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École Polytechnique Fédérale de Lausanne

Nicolas Flammarion NICOLAS.FLAMMARION@EPFL.CH
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Abstract
This paper studies first-order algorithms for solving fully composite optimization problems over
convex and compact sets. We leverage the structure of the objective by handling its differentiable
and non-differentiable components separately, linearizing only the smooth parts. This provides us
with new generalizations of the classical Frank-Wolfe method and the Conditional Gradient Sliding
algorithm, that cater to a subclass of non-differentiable problems. Our algorithms rely on a stronger
version of the linear minimization oracle, which can be efficiently implemented in several practical
applications. We provide the basic version of our method with an affine-invariant analysis and prove
global convergence rates for both convex and non-convex objectives. Furthermore, in the convex
case, we propose an accelerated method with correspondingly improved complexity. Finally, we
provide illustrative experiments to support our theoretical results.
Keywords: convex optimization, composite problems, Frank-Wolfe algorithm, acceleration

1. Introduction

In this paper we consider fully composite optimization problems of the form

min
x∈X

[
φ(x)

def
= F (f(x),x)

]
, (1)

where X is a convex and compact set, F : Rn ×X → R is a simple but possibly non-differentiable
convex function and f : X → Rn is a smooth mapping, which is the main source of computational
burden.

Problems of this type cover and generalize many classical use-cases of composite optimiza-
tion and are often encountered in applications. In this work, we develop efficient algorithms for
solving (1) by leveraging the structure of the objective and using the linearization principle. Our
method generalizes the well-known Frank-Wolfe algorithm (Frank and Wolfe, 1956) and ensures
asymptotically faster convergence rates compared to methods treating φ in a black-box fashion.

A classical algorithm for solving smooth optimization problems is the Gradient Descent method
(GD), proposed by Cauchy in 1847 (see historical note by Lemaréchal (2012)). It rests on the idea
of linearizing the function around the current iterate, taking a step in the negative gradient direction
and projecting the result onto the feasible set X for k ≥ 0:

© 2023 M.-L. Vladarean, N. Doikov, M. Jaggi & N. Flammarion.



VLADAREAN DOIKOV JAGGI FLAMMARION

yk+1 = πX
(
yk − αk∇φ(yk)

)
, αk > 0, (2)

where πX is the projection operator onto X . Surprisingly, the same kind of iterations can min-
imize general non-smooth convex functions by substituting ∇φ(yk) with any subgradient in the
subdifferential ∂φ(yk). The resulting Subgradient method was proposed by Shor et al. (1985).

Another notable example for smooth optimization over a convex and bounded constraint set X
is the Frank-Wolfe (FW) method (Frank and Wolfe, 1956). Again, a linearization of the objective
around the current iterate is used to query the so-called linear minimization oracle (LMO) associated
with X , for every k ≥ 0:

yk+1 ∈ Argmin
x

{
⟨∇φ(yk),x⟩ : x ∈ yk + γk(X − yk)

}
, γk ∈ (0, 1]. (3)

Steps of type (3) can be significantly cheaper than those involving projections (2) for a few notable
domains such as nuclear norm balls and spectrahedrons (Combettes and Pokutta, 2021), making
FW the algorithm of choice in such scenarios. Moreover, the solutions found by FW methods can
benefit from additional properties such as sparsity (Jaggi, 2013). These desirable features make
FW methods suitable for large scale optimization, a fact which led to an increased interest in recent
years (we point the reader to the monograph of Braun et al. (2022) for a detailed presentation).
Unfortunately, the vanilla FW algorithm does not extend to non-differentiable problems in the same
straightforward manner as GD – a counterexample is given by Nesterov (2018a). The question of
developing non-smooth versions of the FW algorithm therefore remains open, and is the main focus
of this article.

Finally, we touch on the issue of convergence rates – a principal means of theoretically charac-
terizing optimization algorithms. The classical monograph of Nemirovski and Yudin (1983) estab-
lishes that the O(1/

√
k) rate of the Subgradient method is optimal for general non-differentiable

convex problems, while the O(1/k) rate of its counterpart GD is far from the lower bound of
Ω(1/k2) for L−smooth convex functions. Similar results are established by Lan (2013) for LMO-
based algorithms, although in this case the O(1/k) rate is matched by a lower bound for smooth
convex minimization. This relatively slow convergence of FW algorithms is a result of their affine-
invariant oracle, which is independent on the choice of norm. In light of these lower bounds, one
can only hope to improve convergence rates by imposing additional structure on the problem to be
solved.

The present work leverages this observation and studies a subclass of (possibly) non-smooth
and non-convex problems with the specific structure of (1). Our methods require only linearizations
of the differentiable component f , while the non-differentiable function F is kept as a part of the
subproblem solved within oracle calls. We show that this approach is a viable way of generalizing
FW methods to address problem (1), with the possibility of acceleration. Our contributions can be
summarized as follows.

• We propose a basic method for problem (1), which is affine-invariant and equipped with
accuracy certificates. We prove the global convergence rate of O(1/k) in the convex setting,
and of Õ(1/

√
k) in the non-convex case.

• We propose an accelerated method with inexact proximal steps which attains a convergence
rate of O(1/k2) for convex problems. Our algorithm achieves the optimal O

(
ε−1/2

)
oracle

complexity for smooth convex problems in terms of the number of computations of ∇f .

• We provide proof-of-concept numerical experiments, that demonstrate the efficiency of our
approach for solving composite problems.
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Related Work. The present work lies at the intersection of two broad lines of study: general
methods for composite optimization and FW algorithms. The former category encompasses many
approaches that single out non-differentiable components in the objective’s structure, and lever-
age this knowledge in the design of efficient optimization algorithms. This approach originated
in the works of Burke (1985, 1987); Nesterov (1989); Nemirovski (1995); Pennanen (1999); Boţ
et al. (2007, 2008). A popular class of additive composite optimization problems was proposed
by Beck and Teboulle (2009); Nesterov (2013) and the modern algorithms for general composite
formulations were developed by Cui et al. (2018); Drusvyatskiy and Lewis (2018); Drusvyatskiy
and Paquette (2019); Bolte et al. (2020); Burke et al. (2021); Doikov and Nesterov (2022).

The primitive on which most of the aforementioned methods rely is a proximal-type step – a
generalization of (2). Depending on the geometry of the set X , such steps may pose a significant
computational burden. Doikov and Nesterov (2022) propose an alternative contracting-type method
for fully composite problems, which generalizes the vanilla FW algorithm. Their method relies on
a simpler primitive built on the linearization principle, which can be much cheaper in practice. We
study the same problem structure as Doikov and Nesterov (2022) and devise methods with several
advantages over the aforementioned approach, including an affine-invariant analysis, accuracy cer-
tificates, convergence guarantees for non-convex problems and, in the convex case, an accelerated
convergence. Moreover, we decouple stepsize selection from the computational primitive, to enable
efficient line search procedures.

Our methods are also intimately related to FW algorithms, which they generalize. For smooth
and convex problems, vanilla FW converges at the cost of O

(
ε−1

)
LMO and first order oracle (FO)

calls in terms the Frank-Wolfe gap – an accuracy measure bounding functional suboptimality (Jaggi,
2013). For smooth non-convex problems, a gap value of at most ε is attained after O

(
ε−2

)
LMO

and FO calls (Lacoste-Julien, 2016). Due to the relatively slow convergence of LMO-based meth-
ods, recent efforts have gone into devising variants with improved guarantees. The number of FO
calls was reduced to the lower bound for smooth convex optimization by Lan and Zhou (2016), local
acceleration was achieved following a burn-in phase by Diakonikolas et al. (2020); Carderera et al.
(2021); Chen and Sun (2022), and empirical performance was enhanced by adjusting the update di-
rection with gradient information by Combettes and Pokutta (2020). Of the aforementioned works,
closest to ours is the Conditional Gradient Sliding (CGS) algorithm proposed by Lan and Zhou
(2016) and further studied by Yurtsever et al. (2019); Qu et al. (2018). CGS uses the acceleration
framework of Nesterov (1983) and solves the projection subproblem inexactly via the FW method,
achieving the optimal complexity of O

(
ε−1/2

)
FO calls for smooth convex problems. We rely on a

similar scheme for improving FO complexity in the convex case.

