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Abstract
We show hardness of improperly learning halfspaces in the agnostic model, both in the distribution-
independent and the distribution-specific setting, based on the assumption that worst-case lattice
problems, e.g., approximating the shortest vector to within polynomial factors, are hard. In par-
ticular, we show that under this assumption there is no efficient algorithm that outputs any binary
hypothesis, not necessarily a halfspace, achieving misclassification error better than 1

2 − γ even if
the optimal misclassification error is as small is as small as δ. Here, γ can be smaller than the in-
verse of any polynomial in the dimension and δ as small as exp

(
−Ω
(
log1−c(d)

))
, where 0 < c < 1

is an arbitrary constant and d is the dimension. For the distribution-specific setting, we show that
if the marginal distribution is standard Gaussian, for any β > 0 learning halfspaces up to error
OPTLTF +ε takes time at least dΩ̃(1/ε2−β) under the same hardness assumptions. Similarly, we
show that learning degree-ℓ polynomial threshold functions up to error OPTPTFℓ

+ε takes time at
least dΩ̃(ℓ2−β/ε4−2β). OPTLTF and OPTPTFℓ

denote the best error achievable by any halfspace or
polynomial threshold function, respectively.

Our lower bounds qualitatively match algorithmic guarantees and (nearly) recover known lower
bounds based on non-worst-case assumptions. Previously, such hardness results Daniely (2016);
Diakonikolas et al. (2021) were based on average-case complexity assumptions, specifically, vari-
ants of Feige’s random 3SAT hypothesis, or restricted to the statistical query model. Our work
gives the first hardness results basing these fundamental learning problems on well-understood
worst-case complexity assumption. It is inspired by a sequence of recent works showing hardness
of learning well-separated Gaussian mixtures based on worst-case lattice problems.
Keywords: Agnostic Learning, Lower Bounds, Worst-Case Hardness

1. Introduction

An important question in theoretical computer science, and in learning theory in particular, is un-
derstanding the relation between average-case and worst-case problems (cf. Levin’s work on dis-
tributional analogs of NP Levin (1986) and Impagliazzo’s five worlds Impagliazzo (1995), and also
the survey of Bogdanov and Trevisan Bogdanov et al. (2006)). In particular, to understand for
what kind of average-case problems we can show hardness based on worst-case assumptions, thus
unlocking the power of the machinery of classical worst-case reductions. In this work, we make
progress on this question by evidencing a strong connection between fundamental and well-studied
learning problems and worst-case assumptions with a plethora of other applications. Specifically,
we will show that learning halfspaces and polynomial threshold functions, in either the distribution-
independent or distribution-specific setting, are as hard as standard worst-case lattice problems fre-
quently used as a basis of hardness in cryptography Peikert et al. (2016).

There are several barriers for basing the hardness of average-case problems on classical as-
sumptions such as P ̸= NP Applebaum et al. (2008); Feigenbaum and Fortnow (1993); Bogdanov
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and Trevisan (2006) and results in the context of learning theory have either been restricted to the
PAC learning setting, in which there is no noise, Kearns and Valiant (1994); Klivans and Sherstov
(2009)1, or restricted to hardness results for (semi-)proper learning, where, loosely speaking, the
hypothesis output by the algorithm has to be of the same kind as the one which generated the sam-
ples Feldman (2006); Feldman et al. (2006); Guruswami and Raghavendra (2006); Gopalan et al.
(2010). In fact, there is evidence that this might be inherent Applebaum et al. (2008). On the other
hand, there is a plethora of strong hardness results ruling out even improper learning algorithms,
i.e., that output an arbitrary hypothesis that well-approximates a certain function to be learned, often
matching known algorithmic upper bounds. However, these results can be based only on average-
case assumptions Kalai et al. (2008); Klivans and Kothari (2014); Daniely (2016); Daniely and
Vardi (2021) or be shown for restricted models of computations Diakonikolas et al. (2021). So far
it remained unclear if these results can also be based on well-understood worst-case assumptions.

In contrast to this, basing hardness of average-case problems on worst-case assumptions is ubiq-
uitous in cryptography and a highly desirable feature. In particular, many problems are based on
worst-case hardness of lattice problems such as the Shortest Independent Vectors Problem (SIVP)
or the Gap Shortest Vector Problem (gapSVP) (cf. problems 7 and 8). Roughly speaking, in the
second, the task is to decide whether a given lattice contains a non-zero point of small norm and in
the first, to find a basis for the lattice in which each vector has small norm. We refer to section 3
for exact definitions. We do not attempt to survey the vast literature on the topic and instead re-
fer to Peikert et al. (2016). Recent breakthrough results Bruna et al. (2021); Gupte et al. (2022)
have provided a bridge between these lattice problems and learning problems by showing that a
certain Gaussian Mixture Model is hard to learn assuming the worst-case hardness of either SIVP
or gapSVP. In this work we extend this bridge by showing that hardness of other fundamental
learning problems can also be based on these assumptions. Specifically, assuming worst-case hard-
ness of either of the above lattice problems, we show that weak improper learning of halfspaces
in the agnostic model is hard. Further, we extend our results to the setting in which the marginal
distribution is fixed to be a standard Gaussian, evidencing that even average-case problems with
very specific distributional requirements can be shown to be hard under worst-case assumptions.
This second result also extends to learning polynomial threshold functions. Precise definitions will
follow below.

The task of agnostically learning a class C of boolean functions, called a concept class, is defined
as follows: Given samples (x, y) ∈ RM × {−1,+1} from an arbitrary distribution D compute a
binary hypothesis h : RM → {−1,+1} achieving small misclassification error:

err(h) := P(x,y)∼D(h(x) ̸= y) .

In particular, we aim to achieve error close to the minimum misclassification error achieved by
any function in C, denoted by OPTC . We say that h is a weak learner, if it achieves error better
than 1/2 − 1/ poly(M). Concept classes relevant to this work are the ones of all halfspaces, also
known as linear threshold functions (LTFs), defined as x 7→ sign(⟨w,x⟩) for some unknown w ∈
SM−1, and degree-ℓ polynomial threshold functions (PTFs), defined as x 7→ sign(p(x)) for some
unknown degree-ℓ polynomial p. Note, that we do not restrict the output hypothesis h to belong
to C. This is called improper learning and stands in contrast to so-called proper learning for which
most hardness results based on worst-case assumption are known. In this work we show strong

1. We will talk about this a bit more below.
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limitations for improperly learning both LTFs and PTFs agnostically under worst-case assumptions.
We remark that if OPTLTF = 0, we can efficiently find a halfspace which achieves arbitrarily small
misclassification error Maass and Turán (1994). This can be extended to the case when OPTLTF =

O
(
logM
M

)
. Our first result states that even if OPTLTF is just slightly larger, we cannot output any

binary hypothesis which achieves error significantly better than a random guess:

Theorem 1 (Informal version of theorem 9) Assuming hardness of either SIVP or gapSVP,
there is no poly(M)-time algorithm that learns M -dimensional halfspaces in the agnostic model
up to error 1/2 − 1/ poly(M). This holds already if OPTLTF is as small as exp

(
− log1−c(M)

)
,

where 0 < c < 1 is an absolute constant.

Hence, weak improper learning of halfspaces in the agnostic model is likely to be computa-
tionally challenging. It is natural to ask whether the problem becomes easier by making stronger
distributional assumptions. This turns out to indeed be the case. Specifically, if we restrict to the
case that samples (x, y) come from a distribution whose x-marginal Dx is standard Gaussian, the
L1-regression algorithm from Kalai et al. (2008) is known to learn LTFs up to error OPTLTF+ε in
time MO(1/ε2) and degree-ℓ PTFs up to error OPTPTFℓ

+ε in time MO(ℓ2/ε4). Our second main
result shows that under the same assumptions as in theorem 1, these results are qualitatively tight.

Theorem 2 (Informal version of theorem 12) Let β > 0 be arbitrary and ε > 0. There exists a
distribution D over RM × {−1,+1} such that Dx is standard Gaussian and assuming hardness

of either SIVP or gapSVP there is no M
O(

1
log(1/ε)·ε2−β )

-time algorithm which achieves misclassi-

fication error OPTLTF+ε over D. Similarly, there is no M
O(

ℓ2−β

log(ℓ/ε)·ε2−β )
-time algorithm which

achieves misclassification error OPTPTFℓ
+ε over D.

Our result is inspired by recent hardness results for learning mixtures of well-separated Gaus-
sians Bruna et al. (2021); Gupte et al. (2022) based on the same worst-case lattice problems. In
particular, we show a simple reduction from the Continuous Learning with Errors (CLWE) problem
introduced in Bruna et al. (2021), a continuous analogue of Regev’s Learning with Errors problem
(LWE) Regev (2009). Indeed, our hard instance in theorem 1 will correspond to a mixture of (a
small modification of) two homogenous CLWE distributions. The construction for theorem 2 will
be similar. See section 2 for more details.

1.1. Relation to Previous Hardness Results

Our main theorems (almost) match algorithmic upper bounds and (nearly) recover known lower
bounds under either average-case hardness assumptions or in restricted models of computation. In
essence, we show that for a class of fundamental learning problems there is no price to pay for
basing hardness of learning problems on worst-case assumptions. Hardness of improperly weakly
learning halfspaces in the agnostic model, quantitatively matching the above theorem exactly, was
known under a variant of Feige’s random 3SAT hypothesis and when assuming D is supported on
the boolean hypercube Daniely (2016). Later a weaker result, that achieving error OPTLTF+ε is
hard, was shown under a different assumption on the existence of a certain kind of pseudo-random
generators Daniely and Vardi (2021).

For the distribution-specific setting, when Dx is standard Gaussian, lower bounds were either
far from algorithmic guarantees Klivans and Kothari (2014) or only known in the statistical query
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(SQ) model Kearns (1998). In particular, it was known that any SQ algorithm achieving error
OPTLTF+ε needs at least 2M

Ω(1)
queries or queries of accuracy at M−Ω(1/ε2). Similarly, any

SQ algorithm achieving error OPTPTFℓ
+ε needs at least 2M

Ω(1)
queries or queries of accuracy at

M−Ω(ℓ/ε4) Diakonikolas et al. (2021). This can be seen as evidence that every algorithm solving
the above problems needs time at least 2M

Ω(1)
or MΩ(1/ε2), respectively, MΩ(ℓ2/ε4), samples. This

(nearly) matches our lower bounds in theorem 2. We remark that, for learning PTFs, both lower
bounds are a 1/ε2 factor away from known upper bounds and closing this gap is an interesting open
question.

Hardness Based on Public-Key Cryptosystems. We would like to further highlight the connec-
tion of our work to two lines of work for proving lower bounds for learning problems. In a seminal
work, Kearns and Valiant pushed forward the idea of basing hardness of learning a concept class C,
specifically when OPTC = 0, on the conjectured security of cryptographic public-key encryption
schemes by creating samples for the learning problem by encryption messages oneself Kearns and
Valiant (1994). They use this to show that improperly learning boolean formulae and determinis-
tic finite automata is hard assuming, e.g., that breaking the RSA cryptosystem is hard. Later, this
approach was used in Klivans and Sherstov (2009) to show that learning the class of intersections
of halfspaces is hard assuming cryptosystems based on LWE are hard Regev (2003, 2005), which
in turn is implied by hardness of either SIVP or gapSVP. Again assuming OPTC = 0. Hence, in
the case where the public-key encryption scheme used is hard under worst-case assumptions, also
the learning problem enjoys the same hardness guarantees. However, there are two shortcomings
to this approach: First, we have to find a suitable encryption scheme for a learning problem and
additionally, this scheme has to be hard under worst-case assumptions. Second, it is not clear how
to extend this method to the agnostic setting studied in this paper, where OPTC > 0. Our approach
gives a more principled approach for establishing the desired hardness guarantees.

