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Abstract

Recently, there has been significant progress in understanding the convergence and generalization
properties of gradient-based methods for training overparameterized learning models. However,
many aspects including the role of small random initialization and how the various parameters of the
model are coupled during gradient-based updates to facilitate good generalization remain largely
mysterious. A series of recent papers have begun to study this role for non-convex formulations
of symmetric Positive Semi-Definite (PSD) matrix sensing problems which involve reconstructing
a low-rank PSD matrix from a few linear measurements. The underlying symmetry/PSDness is
crucial to existing convergence and generalization guarantees for this problem. In this paper, we
study a general overparameterized low-rank matrix sensing problem where one wishes to recon-
struct an asymmetric rectangular low-rank matrix from a few linear measurements. We prove that
an overparameterized model trained via factorized gradient descent converges to the low-rank ma-
trix generating the measurements. We show that in this setting, factorized gradient descent enjoys
two implicit properties: (1) coupling of the trajectory of gradient descent where the factors are cou-
pled in various ways throughout the gradient update trajectory and (2) an algorithmic regularization
property where the iterates show a propensity towards low-rank models despite the overparameter-
ized nature of the factorized model. These two implicit properties in turn allow us to show that the
gradient descent trajectory from small random initialization moves towards solutions that are both
globally optimal and generalize well. 1
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