In the context of generic non-smooth convex objectives, the FW algorithm was studied by Lan
(2013), who proposes a smoothing-based approach matching the lower bound of Ω(ε−2) LMO calls.
The method however requires O

(
ε−4

)
FO calls, a complexity which is later improved to O

(
ε−2

)
by Garber and Hazan (2016) through a modified LMO for polytopes, by Ravi et al. (2019) with a
(differently) modified LMO, and finally by Thekumparampil et al. (2020) through a combination of
smoothing and the CGS algorithm. Our algorithm, instead, leverages the structure of problem (1)
and a modified LMO to achieve improved rates, with the added benefit of an affine invariant method
and analysis. We also mention FW methods for additive composite optimization (Argyriou et al.,
2014; Yurtsever et al., 2018, 2019; Zhao and Freund, 2022), with the former three relying on proxi-
mal steps and the latter assuming a very restricted class of objectives.
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Reference φ subclass Use structure? # FO # PO/LMO Observations

Shor et al. (1985) cvx, L-cont no O
(
ε−2

)(1) O
(
ε−2

)(1) projection

Thekumparampil et al. (2020) cvx, L-cont no O
(
ε−2

)(1) O
(
ε−2

)(1) smoothing, vanilla LMO

Doikov and Nesterov (2022) cvx, fully-comp yes O
(
ε−1

)(1) O
(
ε−1

)(1) modif. LMO

(this work) Alg. 2 cvx, fully-comp. yes O
(
ε−1/2

)
(1) O

(
ε−1

)(1) modif. LMO

De Oliveira (2023) non-cvx, upper-C1,α no O
(
ε−2

) (2) O
(
ε−2

) (2) vanilla LMO

Kreimeier et al. (2023) non-cvx, abs-smooth no O
(
ε−2

) (3) O
(
ε−2

) (3) modif. LMO

Drusvyatskiy and Paquette (2019) non-cvx, comp yes O
(
ε−2

) (4) O
(
ε−2

) (4) prox. steps

(this work) Alg. 1 non-cvx, fully-comp yes Õ
(
ε−2

) (5) Õ
(
ε−2

) (5) modif. LMO

Table 1: Summary of convergence complexities for solving non-smooth problems. Note (1) marks complexi-
ties reaching an ε functional residual. Note (2) marks complexities for reaching Clarke-stationary points. Note
(3) marks complexities for obtaining d−stationary points. Note (4) marks the complexity for reaching a small
norm of the gradient mapping. Finally, note (5) marks the complexity of minimizing the positive quantity (14).

Finally, two concurrent works study FW methods for some restricted classes of non-smooth and
non-convex problems. De Oliveira (2023) shows that vanilla FW with line-search can be applied to
the special class of upper−C1,α functions, when one replaces gradients with an arbitrary element
in the Clarke subdifferential. A rate of O

(
ε−2

)
is shown for reaching a Clarke-stationary point in

a setting comparable to ours. A similar rate is shown by Kreimeier et al. (2023) for reaching a d-
stationary point of abs-smooth functions through the use of a modified LMO. Both these algorithms
are structure-agnostic. A summary of method complexities for solving non-smooth problems is
provided in Table 1.

Notation. We denote by [n] the set {1, . . . n} and by ∥ · ∥ the standard Euclidean norm, unless ex-

plicitly stated otherwise. We define the diameter of a bounded set X as DX
def
= maxz,y∈X {∥ z− y ∥}.

We use the notation ∆n
def
= {λ ∈ Rn

+ : ⟨λ, e⟩ = 1} to denote the standard n-dimensional simplex,
where e is the vector of all ones. For a differentiable, scalar-valued function f : Rd → R we use
∇f(x) ∈ Rd to denote its gradient vector and ∇2f(x) ∈ Rd×d to denote its Hessian matrix. For
a differentiable vector-valued function f : Rd → Rn defined as f = (f1, f2, . . . fn) we denote by
∇f(x) its Jacobian matrix defined as ∇f(x) =

∑n
i=1 ei∇fi(x)⊤ ∈ Rn×d,where ei are the standard

basis vectors in Rn. We represent the second directional derivatives applied to the same direction
h ∈ Rd as ∇2f(x)[h]2

def
= ⟨∇2f(x)h,h⟩ ∈ R, and ∇2f(x)[h]2

def
=

∑n
i=1 ei∇2fi(x)[h]

2 ∈ Rn.

2. Problem Setup, Assumptions and Examples

The problems addressed by this work are represented by the following structured objective

φ⋆ = min
x∈X

[
φ(x)

def
= F (f(x),x)

]
, X ⊂ Rd, (4)

where X is a convex and compact set and the inner mapping f : X → Rn is differentiable and
defined as f(x) = (f1(x), . . . , fn(x)) ∈ Rn, where each fi : X → R is differentiable. We assume
access to a first-order oracle ∇f , which is the main source of computational burden. The outer
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component F : Rn × X → R, on the other hand, is directly accessible to the algorithm designer
and is simple (see assumptions). However, F is possibly non-differentiable.

In this work, we propose two algorithmic solutions addressing problem (4), which we call a
fully composite problem. Our methods importantly assume that subproblems of the form

Argmin
x∈X

F
(
Ax+ b,x

)
+ ⟨u,x⟩ (5)

are efficiently solvable, where A ∈ Rn×d and b ∈ Rn,u ∈ Rd. Oracles of type (5) are sequen-
tially called during the optimization procedure and take as arguments linearizations of the difficult
nonlinear components of (4). Naturally, solving (5) cheaply is possible only when F is simple and
X has an amenable structure.

In particular, template (4) encompasses to some standard problem formulations. For example,
the classical Frank-Wolfe setting is recovered when F (u,x) ≡ u(1), in which case problem (4)
becomes minx∈X f1(x) and subproblem (5) reduces to a simple LMO: argminx∈X ⟨u,x⟩. The
setting of proximal-gradient methods is similarly covered, by letting F (u,x) ≡ u(1) + ψ(x) for
a given convex function ψ (e.g., a regularizer). Then, problem (4) reduces to additive composite
optimization minx∈X

{
f1(x)+ψ(x)

}
, and subproblem (5) becomes argminx∈X

{
⟨u,x⟩+ψ(x)

}
.

We now formally state the assumptions on the fully composite problem (4), along with com-
mentary and examples.

Assumption 1 The outer function F : Rn×X → R is jointly convex in its arguments. Additionally,
F (u,x) is subhomogeneous in u:

F (γu,x) ≤ γF (u,x), ∀u ∈ Rn, x ∈ X , γ ≥ 1. (6)

Assumption 2a The inner mapping f : X → Rn is differentiable and the following affine-invariant
quantity is bounded:

S = Sf ,F,X
def
= sup

x,y∈X , γ∈(0,1]
yγ=x+γ(y−x)

F
(

2
γ2

[
f(yγ)− f(x)−∇f(x)(yγ − x)

]
,yγ

)
< +∞.

(7)

Assumption 2b Each component fi(·) has a Lipschitz continuous gradient on X with constant Li:

∥∇fi(x)−∇fi(y) ∥ ≤ Li ∥x− y ∥ ∀x,y ∈ X , ∀i ∈ [n].

We denote the vector of Lipschitz constants by L = (L1, . . . , Ln) ∈ Rn.