Hardness Based on Learning Parities with Noise. Secondly, in the past the Learning Parities
with Noise (LPN) problem has played a central role in deriving lower bounds for learning problems.
LPN is a special case of LWE whose continuous version we base our lower bounds on. Crucially
however, known worst-case hardness results for LWE do not extend to LPN. The following hardness
results based on LPN are known: First, Feldman et al. (2006) shows hardness of agnostically learn-
ing various boolean functions, not including halfspaces, based on the hardness of a sparse version
of LPN - more precisely, that learning parities that depend on only k variables, takes time at least
MΩ(k). Under the same assumption, Klivans and Kothari (2014) shows that agnostically learning
halfspaces under the Gaussian distribution up to error OPTLTF+ε takes time at least MΩ(log(1/ε)).
Second, and more relevant to this work, Kalai et al. (2008) shows that for any β > 0 an algorithm
for agnostically learning halfspaces under the uniform distribution over the hypercube that runs in
time MO(1/ε2−β) implies an algorithm for LPN with constant noise rate running in time roughly
2O(M1−β/2). While LPN certainly is a central problem in the field of learning theory and all of the
above assumptions are widely believed to be true, its worst-case hardness remains poorly under-
stood. To the best of our knowledge, there is no worst-case hardness result for the sparse version.
The version used by Kalai et al. (2008), was recently shown to be hard under a non-standard ver-
sion of some worst-case assumption2 Brakerski et al. (2019); Yu and Zhang (2021). Hence, lower
bounds based on LPN can only constitute a weak link between fundamental learning problems and

2. More specifically, a promise version of the Nearest Codeword Problem with additional assumptions.
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worst-case assumptions. It however is a very interesting question, if this link can be strengthened
by basing LPN on more standard worst-case assumptions as it is possible for its cousin LWE Regev
(2010).

Distributions That Are Hard to Distinguish From a Gaussian. At the core of our results, and
more specifically, the CLWE problem (see section 2 for a definition), lies the fact that a certain
distribution is hard to distinguish from the standard Gaussian. We remark that this idea is also
present in previous lower bound constructions. In particular, the ”parallel pancakes” construction
in Diakonikolas et al. (2017b) is the starting point for many lower bounds in the statistical query
model Diakonikolas et al. (2019, 2022b); Diakonikolas and Kane (2022); Nasser and Tiegel (2022).
A similar construction was used in Bubeck et al. (2019) to show hardness of a certain binary clas-
sification problem in the statistical query model. Further, CLWE was used in Song et al. (2021) to
show hardness of learning a single periodic neuron.

Lastly, concurrent and independent work Diakonikolas et al. (2022a) shows lower bounds for
learning in the so-called Massart model Massart and Nédélec (2006) based on LWE and hence also
provides a link between learning and worst-case lattice problems. Previously, such lower bounds
were only known in the statistical query model Chen et al. (2020); Diakonikolas and Kane (2022);
Nasser and Tiegel (2022).

2. Technical Overview

Continuous Learning with Errors. Before we start describing our lower bound constructions,
we introduce the continuous learning with errors (CLWE) problem. Let w be uniform over the unit
sphere, y ∼ N(0, I), and γ, β > 0 be some parameters. We are given samples (y, z), where

z = γ⟨w,y⟩+ e mod 1 ,

for e ∼ N(0, β2)3. The task is to distinguish these samples from samples (y, z), where y ∼ N(0, I)
as well, but z is independently and uniformly at random drawn from [0, 1),4 For convenience, we call
this second distribution CLWEnull. Bruna et al. (2021) gave a (quantum) reduction from approxi-
mating the Gap Shortest Vector Problem (GapSVP) or the Shortest Independent Vectors Problem
(SIVP) within polynomial factors to CLWE. In Gupte et al. (2022) this was strengthened, for some
set of parameters, to a reduction directly from standard LWE implying hardness also when only as-
suming the classical hardness of the above lattice problems. Both works use the CLWE problem to
obtain hardness results for density estimation of well-separated mixtures of Gaussians. As remarked
earlier, the idea of designing a distribution that is hard to distinguish earlier also lies at the heart of
many statistical query lower bounds. See e.g. the influential work Diakonikolas et al. (2017a) and
subsequent works.

Distribution-Independent Setting. We next give a sketch of the proof of theorem 1. First, it is
clear that in order to show lower bounds for learning halfspaces, it is enough to show lower bounds
for learning polynomial threshold functions over a lower-dimensional space. More specifically, let
M,n, ℓ ∈ N be such that M =

(
n+ℓ
n

)
⩽ nℓ, then any degree-ℓ PTF over Rn can be viewed as a

halfspace over RM by using an embedding that maps x to the vector containing all monomials of

3. For ease of notation we have slightly rescaled the problem. See definition 3 for the exact definition we use.
4. This is called the decision version. In the search version one asks instead to recover the hidden direction w.
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degree at most ℓ.5 In what follows we will choose parameters such that n ≈ log(M)1+c for some
constant c > 0. Hence, to rule out polynomial-time algorithms, in M , for learning halfspaces over
RM it is enough to show an exponential lower bound, in n, for learning degree-ℓ PTFs over Rn.

There are two parts to showing theorem 1. We aim to find a distribution D such that: First,
in sub-exponential time we cannot compute a binary hypothesis that has misclassification error
significantly better than 1/2 on D and second, there exists a degree-ℓ PTF such that OPTPTFℓ

is vanishing. By the discussion above this implies that OPTLTF is vanishing as well. We will
choose D to correspond to a mixture of variants of the CLWE distribution. In what follows we set
γ ⩾ 2

√
n and β = 1/ poly(n). Bruna et al. (2021); Gupte et al. (2022) show that for this choice

of parameters there is no sub-exponential time algorithm for distinguishing such samples from
N(0, In)×U([0, 1)) assuming that there is no, quantum or classicial, respectively, sub-exponential
time algorithm for GapSVP and SIVP.6

Moreover, they introduced a variant of the CLWE distribution, which intuitively can be thought
of as the CLWE distribution conditioned on z ≈ 0. This is called the homogeneous CLWE (short
hCLWE) distribution (cf. definition 4) and will be the basis of our hardness result. They show that
it is equal to an infinite mixture of Gaussians and has density roughly proportional to∑

k∈Z
N
(
0, γ2

)
(k) ·N

(
0, In −ww⊤

)
(πw⊥(y)) ·N

(
k
γ ,

β2

γ2

)
(⟨w,y⟩) ,

where N(µ,Σ)(x) denotes the density of N(µ,Σ) evaluated at x and πw⊥(y) the projection of y
onto the space orthogonal to w. Note that the components are equally spaced along direction w
with spacing 1/γ and the k-th component has weight roughly exp

(
−k2/γ2

)
. Second, along the

direction of w they have variance ≈ β/γ ≪ 1/γ, i.e., they are almost non-overlapping, and in all
other directions have variance 1. The authors show that under the same hardness assumption, there
is no sub-exponential time algorithm that can distinguish the hCLWE distribution from the standard
Gaussian.

In particular, let H0 be the hCLWE distribution. Additionally, let H1/2 be obtained in the same
way but instead of conditioning on z ≈ 0 we condition on z ≈ 1/2. The resulting distribution will
be the same as H0 but the components are shifted along the direction w by 1/(2γ). Further, it enjoys
the same hardness guarantees as H0. Since β ≪ γ the two distributions will only overlap in a region
of exponentially small probability mass. In fact, if we consider the distributions H ′

0 and H ′
1/2 in

which each component of the mixture is truncated such that they are completely disjoint (by some
small margin) this only introduces a negligible change in total variation distance. It follows by a
standard argument (cf. lemma 20), that H ′

0 and H ′
1/2 will still be hard to distinguish from a standard

Gaussian. Bruna et al. (2021) showed how to obtain samples from H0 using CLWE samples and
their argument straightforwardly extends to obtaining samples from H1. Hence, we can also obtain
samples from the mixture distribution over Rn × {−1,+1} defined as

D =
1

2
· (H0,+1) +

1

2
·
(
H1/2,−1

)
by deciding for each sample whether it should be generated from H0 or H1 with probability 1/2
and setting the label accordingly. Applying this same procedure to samples from CLWEnull, we

5. This is sometimes referred to as the Veronese mapping, or a feature map.
6. In the hardness result of Gupte et al. (2022), w is not a random unit vector but rather a random sparse unit vector.
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can see that D is hard to distinguish from Dnull
n := N(0, In) × Be

(
1
2

)
, where Be

(
1
2

)
denotes the

distribution that is −1 with probability 1/2 and +1 with probability 1/2. Again, we can instead
consider the distribution

D′ =
1

2
·
(
H ′

0,+1
)
+

1

2
·
(
H ′

1/2,−1
)
.

First, notice that since any learning algorithm has error 1/2 on Dnull
n it follows that we cannot

compute, in sub-exponential time, a hypothesis with misclassification error significantly better on
D′ either since otherwise we could distinguish the two distributions. Now that we have established
that D′ is hard to learn, to show our hardness result, we need to show that there is indeed a PTF
which achieves vanishing error. First, note that we can restrict our attention to the direction w by
considering a one-dimensional polynomial pw : R → R and then obtaining the final polynomial
p : Rn → R as p(x) = pw(⟨w,x⟩). Consider the union of intervals

S+ =
⋃
k∈Z

[
k
γ − α, kγ + α

]
, S− =

⋃
k∈Z

[
k
γ + 1

2γ − α, kγ + 1
2γ + α

]
,

where α < 1/(2γ) is the radius around which we truncate the components. Note that by construc-
tion the supports of H ′

0 and H ′
1/2 are equal to

supp
(
H ′

0

)
= {x | ⟨w,x⟩ ∈ S+} , supp

(
H ′

1/2

)
= {x | ⟨w,x⟩ ∈ S−} .

Further, let

S
(ℓ)
+ =

ℓ⋃
k=−ℓ

[
k
γ − α, kγ + α

]
, S

(ℓ)
− =

ℓ−1⋃
k=−ℓ

[
k
γ + 1

2γ − α, kγ + 1
2γ + α

]
.

