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Abstract
We consider the development of adaptive, instance-dependent algorithms for interactive decision

making (bandits, reinforcement learning, and beyond) that, rather than only performing well in
the worst case, adapt to favorable properties of real-world instances for improved performance.
We aim for instance-optimality, a strong notion of adaptivity which asserts that, on any particular
problem instance, the algorithm under consideration outperforms all consistent algorithms. Instance-
optimality enjoys a rich asymptotic theory originating from the work of Lai and Robbins (1985)
and Graves and Lai (1997), but non-asymptotic guarantees have remained elusive outside of certain
special cases. Even for problems as simple as tabular reinforcement learning, existing algorithms
do not attain instance-optimal performance until the number of rounds of interaction is doubly
exponential in the number of states.

In this paper, we take the first step toward developing a non-asymptotic theory of instance-
optimal decision making with general function approximation. We introduce a new complexity
measure, the Allocation-Estimation Coefficient (AEC), and provide a new algorithm, AE2, which
attains non-asymptotic instance-optimal performance at a rate controlled by the AEC. Our results
recover the best known guarantees for well-studied problems such as finite-armed and linear bandits
and, when specialized to tabular reinforcement learning, attain the first instance-optimal regret
bounds with polynomial dependence on all problem parameters, improving over prior work ex-
ponentially. We complement these results with lower bounds that show that i) existing notions of
statistical complexity are insufficient to derive non-asymptotic guarantees, and ii) under certain
technical conditions, boundedness of the Allocation-Estimation Coefficient is necessary to learn
an instance-optimal allocation of decisions in finite time.

1. Introduction

We consider the development of adaptive, sample-efficient algorithms for interactive decision making,
encompassing bandit problems and reinforcement learning with general function approximation.
For decision making in high-dimensional spaces with a long horizon, existing approaches (Lillicrap
et al., 2015; Mnih et al., 2015; Silver et al., 2016) are sample-hungry, which presents an obstacle for
real-world deployment in settings where data is scarce or high-quality simulators are not available. To
overcome this challenge, algorithms should both i) flexibly incorporate users’ domain knowledge, as
expressed via modeling and function approximation, and ii) explore the environment in a deliberate,
adaptive fashion, taking advantage of favorable structure whenever possible.

Toward achieving these goals, a major area of research aims to develop algorithms with optimal
sample complexity and understand the fundamental limits for such algorithms (Russo and Van Roy,
2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020; Du et al., 2021; Jin et al., 2021; Foster
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et al., 2021), and the foundations are beginning to fall into place. In particular, focusing on minimax
regret (that is, the best regret that can achieved for a worst-case problem instance in a given class
of problems), Foster et al. (2021, 2022b, 2023) provide unified algorithm design principles and
measures of statistical complexity that are both necessary and sufficient for low regret. However,
minimax regret and other notions of worst-case performance are inherently pessimistic, and may
not be sufficient to close the gap between theory and practice. For example, recent work has shown
that algorithms that are optimal in the worst-case can be arbitrarily suboptimal on “easier” instances
(Wagenmaker et al., 2022b). To overcome these challenges and develop algorithms that perform well
on every instance, a promising approach is to develop algorithms that adapt to the difficulty of the
problem instance under consideration.

The performance of such adaptive algorithms can be quantified through instance-dependent
regret bounds, which become smaller (leading to low regret) when the underlying problem instance is
favorable. Algorithms with such guarantees have been studied throughout the literature on bandits and
reinforcement learning; basic examples include adapting to large gaps in value between alternative
actions (Lai and Robbins, 1985) or low noise or variance in bandit problems (Allenberg et al., 2006;
Hazan and Kale, 2011; Foster et al., 2016; Wei and Luo, 2018; Bubeck et al., 2018), and adapting to
the difficulty of reaching certain states in Markov Decision Processes (Zanette and Brunskill, 2019;
Simchowitz and Jamieson, 2019; Dann et al., 2021; Wagenmaker et al., 2022b).

While there are many notions of adaptivity and instance-dependence, they are generally incom-
parable. A stronger notion of adaptivity is instance-optimality, which asserts that the performance of
the algorithm on a problem instance of interest exceeds that of any consistent algorithm (that is, any
algorithm with sublinear regret for all problem instances). Instance-optimality enjoys a rich theory
originating with the work of Lai and Robbins (1985) and Graves and Lai (1997), with a celebrated
line of research developing sharp guarantees for the special case of finite-armed bandits (Burnetas
and Katehakis, 1996; Garivier et al., 2016; Kaufmann et al., 2016; Lattimore, 2018; Garivier et al.,
2019). Beyond the finite-armed bandit setting, however, development has been largely asymptotic in
nature, and existing algorithms either:

1. achieve instance-optimality only as T → ∞ (or, to the extent that they are non-asymptotic,
require T to be exponentially large in problem-dependent parameters) (Graves and Lai, 1997;
Komiyama et al., 2015; Combes et al., 2017; Degenne et al., 2020b; Dong and Ma, 2022), or

2. achieve non-asymptotic guarantees, but require restrictive modeling assumptions such as linear
function approximation (Tirinzoni et al., 2020; Kirschner et al., 2021).

Indeed, even for the simple problem of tabular (finite-state/action) reinforcement learning, existing
algorithms do not attain instance-optimal performance until the number of rounds of interaction is
doubly exponential in the number of states (Ok et al., 2018; Dong and Ma, 2022). In this paper, we
address these challenges, providing algorithms that i) accommodate flexible, general-purpose function
approximation, and ii) attain instance-optimality in finite time, in a sense which is itself optimal.

Contributions. We take the first steps toward building a non-asymptotic theory of instance-optimal
decision making. We observe that asymptotic characterizations for instance-optimality:

1. reflect the regret incurred by an allocation of decisions designed to optimally distinguish the
ground truth problem instance from a set of alternatives, but

2. do not capture the statistical complexity required to learn such an allocation.
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To address this, we introduce a new complexity measure, the Allocation-Estimation Coefficient
(AEC), which aims to capture the statistical complexity of learning an optimal Graves-Lai allocation.
We provide a new algorithm, AE2, which attains non-asymptotic instance-optimal regret at a rate
controlled by the AEC. We complement this result with lower bounds that show that under certain
technical conditions, boundedness of the Allocation-Estimation Coefficient is not just sufficient, but
necessary to learn an instance-optimal allocation in finite time.

Our algorithm is simple, and can be applied to any hypothesis class in a generic fashion. It
recovers the best known guarantees for standard problems such as finite-armed and linear bandits and,
when specialized to tabular reinforcement learning, achieves the first instance-optimal regret bounds
with polynomial dependence on all problem parameters. We believe that our approach clarifies and
elucidates many tradeoffs and statistical considerations left implicit in prior work, and hope that it
will serve as a foundation for further development of instance-optimal algorithms.

1.1. Interactive Decision Making

We adopt the Decision Making with Structured Observations (DMSO) framework of Foster et al.
(2021), which is a general setting for interactive decision making that encompasses bandit problems
(structured, contextual, and so forth) and reinforcement learning with function approximation.

The DMSO framework is specified by a decision space Π, reward spaceR ⊆ R, and observation
space O. The learner is given access to a (known) model class M ⊂ (Π → △R×O), and it is
assumed there exists some true model M⋆ ∈ M, unknown to the learner, which represents the
underlying environment. Formally, we make the following assumption.

Assumption 1.1 (Realizability). We have that M⋆ ∈M.

The learning protocol consists of T rounds. For each round t = 1, . . . , T :

1. The learner selects a decision πt ∈ Π.

2. The learner receives a reward rt ∈ R and observation ot ∈ O sampled (rt, ot) ∼ M⋆(πt),
and observes (rt, ot).

We can think of the model class M as representing the learner’s prior knowledge about the
decision making problem, and it allows one to appeal to estimation and function approximation. For
structured bandit problems, for example, models correspond to reward distributions, andM encodes
structure in the reward landscape. For reinforcement learning problems, models correspond to Markov
decision processes (MDPs), and M typically encodes structure in value functions or transition
probabilities. See Appendix A.6 and Appendix A.7 for concrete examples of how standard decision-
making settings can be instantiated within the DMSO framework, and Foster et al. (2021) for further
background. For a model M ∈M, EM,π[·] denotes the expectation under the process (r, o) ∼M(π),
fM(π) := EM,π[r] denotes the mean reward function, and πM := argmaxπ∈Π fM(π) denotes the
optimal decision. When the algorithm is clear from context, EM [·] and PM [·] refer to the expectation
and probability measure, respectively, induced over histories under M . When the context is clear, we
overload notation somewhat and use PM,π[·] to refer to the conditional density overR×O induced
by playing π on M . We make the following assumptions.

Assumption 1.2 (Bounded Reward Means). For all M ∈M, π ∈ Π, we have fM(π) ∈ [0, 1].
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Assumption 1.3 (Unique Optimal Action). For the ground truth model M⋆ ∈M, the optimal action
πM⋆ is unique.

Note that the latter assumption is standard in the literature on instance-optimality. We measure
performance in terms of regret, which is given by

Reg(T ) :=
∑T

t=1 Eπt∼pt
[
fM⋆

(πM⋆)− fM⋆
(πt)

]
, (1)

where pt is the learner’s randomization distribution for round t. In addition, we define ∆M(π) =
fM(πM)− fM(π) as the suboptimality gap function for model M and decision π, and the minimum
suboptimality gap as

∆M
min :=

{
infπ∈Π:∆M (π)>0∆

M(π), πM is unique,
0, otherwise.

(2)

Since by assumption πM⋆ is unique, we have ∆M⋆

min > 0. Throughout, we replace dependence on M⋆

with “⋆” when the meaning is clear from context, for example: ∆⋆
min := ∆M⋆

min, or f⋆(π) := fM⋆
(π).

Further Notation. We let M+ = {M : Π → △R×O | fM(π) ∈ [0, 1]} denote the space of
all possible models M with rewards in R and fM(π) ∈ [0, 1]. We use △X to refer to the set of
probability distributions over any X . Throughout, we often abbreviate Eπ∼p[·] with Ep[·].

