊗2) . κ2
cov(∆0 + (∆1)2 + ∆apx) + (∆2)2 + κcovκtrn∆train,

where above we suppress error term dependence on f, g, k.
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Bounding ∆2. We now turn to bounding ∆2. This requires making full use of the assumption
that (f, g) are aligned k-proxies of (f̂ , ĝ). Going forward, recall from Eq. (3.1) and the construction
in Definition 4.2 that

σr(EDX,1
[ff>]) = σr(f̂ , ĝ) > 0,

where the positivity is a consequence of the assumption that (f̂ , ĝ) are full-rank. We may now
bound ∆2. The following is proved in Appendix M.6.

Lemma M.3 (Decomposition of ∆2) Suppose (f, g) are aligned k-proxies of (f̂ , ĝ). Then, we
have

σr(f̂ , ĝ)∆2 .

(
∆train

ωmin

)
+ κcov(∆0 + ∆apx(k))

where above we suppress dependence on f, g, k in all error terms.

Concluding the proof of Proposition 4.1a. Lastly, we observe that the rank-k approximation
error under D1⊗1 is precisely the tail term tail?2(k).

Lemma M.4 We have ∆apx(k) = R(f?k , g
?
k;D1⊗1) = tail?2(k).

Proof Using that projection matrices are self-adjoint and idempotent,

R(f?k , g
?
k;D1⊗1) = ED1⊗1 [(〈f?k (x), g?k(y)〉 − 〈f?(x), g?(y)〉)2]

= ED1⊗1 [(〈P?
kf

?(x),P?
kg
?(y)〉 − 〈f?(x), g?(y)〉)2]

= ED1⊗1 [(〈P?
kf

?(x), g?(y)〉 − 〈f?(x), g?(y)〉)2]

= ED1⊗1 [〈(I− P?
k)f

?(x), g?(y)〉2]

= tr[Σ?
1⊗1(I− P?

k)Σ
?
1⊗1(I− P?

k)] =
∑
j>k

λj(Σ
?
1⊗1)2 := tail?2(k),

where in the last line, we use that P?
k projects onto the top k eigenvalues of Σ?

1⊗1.

Putting these terms together reveals our final error decomposition result.
Proof [Proof of Proposition 4.1a] Let σ ≤ σr(f̂ , ĝ). We write

R(f, g;Dtest)

(i)

. κtst (R(f, g;D2⊗2) + κtrn∆train)

(ii)

. κtst

(
κ2

cov(∆0 + ∆apx + (∆1)2) + (∆2)2 + κcovκtrn∆train

)
+ κtrnκden∆train

. κtst

(
κ2

cov(∆0 + ∆apx + (∆1)2) + (∆2)2 + κcovκtrn∆train

)
,

where in the last line, we absorb terms using κcov ≥ 1. Continuing the string of inequalities,

(iii)

≤ κtst

(
κ2

cov(∆0 + ∆apx + (∆1)2) +
κ2

cov

σ2
(∆apx + ∆0 + κcovκtrn∆train)2 + κcovκtrn∆train

)
(iv)

. κtst

(
κ2

cov(∆1)2 +
κ2

cov

σ2
(∆apx + ∆0 + κcovκtrn∆train)2

)
= κtstκ

2
cov

(
(∆1)2 +

1

σ2
(∆apx + ∆0 + κcovκtrn∆train)2

)
,
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where (i) uses Lemma M.1, (ii) uses Lemma M.2, (iii) invokes Lemma M.3, and (iv) applies the
assumption σ2 ≤ ∆apx + ∆0 + ∆train and κcov, κtrn ≥ 1 to absorb the term

κ2
cov(∆0 + ∆apx) + κcovκtrn∆train ≤

κ2
cov

σ2
(∆apx + ∆0 + κcovκtrn∆train)2 ,

loosing at most a constant factor of 2. The last inequality uses κcov ≥ 1. Note that the simplification
also holds when likewise ∆apx + ∆0 + ∆train by an upper bound M , such that σ2 ≤M .