Consider the degree-4ℓ polynomial pw that has is positive on S
(ℓ)
+ and negative on S

(ℓ)
− and positive

for points of magnitude larger than those in S
(ℓ)
+ ∪ S

(ℓ)
− . By choosing it such that its roots are

halfway between the intervals we will have some small margin. Clearly, for (x, y) ∼ D′ such
that ⟨w,x⟩ ∈ S

(ℓ)
+ ∪ S

(ℓ)
− we have y = sign(p(x)) always. The same holds for (x, y) such that

⟨w,x⟩ ∈ S+ \ S(ℓ)
+ . On the flip side, we note that for (x, y) such that ⟨w,x⟩ ∈ S− \ S(ℓ)

− we have

−1 = y ̸= sign(p(x)) = 1

always. Hence, the total misclassification error is equal to the probability that ⟨w,x⟩ ∈ S− \ S(ℓ)
− ,

This happens if and only if x comes from H ′
1/2 and in particular from a component that doesn’t

belong to the 2ℓ most central ones. Since the k-th component has weight ≈ exp
(
−k2/γ2

)
it follows

that this event happens with probability roughly exp
(
−ℓ2/γ2

)
. For our choice of parameters we

have γ = 2
√
n ≈ log(1+c)/2(M) and ℓ ≈ log(M) and hence the error of p becomes

exp
(
−ℓ2/γ2

)
= exp

(
− log(1−c)(M)

)
as desired.
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Distribution-Specific Setting. For the distribution-specific setting (cf. theorem 2), we have the
additional requirement that the marginal distribution needs to be standard Gaussian. Note that this
implies that the above lifting to PTFs no longer works: Indeed, it even is unclear how the distribution
before the lifting should look like so that it is standard Gaussian afterwards. Hence, we work
directly with the CLWE problem in dimension M . Recall that this means that γ = 2

√
M and β =

1/poly(M). This time, to preserve the marginal distribution, let H0 be obtained by conditioning the
CLWE distribution on z ∈ [0, 1/2) and H1 by conditioning on z ∈ [1/2, 1). Our hard distribution
will be

D =
1

2
· (H0,+1) +

1

2
· (H1,−1) .

Note that since [0, 1/2) and [1/2, 1) partition [0, 1), it follows that the marginal of D is the same as
the marginal distribution of y in CLWE, i.e., standard Gaussian. Note that, given CLWE samples,
we can obtain samples from D by rejection sampling. If we apply the same rejection sampling
procedure to samples from CLWEnull we obtain samples from Dnull

M := N(0, IM )×Be
(
1
2

)
. Hence,

a sub-exponential, in M , algorithm to distinguish D and Dnull
M with non-negligible advantage can

be used to distinguish samples from CLWE and CLWEnull.
It remains to show that if we could learn LTFs and PTFs over D up to error better than OPT+ε

we can distinguish D from Dnull
M . For this, we first inspect D more closely. As for the distribution-

independent setting, the label of samples from D only depends on the direction w. Second, let
Ak = [kγ ,

k+1/2
γ ), Bk = [k+1/2

γ , k+1
γ ) and

S+ =
⋃
k∈Z

Ak , S− =
⋃
k∈Z

Bk .

It turns out that D is sufficiently well approximated (cf. lemma 18) by the distribution D′ whose
marginal is standard Gaussian and for which it holds that y = 1 if and only if ⟨w,x⟩ ∈ S+. More
specifically, the total variation distance between D and D′ is at most 1/ poly(M) and hence affects
the misclassification error by at most this same additive factor. We hence continue to work with
D′ below. Regarding LTFs, consider the function f defined as x 7→ sign(⟨w,x⟩). For simplicity,
denote z = ⟨w,x⟩. Clearly, this function only misclassifies samples for which either z ⩾ 0 and
z ∈ S− or z ⩽ 0 and z ∈ S+. Let X ∼ N(0, 1). By symetry it follows that

errD′(f) = 2P(z ⩾ 0 , z ∈ S−) = 2
∑
k⩾0

P(X ∈ Bk) .

Notice that for k ⩾ 0, P(X ∈ Bk) ⩽ P(X ∈ Ak) always since the pdf of a one-dimensional
Gaussian is decreasing for z ⩾ 0. Further, one can show (cf. lemma 19) that for k ⩾ γ is it
decreasing sufficiently fast such that

2P(X ∈ Bk) ⩽

(
1− 1

γ

)
· [P(X ∈ Ak) + P(X ∈ Bk)] .

Hence, we obtain that there exists an absolute constant c > 0 such that

errD′(f) ⩽
∑

0⩽k<γ

P(X ∈ Ak) + P(X ∈ Bk) +

(
1− 1

γ

)
·
∑
k⩾γ

P(X ∈ Ak) + P(X ∈ Bk)
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=
1

2
− 1

γ
· P(X ⩾ 1) =

1

2
− c√

M
.

Hence, for arbitrary β > 0, an algorithm achieving misclassification error OPTLTF+ε for ε ≈

1/
√
M necessarily needs time at least 2Ω(M

1−β) = M
Ω

(
1

ε2−β ·log(1/ε)

)
.

Our argument for degree-ℓ PTFs will be similar. For simplicity, assume that ℓ is
even and consider the one-dimensional polynomial p defined as follows: It has roots
− ℓ

2γ ,−
ℓ−1
2γ , . . . , 0, . . . , ℓ−1

2γ , ℓ
2γ and its sign is positive between 0 and 1

2γ and alternates on the other
intervals. For simplicity, also assume without loss of generality that it has positive sign for z ⩾ ℓ

2γ .
We define the polynomial threshold function h as x 7→ sign(p(⟨w,x⟩)). Let again X ∼ N(0, 1),
by symmetry and using the results above it follows that there exists an absolute constant c > 0 such
that

errD′(h) = 2
∑
k⩾ℓ/2

P(X ∈ Bk) = 2
∑
k⩾0

P(X ∈ Bk)− 2
∑
k<ℓ/2

P(X ∈ Bk) ⩽
1

2
− c

γ
− P

(
1

γ
⩽ X ⩽

ℓ/2 + 1

γ

)

⩽
1

2
− c

γ
− 1

2
· P
(
0 ⩽ X ⩽

ℓ/2 + 1

γ

)
.

Since ℓ ≪ γ the pdf of the standard Gaussian is roughly constant between 0 and ℓ/2+1
γ . Hence, it

follows that there exists an absolute constant c′ > 0 such that errD′(h) ⩽ 1
2 − c′ℓ

γ . It follows as
for LTFs, that, for arbitrary β > 0, an algorithm achieving misclassification error OPTPTFℓ

+ε for

ε ≈ ℓ/
√
M necessarily needs time at least 2Ω(M

1−β) = M
Ω

(
ℓ2−β

ε2−β ·log(ℓ/ε)

)
.

We remark that in both the LTF and the PTF case, OPT is very close to 1/2. Indeed, this is a
property is shared with previous lower bounds and in particular, quantitatively matches the result of
Kalai et al. (2008) based on LPN, for the setting in which the marginal distribution is uniform over
the boolean hypercube. It would be very desirable to show lower bounds where this is not the case,
as for the distribution-independent setting.

3. Preliminaries, CLWE Distributions, and Hardness Assumptions

Notation

We use bold font for vectors and non-bold-font for scalars. We denote R⩾0 = [0,∞) and R>0 =
(0,∞). For a set S, we denote by U(S) the uniform distribution over S. We define the Total
Variation Distance between two measures P and Q as

TVD(P,Q) = sup
A

|P (A)−Q(A)| .

Let n be some parameter. For the problem of distinguishing two distributions D0
n and D1

n we
define the advantage of an algorithm A as∣∣Px∼D0

n
(A(x) = 0)− Px∼D1

n
(A(x) = 0)

∣∣ .
We say that an algorithm has non-negligible advantage if it has advantage Ω(n−c) for some constant
c > 0.

9
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Let p ∈ [0, 1/2]. We denote by Be(p) the distribution that is equal to +1 with probability p and
equal to -1 with probability 1− p.

Let X be some set and D be a distribution over X × {−1,+1}. Further, let h : X → {−1,+1}
be a binary hypothesis. We denote the misclassification error of h as

errD(h) = P(x,y)∼D(h(x) ̸= y) .

Most of the time the distribution D will be clear from context and we will omit the subscript. We
denote by Dx the marginal distribution of D over X .

Gaussian Distributions

We denote the standard n-dimensional Gaussian distribution by N(0, In). If the dimension is clear
from context, we sometimes drop the subscript of the identity matrix. For s > 0, we denote by
ρs : Rn → R+ the function

ρs(x) = exp(−π∥x/s∥2) .

If s = 1, we omit the subscript. Note that ρs/sn is equal to the probability density function of the
n-dimensional Gaussian distribution with mean 0 and covariance matrix s2/(2π) · In. In particular,
it holds that ∫

Rn

ρs(x) dx = sn .

We define ρs(x ; c) = ρs(x− c) and for α > 0 we define

ραs (x ; c) =

{
1
Z · ρs(x ; c) , if ∥x− c∥ ⩽ α ,

0 , otherwise,

where

Z =

∫
∥x−c∥⩽α ρs(x ; c) dx∫

R ρs(x ; c) dx
.

For a lattice L ⊆ Rn and s > 0 we define the discrete Gaussian distribution DL,s with width s
as having support L and probability mass proportional to ρs. Further, for a discrete set S, we define
ρs(S) =

∑
x∈S ρs(x).

Various Other Distributions

Definition 3 (CLWE Distribution) Let w ∈ Rn be a unit vector and β, γ > 0. Define the dis-
tribution Cw,β,γ over Rn × [0, 1) as follows. Draw y ∼ N(0, 1

2π · In), e ∼ N(0, β2/(2π)) and
let

z = γ⟨w,y⟩+ e mod 1 .

Note that the density of this distribution is given by

p(y, z) =
1

β
· ρ(y) ·

∑
k∈Z

ρβ(z + k − γ⟨w,y⟩) .

Further, let m ∈ N. We denote by CLWE(m, γ, β) the distribution obtained by first drawing
w ∼ U(Sn−1) and then drawing m independent samples from Cw,γ,β .

10
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Definition 4 (Homogeneous CLWE (hCLWE) Distribution) Let w ∈ Rn be a unit vector, c ∈
[0, 1), and β, γ > 0. Let πw⊥(y) be the projection of y onto the space orthogonal to w. Define the
distribution Hw,β,γ,c over Rn as having density at y proportional to∑

k∈Z
ρ√

β2+γ2(k ; c) · ρ(πw⊥(y)) · ρ
β/
√

β2+γ2

(
⟨w,y⟩ ; γ

β2 + γ2
(k − c)

)
. (3.1)

Further, let m ∈ N. We denote by HCLWE(m, γ, β, c) the distribution obtained by first drawing
w ∼ U(Sn−1) and then drawing m independent samples from Hw,γ,β,c.

Note that eq. (3.1) integrates to Z = β√
β2+γ2

· ρ√
β2+γ2(Z ; c). Further, eq. (3.1) is equivalent

to (see fact 23)

ρ(y) ·
∑
k∈Z

ρβ(γ⟨w,y⟩ ; k − c) . (3.2)

Intuitively, one can think of the Hw,γ,β,c distribution as Cw,γ,β conditioned on z = c.

Definition 5 (Non-Overlapping hCLWE Distribution) Let w ∈ Rn be a unit vector, c ∈
[0, 1), β, γ > 0 and α = 1

10 · γ
γ2+β2 . Define the distribution NHw,β,γ,c over Rn as having den-

sity proportional to∑
k∈Z

ρ√
β2+γ2(k ; c) · ρ(πw⊥(y)) · ρα

β/
√

β2+γ2

(
⟨w,y⟩ ; γ

β2 + γ2
(k − c)

)
. (3.3)

Further, let m ∈ N and S be a distribution over unit vectors in Rn. We denote by
NHCLWE(m, γ, β, c) the distribution obtained by first drawing w ∼ U(Sn−1) and then draw-
ing m independent samples from NHw,γ,β,c.