1.2. Background: Asymptotic Instance-Optimality

Our aim is to develop algorithms that are instance-optimal in a strong sense: for every model
M⋆ ∈ M, the regret of the algorithm under M⋆ is at least as good as that of any consistent
algorithm; here, an algorithm is said to be “consistent” if it ensures that EM [Reg(T )] = o(T ) for all
M ∈M. Instance-optimality is a powerful notion of performance: no algorithm—even one designed
specifically with M⋆ in mind—can achieve lower regret on M⋆ without giving up consistency. For
multi-armed bandits, a long line of work initiated by Lai and Robbins (1985) characterizes the
instance-optimal regret as a function of the instance M⋆, and provides efficient algorithms that attain
instance-optimality in finite time (Garivier et al., 2016; Kaufmann et al., 2016; Lattimore, 2018;
Garivier et al., 2019). For the general decision making setting we consider, the forward-looking
work of Graves and Lai (1997) (see Dong and Ma (2022) for a contemporary treatment) introduced a
complexity measure we refer to as the Graves-Lai Coefficient, which asymptotically characterizes
the instance-optimal performance as a function of the instance M⋆ and model classM. For any
classM and model M ∈M, the Graves-Lai Coefficient is defined as

glc(M,M) := inf
η∈RΠ

+

{∑
π∈Π

ηπ∆
M(π) | ∀M ′ ∈Malt(M) :

∑
π∈Π

ηπDKL

(
M(π) ∥M ′(π)

)
≥ 1

}
,

(3)

where, for M with unique optimal decision πM , we define Malt(M) := {M ′ ∈M | πM ̸∈ πM′}
the set of “alternative” models—the models M ′ ∈M that disagree with M on the optimal decision1—
and DKL(· ∥ ·) denotes the Kullback-Leibler divergence. WhenM is clear from context, we will ab-
breviate gM := glc(M,M) (and g⋆ := glc(M,M⋆)). We also denote any solution to Eq. (3) by ηM—
note that this is not in general unique. The characterization of Graves and Lai (1997) is as follows.

1. For M ∈ M such that πM is not unique, we define Malt(M) := {M ′ ∈ M | πM ∩ πM′ = ∅}, and define
glc(M,M) as in Eq. (3), with respect to this Malt(M). We also define Malt(π) = {M ∈ M | π ̸∈ πM}.
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Proposition 1.1 (Graves and Lai (1997); Dong and Ma (2022)). For any model class M with
|Π| <∞, any algorithm that is consistent with respect toM must have

EM⋆
[Reg(T )] ≥ glc(M,M⋆) · log(T )− o(log(T )) (4)

for any M⋆ ∈ M, and there exists an algorithm which achieves, for all M⋆ ∈ M satisfying
Assumption 1.3,2

EM⋆
[Reg(T )] ≤ glc(M,M⋆) · log(T ) + o(log(T )). (5)

The interpretation of the Graves-Lai Coefficient of M⋆ with respect to M, glc(M,M⋆), is
simple. It asks, if M⋆ is known to the learner (to be clear, M⋆ is not known a-priori), what is the
minimum regret that must be incurred to gather enough information to rule out all possible alternatives
M ′ ∈M which do not have πM⋆ as an optimal decision (i.e., πM⋆ ̸∈ πM′)? In other words, it aims
to certify that πM⋆ is indeed the optimal decision while incurring the minimum regret possible.

The Graves-Lai Coefficient characterization is appealing in its simplicity, but the catch—at least
when one moves beyond finite-armed bandits—is hiding in the lower-order terms, particularly for
the upper bound (5). For general model classes, the best known finite-time regret bounds (Dong and
Ma, 2022) take the form

EM⋆
[Reg(T )] ≤ glc(M,M⋆) · log(T ) + poly(|Π|, (∆M⋆

min)
−1) · log1−c(T ) (6)

where c > 0 is a universal constant. While this indeed leads to instance-optimality as T → ∞,
the “lower-order” term in Eq. (6) scales with the size of the decision space, which is intractably
large for most problems of interest. As an example, consider the problem of tabular reinforcement
learning in an episodic MDP with S states, A actions, and horizon H . Here, we typically have
glc(M,M⋆) = poly(S,A,H) , yet |Π| = AHS . Consequently, the Graves-Lai Coefficient does
not become the dominant term in (6) until ≥ exp(exp(S)). That is, for realistic time horizons,
asymptotic instance-optimality does not tell the full story.

Learning an optimal allocation. Given knowledge of an optimal Graves-Lai allocation ηM⋆

solving Eq. (3), a learner could simply take actions as specified by ηM⋆ , and would achieve the
instance-optimal rate given in Proposition 1.1. However, this is typically infeasible, as the optimal
allocation itself depends strongly upon the ground truth model M⋆, and is therefore unknown to
the learner. In light of this challenge, the approach taken by essentially all existing algorithms
(Burnetas and Katehakis, 1996; Graves and Lai, 1997; Magureanu et al., 2014; Komiyama et al.,
2015; Lattimore and Szepesvari, 2017; Combes et al., 2017; Hao et al., 2019, 2020; Van Parys and
Golrezaei, 2020; Degenne et al., 2020b; Tirinzoni et al., 2020; Kirschner et al., 2021; Dong and Ma,
2022) is to first learn an estimate for a Graves-Lai allocation ηM⋆ , and then take actions as specified
by this estimate. In addition to being natural, this approach is necessary in a certain (weak) sense:
for any algorithm that achieves instance-optimality, the expected decision frequencies must converge
to an approximately optimal allocation as T grows (cf. Lemma B.1).3

The presence of the lower-order term scaling with |Π| in Eq. (5) (and in similar regret bounds from
most existing work) reflects the sample complexity required to learn an optimal Graves-Lai allocation

2. To be precise, rather than scaling directly with glc(M,M⋆), the upper bound given by Dong and Ma (2022) scales
with a quantity glcT (M,M⋆) such that glcT (M,M⋆) →T glc(M,M⋆).

3. The connection between instance-optimal regret and learning an optimal allocation has many subtleties; we refer ahead
to Appendix B for extensive discussion.
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through uniform exploration. Specifically, one can estimate an allocation by uniformly exploring
the decision space to gather data, and then solving an empirical approximation to the Graves-Lai
program (3). Naive exploration of this type inevitably results in Ω(|Π|) sample complexity, and it is
natural to ask whether a more deliberate exploration strategy, perhaps by exploiting the structure of
M, could lead to better finite-time regret bounds. For the setting of linear bandits, where Π ⊆ Rd
and the mean reward function π 7→ fM(π) is linear, this is indeed the case: a recent line of work
(Tirinzoni et al., 2020; Kirschner et al., 2021) provides regret bounds of the form

EM⋆
[Reg(T )] ≤ glc(M,M⋆) · log(T ) + poly(d, (∆M⋆

min)
−1) · log1−c(T ).

This bound replaces the size of the decision space in the lower-order term by the dimension d,
reflecting the fact that there are only d “effective” directions in which exploration is required. While
this is an encouraging start, the techniques used in these works are specialized to linear bandits, and
it is unclear how to generalize them beyond this setting.

1.3. A Motivating Example

As discussed in the prequel, for finite-armed bandits and linear bandits, it is possible to achieve
instance-optimal regret bounds where the lower-order terms scale with the number of actions A,
or dimension d, respectively. Extrapolating, one might be tempted to ask whether we can always
learn a near-optimal allocation with sample complexity no larger than, say, the minimax rate forM.
The starting point for our work is to recognize that in general, the answer is no: existing notions of
statistical complexity are insufficient to capture the complexity of learning the Graves-Lai allocation
in finite time, as illustrated in the following simple example.

Example 1.1 (Searching for an informative arm). Let A,N ≥ 2 and β ∈ (0, 1) be parameters, and
consider the classM of all models defined as follows. First, Π = [A] ∪ {π◦

i }i∈[N ]; decisions in [A]
are “bandit arms”, and decisions in {π◦

i }i∈[N ] are “informative” (or, revealing) arms. Each model M
has a unique optimal decision πM , and the following structure, with O = [A] ∪ {⊥}.

• For each bandit arm k ∈ [A] we have r ∼ N (fM(k), 1) for fM ∈ [0, 1]. There are no
observations, i.e. o =⊥ almost surely.

• All informative arms π◦
k give 0 reward almost surely. There exists a unique informative arm

π◦
M ∈ {π◦

i }i∈[N ] associated with M , so that if we play any π◦
k, we receive an observation

o ∼
{

Unif([A]), π◦
k ̸= π◦

M ,
βIπM + (1− β)Unif([A]), π◦

k = π◦
M .

We takeM to consist of all possible models with this structure. The interpretation here is as follows.
If one were to ignore the revealing arms {π◦

i }i∈[N ], this would be a standard finite-armed bandit
problem. In particular, if we were to consider a model M⋆ with fM⋆

(π) = 1
2 + ∆I{π = i} for

i ∈ [A], a standard calculation would yield gM⋆ ∝ A
∆ . However, the presence of the informative

arms makes the problem substantially easier. With β = 9/10 (for concreteness), one can see that
for the model M , pulling the informative arm π◦

M⋆ will give o = πM⋆ with probability at least
9/10, meaning that we can identify that πM⋆ is optimal with high probability by pulling π◦

M⋆ a
constant number of times. It follows that the optimal allocation is to ignore the bandit arms and set
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ηM⋆
(π) ∝ I{π = π◦

M⋆}. This gives gM⋆ ≤ O(1), which is substantially better than gM⋆ ∝ A
∆ if ∆ is

small or A is large.
If one only is only concerned with asymptotic rates, this is the end of the story, but for non-

asymptotic rates, we need to consider the amount of exploration required to learn the optimal
allocation. In particular, in order to identify the informative arm π◦

M⋆ , which is necessary to learn the
optimal allocation, it is clear that in the worst case, any algorithm needs to try all of the revealing
arms, leading to E[Reg(T )] = Ω(N). While the complexity of learning the optimal allocation is
washed away by an asymptotic analysis with T →∞, it cannot be ignored for finite T . In addition,
the Ω(N) factor cannot be explained away by standard complexity measures. As we have seen,
supM∈M gM = O(1), so the Graves-Lai Coefficient is not sufficient to explain it. Furthermore, the
minimax rate for this problem is always bounded by O(

√
AT ), which does not scale with N ; yet

Ω(A) sample complexity does not suffice to learn an optimal allocation. In addition, it can be shown
that existing complexity measures such as the Decision-Estimation Coefficient (Foster et al., 2021)
and information ratio (Russo and Van Roy, 2018) also do not scale with N . ◁

Example 1.1 shows that if we want to achieve instance-optimality in finite time, new notions of
problem complexity for the classM are required, motivating the following central questions:

1. Can we develop algorithms for general model classesM that achieve non-asymptotic instance-
optimal regret bounds of the form

EM⋆
[Reg(T )] ≤ glc(M,M⋆) · log(T ) + comp(M) · log1−c(T ), (7)

where comp(M) is a complexity measure that reflects the intrinsic difficulty of exploring in
order to learn a Graves-Lai optimal allocation forM?