Lastly, the final statement of the proposition, namely the boundR(f, g;D1⊗1) ≤ κtrnR(f, g;Dtrain),
is a direct consequence of Assumption 2.2.

M.2.1. MODIFICATIONS FOR ADDITIVE SLACK

Like their analogues in proving Proposition 4.1a, the following lemmas are proved in Appen-
dices M.4 to M.6, respectively.

Lemma M.1b (Error Decomposition on Dtest with Additive Slack) Under Assumptions M.1 and 2.2b,

R(f, g;Dtest) ≤ κtst (R(f, g;D2⊗2) + 3κtrnR(f, g;Dtrain)) + 4B4(ηtst + 3κtstηtrn).

Lemma M.2b (Error Decomposition on D2⊗2 with Additive Slack) Under Assumptions M.1, 2.2b
and 2.3b, for any k ∈ N,

R(f, g;D2⊗2) . κ2
cov(∆0 + (∆1)2 + ∆apx) + (∆2)2 + κcovκtrn∆train +B4κcov(ηcov + ηtrn),

where above we suppress error term dependence on f, g, k.

Lemma M.3b (Decomposition of ∆2 with Additive Slack) Suppose k ≤ r, and (f, g) are aligned
k-proxies for (f̂r, ĝr) with P?

k. Then for k ≤ r,

σr(f̂ , ĝ)∆2 .

(
∆train

ωmin

)
+ κcov(∆0 + ∆apx(k)) +B2(ηcov + ηtst),

where above we suppress dependence on f, g, k in all error terms.

Deriving Proposition 4.1b from the previous lemmas follows in much the same way as Proposi-
tion 4.1a, and is omitted for brevity.

M.3. Key change-of-measure lemmas

We begin by establishing some important change-of-measure results.

Lemma M.5 (Change of Covariance) Under either the boundedness assumption Assumption M.1,
or assumping ηcov = 0, the following holds for any i, j ∈ {1, 2} and any (f̃ , g̃), under Assump-
tion 2.3b,

• EDi⊗2 [〈f̃ , g?k〉2] ≤ κcovEDi⊗1 [〈f̃ , g?k〉2] +B2ηcov

• ED2⊗j [〈f?k , g̃〉2] ≤ κcovED1⊗j [〈f?k , g̃〉2] +B2ηcov.
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The same holds if g?k (resp. f?k ) are replaced by g?>k := g?− g?k (resp. f?>k := f?− f?k ) or g? (resp.
f?), and under Assumption 2.3, the above holds with ηcov = 0.

Proof Since Assumption 2.3 is stronger than Assumption 2.3b, we focus on the proofs under As-
sumption 2.3b. Let’s begin by proving the first item under Assumption 2.3b; the extension to the
second item is similar. We have

EDi⊗2 [〈f̃ , g?k〉2] = EDX,i
[EDY,2

[〈f̃ , g?k〉2]] (Fubini)

= EDX,i
[EDY,2

[〈f̃ ,P?
kg
?〉2]]

≤ EDX,i
[κcovEDY,1

[〈P?
kf̃ , g

?〉2] + ηcov‖P?
kf̃‖2] (Assumption 2.3b)

≤ EDX,i
[κcovEDY,1

[〈P?
kf̃ , g

?〉2] + ηcov‖f̃‖2] (P?
k is a projection)

≤ EDX,i
[κcovEDY,1

[〈P?
kf̃ , g

?〉2]] +B2ηcov (Assumption M.1)

= κcovEDX,i⊗DY,1
[〈P?

kf̃ , g
?〉2] +B2ηcov (Fubini)

= κcovEDX,i⊗DY,1
[〈f̃ , g?k〉2] +B2ηcov.

As mentioned, the second item is similar. To derive the similar bounds for g? − g?k, we use that
g? − g?k = (I − P?

k)g
?, and I − P?

k is also a projection operator; the bound for f? − f?k can be
derived similarly. Finally, the bounds for f?, g? are slightly simpler to establish, because we need
not commute the projection operator.