Assumption 3 Each component fi : X → R is convex. Moreover, F (·,x) is monotone ∀x ∈ X .
Thus, for any two vectors u,v ∈ Rn such that u ≤ v (component-wise), it holds that

F (u,x) ≤ F (v,x). (8)

A few comments are in order. Assumption 1, which is also required by Doikov and Nesterov
(2022), represents the formal manner in which we ask that F be simple – through convexity and
bounded growth in u. This assumption ensures convexity of subproblem (5), irrespective of the
nature of f .
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Assumption 2a is a generalization of the standard bounded curvature premise typical for Frank-
Wolfe settings (Jaggi, 2013). Requirement (7) is mild, as it only asks that the curvature of f remains
bounded under F over X . Importantly, the quantity S is affine-invariant (remains unchanged un-
der affine reparametrizations of X ), which enables us to obtain convergence rates with the same
property. Further discussion on the importance of affine-invariant analysis for FW algorithms is
provided by Jaggi (2013). For mappings f that are twice differentiable, we can bound the quantity
S from Assumption 2a using Taylor’s formula and the second derivatives, as follows

S ≤ sup
x,y∈X , γ∈[0,1]
yγ=x+γ(y−x)

F (∇2f(yγ)[y − x]2,x).

This quantity is reminiscent of the quadratic upper-bound used to analyze smooth optimization
methods. In particular, for monotone non-decreasing F , a compact X and Lipschitz continuous
∇fi with respect to a fixed norm ∥ · ∥, the assumption is satisfied with

S ≤ F (LD2
X )

def
= sup

x∈X
F (LD2

X ,x).

Assumption 2b is standard and considered separately from Assumption 2a to allow for different
levels of generality in our results. The restriction to X makes this a locally-Lipschitz gradient
assumption on fi.

Finally, Assumption 3, which is also made by Doikov and Nesterov (2022), is required whenever
we need to ensure the overall convexity of φ(x). The monotonicity of F is necessary in addition to
convexity of each fi, since the composition of convex functions is not necessarily convex (Boyd and
Vandenberghe, 2004). We rely on this assumption for deriving asymptotically faster convergence
rates in the convex setting (Section 4).

To conclude this section, we provide the main application examples that fall under our fully
composite template and which satisfy to our assumptions. Further examples can be found in Ap-
pendix C.

Example 1 Let F (u,x) ≡ max
1≤i≤n

u(i). Function F satisfies Assumptions 1 and 3 and problem (4)

becomes
min
x∈X

max
1≤i≤n

fi(x), (9)

while oracle (5) becomes

min
x∈X

max
1≤i≤n

⟨ai,x⟩+ bi ⇔ min
x∈X ,t∈R

{
t : ⟨ai,x⟩+ bi ≤ t, 1 ≤ i ≤ n

}
. (10)

Max-type minimization problems of this kind result from scalarization approaches in multi-objective
optimization, and their solutions were shown to be (weakly) Pareto optimal (Chapter 3.1 in Miet-
tinen, 1999). As such, problem (9) is relevant to a wide variety of applications requiring optimal
trade-offs amongst several objective functions, and appears in areas such as machine learning,
science and engineering (see the introductory sections of, e.g., Daulton et al., 2022; Zhang and
Golovin, 2020). Problem (9) also covers some instances of constrained ℓ∞ regression.

When X is a polyhedron, subproblem (10) can be solved via Linear Programming, while for
general X one can resort to Interior-Point Methods (Nesterov and Nemirovski, 1994). Another
option for solving (10) is to note that under strong duality (Rockafellar, 1970) we have

min
x∈X

max
1≤i≤n

⟨ai,x⟩+ bi = min
x∈X

max
λ∈∆n

n∑
i=1

λ(i)
[
⟨ai,x⟩+ bi

]
= max

λ∈∆n

g(λ), (11)
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where g(λ) def
= min

x∈X

∑n
i=1 λ

(i)
[
⟨ai,x⟩ + bi

]
. The maximization of g in (11) can be done very

efficiently for small values of n (with, e.g., the Ellipsoid Method or the Mirror Descent algorithm),
since evaluating g(λ) and ∂g(λ) reduces to a vanilla LMO call over X . An interesting case is
n = 2, for which (11) becomes a univariate maximization problem and one may use binary search
to solve it at the expense of a logarithmic number of LMOs.

Example 2 Let F (u,x) ≡ ∥u∥ for an arbitrary fixed norm ∥·∥. Function F satisfies Assumption 1
and problem (4) can be interpreted as solving a system of non-linear equations over X

min
x∈X

∥f(x)∥, (12)

while oracle (5) amounts to solving the (constrained) linear system min
x∈X

∥Ax + b∥. Problems of

this kind can be encountered in applications such as robust phase retrieval (Duchi and Ruan, 2019)
with phase constraints.

The iterations of Algorithm 1 can be interpreted as a variant of the Gauss-Newton method
(Burke and Ferris, 1995; Nesterov, 2007; Tran-Dinh et al., 2020), solving the (constrained) linear
systems:

xk+1 ∈ Argmin
x∈X

∥f(yk) +∇f(yk)(x− yk)∥, and yk+1 = (1− γk)yk + γkxk+1. (13)

In the particular case of solving systems of non-linear equations over compact convex sets, our
algorithms can be seen as modified Gauss-Newton methods with global convergence guarantees.

3. The Basic Method

We present the first new method for solving problem (4) in Algorithm 1. The central idea is to lin-
earize the differentiable components of the objective and then to minimize this new model over the
constraint X , via calls to an oracle of type (5). The next iterate is defined as a convex combination
with coefficient (or stepsize) γ between the computed minimizer and the preceding iterate.

Algorithm 1 Basic Method
Input: y0 ∈ X
for k = 0, 1, . . . do

Compute
xk+1 ∈ Argmin

x∈X
F
(
f(yk) +∇f(yk)(x− yk), x

)
Choose γk ∈ (0, 1] by a predefined rule or with line search
Set yk+1 = (1− γk)yk + γkxk+1

end for

A similar method for tackling problems of type (4) in the convex setting was proposed by Doikov
and Nesterov (2022). Different from theirs, our method decouples the parameter γk from the min-
imization subproblem. This change is crucial since it allows us to choose the parameter γk after
minimizing the model, thus enabling us to use efficient line search rules. Moreover, we provide
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Algorithm 1 with a more advanced affine-invariant analysis and establish its convergence in the
non-convex setup.

We also mention that for solving problems of type (9), oracle (5) reduces to the minimization
of a piecewise linear function over X . Therefore, it has the same complexity as the modified LMOs
of Kreimeier et al. (2023) and, moreover, subproblem (5) is convex irrespective of the nature of f .

Accuracy Certificates. The standard progress metric of FW algorithms, which Algorithm 1 gen-
eralizes, is the ‘Frank-Wolfe gap’ or Hearn gap (Hearn, 1982). For smooth objectives, it is defined
as ∆k = maxy∈X ⟨∇φ(yk),yk−y⟩, for each iterate yk. This quantity is computed cost-free during
the algorithm’s iterations and has the desirable property of upper-bounding the suboptimality of the
current iterate: ∆k ≥ φ(yk)−φ⋆. Notably, its semantics straightforwardly extend to the non-convex
setting (Lacoste-Julien, 2016). Additionally, convergence guarantees on the gap are desirable due
to its affine invariance, which aligns with the affine invariance of classical FW algorithm.

Our setting does not permit a direct generalization of the FW gap with all of the above properties.
Rather, we introduce the following accuracy certificate, which is readily available in each iteration:

∆k
def
= φ(yk)− F

(
f(yk) +∇f(yk)(xk+1 − yk),xk+1

)
. (14)

For minimization of a smooth (not necessarily convex) function, quantity (14) indeed reduces to the
standard FW gap. Moreover, for convex φ(x) (Assumption 3) we can conclude that

∆k ≥ max
x∈X

[
φ(yk)− F

(
f(yk) +∇f(yk)(x− yk),x

)]
≥ max

x∈X

[
φ(yk)− F (f(x),x)

]
= φ(yk)− φ⋆.

(15)

Hence, for a tolerance ε > 0, the criterion ∆k ≤ ε can be used as the stopping condition for our
method in convex scenarios. Moreover, the value of ∆k can be used for computing the parameter
γk through line search.

Convergence on Convex Problems. In the following, we prove the global convergence of Algo-
rithm 1 in case when φ(x) is convex.