2. Can we understand when the presence of such lower-order terms is necessary?

1.4. Organization

The remainder of the paper is organized as follows. In Section 2 we introduce a novel complexity
measure, the Allocation-Estimation Coefficient, which captures the complexity of learning a Graves-
Lai optimal allocation (Section 2.1), present our main upper and lower bounds (Section 2.2), and
instantiate our bounds on several examples (Section 2.3). In Section 3 we present an overview of
our main algorithm, AE2, and in Section 4 offer directions for future work. Due to space constraints,
results in the main body are presented informally—see Part I of the appendix for full statements.

2. Overview of Results

To capture the statistical complexity of learning an optimal Graves-Lai allocation in finite time, we
provide a new complexity measure, the Allocation-Estimation Coefficient (AEC).

2.1. The Allocation-Estimation Coefficient

For a model M ∈M and parameter ε ∈ [0, 1], we define

Λ(M ; ε) =

{
λ ∈ △Π | ∃n ∈ R+ s.t. Eπ∼λ[∆M(π)] ≤ (1 + ε)gM

n
,

inf
M ′∈Malt(M)

Eπ∼λ
[
DKL

(
M(π) ∥M ′(π)

)]
≥ 1− ε

n

} (8)
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the set of (normalized) allocations λ ∈ △Π which are ε-optimal for the Graves-Lai program
glc(M,M) in Eq. (3)—both in terms of achieving the optimal objective value and satisfying the
information constraint. In addition, for a distribution λ ∈ △Π, we define

Mgl
ε (λ) = {M ∈M | λ ∈ Λ(M ; ε)}. (9)

Informally,Mgl
ε (λ) represents the set of models for which the (normalized allocation) λ ∈ △Π is

ε-optimal for the Graves-Lai program glc(M,M).
For a reference model M : Π → △R×O (not necessarily in M) and parameter ε > 0, the

Allocation-Estimation Coefficient is given by

aecε(M,M) = inf
λ,ω∈△Π

sup
M∈M\Mgl

ε (λ)

{
1

Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]}, (10)

where we adopt the convention that the value is 0 ifMgl
ε (λ) =M. In addition, letting co(M) denote

the convex hull forM, we define aecε(M) := supM∈co(M) aecε(M,M).
The Allocation-Estimation Coefficient is a game between a min-player choosing λ, ω ∈ △Π and

a max-player choosing a model M ∈M (with the restriction that M /∈Mgl
ε (λ)). The distribution

λ ∈ △Π represents a normalized Graves-Lai allocation, while ω ∈ △Π is an exploration distribution
used to gather information. The reference model M should be interpreted as a guess for the underlying
M⋆ ∈ M. When λ ∈ △Π is fixed, infω∈△Π

sup
M∈M\Mgl

ε (λ)
(Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
)−1

represents the time required to gather enough information to distinguish between the reference
model M and all alternative models M /∈ Mgl

ε (λ) for which λ is not an ε-optimal Graves-Lai
allocation—provided that we explore optimally by minimizing over ω ∈ △Π. For intuition, consider
the case when M ∈ M. In this case, λ must be chosen so that M ∈ Mgl

ε (λ) (i.e., λ must be a
Graves-Lai optimal allocation for M ), as otherwise the value of the AEC will be infinite, since
Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
= 0. Therefore, in such cases, the AEC reflects the difficulty of

distinguishing M from models that have different Graves-Lai optimal allocations. Such models
might have the same optimal decision πM as M (cf. Example 1.1) but, if our goal is to play a
Graves-Lai optimal allocation for M , we must still distinguish M from such models.

The Allocation-Estimation Coefficient plays a natural role for deriving both upper and lower
bounds on the time required to learn an optimal allocation. For lower bounds, the significance of the
AEC is somewhat immediate: it precisely quantifies the time required to acquire enough information
to learn an ε-optimal allocation for the best possible exploration strategy, and thus leads to a lower
bound on time required to learn such an allocation for any algorithm. Notably, the AEC serves
as a lower bound for all possible model classesM, and hence may be thought of as an intrinsic
structural property of the classM. For upper bounds, the Allocation-Estimation Coefficient acts as a
mechanism to drive exploration; see Section 3 for further explanation.

Generalized Allocation-Estimation Coefficient. For certain results, we make use of the following,
slightly more general variant of the AEC. For a reference model M : Π → △R×O and subset of
modelsM0 ⊆M, we define

aecMε (M0,M) = inf
λ,ω∈△Π

sup
M∈M0\Mgl

ε (λ)

{
1

Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]}, (11)
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where we adopt the convention that the value is 0 ifM0\Mgl
ε (λ) = ∅. HereM0 denotes the set we

take the supremum over, whileM denotes the set thatMgl
ε (λ) is defined with respect to (i.e., the set

with respect to which the Graves-Lai allocation is defined). WhenM0 =M, we recover the AEC
as defined in Eq. (10): aecε(M,M) = aecMε (M,M).

2.2. Main Results

Building on the intuition above, our main results show that boundedness of the Allocation-Estimation
Coefficient is sufficient to achieve instance-optimality in finite time, and is also necessary in order to
learn a near-optimal allocation. Formal statements of our upper bounds are given in Appendix A and
formal statements for our lower bounds in Appendix B.

Upper Bound. Our upper bounds are based on a new algorithm, AE2 (Allocation Estimation via
Adaptive Exploration), achieves instance-optimality by using the Allocation-Estimation Coefficient
to drive exploration.

Theorem 2.1 (Upper Bound—Informal Version of Theorem A.1). For any model classM satisfying
certain regularity conditions, the AE2 algorithm ensures that for all ε > 0, M⋆ ∈M, and T ∈ N:

EM⋆
[Reg(T )] ≤ (1 + ε) · glc(M,M⋆) · log(T ) + Õ+

(
aecε/12(M) + aec

1/2
ε/12(M) · log1/2(T )

)
,

where Õ+(·) suppresses polynomial dependence on ε−1, the log-covering number ofM, supM∈M
1/∆M

min, log log T , and several other measures of the regularity for the classM.

Theorem 2.1 shows that it is therefore possible to achieve instance-optimality in finite time with
lower-order terms scaling (primarily) as the cost of learning the optimal allocation, as captured by
the AEC. For multi-armed bandits with Π = [A], we have aecε(M) = Õ+(poly(A)), and for linear
bandits with Π ⊆ Rd, we have aecε(M) = Õ+(poly(d)), so that the regret bound in Theorem 2.1
enjoys similar scaling as existing non-asymptotic approaches (Tirinzoni et al., 2020; Kirschner et al.,
2021). For tabular reinforcement learning, we have aecε(M) = Õ+(poly(H,S,A)), which leads
to exponential improvement over prior work (Dong and Ma, 2022). Finally, for the instance in
Example 1.1, in cases when N ≫ A, 1/∆min, aecε(M) = O(N), so aecε(M) captures the intuitive
difficulty of learning a Graves-Lai allocation in this setting.

Remark 2.1 (Technical Conditions). The technical conditions under which Theorem 2.1 is proven
are relatively mild, and include certain smoothness of the KL divergences, sub-Gaussian tail behavior
for log-likelihood ratios, and bounded covering number forM with standard parametric growth
(note thatM may be infinite), all of which can be shown to hold for standard classes. In addition,
we requires that the amount of information that can be gained by playing the optimal decision for
M⋆ is bounded (see Appendix A.1 for precise statements of our conditions).

Remark 2.2 (Asymptotic Performance). Asymptotically as T → ∞, the regret bound given in
Theorem 2.1 scales as (1 + ε) · glc(M,M⋆) · log T , which is a factor of (1 + ε) off of the lower
bound. For all standard classes, aecε/12(M) scales polynomially in 1/ε so, to obtain an optimal
leading-order constant, it suffices to choose ε = 1/ loga T , for small enough a > 0.
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Adapting to Minimum Gap. Note that the lower-order term given in Theorem 2.1 scales with
supM∈M 1/∆M

min, the minimum gap of the entire model class. In Appendix A.5, we give a refine-
ment of the AE2 algorithm (AE2

⋆) which attains an improved regret bound which replaces the term
supM∈M 1/∆M

min with 1/∆⋆
min, the minimum gap of the underlying model; notably AE2

⋆ requires no
prior knowledge of ∆⋆

min (i.e., it is able to adapt to the minimum gap of the underlying model). In
addition, rather than scaling with aecε/12(M), the lower-order term now scales with aecMε/12(M

⋆)
for a subsetM⋆ ⊂M which, informally, restricts to models inM for which the minimum gap is at
least ∆⋆

min.

Theorem 2.2 (Upper Bound—Informal Version of Theorem A.2). For any model classM satisfying
certain regularity conditions, the AE2

⋆ algorithm ensures that for all ε > 0, M⋆ ∈M, and T ∈ N:

EM⋆
[Reg(T )] ≤ (1 + ε) · glc(M,M⋆) · log(T ) + Õ+

(
(aecMε/12(M

⋆))3 + log6/7(T )
)
, (12)

where Õ+(·) suppresses polynomial dependence on ε−1, the log-covering number ofM, 1/∆⋆
min,

log log T , and several other measures of the regularity for the classM.