Lemma M.6 (Change of Risk) The following bounds hold:

• The risk on the “off-diagonal” product distribution is bounded by

R(f?k , g
?
k;D1⊗2) ∨R(f?k , g

?
k;D2⊗1) ≤ κcov∆apx(k) + ηcovB

2.

• The risk on the “bottom-right” product distribution is bounded by

R(f?k , g
?
k;D2⊗2) ≤ κ2

cov∆apx(k) + 2κcovηcovB
2.

Proof Introduce the shorthand f?>k := f? − f?k and g?>k := g? − g?k. Note that

f?>k = (I− P?
k)f

?, g?>k = (I− P?
k)g

?,

and hence f?>k, g
?
>k are B-bounded under Assumption M.1.

Observe that since P?
k is an orthogonal projection, so is I − P?

k. Since orthogonal projections
are self-adjoint and idempotent,

h? − 〈f?k , g?k〉 = 〈f?, g?〉 − 〈P?
kf

?, g?〉 = 〈(I− P?
k)f

?, g?〉
= 〈(I− P?

k)
H(I− P?

k)f
?, g?〉 = 〈(I− P?

k)f
?, (I− P?

k)g
?〉 = 〈f?>k, g?>k〉.

(M.1)

Thus, by Lemma M.5 and the fact that f?>k is B-bounded, we have

R(f?k , g
?
k;D1⊗2) = ED1⊗2(h? − 〈f?k , g?k〉)2 = ED1⊗2〈f?>k, g?>k〉2 ≤ κcovED1⊗1〈f?>k, g?>k〉2 + ηcovB

2.
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Similarly,R(f?k , g
?
k;D2⊗1) ≤ κcovED1⊗1〈f?>k, g?>k〉2 + ηcovB

2. Finally, by two applications of
Lemma M.5, we have

R(f?k , g
?
k;D2⊗2) = ED2⊗2(h? − 〈f?k , g?k〉)2 = ED2⊗2〈f?>k, g?>k〉2

≤ κcovED1⊗2〈f?>k, g?>k〉2 + ηcovB
2

≤ κ2
covED1⊗1〈f?>k, g?>k〉2 + (κcovηcov + ηcov)B2

≤ κ2
covED1⊗1〈f?>k, g?>k〉2 + 2κcovηcovB

2

= κ2
covED1⊗1(h? − 〈f?k , g?k〉)2 + 2κcovηcovB

2

(Eq. (M.1))

= κ2
covR(f?k , g

?
k;D1⊗1) + 2κcovηcovB

2.

This completes the proof.

Lemma M.7 Suppose the boundedness assumption, i.e. Assumption M.1 holds for some (f, g).
Then, for any (i, j) ∈ {(1, 1), (1, 2), (2, 1)},

R(f, g;Di⊗j) ≤ 4B4εtrn + κtrnR(f, g;Dtrain).

The same also holds without Assumption M.1, with εtrn = 0 (ignoring the 4B2εtrn term).

Proof Define the event

Etrain,i⊗j :=

{
dDi⊗j(x, y)

dDtrain(x, y)
≤ κtrn

}
.

We first consider the case where Assumption M.1 holds. To this end, we consider any function
F : X× Y→ [0,M ]. We then have

EDi⊗j [F (x, y)] ≤M PDi⊗j [¬Etrain,i⊗j ] + EDi⊗j [F (x, y)I{Etrain,i⊗j}]

= M PDi⊗j [¬Etrain,i⊗j ] + EDtrain [F (x, y)I{Etrain,i⊗j} ·
dDi⊗j(x, y)

dDtrain(x, y)
]

≤M PDi⊗j [¬Etrain,i⊗j ] + EDtrain [F (x, y)
1

κtrn
]

= κtrnM PDi⊗j [¬Etrain,i⊗j ] + EDtrain [F (x, y)] ≤Mεtrn + κtrnEDtrain [F (x, y)].

The result follows by setting F (x, y) = (〈f(x), g(y)〉 − h?(x, y))2, which lies in [0, 4B4] by
Lemma M.8, stated just below.