Note that this is the same as the hCLWE distribution but with the individual components of
the mixture truncated in the hidden direction. By definition of ρα eqs. (3.1) and (3.3) integrate to
the same value. α is chosen such that the components become non-overlapping but the resulting
distribution has small total variation distance to the corresponding non-truncated hCLWE distribu-
tion. Although this is strictly speaking not necessary to prove our result, we will see that having
non-overlapping components will simplify our analysis.

Hardness Assumption

We make the following hardness assumption

Assumption 6 Let n,m ∈ N and

γ ⩾ 2
√
n , β =

1

poly(n)
.

Further, let δ < 1 be arbitrary and m = 2n
δ
. There is no 2n

δ
-time distinguisher between

CLWE(m, γ, β) and N
(
0, 1

2π · In
)m × U([0, 1))m

with non-negligible advantage.
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Note that Bruna et al. (2021) showed (cf. their Corollary 3.2) that there is a polynomial time
(quantum reduction) from approximating either the Shortest Independent Vectors Problem or the
Gap Shortest Vector Problem within polynomial factors to CLWE. We will define these problems
explicitly below. For more background, we refer to Peikert et al. (2016). It is widely believed that
both of these problems do not admit an algorithm, neither classical nor quantum, running in time
faster than 2Ω(n) – we remark that there do exist algorithms running in time 2O(n). We will invoke
the above assumption with 1/2 < δ < 1. Bruna et al. (2021) showed that just above this threshold,
i.e., when allowing 2O(n) time, the CLWE distinguishing problem can be solved.

An n-dimensional lattice L is defined to be a discrete additive subgroup of Rn. It can be fully
specified by a basis B ∈ Rn×n as L = BZn. We will only consider the case in which B is full-rank.
For 1 ⩽ i ⩽ n, consider

λi(L) := inf{r > 0 | dim(Span(L ∩Br(0)) ⩾ i)} .

We can now define GapSVP and SIVP.

Problem 7 (Gap Shortest Vector Problem (GapSVP)) Let α = poly(n) be arbitrary. Given an
n-dimensional lattice L and d > 0 such that either (a) λ1(L) ⩽ d or (b) λ1(L) > α · d, decide
whether (a) or (b) holds.

Problem 8 (Shortest Independent Vector Problem (SIVP)) Let α = poly(n) be arbitrary.
Given an n-dimensional lattice L output a set of linearly independent lattice points of length at
most α · λn(L).
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Appendix A. Hardness of Distribution-Independent Learning

In this section we are going to prove a formal version of theorem 1. In particular, we will show the
following theorem

Theorem 9 Let M ∈ N and 0 < c < c′ < 1 be arbitrary. There exists a distribution D over
RM × {−1,+1} such that under assumption 6 (with 1+c

1+c′′ < δ < 1) there is no algorithm using
fewer than exp

(
Ω
(
log1+c(M)

))
samples and running in time exp

(
Ω
(
log1+c(M)

))
that outputs

any binary hypothesis f such that

errD(f) ⩽
1

2
− exp

(
−Ω
(
log1+c(M)

))
.

This holds even if there exists a linear threshold function f∗ such that

errD(f
∗) ⩽ exp

(
−Ω
(
log1−c′(M)

))
and for all x ∈ RM in the support of D it holds that

P(x,y)∼D(f
∗(x) ̸= y | x) ∈ {0, 1} .

We will show hardness by showing that a certain low-degree polynomial threshold function
is hard to learn. Hardness of learning halfspaces then follows by embedding this into a higher-
dimensional space. Note that the last two properties of the distribution imply that an overwhelming
fraction of the observed points is in fact noiseless. More concretely, we will use the following
lemma. We provide in a proof in appendix D for completeness.

Lemma 10 Let n, d ∈ N and M ⩾ nd. Further, let D be a distribution over Rn × {−1,+1}.
There exists a distribution D′ over RM × {−1,+1} such that

1. For every degree-d polynomial threshold function h : Rn → {−1,+1} there exists a linear
threshold function f : RM → {−1,+1} such that

errD′
(
f ′) = errD(h) .

2. For every binary function f : supp(D′) → {−1,+1} there exists a binary function h : Rn →
{−1,+1} such that

errD′
(
f ′) = errD(h) .

In both cases such a function can be computed in time poly(M). Moreover, there exists a one-to-
one mapping ϕ : supp(D) → supp(D′) such that in both of the above cases for all x̃′ ∈ supp(D′)
it holds that

P(x′,y′)∼D′
(
f(x′) ̸= y′

∣∣ x′ = x̃′) = P(x,y)∼D

(
h(x) ̸= y

∣∣ x = ϕ−1(x̃′)
)
.

The hard distribution will correspond to a mixture of two non-overlapping hCLWE instances
for an appropriate choice of parameters. More precisely, we will use the following lemma
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Lemma 11 Let d, n ∈ N, β, γ ∈ R>0 such that

β2 ⩽ γ2 ,
d

γ
= Ω(1) .

Further, let c+ = 0, c− = 1/2, and w ∈ Sn−1. Let

D+ = NHw,β,γ,c+ , D− = NHw,β,γ,c− .

Let C4d be the class of all degree-4d polynomial threshold functions (PTFs). Consider the distribu-
tion over Rn × {−1,+1} given by

D =
1

2
· (D+,+1) +

1

2
· (D−,−1) .

There exists a degree-4d PTF h∗ such that

err(h∗) ⩽ exp

(
−Ω

(
d2

γ2

))
.

Moreover, it holds that

∀x ∈ Rn : P(x,y)∼D(h
∗(x) ̸= y | x) ∈ {0, 1} .

With this in hand, we continue with the proof of theorem 9
Proof [Proof of theorem 9] Let 1 > c′ > c′′ > c > 0, 1+c

1+c′′ < δ < 1 and

d =

⌈
1

4
· δ

1 + c
· logM

log logM

⌉
,

where C is a large enough universal constant. Further, let n be the largest natural number such that
n4d ⩽ M . In what follows, we will for simplicity assume that n4d = M , all arguments can readily
be adapted to the general case. We will show that there exists a distribution D over Rn ×{−1,+1}
such that under assumption 6 there is no algorithm using fewer than exp

(
nδ
)

samples and running
in time at most exp

(
nδ
)

that outputs any binary hypothesis achieving misclassification error better
than 1/2− τ , for

τ = exp
(
−cτ · nδ

)
,

for a small enough absolute constant cτ . Note that this implies the first part of the theorem since

nδ = exp

(
δ

4d
· logM

)
= exp((1 + c) · log logM +Θ(1)) = Θ

(
log1+cM

)
(A.1)

and hence

exp
(
nδ
)
= exp

(
O
(
log1+c(M)

))
and τ = exp

(
−Ω
(
log1+c(M)

))
.

For this choice of parameters it also holds that

d = Θ

(
nδ/(1+c)

log n

)
and M = exp

(
nδ/(1+c)

)
.
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Let c+ = 0, c− = 1/2,w ∈ U
(
Sn−1

)
and

β =
1

poly(n)
, γ = 2

√
n .

First, consider
D+ = NHw,β,γ,c+ , D− = NHw,β,γ,c− .

We then set
D =

1

2
· (D+,+1) +

1

2
· (D−,−1) .

Combining assumption 6 and theorem 15 it follows that there is no O
(
exp
(
nδ
))

-time distin-
guisher between D and N

(
0, 1

2π · In
)
× Be

(
1
2

)
which uses at most m = O

(
exp
(
nδ
))

samples and
has non-negligible advantage. Let D′ be the distribution obtained when applying lemma 10 to D.
Assume towards a contraction that there is a learning algorithm that using time and samples (from
D′)

exp
(
O
(
log1+c(M)

))
= exp

(
nδ
)

outputs a binary function f : supp(D′) → {−1,+1} such that

errD′(f) ⩽
1

2
− exp

(
−Ω
(
log1+c(M)

))
=

1

2
− τ .

We claim that we can use this to correctly determine the distribution of the above distinguishing
problem in time O

(
exp
(
nδ
))

and with probability at least 2/3. Indeed, suppose we are given m
samples from one of the two distributions. Note that in case they came from N

(
0, 1

2π · In
)
×Be

(
1
2

)
the label of the resulting distribution will still be distributed as Be

(
1
2

)
independently of the example.

We first transform the samples using the mapping of lemma 10 and then run our learning algorith
on the first m/2 samples to obtain a hypothesis f with the guarantees above - for simplicity, assume
that m is even. Next, we compute

êrr(f) =
2

m

m∑
i=m/2

1(f(xi) ̸= yi) .

If ∣∣∣∣êrr(f)− 1

2

∣∣∣∣ > τ

2

we output D and else we output N
(
0, 1

2π · In
)
× Be

(
1
2

)
. Suppose for now, that the samples come

from the distribution D. Then by assumption our learning algorithm outputs a hypothesis h such
that

errD′(f) ⩽
1

2
− τ .

Note that êrr(f) is a sum of independent random variables bounded between 0 and 1 and with mean
err(f). Hence, by Hoeffding’s Inequality Hoeffding (1994) it follows that

P
(∣∣∣êrr(f)− err(f)

∣∣∣ > τ

3

)
⩽ 2 exp

(
−2m

9 · τ2
)
⩽

1

3
,
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where we used that cτ is a small enough absolute constant. Hence, with probability at least 2/3 we
have that ∣∣∣∣êrr(f)− 1

2

∣∣∣∣ ⩾ ∣∣∣∣err(f)− 1

2

∣∣∣∣− ∣∣∣err(f)− êrr(f)
∣∣∣ ⩾ 2τ

3
>

τ

2
.

Similary, if the samples come from N
(
0, 1

2π · In
)
×Be

(
1
2

)
it follows that P(x′,y)∼D′(f(x′) ̸= y) =

1/2 and hence

P
(∣∣∣êrr(f)− 1/2

∣∣∣ > τ

3

)
⩽

1

3
.

Together this yields that ∣∣∣∣êrr(f)− 1

2

∣∣∣∣ ⩽ τ

3
<

τ

2

with probability at least 2/3.
Next, we will show the second part of the theorem. To this end, note that from eq. (A.1) it

follows that
n = log

1+c
δ (M)

and hence

d

γ
= Ω

 log

(
1−1+c

2δ

)
M

log logM

 = Ω

 log
1
2 ·(1−c′′)M

log logM

 = Ω(1) ,

where we used that 1+c
1+c′′ < δ implies that

1− 1+c
2δ > 1

2 − 1
2 · c′′ > 0 .

Hence, from lemma 11 it follows that there exists a degree-4d PTF h∗ satisfying

errD(h
∗) ⩽ exp

(
−Ω

(
d2

γ2

))
= exp

(
− log1−c′′ M

log logM

)
= exp

(
−Ω
(
log1−c′ M

))
,

for c′ slightly larger than c′′. Further, it holds that

∀x ∈ Rn : P(x,y)∼D(h
∗(x) ̸= y | x) ∈ {0, 1} .