Lower Bound. To provide lower bounds, we adopt a novel minimax framework which asks, for
the model classM under consideration, what is the least value of T ∈ N for which it is possible to
learn an ε-optimal Graves-Lai allocation for any model inM. To state our result, we introduce the
following notation, defined with respect to any M ∈M+:

Mopt(M) =
{
M ∈M | πM ⊆ πM , DKL

(
M(π) ∥M(π)

)
= 0 ∀π ∈ πM

}
.

The setMopt(M) represents the set of models where 1) the optimal decision coincides with that of
M and 2) M and M ∈M cannot be distinguished by playing the optimal decision.

Our main lower bound provides a sort of converse to the upper bound in Theorem 2.1.

Theorem 2.3 (Lower Bound—Informal Version of Theorem B.2). For any model class M and
ε > 0, it holds that unless

log(T ) ≥ sup
M∈M+

Ω̃+
(
aecMε (Mopt(M),M)

)
, (13)

no algorithm can simultaneously achieve the following for all instances M ∈M:

1. attain Graves-Lai optimality on M within a constant factor (i.e., ensure EM [Reg(T )] ≤
2 · glc(M,M) log(T )).

2. discover an ε-optimal allocation for M (i.e., find λ with M ∈ Mgl
ε (λ)) with probability

greater than Ω̃+(1).

Here, Ω̃+(·) hides polynomial dependence on regularity parameters ofM.

Observe that the Graves-Lai Coefficient becomes the dominant term in the upper bound Theo-
rem 2.1 as soon as log(T ) ≥ Ω̃+(aecε/12(M)). The lower bound (13) shows that for any algorithm
that aims to estimate the Graves-Lai allocation (in particular, AE2), such scaling is necessary, and
therefore the lower-order term in Theorem 2.1 is in some sense unimprovable. To the best of our
knowledge, this is the first general approach to quantifying the lower-order terms necessary in order
to achieve instance-optimality. We make several remarks on the lower bound.
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Remark 2.3 (Scaling in AEC). Our upper and lower bounds scale with a slightly different version of
the AEC, as the lower bound restricts the AEC toMopt(M). In Appendix B, we show an additional
lower bound that scales directly with aecε(M), matching our upper bound, but which only provides
a lower bound on T rather than log(T ) (see Theorem B.1).

Remark 2.4 (Asymptotic Optimality and Learning Optimal Allocations). Theorem 2.3 gives a lower
bound on the time needed to learn a near-optimal Graves-Lai allocation, but does not directly
imply that it is necessary that an asymptotically optimal algorithm learn such an allocation. As we
have noted, the allocations played by any asymptotically optimal algorithm must converge to an
optimal allocation in expectation. However, showing that this convergence is necessary with even
constant probability (the condition under which Theorem 2.3 is proved) is rather subtle. As we show
in Appendix B (Theorem B.3), if one assumes that, in addition to being asymptotically optimal in
expectation, the algorithm under consideration also has regret with appropriately bounded second
moment, then if EM [Reg(T )] ≤ (1 + ε) · glc(M,M) log(T ) for all M ∈M, it is indeed necessary
that a burn-in time analogous to Eq. (13) is satisfied.

Together, our upper and lower bounds represent an initial step toward building a sharp non-
asymptotic theory of instance-optimality, and lead to a number of new conceptual insights. Our
results open the door for further-development, and to this end we highlight a number of opportunities
for improvement (Appendix B.4), as well as open problems (Section 4).

2.3. Concrete Examples

We next present several examples illustrating our upper and lower bounds. All results in this section
are informal—see Appendices A.3, A.6, A.7 and B.3 for formal results and additional examples.

Example 2.1 (Searching for an Informative Arm (revisited)). We return to the example of Section 1.3.
Some calculation shows that, for the choice of M in Example 1.1, as long as β is constant and
N ≥ A/∆2, we have

Ω(N) ≤ sup
M∈M+

aecMε (Mopt(M),M) and aecε(M) ≤ O(N).

Theorem 2.1 then implies that AE2 has regret on Example 1.1 of

EM⋆
[Reg(T )] ≤ (1 + ε) · g⋆ log(T ) +N · poly(A, 1

∆ , 1ε , logN, log log T ) · log1/2(T ).

Furthermore, Theorem 2.3 shows that a scaling of log(T ) ≥ Ω̃+(N) is necessary for any algorithm
to learn a Graves-Lai optimal allocation. It follows that, on this example, the AEC reflects a notion
of problem difficulty not captured by any existing complexity measure, matching our intuitive
understanding of what the correct scaling should be. We remark that the scaling log(T ) ≥ Ω̃+(N)
is natural (as compared to T ≥ Ω̃+(N)) since, if an algorithm is instance-optimal as required
by Theorem 2.3, it can allocate at most O+(log(T )) pulls to suboptimal decisions. To pull every
informative arm (each of which is suboptimal) while achieving instance-optimality, it follows that
we must have log(T ) ≥ Ω̃+(N). ◁

Example 2.2 (Tabular Reinforcement Learning). Consider the setting of tabular reinforcement
learning. Here we take M to be a (tabular) episodic Markov Decision Processes (MDP) with S

11
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states, A actions, horizon H , probability transition kernels {PM
h }Hh=1, and Gaussian rewards; see

Appendix A.7 for a full definition of this setting. LetM denote the set of all such tabular MDPs
which, for each state-action-state triple (s, a, s′) and h ∈ [H], have PM

h (s′ | s, a) ≥ Pmin > 0; that
is, each transition can occur with some minimum probability. Then it can be shown that:

aecMε (M⋆) ≤ poly
(
S,A,H, 1ε ,

1
∆⋆

min
, log 1

Pmin

)
.

This implies that for any tabular MDP inM, the AE2
⋆ algorithm has regret bounded as:

EM⋆
[Reg(T )] ≤ (1 + ε) · g⋆ log(T ) + poly(S,A,H, 1

∆⋆
min

, 1ε , log
1

Pmin
, log log T ) · log1/2(T ).

To the best of our knowledge, this is the first regret bound in the setting of tabular reinforcement
learning which is instance-optimal with lower-order terms scaling only polynomially in problem
parameters, an exponential improvement over past work (Ok et al., 2018; Dong and Ma, 2022).
Furthermore, one can also show that supM∈M+ aecMε (Mopt(M),M) ≥ Ω̃

(
1
ε2
· SA
(∆⋆

min)
2

)
, so that

our lower bound, Theorem 2.3, implies that a burn-in time scaling polynomially in S,A, 1ε , and 1
∆⋆

min

is necessary to learn an ε-optimal Graves-Lai allocation for every model inM.
We remark that the prior work of Dong and Ma (2022) does not require that PM

h (s′ | s, a) ≥ Pmin

as we do, yet their bound scales polynomially in the inverse probability of observing the trajectory
that occurs with minimum non-zero probability (the work of Ok et al. (2018) only holds for ergodic
MDPs, itself a very strong assumption). Our finite-time results are therefore, in general, significantly
stronger, scaling only logarithmically in Pmin. Removing the Pmin assumption while still achieving
reasonable lower-order terms is an interesting direction for future work. ◁

Example 2.3 (Linear Bandits). Consider the setting of linear bandits in d dimensions with unit-
variance Gaussian noise. LetM denote the set of all linear bandit models defined with respect to
some arm set X ⊆ Rd and parameter set Θ ⊆ Rd. Concretely, each model M ∈M takes the form

M(π) = N (⟨θ, xπ⟩, 1),

for some θ ∈ Θ, where xπ ∈ X is an embedding of π. Let ∆⋆
min denote the minimum gap of M⋆

(which is unknown to the algorithm). Then it can be shown that

aecMε (M⋆) ≤ poly
(
d, 1ε ,

1
∆⋆

min

)
which implies that the AE2

⋆ algorithm has regret bounded as

EM⋆
[Reg(T )] ≤ (1 + ε) · g⋆ log(T ) + poly(d, 1

∆⋆
min

, 1ε , log log T ) · log
6/7(T ). (14)

We remark that the scaling of Eq. (14) matches the state-of-the-art instance-optimal bounds for linear
bandits (in that all have polynomial lower-order terms—our polynomial dependence on d is slightly
worse as our upper bound on the AEC is somewhat coarse) (Tirinzoni et al., 2020; Kirschner et al.,
2021). Notably, it is a simple corollary of a much more general result, while prior work relies on
specialized algorithms tailored to linear bandits. ◁

In Appendices A.3, A.6, A.7 and B.3 we formalize these examples and present additional
examples, including structured bandits with bounded eluder dimension and finite-action contextual
bandits. In all cases, we obtain lower-order terms scaling only polynomially with problem parameters,
and in each setting either match the best-known existing bound, or are the first to provide any
meaningful finite-time bounds.
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Algorithm 1 Allocation Estimation via Adaptive Exploration (AE2, Informal)
1: input: optimality tolerance ε, model classM.
2: Initialize s← 1 and q ← class-dependent quantity.
3: Compute ξ1 ← AlgKL({∅}) and M̂1 ← EM∼ξ1 [M ].
4: for t = 1, 2, 3, . . . do

5: if ∃πM̂s ∈ πM̂s s.t. ∀M ∈Malt(πM̂s),
∑s−1

i=1 EM̂∼ξi

[
log PM̂,πi

(ri,oi)

PM,πi (ri,oi)

]
≥ log(t log t) then

6: Play πM̂s . // Exploit

7: else // Explore

8: Set ps ← qλs + (1− q)ωs for

λs, ωs ← argmin
λ,ω∈△Π

sup
M∈M\Mgl

ε/6
(λ)

1

E
M̂∼ξs

[
Eπ∼ω

[
DKL

(
M̂(π) ∥M(π)

)]] . (15)

9: Draw πs ∼ ps and observe reward rs and observation os.
10: Compute M̂ s+1 = E

M̂∼ξs+1 [M̂ ] for ξs+1 ← AlgKL({(πi, ri, oi)}si=1), s← s+ 1.