Theorem 3.1 Let Assumptions 1, 2a, and 3 be satisfied. Let γk := min{1, ∆k
S } or γk := 2

2+k .
Then, for k ≥ 1 it holds that

φ(yk)− φ⋆ ≤ 2S
1 + k

and min
1≤i≤k

∆i ≤ 6S
k
. (16)

Our method recovers the rate of classical FW methods for smooth problems, while being ap-
plicable to the wider class of fully composite problems (4). Thus, our O(1/k) rate improves upon
the O(1/

√
k) of black-box non-smooth optimization. Clearly, the improvement is achievable by

leveraging the structure of the objective within the algorithm.

Convergence on Non-convex Problems. In this case, ∆k has different semantics and no longer
provides an accuracy certificate for the functional residual. This quantity is nevertheless important,
since it enables us to quantify the algorithm’s progress in the non-convex setting, while maintaining
an affine-invariant analysis. The following theorem states the convergence guarantee on ∆k for
non-convex problems.

8
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Theorem 3.2 Let Assumptions 1 and 2a be satisfied. Let γk := min{1, ∆k
S } or γk := 1√

1+k
. Then,

for all k ≥ 1 it holds that

min
0≤i≤k

∆i ≤ φ(y0)−φ⋆+0.5S(1+ln(k+1))√
k+1

. (17)

Theorem 3.2 recovers a similar rate to the classical FW methods (Lacoste-Julien, 2016). The line
search rule for parameter γk makes our method universal, thereby allowing us to attain practically
faster rates automatically when the iterates lie within a convex region of the objective.

As previously mentioned, the progress measure (14) does not upper-bound functional subopti-
mality in the general non-convex setting. However, in some cases, we may still be able to establish
convergence of meaningful quantities for non-convex fully composite problems with the lineariza-
tion method. Namely, let us consider problem (12) in Example 2 for the Euclidean norm, i.e.,
F (u,x) = ∥u ∥, and the following simple iterations:

yk+1 ∈ Argmin
y∈yk+γk(X−yk)

∥f(yk) +∇f(yk)(y − yk)∥. (18)

Note that in (18), differently from (13), the value of γk is selected prior to the oracle call. Denoting
the squared objective as Φ(x) def

= 1
2

[
φ(x)

]2
= 1

2∥f(x)∥2 and following our analysis, we can state
the convergence of process (18) in terms of the classical FW gap with respect to Φ. The proof is
deferred to Appendix A.5.

Proposition 3.1 Let γk := 1√
1+k

. Then, for the iterations (18), under Assumption 2b and for all
k ≥ 1, it holds that

min
0≤i≤k

max
y∈X

⟨∇Φ(yi),yi − y⟩ ≤ O
( ln(k)√

k

)
.

We further show in Appendix B that ∆k can be related to the classical FW gap, when our
iterates lie in a smooth region of F . Whether we can provide a meaningful interpretation of ∆k in
the general non-convex case, however, remains an interesting open question.

4. The Accelerated Method

We now move away from the affine-invariant formulation of Algorithm 1 to a setting in which, by
considering regularized minimization subproblems along with convexity and Lipschitz continuity
of gradients, we can accelerate the Basic Method. We achieve acceleration by resorting to the
well-known three-point scheme of Nesterov (1983), in which the proximal subproblem is solved
inexactly via calls to oracles of type (5). This approach was first analyzed in the context of FW
methods by Lan and Zhou (2016).

We propose Algorithm 2 which consists of a two-level scheme: an outer-loop computing the
values of three iterates y, x and z in X , and a subsolver computing inexact solutions to the proximal
subproblem

Argmin
u∈X

{
P (u)

def
= F (f(z) +∇f(z)(u− z),u) + β

2 ∥u− x∥22, β > 0
}
. (19)

Note that the minimization in (19) does not conform to our oracle model (5) due to the quadratic
regularizer. However, we can approximate its solution by iteratively solving subproblems in which
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we linearize the squared norm to match the template of (5). This procedure, denoted as InexactProx
in Algorithm 2, returns a point u+ satisfying the optimality condition η-inexactly for some η > 0:

F (f(z) +∇f(z)(u+ − z),u+) + β⟨u+ − x,u+⟩

≤ F (f(z) +∇f(z)(u− z),u) + β⟨u+ − x,u⟩+ η, ∀u ∈ X . (20)

Note that condition (20) implies P (u+) ≤ P (u) + η, ∀u ∈ X . Formally, the main convergence

Algorithm 2 Accelerated Method
Input: y0 ∈ X , set x0 = y0

for k = 0, 1, . . . do
Choose γk ∈ (0, 1]

Set zk+1 = (1− γk)yk + γkxk

Compute xk+1 = InexactProx(xk, zk+1, βk, ηk) for some βk ≥ 0 and ηk ≥ 0

Set yk+1 = (1− γk)yk + γkxk+1

end for

result characterizing Algorithm 2 is the following.

Theorem 4.1 Let Assumptions 1, 2b, and 3 be satisfied. We choose γk := 3
k+3 , βk := cF (L)γk

and ηk := δ
3(k+1)(k+2) where δ > 0 and c ≥ 0 are chosen constants, and F (L) := supx∈X F (L,x).

Then, for all k ≥ 1 it holds that

φ(yk)− φ⋆ ≤ δ+8cF (L)D2
X

(k+2)(k+3) +
2max{0,1−c}F (L)D2

X
k+3 .

The proof of Theorem 4.1 comes from a natural sequence of steps involving the properties of
the operators and the approximate optimality of xk+1. The crucial step in attaining the improved
convergence is the choice of parameters γk, βk and ηk. Notably, the decay speed required of ηk is
quadratic, meaning that the subproblems are solved with fast-increasing accuracy and at the cost of
additional time spent in the subsolver. The constant δ allows us to fine-tune the accuracy required
for the first several iterations of the algorithm, where we can demand a lower accuracy. In practice,
we can always choose δ = 1 as a universal rule, and the optimal choice is δ = F (L)D2

X when these
parameters are known. The factor cF (L) in the definition of βk can be interpreted as the quality
of the approximation of the Lipschitz constant for our problem. Namely, it is exactly computed for
c = 1, and over or underestimated for c > 1 and c ∈ (0, 1) respectively.

We describe each of the bounding terms independently: the first is highly reminiscent of the
usual bounds accompanying FW-type algorithms in terms of constants, albeit now with quadratic
decay speed. The second term indicates the behavior of the algorithm as a function of c: overes-
timation of F (L) ensures quadratic rates of convergence, since the second term becomes negative.
Conversely, underestimation of F (L) brings us back into the familiar FW convergence regime of
O (1/k) as the second term becomes positive. The extreme case c = 0 (and hence βk = 0) essen-
tially reduces Algorithm 2 to Algorithm 1, since the projection subproblem reduces to problem (5)
which we assume to be easily solvable. We therefore have robustness in terms of choosing the pa-
rameter c and the exact knowledge of F (L) is not needed, even though it may come at the cost of a

10
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slower convergence. In contrast, classical Fast Gradient Methods are usually very sensitive to such
parameter choices (Devolder, 2013).

Theorem 4.1 provides an accelerated rate on the iterates yk – an analogous result to that of Lan
and Zhou (2016) albeit under a different oracle. This convergence rate is conditioned on the sub-
solver returning an ηk-inexact solution to the projection subproblem and therefore any subsolver
satisfying the condition can achieve this rate. As with any optimization algorithm, convergence
guarantees may also be stated in terms of the oracle complexity required to reach ε accuracy. For
Algorithm 2 all the oracle calls are deferred to the subsolver InexactProx, which we describe and
analyze in the next section.

5. Solving the Proximal Subproblem

We now provide an instance of the InexactProx subsolver which fully determines the oracle com-
plexity of the Accelerated Method (Algorithm 2). It relies on a specific adaptation of Algorithm 1
to the structure of (19). The quadratic regularizer is linearized and oracles of type (5) are called
once per inner iteration, while the Jacobian ∇f(zk) is computed once per subsolver call. The main
challenge here is to find a readily available quantity defining the exit condition of the subsolver,
which we denote by ∆t.