By lemma 10 it follows that for the same distribution D′ there exists a linear threshold function
f∗ : RM → {−1,+1} which has the same misclassification error and conditional error probabilites
(with respect to D′) which finishes the proof.

It remains to prove lemma 11
Proof [Proof of lemma 11] Let d, n ∈ N, β, γ ∈ R>0 such that

β2 ⩽ γ2 ,
d

γ
= Ω(1) .

Further, let c+ = 0, c− = 1/2 and w ∈ Sn−1. Recall that

D+ = NHw,β,γ,c+ , D− = NHw,β,γ,c− .
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We will first show that for our choice of parameters the supports of D+ and D− are disjoint. To this
end, recall that for c ∈ [0, 1) the distribution NHw,β,γ,c has density proportional to∑

k∈Z
ρ√

β2+γ2(k ; c) · ρ(πw⊥(y)) · ρα
β/
√

β2+γ2

(
⟨w,y⟩ ; γ

β2 + γ2
(k − c)

)
,

where α = 1
10 · γ

γ2+β2 and πw⊥(y) denotes the projection of y onto the orthogonal complement of
w. For k ∈ Z let

µ+
k =

γ

β2 + γ2
(k − c+) =

γ

β2 + γ2
k and µ−

k =
γ

β2 + γ2
(k − c−) =

γ

β2 + γ2

(
k − 1

2

)
.

Consider the intervals

J+
k =

[
µ+
k − α, µ+

k + α
]
,

J−
k =

[
µ−
k − α, µ−

k + α
]
.

Then it follows that

supp(D+) =
⋃
k∈Z

{
x ∈ Rn

∣∣ ⟨w,x⟩ ∈ J+
k

}
,

supp(D−) =
⋃
k∈Z

{
x ∈ Rn

∣∣ ⟨w,x⟩ ∈ J−
k

}
.

Since the intervals J+
k , J−

k are symmetric around µ+
k and µ−

k respectively and

min
{∣∣µ+

k − µ−
k

∣∣, ∣∣µ+
k − µ−

k+1

∣∣} =
1

2
· γ

β2 + γ2
,

it follows that the supports of D+ and D− are disjoint if and only if

1

2
· γ

β2 + γ2
> 2α =

1

5
· γ

β2 + γ2
,

which always is the case. Hence, the supports of D+ and D− are indeed disjoint.
Consider next the 2d intervals J−

−d+1, . . . , J
−
d and the minimum-degree polynomial pw : R → R

that is zero on exactly the points halfway between one of these intervals and the closest J+
k intervals.

Further, choose this in such a way that it is non-positive on J−
−d+1, . . . , J

−
d . Note by construction it

has degree 4d. Further, consider the degree-4d PTF

p : Rn → R ,

x 7→ sign(pw(⟨w,x⟩)) .

Let

S− =
d⋃

k=−d+1

{
x ∈ Rn

∣∣ ⟨w,x⟩ ∈ J−
k

}
.

Note that for all x such that D+(x) ̸= 0 it holds that

P(x,y)∼D(p(x) ̸= y | x) = 0
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since for such x the label y is always equal to +1 and so is the value of p. For the same reason the
same holds for all x ∈ S−. Hence, we obtain that

P(x,y)∼D(p(x) ̸= y) = P(x,y)∼D

(
x ∈ supp(D−) \ S−) .

Let Z = β√
β2+γ2

· ρ√
β2+γ2(Z ; c−) then by definition of D− and using that for s > 0

∫
|z−c|⩽α

ραs (z ; c) dz =

∫
R
ρs(z ; c) dz = s .

it follows that

P(x,y)∼D

(
x ∈ supp(D−) \ S−) = 1

Z

∑
k⩽−d ,
k⩾d+1

ρ√
β2+γ2(k ; c−) ·

∫
J−
k

ρα
β/
√

β2+γ2

(
z ;

γ

β2 + γ2
(k − c−)

)
dz

⩽
1

Z

∑
|k|⩾d

ρ√
β2+γ2(k ; c−) ·

∫
J−
k

ρα
β/
√

β2+γ2

(
z ;

γ

β2 + γ2
(k − c−)

)
dz

=
1

Z

∑
|k|⩾d

ρ√
β2+γ2(k ; c−) ·

∫
R
ρ
β/
√

β2+γ2

(
z ;

γ

β2 + γ2
(k − c−)

)
dz

=
β√

β2 + γ2 · Z

∑
|k|⩾d

ρ√
β2+γ2(k ; c−)

=
1

ρ√
β2+γ2(Z ; c−)

·
∑
|k|⩾d

ρ√
β2+γ2(k ; c−) .

It follows that
P(x,y)∼D

(
x ∈ supp(D−) \ S−) ⩽ P(|U | ⩾ d) ,

where U ∼ DZ−c−,
√

β2+γ2 . By standard tailbounds for the discrete Gaussian distribution (Mic-
ciancio and Peikert, 2012, Lemma 2.8) we conclude that

P(|U | ⩾ d) ⩽ Θ(1) · exp
(
−π · d2

β2 + γ2

)
= exp

(
−Ω

(
d2

γ2

))
,

where in the last equality we used that β2 ⩽ γ2 and d/γ = Ω(1).
Moreover, all points for which P(x,y)∼D(h

∗(x) ̸= y | x) ̸= 0 have their projection onto w in
supp(D−) \ S−. However, since for such x the distribution D always outputs a −1 label, whereas
p(x) = +1, it follows that for such x

P(x,y)∼D(h
∗(x) ̸= y | x) = 1 .
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Appendix B. Hardness of Distribution-Specific Learning

In this section, we show hardness results for agnostic learning even when the x marginal distribution
is Gaussian based on assumption 6. For consistency with the rest of the paper, we show the result
where the marginal distribution is equal to N(0, 1

2π · IM ) instead of standard Gaussian. Recall that
for a distribution D over RM × {−1,+1}, we denote by Dx its marginal distribution over RM .
More specifically, we will show:

Theorem 12 Let M ∈ N and ε > 0 be small enough. There exists a distribution D over RM ×
{−1,+1} such that Dx = N(0, 1

2π ·IM ) and under assumption 6 for all δ < 1, there is no algorithm
using fewer than

M
Ω

(
1

log(1/ε) ·
(

1
ε2

)δ
)

time and samples that outputs any binary hypothesis f such that

errD(f) ⩽ OPTLTF+ε .

Further, under the same assumption, there is no algorithm using fewer than

M
Ω

(
1

log(ℓ/ε) ·
(

ℓ
ε2

)δ
)

time and samples that outputs any binary hypothesis f such that

errD(f) ⩽ OPTPTFℓ
+ε .

The hard distribution D is defined as follows: Let γ = 2
√
M,β = 1

poly (M) and w be uniform
over SM−1.

• Draw a sample (x, z) ∼ Cw,β,γ .

• If z ∈ [0, 1/2) output (x,+1), else output (x,−1).

theorem 12 will follow directly by the following two lemmas.

Lemma 13 Let D be as defined above and δ < 1. Then Dx = N(0, 1
2π · IM ) and under assump-

tion 6 there is no algorithm that uses fewer than 2M
δ

time and samples and can distinguish D from
N(0, 1

2π · IM )× Be
(
1
2

)
with non-negligible advantage in M .

Lemma 14 Let D again be as above and ε > 0 be small enough. Suppose there is an algorithm
using fewer than

M
Ω

(
1

log(1/ε) ·
(

1
ε2

)δ
)

time and samples that outputs a binary hypothesis f such that errD(f) ⩽ OPTLTF+ε. Then
there is an algorithm that uses the same amount of time and samples that can distinguish D from
N(0, 1

2π · IM ) × Be
(
1
2

)
with non-negligible advantage. Similarly, if there is an algorithm using

fewer than

M
Ω

(
1

log(ℓ/ε) ·
(

ℓ
ε2

)δ
)

time and samples that outputs a binary hypothesis f such that errD(f) ⩽ OPTPTFℓ
+ε. Then

there is an algorithm that uses the same amount of time and samples that can distinguish D from
N(0, 1

2π · IM )× Be
(
1
2

)
with non-negligible advantage.
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We start by proving lemma 13.
Proof [Proof of lemma 13] We first show that Dx = N(0, 1

2π · IM ). Let p be the density of Cw,β,γ

and pD the density of D. For (x, y) ∈ RM × {−1,+1} it holds that

pD(x | y) =

{
p(x | z ∈ [0, 1/2)) , if y = +1,
p(x | z ∈ [1/2, 1)) , if y = −1.

Let x ∈ RM , we compute the density px(x) of Dx at point x.

px(x) =
1

2
· p(x | z ∈ [0, 1/2)) +

1

2
· p(x | z ∈ [1/2, 1)) =

∫ 1

0
p(x, c) dc

= ρ(x) = N(0, 1
2π · IM )(x) .

Further, let m = 2M
δ
. Given a T -time distinguisher A between

Dm and N(0, 1
2π · IM )m × Be

(
1
2

)m
we construct a O(T )-time distinguisher between

CLWE(w, β, γ) and N(0, 1
2π · IM )m × U([0, 1))m .

Given samples (x, z) from either Cw,β,γ or N(0, 1
2π ·IM )×U([0, 1)), we construct new samples

(x′, y′) as follows.

• If z ∈ [0, 1/2) output (x,+1),

• else output (x,−1).

In case (x, z) came from Cw,β,γ , (x′, y′) will be distributed according to D by definition. In case
(x, z) came from N(0, 1

2π · IM ) × U([0, 1)), x′ and y′ will be independent and with marginals
N(0, 1

2π · IM ) and Be
(
1
2

)
, respectively, as desired. Hence, we can directly use our distinguisher A

to distinguish the two cases.

Next, we will proof lemma 14
Proof [Proof of lemma 14] We start by proving the result about LTFs, the result about PTFs will
follow in the same way. Let δ > 0 and τ = 1

poly(M) . Suppose OPTLTF and ε are such that

errD(f) ⩽ OPTLTF+ε ⩽ 1
2 − τ .

We proceed similarly to the proof of theorem 9. Given m = 2M
δ 7 samples (x1, y1), . . . (xm, ym)

from either D or N(0, 1
2π · IM )×Be

(
1
2

)
we run our algorithm on the first m/2 samples to obtain a

binary hypothesis f . Let

êrr(f) =
2

m

m∑
i=m/2+1

1(f(xi) ̸= yi) .

7. For simplicity assume that m is even.

23



TIEGEL

If |êrr(f)− 1
2 | >

τ
2 , output D, else output N(0, 1

2π ·IM )×Be
(
1
2

)
. By an application of Hoeffding’s

Inequality, it follows as in the proof of theorem 9, that this test successfully distinguishes between
the two distributions with probability at least 2/3.

Assume, that for an absolute constant c > 0, it holds that

OPTLTF ⩽
1

2
− c

γ
=

1

2
− c

2
√
M

.

We will verify this shortly. This implies, that we can choose ε = Ω
(
1/
√
M
)

and it still holds that

OPTLTF+ε ⩽ 1
2 − τ . Since

2M
δ
= M

Ω

(
1

log(1/ε)
·
(

1
ε2

)δ
)
,

the result will follow.
We next turn to bounding OPTLTF. First, note that the density of D is equal to

pD(x, y) =
1

β
ρ(x) ·

{∑
k∈Z

∫ 1/2
0 ρβ(c+ k − γ⟨w,x⟩) dc , if y = +1,∑

k∈Z
∫ 1
1/2 ρβ(c+ k − γ⟨w,x⟩) dc , if y = −1.