For the case Assumption M.1 does not hold but with εtrn = 0, the first term on the right-hand
side above does not appear, which completes the proof.

Lemma M.8 Under Assumption M.1, given any B-bounded functions f, g, the function F (x, y) =
(〈f(x), g(y)〉 − h?(x, y))2 satisfies 0 ≤ F (x, y) ≤ 4B4.

Proof Since f, g are B-bounded |〈f, g〉| ≤ ‖f‖‖g‖ ≤ B2. Similarly, |h?| ≤ ‖f?‖‖g?‖ ≤ B2 The
bound follows.
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M.4. Proof of Lemmas M.1 and M.1b

Proof We prove the more general statement under Assumption 2.2b, and explain the modification
to Assumption 2.2 afterward. Define the event

Etest :=

{
dDtest(x, y)∑

i,j∈{1,2} dDi⊗j(x, y)
≤ κtst

}
.

Then, for any bounded, nonnegative function F (x, y) : X× Y→ [0,M ], we have

EDtest [F (x, y)]

≤M PDtest [¬Etest] + EDtest [I{Etest}F (x, y)]

= M PDtest [¬Etest] +

∫
(x,y)

F (x, y) ·

( ∑
i,j∈{1,2}

dDi⊗j(x, y)

)
· dDtest(x, y)∑

i,j∈{1,2} dDi⊗j(x, y)
I{Etest}


≤M PDtest [¬Etest] + κtst

∫
(x,y)

F (x, y) ·

( ∑
i,j∈{1,2}

dDi⊗j(x, y)

)

= M PDtest [¬Etest] + κtst

2∑
i,j=1

EDi⊗j [F (x, y)]

≤Mηtst + κtst

2∑
i,j=1

EDi⊗j [F (x, y)].

Taking F (x, y) = (〈f(x), g(y)〉 − h?(x, y)), which takes values in [0, 4B4] by Lemma M.8, we
find

R(f, g;Dtest) ≤ 4B4ηtst + κtst

2∑
i,j=1

EDi⊗j [F (x, y)].

By Lemma M.7, we bound∑
i,j 6=(2,2)

R(f, g;Di⊗j) ≤ 12B4ηtrn + 3κtrnR(f, g;Dtrain).

Therefore,

R(f, g;Dtest) ≤ κtst (R(f, g;D2⊗2) + 3κtrnR(f, g;Dtrain)) + 4B4(ηtst + 3κtstηtrn).

The bound follows. To obtain the simpler statement with Assumption 2.2, under which we can take
ηtst = ηtrn = 0, and complete the proof.

M.5. Proof of Lemmas M.2 and M.2b

We begin with an elementary algebraic lemma which helps us expand the riskR(f, g;D2⊗2).
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Lemma M.9 For any h? : X× Y→ R, f1, f2 : X→ H, and g1, g2 : Y→ H, we have

(〈f1, g1〉 − h?)2 ≤ 2(〈f2, g2〉 − h?)2 + 6〈f1 − f2, g2〉2 + 6〈f2, g1 − g2〉2 + 6‖f1 − f2‖2‖g1 − g2‖2.

Proof [Proof of Lemma M.9] Set h1 = 〈f1, g1〉 and h2 = 〈f2, g2〉. Then,

(h1 − h?)2 − (h2 − h?)2 = (h1 − h? + h2 − h?)(h1 − h2)

= (h1 − h2)2 + 2(h2 − h?)(h1 − h2)

≤ 2(h1 − h2)2 + (h2 − h?)2.

Hence, we have (h1 − h?)2 ≤ 2(h1 − h2)2 + 2(h2 − h?)2. To conclude, we bound

(h1 − h2)2 = (〈f1, g1〉 − 〈f2, g2〉)2

= (〈f1 − f2, g2〉+ 〈f2, g1 − g2〉+ 〈f1 − f2, g1 − g2〉)2

≤ 3〈f1 − f2, g2〉2 + 3〈f2, g1 − g2〉2 + 3〈f1 − f2, g1 − g2〉2

≤ 3〈f1 − f2, g2〉2 + 3〈f2, g1 − g2〉2 + 3‖f1 − f2‖2‖g1 − g2‖2.