Algorithm 3 InexactProx(x, z, β, η)
Initialization: u0 = x.

for t = 0, 1, . . . do
Compute vt+1 ∈ Argmin

v∈X

{
F
(
f(z) +∇f(z)(v − z), v

)
+ β⟨ut − x,v⟩

}
Compute ∆t = F

(
f(z) +∇f(z)(ut − z), ut

)
− F

(
f(z) +∇f(z)(vt+1 − z), vt+1

)
+ β⟨ut − x,ut − vt+1⟩

if ∆t ≤ η then return ut

Set αt = min
{
1, ∆t

β∥vt+1−ut∥22

}
and ut+1 = αtvt+1 + (1− αt)ut

end for

The parameters of Algorithm 3 are fully specified, and the stopping condition depends on ∆t ≥
P (ut)−P ⋆, which is a meaningful progress measure. The algorithm selects its stepsize via closed-
form line search to improve practical performance. When F (u) ≡ u(1), this procedure recovers the
classical FW algorithm with line search applied to problem (19).

We prove two results in relation to Algorithm 3: its convergence rate and the total oracle com-
plexity of Algorithm 2 when using Algorithm 3 as the subsolver. The rate and analysis are similar
to the ones for the Basic Method, utilizing additionally the form of the proximal subproblem.

Theorem 5.1 Let Assumptions 1, 2b, and 3 be satisfied. Then, for all t ≥ 1 it holds that

P (ut)− P ⋆ ≤ 2βD2
X

t+1 and min
1≤i≤t

∆t ≤ 6βD2
X

t .

Consequently, Algorithm 3 returns an η-approximate solution according to condition (20) after at
most O

(
βD2

X
η

)
iterations.

11
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Figure 1: Convergence of the Basic and Accelerated methods against the Projected Subgradient baseline for
problem (21), along with relevant theoretical rates.

We note that oracle (5) is called once per inner iteration and the Jacobian ∇f(zk) is computed
once per subsolver call. In particular, when using Algorithm 3 as a subsolver, our Accelerated
Method achieves the optimal number of O

(
ε−1/2

)
Jacobian computations typical of smooth and

convex optimization, while maintaining a O
(
ε−1

)
complexity for the number of calls to oracle (5).

The results are stated in the following corollary.

Corollary 5.1 Consider the optimal choice of parameters for Algorithm 2, that is c := 1 and

δ := F (L)D2
X . Then, solving problem (4) with ε accuracy φ(yk)−φ⋆ ≤ ε, requires O

(√F (L)D2
X

ε

)
computations of ∇f . In addition, the total number of calls to oracle (5) is O

(F (L)D2
X

ε

)
.

Finally, we note that for smaller values of parameter c ∈ [0, 1] in Algorithm 2 (underestimating
the Lipschitz constant), the complexity of InexactProx procedure improves. Thus, for c = 0 we
have β = 0 (no regularization) and Algorithm 3 finishes after just one step.

6. Experiments

The experiments are implemented in Python 3.9 and run on a MacBook Pro M1 with 16 GB
RAM. For both experiments we use the Projected Subgradient Method as a baseline (Shor et al.,
1985), with a stepsize of p√

k
where p is tuned for each experiment. The CVXPY library (Diamond

and Boyd, 2016) is used to solve subproblems of type (5). The random seed for our experiments is
always set to 666013, and we set c = 1 since we can analytically compute the Lipschitz constants
or their upper bounds.

6.1. Minimization Over the Simplex

We consider the following optimization problem

min
x∈X

{
max
i=1,n

x⊤Aix− b⊤
i x

}
, for X = ∆d,⊆ Rd, (21)

where Ai ∈ Rd×d are random PSD matrices and b ∈ Rd. The problem conforms to Example 1,
and we use d = 500 and n = 10. We generate Ai = QiDQ⊤

i , where D is a diagonal matrix of
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Figure 2: Convergence of the Basic and Accelerated methods against the Projected Subgradient baseline for
problem (22), along with relevant theoretical rates.

eigenvalues decaying linearly from 1 to 10−6, and Qi is a randomly generated orthogonal matrix
using the scipy.stats.ortho group method (Mezzadri, 2006). The vectors bi, which de-
termine the position of the quadratics in space, are set as follows: bi = ei · 10, b9 = 0 (the origin),
b10 = 1 · 10 (the all ones vector multiplied by 10). We set δ = 0.2 in the Accelerated Method (see
Theorem 4.1) and settle for p = 1.42 following tuning of the Subgradient Method. Finally, we set
x0 = e3 ∈ ∆d for all methods.

The convergence results in terms of FO oracles and oracles of type (5) are shown in Fig-
ure 1(a) and 1(b), respectively. The figures highlight the improvement in terms of the number of FO
calls, while showing comparable performance in terms of subproblem oracle calls, as predicted by
our theory.

6.2. Minimization Over the Nuclear Norm Ball.

We consider the following optimization problem

min
X∈X

max
i=1,n

∑
(k,l)∈Ωi

(
Xk,l −A

(i)
k,l

)2

 , for X := {X ∈ Rd×m, ∥X ∥∗ ≤ r} (22)

Formulation (22) models a matrix completion scenario where we wish to recover an X⋆ that min-
imizes the largest error within a given set of matrices A(i). The matrices A(i) are only partially
revealed through a set of corresponding indices Ωi. This problem conforms to Example 1 and we
use d = 30, m = 10, r = 7, where r is the rank of matrices A(i). The data is generated in identical
fashion as in Section 5.2 of (Lan and Zhou, 2016) on Matrix Completion. We set δ = 100 in the
Accelerated Method (see Theorem 4.1) and settle for p = 0.2 following tuning of the Subgradient
Method. Finally, we set x0 = 0d×m ∈ X for all methods.

The convergence results in terms of FO oracles and oracles of type (5) are shown in Fig-
ure 2(a) and 2(b), respectively. The figures highlight the improvement in terms of the number of FO
calls, while showing comparable performance in terms of subproblem oracle calls, as predicted by
our theory.

13
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7. Conclusion

Our work illustrates how improved convergence rates may be attained by assuming precise struc-
ture within a class of objectives (e.g., non-differentiable ones). Moreover, it shows how a simple
principle such as linearizing the differentiable components of a function composition can be used
to create more benign subproblems that are efficiently solved. Interesting future work may address
relaxing the assumptions on F , extending this framework to stochastic settings, and meaningfully
interpreting the quantity ∆k in the non-convex setting.
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Claude Lemaréchal. Cauchy and the gradient method. Doc Math Extra, 251(254):10, 2012.

Francesco Mezzadri. How to generate random matrices from the classical compact groups. arXiv
preprint math-ph/0609050, 2006.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 1999.

Arkadi Nemirovski. Information-based complexity of convex programming. Lecture notes, 834,
1995.

Arkadi Nemirovski and David Yudin. Problem complexity and method efficiency in optimization.
1983.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
O(1/kˆ2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

Yurii Nesterov. Effective methods in nonlinear programming. Moscow, Radio i Svyaz, 1989.

Yurii Nesterov. Modified Gauss–Newton scheme with worst case guarantees for global perfor-
mance. Optimisation Methods and Software, 22(3):469–483, 2007.

Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125–161, 2013.

Yurii Nesterov. Complexity bounds for primal-dual methods minimizing the model of objective
function. Mathematical Programming, 171(1):311–330, 2018a.

16



LINEARIZATION ALGORITHMS FOR FULLY COMPOSITE OPTIMIZATION

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018b.

Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

Teemu Pennanen. Graph-convex mappings and k-convex functions. Journal of Convex Analysis, 6
(2):235–266, 1999.

Chao Qu, Yan Li, and Huan Xu. Non-convex conditional gradient sliding. In international confer-
ence on machine learning, pages 4208–4217. PMLR, 2018.

Sathya N Ravi, Maxwell D Collins, and Vikas Singh. A deterministic nonsmooth frank wolfe
algorithm with coreset guarantees. Informs Journal on Optimization, 1(2):120–142, 2019.