3. Algorithm Overview

Finally, we present our algorithm, AE2, in Algorithm 1. AE2 relies on an online estimation oracle,
denoted by AlgKL, which at every step s, given access to data

{
(πi, ri, oi)

}s−1

i=1
with πi ∼ pi and

(ri, oi) ∼ M⋆(πi) returns a randomized estimate ξi = AlgKL

(
{(πi, ri, oi)}s−1

i=1

)
∈ △M with the

goal of approximating M⋆ (Foster and Rakhlin, 2020; Foster et al., 2021). The estimates produced
by AlgKL must ensure the total KL estimation error is bounded:

EstKL(s) :=
∑s

i=1 EM̂∼ξi [Eπ∼pi [DKL

(
M̂(π) ∥M⋆(π)

)
]] ≲ O(log s). (16)

We show that, under the regularity conditions required by Theorem 2.1, such a guarantee can be
achieved, with O(·) hiding the log-covering number ofM.

AE2 alternates between exploit steps and explore steps, tracking the number of explore steps
that have been performed with a counter s ∈ N. For each step t ∈ N, the algorithm makes use of
an estimator M̂ s = E

M̂∼ξs [M̂ ], where ξs = AlgKL

({
(πi, ri, oi)

}s−1

i=1

)
is computed by calling the

estimation oracle with data gathered at previous explore steps. Given the estimator, the algorithm first
checks whether it has enough information to guarantee that the greedy decision is optimal, in which
case it exploits (Line 6); otherwise it explores. In explore steps, the key component is the choice of the
exploration distributions λs and ωs in Eq. (15), which mimics the Allocation-Estimation Coefficient
program. To understand the role of the Allocation-Estimation Coefficient here, we consider two
cases. In the first case, if λs is an ε-optimal Graves-Lai allocation for M⋆ (that is, M⋆ ∈Mgl

ε (λs)),
then playing λs will optimize the tradeoff between minimizing regret and collecting information, and
will therefore match the optimal performance prescribed by the Graves-Lai Coefficient.

In the second case, if λs is not an ε-optimal Graves-Lai allocation for M⋆, we have M⋆ ̸∈
Mgl

ε (λs), so ωs will place mass on actions that ensure E
M̂∼ξs [Eπ∼ω[DKL

(
M̂(π) ∥M⋆(π)

)
]] is large.

Since ps plays ωs with constant probability, the quantity E
M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]] will

also be large. If our estimator is consistent and Eq. (16) holds, this can only happen a small number
of times without violating Eq. (16); at most logarithmic in the number of exploration rounds. As such,
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we can show that λs must be a near-optimal Graves-Lai allocation for M⋆ on all but a logarithmic
number of exploration rounds, and that AE2 achieves the optimal rate on such rounds, yielding the
optimal performance rate of Theorem 2.1. Critically, rather than exploring in a naive fashion (e.g.,
by sampling decisions uniformly), AE2 explores specifically with the goal of learning a Graves-Lai
optimal allocation for M⋆ and adapts to the structure ofM to perform this exploration efficiently.

We emphasize the simplicity of AE2. While most existing instance-optimal algorithms are quite
complicated even for basic settings, AE2 relies on a few simple components yet is far more general
than existing approaches and performs comparably or better. See Appendix A.2 for a full description.

4. Discussion

Our work initiates the systematic study of non-asymptotic instance-optimality in interactive decision
making. We close by highlighting a number of interesting open problems and future directions raised
by our work. On the technical side:

• Our upper bounds depend on a number of different problem-dependent parameters, such as the
minimum gap in the lower-order terms. Can we improve the dependence on these parameters, or
understand to what extend they are necessary?

• Our lower bounds concern the problem of learning a near-optimal allocation. Like the upper
bounds, these results are likely loose in terms of dependence on various problem parameters, and
new techniques will be required to tighten them. Furthermore, it remains to develop a complete
understanding of the connections between this problem and the problem of minimizing regret.
While our results show that “well-behaved” algorithms which achieve instance-optimal regret must
pay a burn-in proportional to the cost of learning a near-optimal allocation, it remains unclear if
this is truly necessary for algorithms which only have optimal expected regret (but, for example,
could exhibit heavy-tailed behavior).

• While our algorithm achieves the instance-optimal rate, its regret could scale linearly over shorter
time horizons, until it has learned a near-optimal allocation. Can we develop “best-of-both-
worlds” algorithms that achieve the same instance-optimal guarantees of AE2, yet also achieves the
minimax-optimal rate (for example, a O(

√
T )-style guarantee) over shorter time horizons?

• The focus of this work is primarily on regret minimization, yet the challenge of learning the
optimal allocation also arises in the PAC setting. Does the AEC extend to the PAC setting, and
can algorithms be developed in the PAC setting which achieve the instance-optimal rate in the
leading-order term, while scaling with an AEC-like quantity in the lower-order term?

More broadly, it will be interesting to explore whether our framework and algorithm design ideas
can be used to develop practical and computationally efficient algorithms.
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INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

Part I

Main Results
Part I is organized as follows. Appendix A presents our algorithm and main upper bounds, as well as
examples. Appendix B presents complementary lower bounds. In Appendix C we review additional
related work. We conclude with discussion of open problems and future directions in Section 4.
Proofs are deferred to the appendix.

Additional notation. For an integer n ∈ N, we let [n] denote the set {1, . . . , n}. For a set Z , we
let △Z denote the set of all probability distributions over Z . We adopt standard big-oh notation,
and write f = Õ(g) to denote that f = O(g · max{1, polylog(g)}). We use ≲ only in informal
statements to emphasize the most notable elements of an inequality. We will let lin(·) denote a
function multi-linear and poly-logarithmic in its arguments. For a decision π ∈ Π, we use Iπ ∈ △Π

to denote the delta distribution which places probability mass 1 on π.
Define the Kullback-Leibler divergence by

DKL(P ∥Q) =

{ ∫
log
(
dP
dQ
)
dP, P≪ Q,

+∞, otherwise.

Appendix A. The AE2 Algorithm: Regret Bounds and Examples

This section presents our main algorithm and regret bounds. We begin by introducing the most basic
variant of our algorithm, AE2, and using it to provide instance-optimal regret bounds for simple
settings (Appendices A.2 and A.3); with preliminaries in Appendix A.1. We then give a refined
variant of the algorithm, AE2

⋆, which adapts to the minimum gap ∆⋆
min and leads to regret bounds

under relaxed regularity conditions (Appendix A.4 and Appendix A.5). We use this variant to provide
applications to structured and contextual bandits (Appendix A.6) and tabular reinforcement learning
(Appendix A.7). We conclude with an overview of our analysis in Appendix A.8. For all results in
this section, we assume that Assumptions 1.1 to 1.3 hold.

A.1. Regularity Conditions

To present our algorithm and results, we first introduce several regularity conditions for the model
classM.

Likelihood ratios. We next make two assumptions concerning smoothness of KL divergences and
behavior of log-likelihood ratios.

Assumption A.1 (Smooth KL). There exists LKL > 0 such that for all M,M ′,M ′′ ∈M and π ∈ Π,∣∣DKL

(
M(π) ∥M ′′(π)

)
−DKL

(
M ′(π) ∥M ′′(π)

)∣∣ ≤ LKL

√
DKL(M(π) ∥M ′(π)).

Assumption A.2 (Sub-Gaussian Log-Likelihood). There exists VM > 0 such that for all M,M ′,M ′′ ∈
M and π ∈ Π,

P(r,o)∼M(π)

[∣∣∣∣log PM′,π(r, o)

PM′′,π(r, o)
− E(r′,o′)∼M(π)

[
log

PM′,π(r′, o′)

PM′′,π(r′, o′)

]∣∣∣∣ ≥ x

]
≤ 2 exp(−x2/V 2

M)

for all x ≥ 0.
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Assumption A.1 and Assumption A.2 facilitate finite-sample estimation guarantees with respect
to the KL divergence. Both assumptions are met by standard problem classes, including general
structured bandit problems with Gaussian noise. Existing works that consider general model classes
make similar assumptions (Dong and Ma, 2022).

Estimation. To provide estimation guarantees that accommodate infinite classesM, we assume
certain covering properties. We will consider the following notion of a cover.

Definition A.1 ((ρ, µ)-Cover). We say that a setMcov ⊆M is a (ρ, µ)-cover ofM if there exists
some event E such that:4

1. supM∈M supπ∈Π PM,π(Ec) ≤ µ.

2. For each M ∈M, there exists some M ′ ∈Mcov such that∣∣∣logPM,π(r, o)− logPM′,π(r, o)
∣∣∣ ≤ ρ

for all (r, o) ∈ R×O with supM ′′∈M PM′′,π(r, o | E) > 0.

We denote the size of the smallest such cover by Ncov(M, ρ, µ).

Definition A.1 states that the log-likelihoods are “covered” under some good event E which
occurs with high probability: for any model in the class, we can find some model in the cover with
log-likelihoods that are “close” on E . We assume that the covering number for the model classM is
bounded, and has reasonable (“parametric”) growth.

Assumption A.3 (Bounded Covering Number). For some parameters dcov ≥ 1, Ccov ≥ 1, we have

logNcov(M, ρ, µ) ≤ dcov · log
(
Ccov

ρµ

)
.

Note that the rate of growth of the covering number required by Assumption A.3 is the standard
rate of growth for parametric (e.g., linear) classes. Our results easily extend to accommodate general
growth rates, but we adopt Assumption A.3 because it suffices for all of the examples we will
consider, and simplifies presentation.

Information content of optimal decisions. As noted in the introduction, the Graves-Lai Coefficient
g⋆ = glc(M,M⋆) can be thought of as the minimal regret needed to distinguish M⋆ from all possible
models with different optimal decisions. As playing the optimal decision, π⋆, incurs no regret, any
allocation η which is optimal for the Graves-Lai program, Eq. (3), will still be optimal if we increase
the number of plays of π⋆ arbitrarily. As we are interested in finite-time behavior in this work, it is
undesirable to consider allocations for which the number of pulls of optimal decisions are arbitrarily
large. Instead, we would like to consider allocations which play optimal decisions only as long as
they still provides useful information about models in the alternate set. The following definition
gives a formal quantification of this.