Combining the two displays completes the proof.

Step 1. Change of covariance under D2⊗2. Taking f1 = f , g1 = g, f2 = f?k and g2 = g?k,
Lemma M.9 implies

ED2⊗2 [(〈f, g〉 − h?)2]− 2ED2⊗2 [(〈f?k , g?k〉 − h?)2]

≤ 6
(
ED2⊗2〈f − f?k , g?k〉2 + ED2⊗2〈f?k , g − g?k〉2 + ED2⊗2 [‖f − f?k‖2‖g − g?k‖2]

)
(i)

≤ 6κcov

(
ED2⊗1〈f − f?k , g?k〉2 + ED1⊗2〈f?k , g − g?k〉2

)
+ 6ED2⊗2‖f − g?k‖2‖g − g?k‖2 + 48B2ηcov

(ii)
= 6κcov

(
ED2⊗1〈f − f?k , g?k〉2 + ED1⊗2〈f?k , g − g?k〉2

)
+ 6EDX,2

‖f − f?k‖2 · EDY,2
‖f − f?k‖2 + 48B4ηcov

(iii)

≤ 6κcov

(
ED2⊗1〈f − f?k , g?k〉2 + ED1⊗2〈f?k , g − g?k〉2

)
+ 6(∆2)2 + 48B4ηcov, (M.2)

where in (i) we apply Lemma M.5 to the terms ED2⊗2〈f − f?k , g?k〉2 and ED2⊗2〈f?k , g − g?k〉2, for
with B̃ = 2B, in (ii) we use that D2⊗2 = DX,2 ⊗DY,2 is a product measure, and in (iii) we recall
the definition of ∆2 = ∆2(f, g, k).

Step 2. Expansion of D1⊗2 and D2⊗1. Next, we expand the first two terms in Eq. (M.2). First,
〈f−f?k , g?k〉 = 〈f, g?k〉−h?k = 〈f, g〉−h?k+〈f, g?k−g〉 = 〈f, g〉−h?k+〈f−f?k , g?k−g〉+〈f?k , g?k−g〉.
Hence,

ED2⊗1〈f − f?k , g?k〉2

≤ 3ED2⊗1 [(〈f, g〉 − h?k)2] + 3ED2⊗1〈f?k , g?k − g〉2 + 3ED2⊗1〈f − f?k , g?k − g〉2

(i)

≤ 3ED2⊗1 [(〈f, g〉 − h?k)2] + 3κcovED1⊗1〈f?k , g?k − g〉2 + 3ED2⊗1‖f?k − f‖2‖g?k − g‖2 + 12B4ηcov,
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where in (i) we again apply Lemma M.5. We can further expand

ED2⊗1‖f?k − f‖2‖g?k − g‖2 = EDX,2
‖f?k − f‖2 · EDY,1

‖g?k − g‖2

≤ 1

2κcov
(EDX,2

‖f?k − f‖2)2 +
κcov

2
(EDY,1

‖g?k − g‖2)2

≤ 1

2κcov
(∆2)2 +

κcov

2
(∆1)2,

where again, we recall the definition of ∆2 and ∆1 in Definition M.1. In sum, we find

ED2⊗1〈f − f?k , g?k〉2

≤ 3ED2⊗1 [(〈f, g〉 − h?k)2] + 3κcov

(
ED1⊗1〈f?k , g?k − g〉2 +

1

2
(∆1)2

)
+

3

2κcov
(∆2)2 + 12B4ηcov.

A similar analysis bounds

ED1⊗2〈f?k , g − g?k〉2

(i)

≤ 3ED1⊗2 [(〈f, g〉 − h?k)2] + 3κcov(ED1⊗1〈f − f?k , g?k〉2 +
1

2
(∆1)2) +

3

2κcov
(∆2)2 + 12B4ηcov.