R Tyrrell Rockafellar. Convex analysis, volume 36. Princeton university press, 1970.

NZ Shor, Krzysztof C Kiwiel, and Andrzej Ruszcayński. Minimization methods for non-
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Appendix A. Proofs

Assumption 2a implies global progress bounds on our fully composite objective with an inner lin-
earization of f , as stated in the following Lemma A.1. This lemma provides a basis for all our
convergence results.

Lemma A.1 Let x,y ∈ X and γ ∈ [0, 1]. Denote yγ = x+ γ(y − x). Then, it holds

φ(yγ) ≤ F
(
f(x) +∇f(x)(yγ − x), yγ

)
+ γ2

2 S. (23)

Proof Note that the subhomogenity assumption (6) is equivalent to the following useful inequality
for the outer component of the objective see (Theorem 7.1 in Doikov and Nesterov (2022)):

F (u+ tv,x) ≤ F (u,x) + tF (v,x), ∀u,v ∈ Rn, x ∈ X, t ≥ 0. (24)

Then, we have

φ(yγ) ≡ F (f(yγ), yγ)

= F
(
f(x) +∇f(x)(yγ − x) + γ2

2 · 2
γ2

[
f(yγ)− f(x)−∇f(x)(yγ − x)

]
, yγ

)
(24)
≤ F

(
f(x) +∇f(x)(yγ − x), yγ

)
+ γ2

2 F
(

2
γ2

[
f(yγ)− f(x)−∇f(x)(yγ − x)

]
, yγ

)
≤ F

(
f(x) +∇f(x)(yγ − x), yγ

)
+ γ2

2 S,

which is the desired bound.

A.1. Proof of Theorem 3.1

Theorem 3.1 Let Assumptions 1, 2a, and 3 be satisfied. Let γk := min{1, ∆k
S } or γk := 2

2+k .
Then, for k ≥ 1 it holds that

φ(yk)− φ⋆ ≤ 2S
1 + k

and min
1≤i≤k

∆i ≤ 6S
k
. (16)

Proof Indeed, for one iteration of the method, we have

φ(yk+1)
(23)
≤ F

(
f(yk) +∇f(yk)(yk+1 − yk), yk+1

)
+

γ2
k
2 S

= F
(
(1− γk)f(yk) + γk(f(yk) +∇f(yk)(xk+1 − yk)),

(1− γk)yk + γkxk+1

)
+

γ2
k
2 S

(∗)
≤ φ(yk) + γk

[
F
(
f(yk) +∇f(yk)(xk+1 − yk),xk+1

)
− φ(yk)

]
+

γ2
k
2 S

≡ φ(yk)− γk∆k +
γ2
k
2 S,
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where we used in (∗) that F (·, ·) is jointly convex. Hence, we obtain the following inequality for
the progress of one step, for k ≥ 0:

φ(yk)− φ(yk+1) ≥ γk∆k − γ2
k
2 S. (25)

Now, let us choose use an auxiliary sequence Ak := k · (k + 1) and ak+1 := Ak+1 − Ak =
2(k + 1). Then,

ak+1

Ak+1
= 2

2+k ,

which is one of the possible choices for γk. Note that for the other choice, we set γk = min
{
1, ∆k

S
}

,
which maximizes the right hand side of (25) with respect to γk ∈ [0, 1]. Hence, in both cases we
have that

φ(yk)− φ(yk+1) ≥ ak+1

Ak+1
∆k −

a2k+1

2A2
k+1

S, (26)

or, rearranging the terms,

Ak+1

[
φ(yk+1)− φ⋆

] (26)
≤ Ak+1

[
φ(yk)− φ⋆]− ak+1∆k +

a2k+1

2Ak+1
S

(15)
≤ Ak

[
φ(yk)− φ⋆] +

a2k+1

2Ak+1
S.

Telescoping this bound for the first k ≥ 1 iterations, we get

φ(yk)− φ⋆ ≤ S
2Ak

·
k∑

i=1

a2i
Ai

= 2S
k(k+1) ·

k∑
i=1

i
i+1 ≤ 2S

k+1 . (27)

It remains to prove the convergence in terms of the accuracy measure ∆k. For that, we telescope
the bound (26), which is

ak+1∆k ≤ ak+1φ(yk) +Akφ(yk)−Ak+1φ(yk+1) +
a2k+1

Ak+1

S
2 , (28)

for the k ≥ 1 iterations, and use the convergence for the functional residual (27):

k∑
i=1

ai+1 · min
1≤i≤k

∆i ≤
k∑

i=1
ai+1∆i

(28)
≤ a1

[
φ(y1)− φ⋆

]
+

k∑
i=1

ai+1

[
φ(yi)− φ⋆

]
+ S

2

k∑
i=1

a2i+1

Ai+1

(27)
≤ 2S ·

(
1 +

k∑
i=1

ai+1

i+1 +
k∑

i=1

i
i+1

)
≤ 2S · (1 + 3k).

To finish the proof, we need to divide both sides by
k∑

i=1
ai+1 = Ak+1 − a1 = k(3 + k).
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A.2. Proof of Theorem 3.2

Theorem 3.2 Let Assumptions 1 and 2a be satisfied. Let γk := min{1, ∆k
S } or γk := 1√

1+k
. Then,

for all k ≥ 1 it holds that

min
0≤i≤k

∆i ≤ φ(y0)−φ⋆+0.5S(1+ln(k+1))√
k+1

. (17)

Proof As in the proof of the previous theorem, our main inequality (25) on the progress of one step
is:

φ(yk)− φ(yk+1) ≥ γk∆k − γ2
k
2 S,

where we can substitute γk = 1√
k+1

for the both strategies of choosing this parameter.

Summing up this bound for the first k + 1 iterations, we obtain

k∑
i=0

γi∆i ≤ φ(y0)− φ(yk+1) +
S
2

k∑
i=0

γ2i . (29)

Using the bound φ(yk+1) ≥ φ⋆ and our value of γi, we get

min
0≤i≤k

∆i ·
√
k + 1 ≤

k∑
i=0

∆i√
1+i

(29)
≤ φ(y0)− φ⋆ + S

2

k∑
i=0

1
1+i

≤ φ(y0)− φ⋆ + S
2 (1 + ln(k + 1)),

which is (17).

A.3. Proof of Theorem 4.1

Theorem 4.1 Let Assumptions 1, 2b, and 3 be satisfied. We choose γk := 3
k+3 , βk := cF (L)γk

and ηk := δ
3(k+1)(k+2) where δ > 0 and c ≥ 0 are chosen constants, and F (L) := supx∈X F (L,x).

Then, for all k ≥ 1 it holds that

φ(yk)− φ⋆ ≤ δ+8cF (L)D2
X

(k+2)(k+3) +
2max{0,1−c}F (L)D2

X
k+3 .

Proof Let us consider one iteration of the method, for some k ≥ 0.
Since all the components of f have the Lipschitz continuous gradients, it hold that

f(yk+1) ≤ f(zk+1) +∇f(zk+1)(yk+1 − zk+1) +
L
2 ∥yk+1 − zk+1∥2,
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where the vector inequality is component-wise. Then, using the properties of F , we have

φ(yk+1) = F (f(yk+1),yk+1)

(8),(24)
≤ F (f(zk+1) +∇f(zk+1)(yk+1 − zk+1),yk+1) +

F (L)
2 ∥yk+1 − zk+1∥2

= F
(
(1− γk)

[
f(zk+1) +∇f(zk+1)(yk − zk+1)

]
+ γk

[
f(zk+1) +∇f(zk+1)(xk+1 − zk+1)

]
,

(1− γk)yk + γkxk+1

)
+

γ2
kF (L)
2 ∥xk+1 − xk∥2

≤ (1− γk)F (f(zk+1) +∇f(zk+1)(yk − zk+1), yk)

+ γkF (f(zk+1) +∇f(zk+1)(xk+1 − zk+1), xk+1) +
γ2
kF (L)
2 ∥xk+1 − xk∥2

≤ (1− γk)φ(yk) + γkF (f(zk+1) +∇f(zk+1)(xk+1 − zk+1), xk+1)

+
γ2
kF (L)
2 ∥xk+1 − xk∥2,

where the second equality comes from the update rule of yk+1, the second inequality comes from
the joint convexity in Assumption 1, the third inequality comes from convexity of the components
of f and monotonicity of F .