4. Note that we require that Mcov ⊆ M, i.e. that Mcov is a proper cover.
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Definition A.2 (Information Content of Optimal Decision). Fix ϵ ∈ (0, 1/2]. For a model M ∈M,
we define nM

ε > 0 as the minimum value such that, for any allocation η ∈ RΠ
+ satisfying

(1 + ε)gM ≥
∑
π∈Π

η(π)∆M(π) and inf
M ′∈Malt(M)

∑
π∈Π

η(π)DKL

(
M(π) ∥M ′(π)

)
≥ 1− ε,

we have

inf
M ′∈Malt(M)

∑
π∈Π,π ̸∈πM

η(π)DKL

(
M(π) ∥M ′(π)

)
+
∑
π∈πM

nM
ε DKL

(
M(π) ∥M ′(π)

)
≥ 1− 2ε.

We denote nM
ε := supM∈M nM

ε .

Intuitively, any allocation which is ε-optimal for the Graves-Lai program Eq. (3) need not play
any optimal decision πM ∈ πM more than nM

ε times. Therefore, for model M , nM
ε can be thought of

as a quantification of the extent to which playing optimal decisions provides useful information—no
additional useful information can be acquired on models in the alternate setMalt(M) by playing
optimal decisions more than nM

ε times. As we will see, nM
ε is bounded polynomially in problem

parameters for many classes of interest.

Uniformly regular classes. We refer to a class as uniformly regular if nM
ε <∞, and the following

assumption on the minimum gaps holds.

Assumption A.4 (Lower-Bounded Minimum Gap). We have infM∈M∆M
min > 0. We denote by

∆min > 0 a (known) lower bound on infM∈M∆M
min.

Note that Assumption A.4 implies that for all M ∈M, πM is unique. For the results concerning
the most basic version of our algorithm, AE2 (Appendices A.2 and A.3), we assume for expositional
purposes that the classM is uniformly regular. Our more general algorithm, AE2

⋆ (Appendix A.5),
achieves guarantees similar to those of AE2, but without uniform regularity. In particular, AE2

⋆

replaces dependence on ∆min with the minimum gap ∆⋆
min := ∆M⋆

min for the true model, and replaces
dependence on nM

ε with n⋆ε := nM⋆

ε . We note, however, that in cases where a lower bound ∆ on
the minimum gap ∆⋆

min of the true model is known a-priori, Assumption A.4 can be satisfied by
restricting the model class to models with minimum gap at least ∆.

A.2. The AE2 Algorithm

We now present the most basic variant of our main algorithm, AE2 (Algorithm 2). This will serve as
the starting point for the most general version of our algorithm, AE2

⋆ (Appendix A.5). To describe the
algorithm, we first introduce the primitive of an online estimation oracle (Foster and Rakhlin, 2020;
Foster et al., 2021).

Estimation oracles. Algorithm 2 makes use of an online estimation oracle, denoted by AlgKL,
which is an algorithm that, given knowledge of the classM, estimates the underlying model M⋆ ∈M
from data in a sequential fashion. When invoked at step s ∈ N with the data (π1, r1, o1), . . . , (πs−1, rs−1, os−1)
observed so far, the estimation oracle builds an estimate

M̂ s = AlgKL

({
(πi, ri, oi)

}s−1

i=1

)
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Algorithm 2 Allocation Estimation via Adaptive Exploration (AE2)
1: input: optimality tolerance ε, model classM.

2: Initialize s← 1, nmax ← nmax(M, ε/6), and q ← 4nmax+εgM

4nmax+2εgM
for gM := infM∈M:gM>0 g

M .

3: Compute ξ1 ← AlgKL({∅}) and M̂1 ← EM∼ξ1 [M ].
4: for t = 1, 2, 3, . . . do

5: if ∃πM̂s ∈ πM̂s s.t. ∀M ∈ Malt(πM̂s),
∑s−1

i=1 EM̂∼ξi

[
log PM̂,πi

(ri,oi)

PM,πi (ri,oi)

]
≥ log(t log t) then

6: Play πM̂s . // Exploit

7: else // Explore

8: Set ps ← qλs + (1− q)ωs for

λs, ωs ← argmin
λ,ω∈△Π

sup
M∈M\Mgl

ε/6
(λ;nmax)

1

E
M̂∼ξs

[
Eπ∼ω

[
DKL

(
M̂(π) ∥M(π)

)]] . (18)

9: Draw πs ∼ ps and observe reward rs and observation os.
10: Compute estimate ξs+1 ← AlgKL({(πi, ri, oi)}si=1) and M̂ s+1 = E

M̂∼ξs+1 [M̂ ] .
11: s← s+ 1.

which aims to approximate the true model M⋆. Following (Foster et al., 2021; Chen et al., 2022;
Foster et al., 2022a), we make use of randomized estimation oracles that, at each step produces
ξs = AlgKL

({
(πi, ri, oi)

}s−1

i=1

)
, where ξs ∈ △M is a randomization distribution, and draw M̂ ∼ ξs.

We measure the oracle’s performance in terms of cumulative estimation error, defined as follows.

Definition A.3 (Cumulative Estimation Error). Consider the process where, for each round i ∈ N,
given (π1, r1, o1), . . . , (πi−1, ri−1, oi−1) with πi ∼ pi and (ri, oi) ∼M⋆(πi), the estimation oracle
returns ξi = AlgKL

(
(π1, r1, o1), . . . , (πi−1, ri−1, oi−1)

)
. For any s ∈ N, we define the oracle’s

cumulative KL estimation error under this process as:

EstKL(s) :=

s∑
i=1

E
M̂∼ξi

[
Eπ∼pi

[
DKL

(
M⋆(π) ∥ M̂(π)

)]]
.

Algorithm 2 can be invoked with any off-the-shelf algorithm for estimation, but our main results
make use of the fact that under Assumption A.2 and Assumption A.3, there exists an estimation
oracle AlgKL (Algorithm 7 in Appendix F.3) which ensures that with probability at least 1− δ, for
all s ∈ N:

EstKL(s) ≲ VM · dcov · log3/2
(
Ccov · s

δ

)
. (17)

That is, the estimation oracle ensures that the KL divergence between the true model M⋆ and the
estimates returned scales at most poly-logarithmically in the exploration horizon. Note that on
its own, this guarantee does not necessarily imply that M̂ s = EM∼ξs [M ] → M⋆—low online
estimation error only requires that M̂ s is on average close to M⋆ on the decisions we have actually
played.
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Algorithm overview. We now present a formal overview of our algorithm AE2. We restate
it here for convenience in Algorithm 2. The algorithm alternates between exploit steps and
explore steps, tracking the number of explore steps that have been performed with a counter s ∈
N. For each step t ∈ N, the algorithm makes use of an estimator M̂ s = E

M̂∼ξs [M̂ ], where

ξs = AlgKL

({
(πi, ri, oi)

}s−1

i=1

)
is computed by calling the estimation oracle with data gathered at

previous explore steps. Given the estimator, AE2 performs a test based on likelihood ratios (Line 5)
to check whether it has collected enough information to rule out all models for which πM̂s ∈ πM̂s is
not an optimal decision. If so, it exploits, and plays πM̂s (Line 6), as in this case πM̂s = π⋆ with high
probability. If the test fails, the algorithm must gather more information to eliminate alternatives,
and it explores (Line 8). The key component of the explore phase is the choice of the exploration
distribution in Eq. (18), which is based on the Allocation-Estimation Coefficient program, but
incorporates some small modifications: 1) First, M̂ is randomized according to the distribution ξs, 2)
Second, the set M⋆ ∈ Mgl

ε (λ) is replaced with a smaller set M⋆ ∈ Mgl
ε (λ; nmax), which requires

that λ obeys certain normalization constraints; this is detailed below. Using the distributions λs

(representing a normalized allocation) and ωs (representing an exploration distribution) returned in
Eq. (18), the algorithm computes a mixture ps = qλs + (1− q)ωs, where q ∈ (0, 1) is a carefully
chosen parameter, and plays πs ∼ ps (Line 9). The reward and observation (rs, os) that result from
playing πs are then used to update the estimation oracle for subsequent rounds (Line 10).

To understand the intuition behind the explore phase and why the Allocation-Estimation Coef-
ficient plays a useful role here, we can consider two cases. In the first case, if λs is an ε-optimal
Graves-Lai allocation for M⋆ (that is, M⋆ ∈ Mgl

ε/6(λ
s; nmax)), then playing λs will optimize the

tradeoff between minimizing regret on M⋆ and collecting information that allows one to distinguish
M⋆ from M ∈ Malt(M⋆), and will therefore match the optimal performance prescribed by the
Graves-Lai Coefficient, incurring regret scaling as g⋆.

In the second case, if λs is not an ε-optimal Graves-Lai allocation for M⋆, we have M⋆ ̸∈
Mgl

ε/6(λ
s; nmax), so by the definition of the AEC (Eq. (18)), ωs will place mass on actions that

ensure E
M̂∼ξs [Eπ∼ω[DKL

(
M̂(π) ∥M⋆(π)

)
]] is large; exactly how large this quantity is will be

quantified by the value of the AEC. Since ps plays ωs with constant probability, the quantity

EM∼ξs [Eπ∼ps [DKL(M
⋆(π) ∥M(π))]]

will also be large, but if the estimation oracle is consistent in the sense of Definition A.3, this can
only happen a small number of times. In particular, if Eq. (17) holds, the number of times in which
we encounter this second case is at most logarithmic in the number of exploration rounds. As such,
we can show that λs must be a near-optimal Graves-Lai allocation for M⋆ on all but a logarithmic
number of exploration rounds, and that AE2 achieves the optimal rate on such rounds.

Critically, rather than exploring in a naive fashion (e.g., by sampling decisions uniformly), AE2

explores only to the extent necessary to learn a Graves-Lai allocation for M⋆. There may exist
instances M ̸= M⋆ which differ significantly from M⋆ but have a similar Graves-Lai allocations—
AE2 will make no effort to distinguish such instances since, as long as it knows that one of these
instances is correct, it can simply play their shared Graves-Lai allocation. This notion of exploration,
which is targeted toward distinguishing instances that have different Graves-Lai allocations, is
precisely the notion captured by the Allocation-Estimation Coefficient.