Thus, defining

∆off = ED1⊗2 [(〈f, g〉 − h?k)2] + ED2⊗1 [(〈f, g〉 − h?k)2],

we have

ED2⊗1〈f − f?k , g?k〉2 + ED1⊗2〈f?k , g − g?k〉2

≤ 3ED1⊗2 [(〈f, g〉 − h?k)2] + 3ED2⊗1 [(〈f, g〉 − h?k)2]

+ 3κcov(ED1⊗1〈f − f?k , g?k〉2 + ED1⊗1〈f?k , g − g?k〉2 + (∆1)2) +
3

κcov
(∆2)2 + 24B4ηcov

= 3∆off + 3κcov(2∆0 + (∆1)2) +
3

κcov
(∆2)2 + 24B4ηcov. (M.3)

Step 3. Intermediate simplification. Combining Eqs. (M.3) and (M.2), we find

ED2⊗2 [(〈f, g〉 − h?)2]− 2ED2⊗2 [(〈f?k , g?k〉 − h?)2]

≤ 6κcov

(
ED2⊗1〈f − f?k , g?k〉2 + ED1⊗2〈f?k , g − g?k〉2

)
+ 6(∆2)2 + 48B4ηcov

≤ 18κcov∆off + 18κ2
cov(2∆0 + (∆1)2) + 24(∆2)2 + (144κcov + 48)B4ηcov.

That is, by rearranging

ED2⊗2 [(〈f, g〉 − h?)2] ≤ 18κ2
cov(2∆0 + (∆1)2) + 24(∆2)2 + (144κcov + 48)B4ηcov

+ 18κcov∆off + 2ED2⊗2 [(〈f?k , g?k〉 − h?)2]. (M.4)
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Step 4. Concluding the proof. To conclude, we upper bound Eq. (M.4). We begin by noting that,
by Lemma M.6,

2ED2⊗2 [(〈f?k , g?k〉 − h?)2] = 2R(f?k , g
?
k;D2⊗2) ≤ 2κ2

covR(f?k , g
?
k;D1⊗1) + 4κcovηcovB

4.

Similarly, again by Lemma M.6

∆off := ED1⊗2 [(〈f, g〉 − h?k)2] + ED2⊗1 [(〈f, g〉 − h?k)2]

≤ 2ED1⊗2 [(〈f, g〉 − h?)2] + 2ED2⊗1 [(〈f, g〉 − h?)2]

+ 2ED1⊗2 [(h?k − h?)2]︸ ︷︷ ︸
=R(f?k ,g

?
k;D1⊗2)

+2ED2⊗1 [(h?k − h?)2]︸ ︷︷ ︸
=R(f?k ,g

?
k;D2⊗1)

≤ 2ED1⊗2 [(〈f, g〉 − h?)2] + 2ED2⊗1 [(〈f, g〉 − h?)2]

+ 4κcovR(f?k , g
?
k;D1⊗1) + 4ηcovB

4.

Hence,

18κcov∆off + 2ED2⊗2 [(〈f?k , g?k〉 − h?)2]

≤ (4 · 18 + 2)κ2
covR(f?k , g

?
k;D1⊗1) + (4 · 18 + 4)κcovηcovB

5

+ (2 · 18)κcov

(
ED1⊗2 [(〈f, g〉 − h?)2] + ED2⊗1 [(〈f, g〉 − h?)2]

)
.

= 74κ2
covR(f?k , g

?
k;D1⊗1) + 76κcovηcovB

5 + 36κcov (R(f, g;D1⊗2) +R(f, g;D2⊗1)) .

By Lemma M.7, and using that 0 ≤ (〈f, g〉 − h?)2 ≤ 4B4

(R(f, g;D1⊗2) +R(f, g;D2⊗1)) ≤ 2κtrnR(f, g;Dtrain) + 8B4ηtrn,

Thus,

18κcov∆off + 2ED2⊗2 [(〈f?k , g?k〉 − h?)2]

≤ 74κ2
covR(f?k , g

?
k;D1⊗1) + 72κcovκtrnR(f, g;Dtrain) + (8 · 36)ηtrnκcovB

4 + 76κcovηcovB
4.