To simplify the analysis we will work with the distribution D′ whose density is equal to

pD′(x, y) = ρ(x) ·

{∑
k∈Z 1(γ⟨w,y⟩ ∈ [k, k + 1/2)) , if y = +1,∑
k∈Z 1(γ⟨w,y⟩ ∈ [k + 1/2, k + 1)) , if y = −1.

By lemma 18 it holds that TVD(D,D′) ⩽ 1
poly(M) and hence if f̃ is any linear threshold function

it holds that

errD

(
f̃
)
= P(x,y)∼D

(
f̃(x) ̸= y

)
⩽ P(x,y)∼D′

(
f̃(x) ̸= y

)
+

1

poly(M)
= errD′

(
f̃
)
+

1

poly(M)
.

Finally, in lemma 19 we show that there exists a halfspace f∗ and an absolute constant c′ > 0 such
that errD′(f∗) ⩽ 1

2 − c′

γ implying that there is a second absolute constant c > 0 such that

OPTLTF ⩽ errD(f
∗) ⩽

1

2
− c

γ
.

Next, we turn to the result about PTFs. Analogously as above, it follows from lemma 19 that
there exists a degree-ℓ PTF, such that errD′(f∗) ⩽ 1

2 − c′ℓ
γ . Hence, in this case, there is an absolute

constant c > 0, such that OPTPTFℓ
⩽ 1

2 − cℓ
γ . Hence, we can choose ε = Ω

(
ℓ/
√
M
)

, implying
that

2M
δ
= M

Ω
(

1
log(ℓ/ε)

·( ℓ
ε)

2δ
)
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Appendix C. Reductions

The goal of this section is to show that the mixture distributions which we used to prove hardness
of learning in the agnostic model are hard to learn under assumption 6. In particular, our goal will
be to prove the following theorem

Theorem 15 Let n,m ∈ N with 2n > m > n, and let γ, β, ε ∈ R>0, c ∈ [0, 1) such that

0 ⩽ β ⩽ γ ,

β = 1
poly(n) .

Assume that there is no (T + poly(n,m))-time distinguisher between

CLWE(m, γ, β) and N
(
0, 1

2π · In
)m × U([0, 1))m

with advantage ε. Let m′ = m
poly(n) . Then, there is no T -time distingiusher between

Dc := NHCLWE
(
m′, γ, 2β, c

)
and N

(
0, 1

2π · In
)m

with advantage ε − negl(n). Moreover, let c+, c− ∈ [0, 1). Then there is no T -time distingiusher
between

1

2
·
(
Dc+ ,+1

)
+

1

2
·
(
Dc− ,−1

)
and N

(
0, 1

2π · In
)
× Be

(
1

2

)
with advantage ε− negl(n) that uses at most m′ samples.

One key ingredient is the following straightforward adaptation of (Bruna et al., 2021, Lemma
4.1). We will include its proof for completeness at the end of this section.

Lemma 16 (straightforward extension of Lemma 4.1 in Bruna et al. (2021)) For every w ∈
Rn there is a poly(n, 1/δ)-time probabilistic algorithm that takes as input parameters δ ∈
(0, 1), c ∈ [0, 1), and samples from Cw,γ,β and outputs samples from H

w,
√

β2+δ2,γ,c
. More specif-

ically, given poly(n, 1/δ) CLWE samples the algorithm runs in time poly(n, 1/δ) and with prob-
ability at least 1 − exp(−poly(n, 1/δ)) outputs at least one HCLWE sample. Further, if given
samples from N

(
0, 1

2π · In
)
× U([0, 1)) the procedure will output samples from N

(
0, 1

2π · In
)
.

With this in had, we can prove theorem 15
Proof [Proof of theorem 15] Let γ, β, ε ∈ R>0, c ∈ [0, 1). Assume that there is no (T +
poly(n,m))-time distinguisher between

CLWE(m, γ, β) and N
(
0, 1

2π · In
)m × U([0, 1))m

with advantage ε. Let m′ = m
poly(n) . We claim that this implies that there is no T -time distinguisher

between
HCLWE

(
m′, γ, 2β, c

)
and N

(
0, 1

2π · In
)m′

with advantage ε−negl(n). Note that this implies the conclusion of the theorem since by the second
part of lemma 17 the total variation distance between Hw,β,γ,c and NHw,γ,β,c is at most

4 · exp
(
− 1

100β2

)
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for every w that is unit. Hence, since m < 2n the total variation distance between the respective
m′-fold product distributions is at most

4m · exp
(
− 1

100β2

)
= negl(n) .

Note that we can apply this since in our case 0 ⩽ β ⩽ γ. See lemma 20 for a formal proof of the fact
that a small change in total variation distance results in only a small change in the distinguishing
advantage.

To show the claim, we will use lemma 16. Concretely, assume that there is a T -time distin-
guisher between

HCLWE
(
m′, γ, 2β, c

)
and N

(
0, 1

2π · In
)m′

.

We will use this to build a (T + poly(n,m))-time distinguisher between

CLWE(m, γ, β) and N
(
0, 1

2π · In
)m × U([0, 1))m

as follows: Let w denote the secret vector of the CLWE distribution. Given m samples from either
Cw,γ,β or N

(
0, 1

2π · In
)
× U([0, 1)) we invoke the algorithm of lemma 16 with

δ =
√
3β = Ω(1/poly(n)) .

In case the samples came from Cw,γ,β with probability at least

1− exp(−poly(n, 1/δ)) = 1− negl(n)

we obtain in time poly(n) at least m′ = m
poly(n) samples from Hw,2β,γ,c. In case the samples came

from N
(
0, 1

2π · In
)n × U([0, 1)) with at least the same probability we obtain in time poly(n) at

least m′ = m
poly(n) samples from Dn

1 . Hence, if we had a T -time distinguisher between

HCLWE
(
m′, γ, 2β, c

)
and N

(
0, 1

2π · In
)m′

with advantage ε−negl(n), this would directly yield a (T+poly(n,m))-time distinguisher between

CLWE(m, γ, β) and N
(
0, 1

2π · In
)m × U([0, 1))m

with advantage ε. The shift of negl(n) in the advatage is due to the fact that the sample conversion
algortihm can fail with probability negl(n).

For the second part of the theorem, we first note, that we can again replace the truncated mixture
distributions by the non-truncated ones by invoking lemma 20. By construction, the respective
mixture distributions have total variation distance at most

p · negl(n) + (1− p) · negl(n) = negl(n) .

The result follows since we can generate samples from this mixture from samples from the CLWE
distribution as follows: With probabily p we invoke the procedure of lemma 16 with c = c+ and
with probability 1− p with c = c−.

Finally, we give the proof of lemma 16
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Proof Let δ ∈ (0, 1), c ∈ [0, 1) and β, γ > 0. Without loss of generality assume that w =
e1. Given samples from Cw,β,γ the idea is to perform rejection sampling to obtain samples from
H

w,
√

β2+δ2,γ,c
. Concretely, let g : [0, 1) → [0, 1] be given by g(z) = g0(z)/M , where

g0(z) =
∑
k∈Z

ρδ(z + k + c) , M = sup
z∈[0,1)

g0(z) .

For a CLWE sample (y, z), output y with probability g(z).8 Recall that the density of Cw,β,γ is
given by

p(y, z) =
1

β
· ρ(y) ·

∑
k∈Z

ρβ(z + k − γy1) .

Using fact 22 (in the third equality) and that for all c ∈ R it holds that
∫
R ρs(x − c) dx = s we

obtain that the density p′ of the distribution given by the rejection sampling, i.e., of outputting y and
accept, is given by

p′(y) =

∫
[0,1)

p(y, z)g(z) dz =
ρ(y)

β ·M
·
∫
[0,1)

∑
k1,k2∈Z

ρβ(z + k1 − γy1) · ρδ(z + k2 + c) dz

=
ρ(y)

β ·M
·
∫
[0,1)

∑
k1,k2∈Z

ρ√
β2+δ2

(γy1 − k1 + k2 + c)ρ
βδ/

√
β2+δ2

(
z + β2

β2+γ2 (k2 + c) + γ2

β2+γ2 (k1 − γy1)
)
dz

=
ρ(y)

β ·M
·
∫
[0,1)

∑
k,k2∈Z

ρ√
β2+δ2

(γy1 − k + c) · ρ
βδ/

√
β2+δ2

(
z + k2 +

β2

β2+δ2
c+ δ2

β2+δ2
(k − γy1)

)
dz

=
ρ(y)

β ·M
·
∑
k∈Z

ρ√
β2+δ2

(γy1 − k + c) ·
∫
R
ρ
βδ/

√
β2+δ2

(
x+ β2

β2+δ2
c+ δ2

β2+δ2
(k − γy1)

)
dx

=
δ · ρ(y)√
β2 + δ2 ·M

∑
k∈Z

ρ√
β2+δ2

(γy1 ; k − c) .

Hence, the distribution is indeed equal to H
w,
√

β2+δ2,γ,c
. It also follows, that the probability that

we accept a given CLWE sample is equal to∫
Rn

p′(y) dy =
δ√

β2 + δ2 ·M
·

√
β2 + δ2√

β2 + δ2 + γ2
· ρ
(

1√
β2+δ2+γ2

Z
)

=
δ√

β2 + δ2 + γ2 ·M
· ρ
(

1√
β2+δ2+γ2

Z
)

=
δ√

β2 + δ2 + γ2 ·M
· ρ√

β2+δ2+γ2(Z)

Note that using fact 21 it follows that

ρ√
β2+δ2+γ2(Z) =

√
β2 + δ2 + γ2 · ρ

1/
√

β2+δ2+γ2(Z) ⩾
√
β2 + δ2 + γ2 .

8. Note that by (Brakerski et al., 2013, Section 5.2) the function g(z) is efficiently computable.
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Hence, the probability that we accept is at least δ/M . Further, for each z ∈ [0, 1) we have that

g0(z) =
∑
k∈Z

ρδ(z + k + c)

⩽ 2 ·
∞∑
k=0

ρδ(k)

< 2 ·
∞∑
k=0

exp(−πk) < 4 .

Hence, M ⩽ 4 and it follows that we accept with probability at least δ/4. Thus, after poly(n, 1/δ)
we output at least one HCLWE sample with probability at least 1− exp(−poly(n, 1/δ)).

Lastly, when given samples from N
(
0, 1

2π · In
)
× U([0, 1)) the procedure will output samples

from N
(
0, 1

2π · In
)

since in this case y and z are independent.

Appendix D. Missing Lemmas

D.1. TVD Closeness of Supporting Distributions

Lemma 17 Let w ∈ Rd and 0 ⩽ β ⩽ γ, c ∈ [0, 1). Then

TVD(Hw,β,γ,c,NHw,β,γ,c) ⩽ 4 · exp
(
− 1

100β2

)
.