Normalization factor for allocations. As noted in Appendix A.1, while an optimal Graves-Lai
allocation may place an arbitrarily large number of pulls on an optimal decision, for finite-time
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guarantees it is useful to restrict to allocations which place only finite mass on optimal decisions.
To this end, AE2 restricts the optimization problem based on the AEC in Eq. (18) to only consider
normalized allocations λ for which the normalization factor is at most

nmax(M, ε) :=
64

∆2
min

·
(
1

ε
+ VMnM

ε

)
· max
M∈M

gM . (19)

where the normalization factor refers to the value n in the definition of Λ(M ; ε) (see Eq. (8)). In
particular, to enforce this restriction, the optimization problem in Eq. (18) restricts the max-player to
M ∈M\Mgl

ε/6(λ; nmax), where nmax := nmax(M, ε/6) andMgl
ε/6(λ; nmax) is defined identically

toMgl
ε/6(λ) in Eq. (9), but with n restricted to n ≤ nmax. As we show in Lemma E.4, for nmax(M, ε)

defined as in Eq. (19), the optimal value in Eq. (18) can be bounded by the AEC.

Computational efficiency. The primary computational burden in AE2 lies in solving the optimiza-
tion problem (18) to compute the exploration distributions. In general there is little hope of solving
this efficiently (i.e., in time sublinear in |Π| and |M|)—indeed, in some cases it may be that to
even determine whether M ∈Mgl

ε (λ) will require enumerating the model classM. However, for
nicely structured problems, we anticipate that this program can be solved, or at least approximated,
efficiently. As the focus of our work is primarily statistical, we leave further exploration as to when
the algorithm can be implemented efficiently to future work.

Simplicity. We emphasize the simplicity of AE2. Most existing algorithms which achieve instance-
optimality are quite complex, even in specialized settings such as linear bandits. In contrast, AE2

is very simple and intuitive, and relies only on three basic components: an explore-exploit test, an
estimation oracle, and a single optimization to compute the exploration distributions. Despite its
simplicity, as we show, AE2 obtains comparable or better performance over existing approaches.

Relation to existing approaches. At a very high level, AE2 bears some similarity to the E2D
algorithm of Foster et al. (2021), which achieves the minimax optimal rate for general classesM
in the DMSO framework. Both algorithms rely on online estimation algorithms, and both solve
min-max programs based on the output of the estimator to determine which allocations to play.
However, the algorithm design and analysis principles for the two algorithms, and in particular the
motivation for the min-max programs they solve, differ significantly.

A.3. AE2 Algorithm: Regret Bound for Uniformly Regular Classes

We present upper bounds for AE2 in the setting where our classM is uniformly regular: Assumption
A.4 holds and nM

ε <∞; these assumptions are relaxed by the AE2
⋆ algorithm in the sequel. To state

the regret bound for AE2 in the tightest form possible, we introduce the following variant of the
Allocation-Estimation Coefficient, which incorporates randomized estimators ξ ∈ △M:

aecMε (M0, ξ) := inf
λ,ω∈△Π

sup
M∈M\Mgl

ε (λ)

1

EM∼ξ[Eπ∼ω[DKL

(
M(π) ∥M(π)

)
]]
, (20)

with aecε(M, ξ) := aecMε (M, ξ) and aecε(M) := supξ∈△M aecε(M, ξ). Note that one can always
bound aecε(M) ≤ aecε(M) due to the convexity of the KL divergence. In fact, these definitions
are equivalent up to dependence on problem-dependent parameters in Appendix A.1 (indeed, our
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lower bounds in Appendix B scale with the latter quantity), but the former can be simpler to bound
for some of the examples we consider.

Our main theorem concerning the performance of AE2 is as follows.

Theorem A.1 (Regret Bound for AE2). For any ε ∈ (0, 1/2], there exists a choice for the estimation
oracle AlgKL such that for all T ∈ N, under Assumptions A.1 to A.4 and if g⋆ > 0, the expected
regret of AE2 is bounded by

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) + aecε/12(M) · Caec · log3/2(log T ) + Clow · log1/2(T ),

(21)

where

Caec := c · V
2
Mdcov log(Ccov) ·maxM∈M gM

ε∆3
min

·
(
ε−1 + VMnM

ε/6

)
· log(Clow),

for a universal numerical constant c > 0, and Clow is a lower-order constant given by

Clow := lin

(
max
M∈M

gM , aec
1/2
ε/12(M), 1

ε2
, 1
∆3

min
, nM
ε/6, L

2
KL, V

13/2
M , dcov, log(Ccov), log log T

)
,

where lin(·) denotes a function multi-linear and poly-logarithmic in its arguments.

We prove Theorem A.1 in Appendix F.1, and give a proof sketch in Appendix A.8. Theorem A.1
shows that AE2 achieves the asymptotically optimal Graves-Lai rate for M⋆, as given in Proposi-
tion 1.1, up to a (1 + ε) approximation factor. In more detail, if we label the terms in Eq. (21)
as

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T )︸ ︷︷ ︸

(I)

+ aecε/12(M) · Caec · log3/2(log T )︸ ︷︷ ︸
(II)

+Clow · log1/2(T )︸ ︷︷ ︸
(III)

,

the regret bound can be seen to consist of:

• The leading-order term (I) = (1 + ε)g⋆ · log(T ). This is the only term that scales linearly

with log(T ), as a consequence we have limT→∞
EM⋆

[Reg(T )]
log(T ) ≤ (1 + ε)g⋆, which matches

the instance-optimal rate given in Proposition 1.1 up to a factor of (1 + ε).

• A lower-order term (II) = aecε/12(M) · Caec · log3/2(log T ), which is polylogarithmic in
log(T ), and scales with aecε/12(M), as well as regularity parameters from Appendix A.1.

• A second lower-order term (III) = Clow · log1/2 T . This term scales with log1/2(T ) =
o(log(T )) and, like the term (II), scales with the AEC and regularity parameters from Ap-
pendix A.1. Compared to (II), this term has worse dependence on log(T ), but enjoys sublinear
aec

1/2
ε/12(M) scaling with the AEC.

Critically, both of the o(log T ) lower-order terms above do not scale with (often exponentially large)
terms such as |Π| or |M| found in prior work, and instead scale principally with aecε(M), which, as
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we will show in Appendix B, is unavoidable in a certain sense. In particular, note that once T is large
enough that

log(T ) ≥ Ω̃+(aecε/12(M)),

the leading-order term (I) = (1 + ε)g⋆ · log(T ) term in Theorem A.1 will dominate the regret.
This is precisely the time horizon given by the lower bound in Theorem 2.3, which is necessary
for an algorithm to learn a near-optimal allocation for the Graves-Lai program. We offer a more
thorough comparison of Theorem A.1 with our lower bounds in Appendix B.4. Below, we discuss
the lower-order terms and asymptotic performance in greater detail.

Remark A.1 (Additional Lower-Order Terms). The lower-order terms in Theorem A.1 depend on
the model classM through the regularity, covering, and smoothness assumptions, as well as the
minimum gap (Appendix A.1). For many of the examples we consider, the Allocation-Estimation
Coefficient will dominate these other terms, yet there may exist classes where this is not the case.
Resolving the optimal dependence on these problem-dependent parameters in the lower-order terms,
as well as understanding when these parameters are necessary, remains an interesting direction for
future work.

In addition, let us mention that while both lower-order terms scale with o(log T ) (note that the
scaling is no larger than O(

√
log T · polylog log T )), it is not clear what the optimal dependence

on T should be for the lower-order terms. For example, one might hope to replace the dependence
on log1/2(T ) with loga(T ) for some constant a < 1/2, or even with polylog(log(T )). Precisely
characterizing the optimal log(T ) scaling for lower-order terms remains an interesting open question.
To this end, we remark that Jun and Zhang (2020) show that in some cases, an Ω(log log T ) term is
indeed necessary.

Remark A.2 (Asymptotic Performance). Asymptotically, as T →∞, the regret of AE2 scales with
(1+ε)g⋆ · log(T ), which is a factor of (1+ε) off from the asymptotic lower bound in Proposition 1.1.
For any fixed T ∈ N of interest, as long as aecε(M) = poly(ε−1), one can obtain an asymptotic
constant of 1 by choosing ε = 1/ loga(T ) for a sufficiently small constant a > 0. For example, when
|Π| <∞, it is always possible to bound aecε(M) ≲ poly(|Π|)/ε4 (see Proposition A.1 below), so
choosing ε as above ensures that the lower-order terms scale o(log T ), while the leading-order term
scales as g⋆ · log(T ) asymptotically.

A.3.1. EXAMPLE: SEARCHING FOR AN INFORMATIVE ARM

We next provide an example of a uniformly regular class in order to illustrate a case where Theo-
rem A.1 holds. In particular, we revisit the informative arm setting described in the introduction
(Example 1.1). Recall that we exhibited a model class for which the complexity of learning the
Graves-Lai allocation is not governed by existing complexity measures, and can be larger than
the minimax optimal rate for learning with M. In what follows, we show that on this example
the Allocation-Estimation Coefficient correctly adapts to the complexity of this model class. We
emphasize that the main applications of our results, which take advantage of the more general AE2

⋆

algorithm, will be given in Appendix A.6 and Appendix A.7, and we also present additional examples
of uniformly regular classes in Appendix G.2.1.

Example A.1 (Searching for an Informative Arm (revisited)). LetM denote the model class con-
structed in Example 1.1, with parameters A,N ≥ 5 and β ∈ [4/A, 9/10]. We additionally discretize
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the space so that, for each M ∈M and π ∈ [A], we have fM(π) ∈ {0,∆min, 2∆min, . . . , ⌊ 1
∆min
⌋∆min},5

and furthermore restrict M so that it does not include instances with multiple optimal arms.
For this class, one can show that Assumptions A.1 to A.4 hold with LKL, VM ≤ O(logA) and
dcov = O(A), Ccov = O(N) (see Appendix G.4). Furthermore, we can bound nM

ε ≤ 2
∆2

min
, and

aecε(M) ≤ 64N

β2
+

16A

∆2
min

.