In sum

ED2⊗2 [(〈f, g〉 − h?)2]

≤ 18κ2
cov(2∆0 + (∆1)2) + 24(∆2)2 + (144κcov + 48)B4ηcov

+ 18κcov∆off + 2ED2⊗2 [(〈f?k , g?k〉 − h?)2]

≤ 18κ2
cov(2∆0 + (∆1)2) + 24(∆2)2 + 72κcovκtrnR(f, g;Dtrain)

+ 74κ2
covR(f?k , g

?
k;D1⊗1) + (144κcov + 48)B4ηcov + 288ηtrnκcovB

4 + 76κcovηcovB
4

≤ 18κ2
cov(2∆0 + (∆1)2) + 24(∆2)2 + 72κcovκtrnR(f, g;Dtrain)︸ ︷︷ ︸

=∆train

+ 74κ2
covR(f?k , g

?
k;D1⊗1)︸ ︷︷ ︸

=∆apx

+268κcovB
4ηcov + 288ηtrnκcovB

4,

where in the last line, we used κcov ≥ 1 and 144 + 48 + 76 = 268. Dropping constants and
simplifying,

R(f, g;D2⊗2) = ED2⊗2 [(〈f, g〉 − h?)2]

. κ2
cov(∆0 + (∆1)2 + ∆apx) + (∆2)2 + κcovκtrn∆train +B4κcov(ηcov + ηtrn).

The proof for Lemma M.2 follows by setting ηtrn = ηcov = 0. �
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M.6. Proof of Lemmas M.3 and M.3b

Recall the definitions

∆0 := max
{
ED1⊗1

[
〈f?k , g?k − g〉2, ED1⊗1〈f?k , g?k − g〉2

]}
∆1 := max

{
EDX,1

‖f?k − f‖2, EDY,1
‖g?k − g‖2

}
∆2 := max

{
EDX,2

‖f?k − f‖2, EDY,2
‖g?k − g‖2

}
∆train(f, g) := R(f, g;Dtrain)

∆apx(k) := R(f?k , g
?
k;D1⊗1)

where the dependence of f, g, k is suppressed in all ∆(·) terms. Our aim is to bound ∆2. We focus
on bounding EDY,2

‖g?k − g‖2, for the bound on EDX,2
‖f?k − f‖2 is analogous.

Further, let us recall what it measn for (f, g) to be aligned k-proxies. This means that (a)
f = (ιr ◦ T−1)f̂ , g = (ιr ◦ T)ĝ, where ιr : Rr → H is an isometric inclusion, and T is the
balancing operator of Lemma 4.3, and (b) for P?

k projection onto the top k-eigenvectors of Σ?
1⊗1,

we have

range(P?
k) ⊆ range(EDX,1

[ff>]). (M.5)

In particular, let V := range(EDX,1
[ff>]). Since f̂ , ĝ are full-rank, V = range(ιr) = range(EDY,1

[gg>]).
Moreover, range(EDY,1

[g?k(y)g?k(y)>]) = range(P?
k) ⊆ Vr. Hence, By Lemma L.7 , g(x) g?k(y) ∈

V almost surely, and thus, g?k(y)− g(y) ∈ V with probability one. In addition, since V = range(ιr)

has dimension r, it follows that for any v ∈ V, and since σr(EDX,1
[ff>]) = σr(f̂ , ĝ) in view of the

construction in Definition 4.2,

v>EDX,1
[ff>]v ≥ ‖v‖2 · σr(f̂ , ĝ).

Therefore,

σr(f̂ , ĝ)EDY,2
‖g?k − g‖2 ≤ EDY,2

[
1

σr(f̂ , ĝ)
EDX,1

〈f, g?k − g〉2
]

=
1

σr(f̂ , ĝ)
ED1⊗2

[
〈f, g − g?k〉2

]
.