Proof Let PH denote the density of Hw,β,γ,c and PN the density of NHw,β,γ,c. Abusing notation
slightly, we also use PH and PN to refer to the marginal of PH and PN on the span of w. Since
the densities agree in the space orthogonal to w, and since they factorize over these two spaces, we
obtain

TVD(PH , PN ) = sup
A⊆Span(w)

|PH(A)− PN (A)| .

For ease of notation, we identify the span of w with the real line. Further, for k ∈ Z, let PH,k and
PN,k denote the density of the k-th component of PH and PN respectively. Further, let wk denote
the weight of the k-th component - which is the same in both cases. It follows that

TVD(PH , PN ) = sup
A⊆R

|PH(A)− PN (A)| = sup
A⊆R

∣∣∣∣∣∑
k∈Z

wk(PH,k(A)− PN,k(A))

∣∣∣∣∣
⩽
∑
k∈Z

wk · sup
A⊆R

|PH,k(A)− PN,k(A)|

Next, fix k ∈ Z and let Ik denote the support of PN,k. Let Z = PH,k(Ik) and recall that for C ⊆ Ik
it holds that PN,k(C) = 1

Z · PH,k(C) and for C disjoint from Ik that PN,k(C) = 0. We can then
bound

sup
A⊆R

|PH,k(A)− PN,k(A)| = sup
A⊆R

|PH,k(A ∩ Ik) + PH,k(A ∩ Ick)− PN,k(A ∩ Ik)− PN,k(A ∩ Ick)|
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⩽ sup
A⊆R

|PH,k(A ∩ Ik)− PN,k(A ∩ Ik)|+ sup
A⊆R

|PH,k(A ∩ Ick)− PH,k(A ∩ Ick)|

=
1− Z

Z
· PH,k(Ik) + PH,k(I

c
k) = 2 · (1− Z) .

Let µk = γ
β2+γ2 (k− c) and σ2

k = 1
2π · β2

β2+γ2 and denote by Xk the random variable distributed
according to PH,k. Note that Xk ∼ N(µk, σ

2
k) and Ik = [µk − α, µk − α], where α = 1

10 · γ
γ2+β2 .

It follows that

1− Z = P(|Xk| ⩾ α) ⩽ 2 · exp
(
− α2

2σ2
k

)
= 2 · exp

(
−
2π · γ2 ·

(
β2 + γ2

)
200β2 · (β2 + γ2)2

)
⩽ 2 · exp

(
− γ2

50β2 · (β2 + γ2)

)
⩽ 2 · exp

(
− 1

100β2

)
.

Hence, we finally obtain that

TVD(PH , PN ) ⩽

(∑
k∈Z

wk

)
· 4 · exp

(
− 1

100β2

)
= 4 · exp

(
− 1

100β2

)
.

Lemma 18 Let D,D′ be distributions over RM × {−1,+1} with densities defined below, then
TVD(D,D′) ⩽ 1

poly(M) . The densities are equal to

pD(x, y) =
1

β
ρ(x) ·

{∑
k∈Z

∫ 1/2
0 ρβ(c+ k − γ⟨w,x⟩) dc , if y = +1,∑

k∈Z
∫ 1
1/2 ρβ(c+ k − γ⟨w,x⟩) dc , if y = −1.

and

pD′(x, y) = ρ(x) ·

{∑
k∈Z 1(γ⟨w,x⟩ ∈ [k, k + 1/2)) , if y = +1,∑
k∈Z 1(γ⟨w,x⟩ ∈ [k + 1/2, k + 1)) , if y = −1.

Proof The proof proceeds similary to lemma 17. First, note that by symmetry

TVD(D,D′) = max

{
sup

A⊆RM

|PD(x ∈ A, y = ℓ)− PD′(x ∈ A, y = ℓ)|

∣∣∣∣∣ ℓ ∈ {−1,+1}

}
= sup

A⊆RM

|PD(x ∈ A, y = +1)− PD′(x ∈ A, y = +1)|

= sup
A⊆Span(w)

|PD(⟨w,x⟩ ∈ A, y = +1)− PD′(⟨w,x⟩ ∈ A, y = +1)| .

Without loss of generality, identfiy the span of w with the real line. Abusing notation, we denote
the one-dimensional densities by pD and pD′ as well. Define Ik(z) :=

∫ 1/2
0 ρβ(c+ k − γz) dc and

observe that

pD(z) =
1

β
ρ(z) ·

∑
k∈Z

Ik(z) , pD′(z) = ρ(z) ·
∑
k∈Z

1(γz ∈ [k, k + 1/2]) .
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It follows that TVD(D,D′) = TVD(pD, pD′) (referring to the one-dimensional densities). To
bound this quantity, we introduce the following intermediate distribution D̃ defined as follows: For
z ∈ R let k∗(z) = argmink∈Zmin{|γz − k|, |γz − k − 1/2|}, then we set

pD̃(z) ∝
1

β
ρ(z) · Ik∗(z)(z) .

We will first show that TVD(pD, pD̃) ⩽ exp(−poly(M)) and second that TVD(pD̃, pD′) ⩽
1

poly(M) which together imply the desired result. We will use that for measure P,Q it holds

that TVD(P,Q) ⩽
√
2H(P,Q), where H(P,Q) is the Hellinger distance defined as H(P,Q) =

1
2

∫ (√
p(x)−

√
q(x)

)2
dx for p, q the densitites of the measures P and Q respectively.

Let Z be the normalization constant in the density pD̃, it follows that

Z =

∫
R

1

β
ρ(z) · Ik∗(z)(z) dz = 1−

∫
R

1

β
ρ(z) ·

∑
k ̸=k∗(z)

Ik(z) dz .

Note that for a given z and k ̸= k∗(z) it holds that γz is at distance at least |k∗(z)−k|
4 from the

interval [k, k + 1/2]. Hence, we can bound Ik(z) as follows:

Ik(z) =

∫ 1/2

0
ρβ(c+ k − γz) dc ⩽

1

2
ρβ

(
|k∗(z)−k|

4

)
= exp

(
−(k∗(z)− k)2 poly(n)

)
.

It follows that ∑
k ̸=k∗(z)

Ik(z) ⩽
∑
k⩾1

exp(−k · poly(n)) ⩽ exp(−poly(n)) ,

implying that Z ⩾ 1− exp(−poly(n)). Using this we can bound the Hellinger distance

H(D, D̃) =
1

2β

∫
R
ρ(z)

√Ik∗(z)(z)

Z
−
√∑

k∈Z
Ik(z)

2

dz

⩽
1

β

∫
R
ρ(z)

(√
Ik∗(z)(z)

Z
−
√
Ik∗(z)(z)

)2

dz +

∫
R
ρ(z)

√Ik∗(z)(z)−
√∑

k∈z
Ik(z)

2

dz


⩽ exp(−poly(n)) ,

where in the last inequality we used that
∫
R ρ(z) dz = 1 and Ik∗(z)(z) ⩽ 1 for all z.

Next, we turn to bound H(D̃,D′). To this end, let τ > 0 be some parameter to be chosen later
and note that

∑
k∈Z 1(γz ∈ [k, k + 1/2]) = 1(γz ∈ [k∗(z), k∗(z) + 1/2]). We obtain

H(D̃,D′) =
1

2

∫
R
ρ(z)

(√
1

β
Ik∗(z)(z)− 1(γz ∈ [k∗(z), k∗(z) + 1/2])

)2

dc

To begin with, note that

1

β
Ik∗(z)(z) ⩽

∫
R

1

β
ρβ(c+ k − γz) dc ⩽ 1 .
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We proceed by making a case distinction. First, consider z such that γz ∈ [k∗(z)+τ, k∗(z)+1/2−τ ]
and let X ∼ N(0, β

2π ). For such z it holds that

1

β
Ik∗(z)(z) =

∫ 1/2

0

1

β
ρβ(c+ k∗(z)− γz) dc = P

(
k∗(z)− γz ⩽ X ⩽ k∗(z) + 1

2 − γz
)

⩾ 1− P(|X| ⩾ τ) ⩾ 1− 2 exp
(
−πτ2

β2

)
.

Next, consider z such that min
{
|γz − k∗(z)|, |γz − k∗(z)− 1

2 |
}
⩾ τ . We obtain that

1

β
Ik∗(z)(z) ⩽ P(|X| ⩾ τ) ⩽ 2 exp

(
−πτ2

β2

)
.

Let S =
⋃

k∈Z[k − τ, k + τ ] ∪ [k + 1
2 − τ, k + 1

2 + τ ]. Using the above, we can bound

1

2

∫
R\S

ρ(z)

(√
1

β
Ik∗(z)(z)− 1(γz ∈ [k∗(z), k∗(z) + 1/2])

)2

dc ⩽ exp

(
−πτ2

β2

)
.

It remains to bound the integral on S. For this, note that ρ is symmetric around z = 0 and monotone
for z ⩾ 0 and z ⩽ 0. This yields

1

2

∫
S
ρ(z)

(√
1

β
Ik∗(z)(z)− 1(γz ∈ [k∗(z), k∗(z) + 1/2])

)2

dc

⩽ 4

∫ τ

0
ρ(z) dz +

∫ 1/2+τ

1/2−τ
ρ(z) dz +

∑
k⩾1

∫ k+τ

k−τ
ρ(z) dz +

∫ k+1/2+τ

k+1/2−τ
ρ(z) dz


⩽ 4

∫ τ

0
ρ(z) dz +

1
1
4τ − 1

∫ 1/2+τ

τ
ρ(z) dz +

1
1
4τ − 1

∑
k⩾1

∫ k+τ

k−1/2+τ
ρ(z) dz +

∫ k+1/2+τ

k+τ
ρ(z) dz


⩽ 12τ

∫ ∞

0
ρ(z) dz = 6τ .

Hence, combining the above bounds and choosing τ =
√
β = 1

poly(M) , we obtain

H(D̃,D′) ⩽ exp

(
−πτ2

β2

)
+ 6τ = exp(−poly(M)) +

1

poly(M)

as desired.

D.2. Supporting Lemmas about Optimal Halfspaces

Lemma 19 Consider the distribution D′ over RM × {−1, 1} with density given by

pD′(x, y) = ρ(x) ·

{∑
k∈Z 1(γ⟨w,x⟩ ∈ [k, k + 1/2)) , if y = +1,∑
k∈Z 1(γ⟨w,x⟩ ∈ [k + 1/2, k + 1)) , if y = −1.
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Let f∗(x) = sign(⟨w,x⟩), then there exists an absolute constant c > 0 such that errD′(f∗) ⩽
1
2 − c

γ .

Further, for each ℓ ⩾ 2 there exists a degree-ℓ PTF h∗ such that errD′(h∗) ⩽ 1
2 − c′ℓ

γ , for some
absolute constant c′ > 0.

Proof First note, that for (x, y) ∼ D′ only depends on ⟨w,x⟩. Let z = ⟨w,x⟩ and Ak =

[kγ ,
k+1/2

γ ], Bk = [k+1/2
γ , k+1

γ ] for k ∈ Z. Further, let X ∼ N(0, 1
2π ).