Since we are introducing a norm-regularized minimization subproblem for the purpose of accel-
eration, the term γ2

kF (L)
2 ∥xk+1−xk∥2 can be further upper bounded using ηk-approximate guarantee

(20), as follows, for any x ∈ X :

γ2
kF (L)
2 ∥xk+1 − xk∥2 =

(
γ2
kF (L)
2 − βkγk

2

)
∥xk+1 − xk∥2 + βkγk

2 ∥xk+1 − xk∥2

≤ βkγk
2 ∥xk+1 − xk∥22 +

γ2
kF (L)(1−c)

2 ∥xk+1 − xk∥2

= βkγk
2

(
∥x− xk∥22 − ∥x− xk+1∥2 − 2⟨xk − xk+1,xk+1 − x⟩

)
+

γ2
kF (L)(1−c)

2 ∥xk+1 − xk∥2

(20)
≤ βkγk

2

(
∥x− xk∥22 − ∥x− xk+1∥2

)
+

γ2
kF (L)(1−c)

2 ∥xk+1 − xk∥2

+ γkF (f(zk+1) +∇f(zk+1)(x− zk+1),x)

− γkF (f(zk+1) +∇f(zk+1)(xk+1 − zk+1),xk+1) + γkηk,

where we used our choice βk = cF (L)γk.
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Therefore, combining these two bounds together, we obtain

φ(yk+1) ≤ (1− γk)φ(yk) + γkF (f(zk+1) +∇f(zk+1)(x− zk+1),x)

+ βkγk
2

(
∥x− xk∥2 − ∥x− xk+1∥2

)
+

γ2
kF (L)(1−c)

2 ∥xk+1 − xk∥2 + γkηk

≤ (1− γk)φ(yk) + γkφ(x) +
βkγk
2

(
∥x− xk∥2 − ∥x− xk+1∥2

)
+

γ2
kF (L)(1−c)

2 ∥xk+1 − xk∥2 + γkηk,

for all x ∈ X , where we used convexity of f and monotonicity of F .
We now subtract φ(x) from both sides, let x = x⋆ and denote εk := φ(yk)− φ⋆, which gives

εk+1 ≤ (1− γk)εk +
γkβk
2

(
∥xk − x⋆∥2 − ∥xk+1 − x⋆∥2

)
+

γ2
kF (L)(1−c)

2 ∥xk+1 − xk∥2 + γkηk.
(30)

We now move on to choosing the parameters γk, ηk and βk in a way that allows us to accelerate. For
more flexibility, we let γk :=

ak+1

Ak+1
, for some sequences {ak}k≥0 and {Ak}k≥0 that will be defined

later. Then (30) becomes:

Ak+1εk+1 ≤ A0ε0 +
k∑

i=0
ai+1ηi +

1
2

k∑
i=0

ai+1βi

(
∥xi − x⋆ ∥2 − ∥xi+1 − x⋆ ∥2

)
+F (L)(1−c)

2

k∑
i=0

a2i+1

Ai+1
∥xi+1 − xi∥2

≤ A0ε0 +
k∑

i=0
ai+1ηi +

a1β0

2 ∥x0 − x⋆ ∥2 + 1
2

∑k
i=1 (ai+1βi − aiβi−1) ∥xi − x⋆ ∥2

+F (L)(1−c)
2

k∑
i=0

a2i+1

Ai+1
∥xi+1 − xi∥2

and therefore we have

εk+1 ≤ A0ε0
Ak+1

+ 1
Ak+1

k∑
i=0

ai+1ηi +
a1β0

2Ak+1
∥x0 − x⋆ ∥2

+ 1
2Ak+1

k∑
i=1

(ai+1βi − aiβi−1) ∥xi − x⋆ ∥2 + F (L)(1−c)
2Ak+1

k∑
i=0

a2i+1

Ai+1
∥xi+1 − xi∥2.

We wish to choose sequences Ak, ak, βk and ηk such that we obtain a O
(
1/k2

)
rate of

convergence on the functional residual of φ(·). The constraint we require on the sequences is
γkF (L) ≤ βk. The following choices

ηk = δ
ak+1

, for some constant δ > 0,

βk = cF (L)γk, for some constant c > 0

ak+1 = Ak+1 −Ak =
3Ak+1

k+3 , Ak+1 = (k + 1)(k + 2)(k + 3),

22



LINEARIZATION ALGORITHMS FOR FULLY COMPOSITE OPTIMIZATION

give us the desired outcome, since equation (31) becomes:

εk+1 ≤
δ

(k + 2)(k + 3)
+

3cF (L) ∥x0 − x⋆ ∥2
(k + 1)(k + 2)(k + 3)

+
5ckF (L)D2

X
(k + 1)(k + 2)(k + 3)

+
9F (L)(1− c)

2(k + 1)(k + 2)(k + 3)

k∑
i=0

(i+ 1)∥xi+1 − xi∥2

≤ δ

(k + 2)(k + 3)
+

8cF (L)D2
X

(k + 2)(k + 3)
+

2max{0, 1− c}F (L)D2
X

k + 3

since ai+1βi − aiβi−1 =
9cF (L)(i2+5i+4)

i2+5i+6
< 9cF (L) and ∥xi − x⋆ ∥2 ≤ D2

X .

A.4. Proof of Theorem 5.1

Theorem 5.1 Let Assumptions 1, 2b, and 3 be satisfied. Then, for all t ≥ 1 it holds that

P (ut)− P ⋆ ≤ 2βD2
X

t+1 and min
1≤i≤t

∆t ≤ 6βD2
X

t .

Consequently, Algorithm 3 returns an η-approximate solution according to condition (20) after at
most O

(
βD2

X
η

)
iterations.

Proof Let us introduce our subproblem, in a general form, that is

s⋆ = min
u∈X

{
s(u)

def
= r(u) + h(u),

}
(31)

where r(·) is a differentiable convex function, whose gradient is Lipschitz continuous with constant
β > 0, and h(u) is a general proper closed convex function, not necessarily differentiable.

In our case, for computing the inexact proximal step (19), we set

r(u) := β
2 ∥u− x∥2,

h(u) := F (f(z) +∇f(z)(u− z),u),

for a fixed x and z.
Then, in each iteration of Algorithm 3, we compute, for t ≥ 0:

vt+1 ∈ Argmin
u∈X

{
⟨∇r(ut),u⟩+ h(u)

}
. (32)

The optimality condition for this operation is (see, e.g. Theorem 3.1.23 in Nesterov (2018b))

⟨∇r(ut),u− vt+1⟩+ h(u) ≥ h(vt+1), ∀u ∈ X . (33)
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Therefore, employing the Lipschitz continuity of the gradient of r(·), we have

s(ut+1) ≤ r(ut) + ⟨∇r(ut),ut+1 − ut⟩+ β
2 ∥ut+1 − ut∥2 + h(ut+1)

= r(ut) + αt⟨∇r(ut),vt+1 − ut⟩+ βα2
t

2 ∥vt+1 − ut∥2

+ h(αtvt+1 + (1− αt)ut)

≤ s(ut) + αt

(
⟨∇r(ut),vt+1 − ut⟩+ h(vt+1)− h(ut)

)
+

βα2D2
X

2

≡ s(ut)− αt∆t +
βα2

tD2
X

2 ,

(34)

where the last equality comes from the definition of ∆t in Algorithm 3.
Note that αt is defined as the minimizer of βα2

t
2 ∥vt+1 − ut∥2 − αt∆t and hence, for any other

ρt ∈ [0, 1] it will hold that:

s(ut+1) ≤ s(ut)− ρt∆t +
βρ2tD2

X
2

. (35)

At the same time,

∆t
def
= h(ut)− h(vt+1)− ⟨∇r(ut),vt+1 − ut⟩

(32)
≥ h(ut)− h(u)− ⟨∇r(ut),u− ut⟩

≥ s(ut)− s(u), ∀u ∈ X

(36)

where the last line follows from the convexity of r(u). Letting u := u⋆ (solution to (31)) in (36)
and further substituting it into (35) and subtracting s⋆ from both sides, we obtain

[s(ut+1)− s⋆] ≤ (1− ρt) [s(ut)− s⋆] +
βρ2tD2

X
2 . (37)

Now, let us choose ρt :=
at+1

At+1
for sequencesAt := t·(t+1), and at+1 := At+1−At = 2(t+1).