In other words, we bound EDY,2
‖g?k − g‖2 by relating an expectation involving DX,1. Now, we can

further expand

〈f, g − g?k〉 = 〈f, g〉 − 〈f, g?k〉 = 〈f, g〉 − 〈f?k , g?k〉 − 〈f − f?k , g?k〉
= (〈f, g〉 − h?)− (〈f?k , g?k〉 − h?)− 〈f − f?k , g?k〉.

Hence,

σr(f̂ , ĝ)EDY,2
‖g?k − g‖2 ≤ 3ED1⊗2(〈f, g〉 − h?)2 + 3ED1⊗2(〈f?k , g?k〉 − h?)2 + 3ED1⊗2〈f − f?k , g?k〉2

≤ 3R(f, g;D1⊗2) + 3R(f?k , g
?
k;D1⊗2) + 3ED1⊗2〈f − f?k , g?k〉2.

By Lemma M.5 and the fact that f − f?k is 2B-bounded,

ED1⊗2〈f − f?k , g?k〉2 ≤ κcovED1⊗1〈f − f?k , g?k〉2 + 4B4ηcov = κcov∆0 + 4B4ηcov.
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By Lemma M.6,

R(f?k , g
?
k;D1⊗2) ≤ κcovR(f?k , g

?
k;D1⊗1) + ηcovB

4 = κcov∆apx + ηcovB
4.

Finally, by applying Lemma M.7,

R(f, g;D1⊗2) ≤ 4B4ηtst + κtrnR(f, g;Dtrain) = 4B4ηtst + κtrn∆train.

Thus,

σr(f̂ , ĝ)EDY,2
‖g?k − g‖2 ≤ 3

(
∆train

ωmin

)
+ 3κcov(∆0 + ∆apx(k)) + 12B2(ηcov + ηtst).

This completes the proof. �

M.7. Proof of Theorem 2

Set ε2 = ε21⊗1. For any s ∈ N, ε > 0 satisfying s < ‖Σ?
1⊗1‖op/40ε and

ε2 ≥ inf
s′≥s−1

ED1⊗1 [(〈f, g〉 − 〈f?s′ , g?s′〉2)],

by Theorem 8, we can always find a k for which

(∆0(f, g, k) + tail?2(k) + ∆train(f, g))2 . s6ε4 + s2(σ?s)
4 + tail?2(s)2 + ε4trn

∆1(f, g, k)2 . (r + s4)ε2 + s2(σ?s)
2 + tail?1(s)2.

(M.6)

Proposition 4.1a ensures that, with the choice of s = r + 1,

R(f, g;Dtest)

.? (∆1)2 +
1

σ̂2
r

(tail?2(k) + ∆0 + ∆train)2

≤ (∆1)2 +
α

(σ?r)
2
(tail?2(k) + ∆0 + ∆train)2

.
(
(r + s4)ε2 + s2(σ?s)

2 + tail?1(s)2
)

+ α · s
6ε4 + ε4trn + s2(σ?s)

4 + tail?2(s)2

(σ?r)
2

(s = r + 1 . r)

.
(
r4ε2 + r2(σ?r+1)2 + tail?1(r + 1)2

)
+ α ·

r6ε4 + ε4trn + r2(σ?r+1)4 + tail?2(r + 1)2

(σ?r)
2

≤
(
r4ε2 + (1 + α)r2(σ?r+1)2 + tail?1(r + 1)2

)
+ α · r

6ε4 + ε4trn + tail?2(r + 1)2

(σ?r)
2

≤
(
r4ε2 + (1 + α)r2(σ?r+1)2 + tail?1(r)2

)
+ α · r

6ε4 + ε4trn + tail?2(r)2

(σ?r)
2

(Monoticity of tail?q)

.
(
r4ε2 + αr2(σ?r+1)2 + tail?1(r)2

)
+ α · r

6ε4 + ε4trn + tail?2(r)2

(σ?r)
2

. (α ≥ 1)

The last statement of the theorem - upper bounding α ≤ 2, is precisely the last statement of Theo-
rem 8. �
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