We first prove the result about linear threshold functions. By symmetry it holds that

errD′(f∗) = 2P(f∗(x) ̸= y, y = −1) = 2
∑
k∈Z

∫
Bk

1(f∗(z) ̸= −1)ρ(z) dz = 2
∑
k⩾0

P(X ∈ Bk)

Note that by construction, for k ⩾ 0, it holds that 2P(X ∈ Bk) ⩽ P(X ∈ Bk) + P(X ∈ Ak). Let
k∗ be a non-negative integer to be chosen later and assume that there exists ε = ε(k∗) such that
2P(X ∈ Bk) ⩽ (1− ε)[P(X ∈ Bk) + P(X ∈ Ak)], then for k∗ ⩾ γ

2
∑
k⩾0

P(X ∈ Bk) ⩽
∑

0⩽k<k∗

P(X ∈ Bk) + P(X ∈ Ak) + (1− ε) ·
∑
k⩾k∗

P(X ∈ Bk) + P(X ∈ Ak)

=
1

2
− P

(
X ⩾

k∗

γ

)
+ (1− ε) · P

(
X ⩾

k∗

γ

)
=

1

2
− ε · P

(
X ⩾

k∗

γ

)
⩽

1

2
− ε · k∗/γ

2π(k∗/γ)2 + 1
exp

(
−π · (k∗)2

γ2

)
⩽

1

2
− ε · γ

4πk∗
exp

(
−π · (k∗)2

γ2

)
,

where we also used standard bounds for the pdf of the standard Gaussian distribution. Next, we aim
to find ε and calculate

P(X ∈ Ak)− P(X ∈ Bk) =

∫ (k+1/2)/γ

k/γ
exp
(
−πz2

)
dz −

∫ (k+1)/γ

(k+1/2)/γ
exp
(
−πz2

)
dz

=

∫ (k+1)/γ

(k+1/2)/γ

[
exp
(
−π(z − 1/(2γ))2

)
− exp

(
−πz2

)]
dz

=

∫ (k+1)/γ

(k+1/2)/γ
exp
(
−πz2

)
·
[
exp

(
π
z

γ

)
exp

(
− π

4γ2

)
− 1

]
dz

For k ⩾ 1 we can bound

exp

(
π
z

γ

)
exp

(
− π

4γ2

)
⩾

(
1 + π

z

γ

)(
1− π

4γ2

)
= 1 + π

z

γ
− π

4γ2
− π2 z

4γ3

⩾ 1 + π
z

2γ
− π

4γ2
⩾ 1 + π

k

4γ2
.

Which implies

P(X ∈ Ak)− P(X ∈ Bk) ⩾ π
k

4γ2
P(X ∈ Bk) .
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Rearringing implies that

P(X ∈ Bk) ⩽
2

2 + π k
4γ2

· (P(X ∈ Bk) + P(X ∈ Ak))

which yields ε(k) ⩾ π k
12γ2 ⩾ k

4γ2 . Hence, for k∗ = ⌈γ⌉ we have

ε(k∗) · γ

4πk∗
exp

(
−π · (k∗)2

γ2

)
⩾

1

4γ
· 1

4π
· exp(−4π) .

As desired, this implies that for an absolute constant c > 0 it holds that

errD′(f∗) ⩽
1

2
− c

γ
.

Next, we prove the result about degree-ℓ PTFs. Again, since the labels of D′ only depend on
the direction w it suffices to define a one-dimensional degree-ℓ polynomial pz : R → R. The final
PTF will be defined as h∗(x) = sign pz(⟨w,x⟩). Note that pz can be fully specified by ℓ roots
and the sign it takes between any two roots. For simplicity, we assume that ℓ is odd and consider
degree-2ℓ + 1 PTFs, the even case works analogously. Let pz be the polynomial that has roots
− ℓ

2γ ,−
ℓ−1
2γ , . . . , 0, . . . , ℓ−1

2γ , ℓ
2γ . Further, let its sign be positive between 0 and 1

2γ and alternate on
the other intervals. Again, for simplicity and without loss of generality, also assume that its sign
after the greatest positive root is positive. Observe that this implies that ℓ is even. Note that for
ℓ = 0 we recover the LTF from above. Let c > 0 be some absolute constant. By symmetry and the
results above it follows that, note that we use that h∗ agrees with the label of all samples (x, y) such
that ⟨w,x⟩ ⩽ 0 and y = −1.

errD′(f∗) = 2P(f∗(x) ̸= y, y = −1) = 2
∑
k∈Z

∫
Bk

1(f∗(z) ̸= −1)ρ(z) dz = 2
∑
k⩾ℓ/2

P(X ∈ Bk)

= 2
∑
k⩾0

P(X ∈ Bk)− 2
∑
k<ℓ/2

P(X ∈ Bk) ⩽
1

2
− c

γ
− P

(
1

γ
⩽ X ⩽

ℓ/2 + 1

γ

)

⩽
1

2
− c

γ
− 1

2
· P
(
X ⩽

ℓ+ 1

2γ

)
.

Using that ℓ/γ ⩽ 1 we bound as before

1
2 · P

(
X ⩽

ℓ+ 1

2γ

)
⩾

(ℓ+ 1)/γ

4π((ℓ+ 1)/γ)2 + 1
exp

(
−π · (ℓ+ 1)2

γ2

)
⩾

ℓ+ 1

36γ
exp(−π) .

Hence, there exists an absolute constant c′ > 0 such that

errD′(h∗) ⩽
1

2
− c′ℓ

γ
.

Next, we prove lemma 10.

33



TIEGEL

Lemma [Restatement of lemma 10] Let n, d ∈ N and M ⩾ nd. Further, let D be a distribution
over Rn × {−1,+1}. There exists a distribution D′ over RM × {−1,+1} such that

1. For every degree-d polynomial threshold function h : Rn → {−1,+1} there exists a linear
threshold function f : RM → {−1,+1} such that

errD′
(
f ′) = errD(h) .

2. For every binary function f : supp(D′) → {−1,+1} there exists a binary function h : Rn →
{−1,+1} such that

errD′
(
f ′) = errD(h) .

In both cases such a function can be computed in time poly(M). Moreover, there exists a one-to-
one mapping ϕ : supp(D) → supp(D′) such that in both of the above cases for all x̃′ ∈ supp(D′)
it holds that

P(x′,y′)∼D′
(
f(x′) ̸= y′

∣∣ x′ = x̃′) = P(x,y)∼D

(
h(x) ̸= y

∣∣ x = ϕ−1(x̃′)
)
.

Proof We start by describing the mapping ϕ. Denote by α = (α1, . . . , αn) ∈ Nn a multi-index and
by |α| =

∑n
i=1 αi its size. Let M ′ =

(
n+d
n

)
and let

ϕ : Rn → RM ,

x 7→
(
(xα)|α|⩽d,0

)
,

where by 0 we mean the vector containing M −M ′ zeros. Define the distribution D′ over RM ×
{−1,+1} as first drawing (x, y) ∼ D and then outputting (ϕ(x), y). Clearly, restricted to the
support of D, the map ϕ is a bijection between supp(D) and supp(D′).

Next, consider any degree-d polynomial threshold function h : Rn → {−1,+1}. Since M ′ =(
n+d
n

)
⩽ M there exists a linear threshold function f such that for all x ∈ Rn it holds that h(x) =

f(ϕ(x)). It follows that

errD′
(
f ′) = P(x′,y′)∼D′

(
f(x′) ̸= y′

)
= P(x,y)∼D(f(ϕ(x)) ̸= y) = P(x,y)∼D(h(x) ̸= y) = errD(f) .

Similarly, for every binary function f : supp(D′) → {−1,+1} we can define the binary function
h : Rn → {−1,+1} such that h(x) = f(ϕ(x)). Hence, we have

errD′
(
f ′) = errD(f) .

Since in both cases we have to consider at most M coefficients we can compute the lin-
ear/polynomial threshold function in time poly(M). Moreover, in both cases, for x̃′ ∈ supp(D′) it
holds that

P(x′,y′)∼D′
(
f(x′) ̸= y′

∣∣ x′ = x̃′) = P(x,y)∼D

(
f(ϕ(x)) ̸= y

∣∣ ϕ(x) = x̃′)
= P(x,y)∼D

(
h(x) ̸= y

∣∣ x = ϕ−1
(
x̃′)) ,

as desired.
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D.3. Small Facts

Lemma 20 Let n ∈ N, ε > 0 and distributions D0
n and D1

n be such that there exists no T -time
distinguisher with advatage at least ε between D0

n and D1
n. Further, let D1′

n be a third distribution
such that TVD(D1

n, D
1′
n ) = negl(n). Then there exists no T -time distingiusher with advantage at

least ε− negl(n) between D0
n and D1′

n .

Proof Suppose there exists a distinguisher A between D0
n and D1′

n with advantage at least ε −
negl(n). Using this distinguisher to distinguish between D0

n and D1
n gives advantage∣∣Px∼D0

n
(A(x) = 0)− Px∼D1

n
(A(x) = 0)

∣∣ ⩾ ∣∣∣Px∼D0
n
(A(x) = 0)− Px∼D1′

n
(A(x) = 0)

∣∣∣+ negl(n) ⩾ ε

which is a contradiction.

Fact 21 (Poisson Summation Formula) For any lattice L and any function f it holds that

f(L) = det(L∗) · f̂(L∗)

where L∗ = {y ∈ Rn | ⟨x,y⟩ ∈ Z for all x ∈ Z} is the dual lattice of L and f̂ the Fourier trans-
form of f .

Fact 22 (Peikert (2010)) For any r1, r2 > 0 and vectors x, c1, c2 ∈ Rn, let r0 =
√
r21 + r22, r3 =

r1r2
r0

, and c3 =
r23
r21
c1 +

r23
r22
c2. Then

ρr1(x− c1) · ρr2(x− c2) = ρr0(c1 − c2) · ρr3(x− c3) .

Fact 23 Let γ, β ⩾ 0 and w ∈ Rd, then∑
k∈Z

ρ√
β2+γ2(k ; c)·ρ(πw⊥(y))·ρ

β/
√

β2+γ2

(
⟨w,y⟩ ; γ

β2 + γ2
(k − c)

)
= ρ(y)·

∑
k∈Z

ρβ(γ⟨w,y⟩ ; k − c) .

Proof Clearly, for y orthogonal to w the equality holds. Consider any y in the span of w and for
convenience write z = ⟨y,w⟩. Fix k ∈ Z then we have that

ρ√
β2+γ2(k ; c) · ρβ/

√
β2+γ2

(
z ;

γ

β2 + γ2
(k − c)

)
= exp

−π

(k − c)2

β2 + γ2
+

(
β2 + γ2

)
·
(
z − γ

β2+γ2 (k − c)
)2

β2


 .

Focusing only on the expression inside the exponential function (and ignoring the π) we obtain

(k − c)2

β2 + γ2
+

(
β2 + γ2

)
·
(
z − γ

β2+γ2 (k − c)
)2

β2
=

(k − c)2 · β2 +
[(
β2 + γ2

)
· z − γ · (k − c)

]2
(β2 + γ2) · β2

=

(
β2 + γ2

)
· z2 + (k − c)2 − 2 · (k − c) · γ · z

β2

=
((k − c)− γ · z)2

β2
+ z2 .
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Hence, it follows that

ρ√
β2+γ2(k ; c) · ρβ/

√
β2+γ2

(
z ;

γ

β2 + γ2
(k − c)

)
= ρβ(γ · z ; k − c) · ρ(z)

which implies the claim.
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