Then, ρt := 2
2+t , t ≥ 0. Using this choice, inequality (37) can be rewritten as

At+1

[
s(ut+1)− s⋆

]
≤ At

[
s(ut)− s⋆

]
+

a2t+1βD2
X

2At+1

Telescoping this inequality for the first iterations, we obtain, for t ≥ 1:

s(ut)− s⋆ ≤ βD2
X

2At
·

t∑
i=1

a2i
Ai

=
βD2

X
2t(t+1) ·

t∑
i=1

4i
i+1 ≤ 2βD2

X
t+1 . (38)

This is the global convergence in terms of the functional residual. It remains to justify the conver-
gence for the accuracy certificates ∆t. Multiplying (35) by At+1, we obtain

at+1∆t ≤ at+1s(ut) +Ats(ut)−At+1s(ut+1) +
a2t+1

At+1

βD2
X

2 . (39)
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Telescoping this bound, we get, for t ≥ 1:

t∑
i=1

ai+1 · min
1≤i≤t

∆i ≤
t∑

i=1
ai+1∆i

(39)
≤ a1

[
s(u1)− s⋆

]
+

t∑
i=1

ai+1

[
s(ui)− s⋆

]
+

βD2
X

2

t∑
i=1

a2i+1

Ai+1

(38)
≤ 2βD2

X ·
(
1 +

t∑
i=1

ai+1

i+1 + 1
4

t∑
i=1

a2i+1

Ai+1

)
≤ 2βD2

X · (1 + 3t).

Dividing both sides by
∑t

i=1 ai+1 = At+1 −A1 = t(3 + t) completes the proof we finally get:

min
1≤i≤t

∆i ≤ 6βD2
X

t
.

A.5. Proof of Proposition 3.1

Proposition 3.1 Let γk := 1√
1+k

. Then, for the iterations (18), under Assumption 2b and for all
k ≥ 1, it holds that

min
0≤i≤k

max
y∈X

⟨∇Φ(yi),yi − y⟩ ≤ O
( ln(k)√

k

)
.

Proof In our case, we have φ(x) ≡ ∥f(x)∥2. Using Lemma A.1, we obtain

φ(yk+1) ≤ ∥f(yk) +∇f(yk)(yk+1 − yk)∥2 + γ2
k
2 S

= ∥f(yk) + γk∇f(yk)(xk+1 − yk)∥2 + γ2
k
2 S,

(40)

where xk+1 ∈ X is the point such that yk+1 = yk+γk(xk+1−yk). Using convexity of the function

g(x)
def
= ∥f(yk) + γk∇f(yk)(x− yk)∥2, we get that

φ(yk) = g(yk) ≥ g(xk+1) + ⟨g′(xk+1),yk − xk+1⟩

= ∥f(yk) + γk∇f(yk)(xk+1 − yk)∥2 + ⟨g′(xk+1),yk − xk+1⟩,

where the subgradient g′(xk+1) = γk∇f(yk)
⊤ fk+1

∥fk+1∥2 with fk+1
def
= f(yk)+γk∇f(yk)(xk+1−yk),

satisfies the stationary condition for the method step:

⟨g′(xk+1),x− xk+1⟩ ≥ 0, ∀x ∈ X . (41)
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A few comments are in order now about the use of the subgradient above. Note that we wish to
impose an assumption on f which can ensure that f(yk) + γk∇f(yk)(x − yk) ̸= 0 ∈ Rn. First,
some preliminaries. Under Assumption 2b on f , it holds that:

∃F ∈ (0,∞) s.t. ∥ f(x) ∥ ≤ F , ∀x ∈ X by continuity of f (42)

∃G ∈ (0,∞) s.t. ∥∇f(x) ∥ ≤ G, ∀x ∈ X by continuous differentiability of f (43)

From here, we can bound the products between Jacobians and iterates as follows:

∥∇f(x)(y − z) ∥ ≤ ∥∇f(x) ∥ ∥y − z ∥ ≤ GDX , ∀x,y, z ∈ X . (44)

Thus, without loss of generality, we can shift f by a constant vector of identical values depending on
GDX such that we ensure, for example, f(yk) + γk∇f(yk)(x− yk) > 0 component-wise. Hence,
combining these observations with (40), we have

φ(yk)− φ(yk+1) ≥ ⟨g′(xk+1),yk − xk+1⟩ − γ2
k
2 S

(41)
≥ max

x∈X
⟨g′(xk+1),yk − x⟩ − γ2

k
2 S.

Then, by lower bounding appropriately using (42) and (43), we get:

φ(yk)− φ(yk+1) ≥ γk
F+GDX

max
y∈X

⟨∇f(yk)
⊤f(yk),yk − y⟩ − γ2k

(
GD2

X
F+GDX

+ S
2

)
= γk

F+GDX
max
y∈X

⟨∇Φ(yk),yk − y⟩ − γ2k

(
GD2

X
F+GDX

+ S
2

)
.

Substituting γk := 1√
1+k

and telescoping this bound would lead to the desired global convergence
(for the details, see the end of the proof of Theorem 3.2).

Appendix B. Interpretation of ∆k in the non-convex setting

While we cannot make any strong claims about the meaning of ∆k in general, we can provide an
additional observation for this quantity when the outer component F is smooth inside a ball included
in X .

Thus, consider a ball of radius ε centered at yk denoted by B(yk, ε) = {x ∈ Rd : ∥x−yk∥ ≤
ε}, and set B = B(yk, ε) ∩ X . Assuming that F (u,x) is differentiable at all points from Rn × B,
and that its gradient is Lipschitz continuous with constant LF , we have for any x ∈ B ⊆ X :

∆k = max
x∈X

[
φ(yk)− F

(
f(yk) +∇f(yk)(x− yk),x

)]
≥ max

x∈B

[
φ(yk)− F (f(yk),yk)− ⟨∂F∂u (f(yk),yk),∇f(yk)(x− yk)⟩

− ⟨∂F∂x (f(yk),yk),x− yk⟩ − LF
2

(
∥∇f(yk)∥2 + 1

)
· ε2

]
= max

x∈B

[
⟨∇φ(yk),yk − x⟩

]
− LF

2

(
∥∇f(yk)∥2 + 1

)
· ε2.
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Hence, for a small enough ball, ∆k is an O
(
ε2
)
-approximation of the original FW gap restricted

to the considered neighborhood. If, in addition, the composite function φ is convex in B and there
is a local optimum x⋆ ∈ B, then ∆k is an O

(
ε2
)
-approximation of functional suboptimality.

Appendix C. Additional Application Examples

Example 3 We define a generalized nonlinear model as,

F (u,x) ≡
n∑

i=1

ϕ(u(i)), (45)

where ϕ : R → R is a fixed convex loss function, and n is the number of data points. Problem (4)
then reduces to training a (non-convex) model, for example a neural network, with respect to the

constraint set X : min
x∈X

m∑
i=1

ϕ(fi(x)).

Solving this problem then involves training a linear model within the basic subroutine (5)

min
x∈X

m∑
i=1

ϕ(⟨ai,x⟩+ bi), which is a convex problem. Amongst the loss functions relevant to Ma-

chine Learning, the following are convex and subhomogeneous thus making F in (45) satisfy As-
sumption 1:

• ℓ1-regression: ϕ(t) = |t|

• Hinge loss (SVM): ϕ(t) = max{0, t}

• Logistic loss: ϕ(t) = log(1 + et)
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