As a result, for this class, AE2 has expected regret bounded as

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) +N · poly(A, 1ε ,

1
∆min

, logN, log log T ) · log1/2(T ).

Note that here the only term that scales linearly with N is the Allocation-Estimation Coefficient—
every other class-dependent term appearing in the regret bound scales at most logarithmically in N .
We are particularly interested in situations where the cost of finding the correct informative arm is
much larger than any existing complexity measures for the problem: that is, when β is constant and
N ≫ A, 1

∆min
. In this case, we have aecε(M) ≤ O(N), and the Allocation-Estimation Coefficient

correctly captures the intuitive complexity of learning the optimal allocation. In particular, the
dependence on N reflects the fact that we need to test each informative arm at least once. Furthermore,
as we show in Example B.1, we can lower bound aecε(M) ≥ Ω(N) as well, so in the regime where
N ≫ A, 1

∆min
, the AEC is the dominant lower-order term. ◁

See Appendix G.2 for the proof of this example.

A.4. The AE2
⋆ Algorithm

While it may be reasonable to assume that the minimum gap of M⋆, ∆⋆
min, is bounded away from 0,

and that the amount of useful information playing π⋆ provides is also bounded on M⋆, assuming
that this is true for every model in the model class (as in the prequel) is a significantly stronger
assumption. For example, if we letM denote the space of all multi-armed bandits with means in
[0, 1], the only possible value of ∆min is 0, as we can always find some instance with minimum gap
arbitrarily close to 0. In this section, we dispense with the uniform regularity assumption: we relax
Assumption A.4, and additionally prove that it suffices if only n⋆ε := nM⋆

ε (as opposed to nM
ε ) is

bounded.
Our main algorithm for this section, AE2

⋆, is given in Algorithm 3. It is very similar to AE2 but to
remove the requirement of uniform regularity, the algorithm avoids solving Eq. (18) over the entire
model classM, and instead solves it over a carefully restricted model class. For x, y > 0, define

Mx,y := {M ∈M : ∆M
min ≥ x, nM

ε ≤ y}. (23)

AE2
⋆ breaks its explore rounds into doubling epochs. For each epoch ℓ, Eq. (22) in Algorithm 3

solves an AEC-like optimization problem over a restricted classMℓ ⊆M∆ℓ, 1

∆ℓ
, which is chosen

in Line 9 to explicitly ensure that the value of the optimization problem in Eq. (22), is bounded;
this is guaranteed by the definition of ∆ℓ in Line 8. Similar to AE2, the value of the optimization

5. The discretization is required to satisfy the uniform regularity assumption—we include it here to provide a concrete ex-
ample of a uniformly regular class. However, it can be shown that, without this discretization assumption, Theorem A.2
applies to the original formulation given in Example 1.1 with the AEC again scaling as O(N).
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Algorithm 3 Adaptive Exploration for Allocation Estimation for classes without uniform regularity
(AE2

⋆)
1: input: Optimality tolerance ε, estimation oracle AlgKL, growth parameters αq, αn, αM ≥ 0.
2: s← 1, ℓ← 1, δ ← ε

4+2ε , qs ← 1− s−αq , ns ← sαn .

3: Compute ξ1 ← AlgKL({∅}) and M̂1 ← EM∼ξ1 [M ].
4: for t = 1, 2, 3, . . . do
5: if s ≥ 2ℓ then // Form active set and cover

6: ℓ← ℓ+ 1.
7: ∆ℓ ← argmin∆≥0∆ s.t. aecMδ/2(M∆, 1

∆
) ≤ sαM .

8: Mℓ ←M∆ℓ, 1

∆ℓ
∩
{
M ∈M : nM

ε + 1
∆M

min

+ 4gM

∆M
min

+ 2nMε
gM

+ 4
∆M

minδ
≤
√
ns
}

.

9: Mℓ
cov ← (ρℓ, µℓ)-cover ofMℓ for ρℓ ← 2−ℓ, µℓ ← 2−5ℓ, Dℓ ← ∅.

10: if ∃πM̂s ∈ πM̂s s.t. ∀M ∈Malt(πM̂s),
∑s−1

i=1 EM̂∼ξi

[
log PM̂,πi

(ri,oi)

PM,πi (ri,oi)

]
≥ log(t log t) then

11: Play πM̂s . // Exploit

12: else // Explore

13: Set ps ← qsλs + (1− qs)ωs for

λs, ωs ← argmin
λ,ω∈△Π

sup
M∈Mℓ\Mgl

ε (λ;ns)

1

E
M̂∼ξs [Eπ∼ω[DKL

(
M̂(π) ∥M(π)

)
]]
. (22)

14: Draw πs ∼ ps, observe rs, os, set Dℓ ← Dℓ ∪ {(πs, rs, os)}.
15: Compute estimate ξs+1 ← AlgKL(D

ℓ,Mℓ
cov) and M̂ s+1 = EM∼ξs+1 [M ].

16: s← s+ 1.

problem in Eq. (22) quantifies how much information we are gaining about the Graves-Lai allocation
of M⋆, and the regret of the explore phase can be bounded in terms of the value of this optimization.
By restrictingMℓ so that the value of Eq. (22) is always bounded, we can therefore ensure that the
regret during the exploration phase is bounded.

Intuitively, this restriction ofMℓ reduces the space of models we must distinguish M⋆ from in
order to identify its Graves-Lai allocation: rather than distinguishing M⋆ from all models inM, we
must only distinguish it from models inMℓ, which could be significantly easier. The caveat is that,
since we do not know the value of n⋆ε or ∆⋆

min, M⋆ may not always be inMℓ. In such cases, little can
be said about the exploration phase—we are not able to provide any meaningful guarantees on how
much information λs and ωs acquire about M⋆. To mitigate this, as s increases we gradually relax
the criteria for inclusion inMℓ, ensuring that for large enough s, M⋆ will be inMℓ. In particular,
one can show that the number of exploration rounds needed to guarantee M⋆ ∈ Mℓ scales with
aecMε (M⋆), for

M⋆ :=
{
M ∈M : ∆M

min ≥ ∆⋆, n
M

ε/36 ≤ 1/∆⋆

}
for ∆⋆ := min{∆⋆

min, 1/n
⋆
ε/36}. (24)

That is,M⋆ is the restriction ofM to models with gap at least min{∆⋆
min, 1/n

⋆
ε/36} (implying all

models in M⋆ have a unique optimal decision), and for which the information content of the optimal
decision is at most max{1/∆⋆

min, n
⋆
ε/36}.

32



INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

Estimation oracle. While AE2 simply requires that the estimation oracle AlgKL returns random-
ized estimators supported on △M, for AE2

⋆, we wish to ensure that the estimators produced are
instead only supported onMℓ. To this end, we restrict the estimator toMℓ

cov, the (ρℓ, µℓ)-cover of
Mℓ. We denote the resulting estimation oracle with AlgKL(D

ℓ,Mℓ
cov), where the first argument

represents the set of available observations, and the second argument the set over which the estimation
oracle must return an estimate.

Computational efficiency of AE2
⋆. Similar to AE2, it is not clear how to solve the main optimization

required by AE2
⋆, Eq. (22), in general. In addition, unlike AE2, AE2

⋆ maintains a version space of
models,Mℓ, which could increase the computational burden further. We emphasize that the focus of
this work is primarily statistical, and leave addressing the computational challenges for future work.

A.5. AE2
⋆ Algorithm: Regret Bound without Uniform Regularity

The following theorem provides the main guarantee for AE2
⋆.

Theorem A.2 (Regret Bound for AE2
⋆). For any ε ∈ (0, 1/2], if Assumptions A.1 to A.3 hold and

g⋆ > 0, AE2
⋆ (Algorithm 3) ensures that for all T ∈ N, the expected regret is bounded as

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) +

(
aecMε/12(M

⋆)
)3
· Caec · log3/2(log T ) + Clow · log6/7(T ),

where

Caec := Õ

(
V 3

M(VM + LKL) · dcov log(Ccov)

ε∆⋆
min

)
,

and Clow is a lower-order constant given by

Clow := poly
(
g⋆, 1

∆⋆
min

, n⋆ε/6,
1
ε , VM, LKL, dcov, logCcov, log log T

)
.

The proof of Theorem A.2 is given in Appendix F.2. As Theorem A.2 illustrates, at the expense
of a slightly larger polynomial dependence on the Allocation-Estimation Coefficient, and slightly
larger lower-order terms, we can obtain near instance-optimal regret—matching the instance-optimal
lower bound given in Proposition 1.1 up to a factor of (1 + ε)—without requiring any assumption on
the minimum gap, or boundedness of nM

ε . Rather than scaling with the minimum gap for the entire
class, ∆min, Theorem A.2 scales only with the minimum gap of the ground truth model, ∆⋆

min, which
could be substantially larger than ∆min. An additional advantage of Theorem A.2 is that it scales
with aecMε (M⋆) as opposed to aecε(M); for the examples we consider in the sequel, the former
quantity enjoys better dependence on problem-dependent parameters. For example, we show in
Appendix B that for standard classes, aecε(M) can scale with the minimum gap amongst all models
in the class. On the other hand aecMε (M⋆) typically scales with ∆⋆

min.
We emphasize that AE2

⋆ requires no prior knowledge of ∆⋆
min or n⋆ε—it is able to adapt to the

minimum gap and regularity of the underlying model.

Remark A.3 (Dependence on n⋆ε). As we show in the following examples, n⋆ε is typically bounded
polynomially in standard problem parameters, though in practice this needs to be verified for each
problem instance. We remark that some scaling in terms of n⋆ε seems unavoidable—if there is a
significant amount of information to be gained playing the optimal decision, any algorithm which is
nearly instance-optimal will play the optimal decision at least n⋆ε times, and therefore the “effective
horizon” to eliminate alternate instances scales with n⋆ε . As we are the first to formalize this notion
of how informative the optimal decision is, we believe more research in this direction is required.
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A.6. Application: Structured and Contextual Bandits

We now instantiate Theorem A.2 to give regret bounds for AE2
⋆ in standard settings of interest,

bounding the Allocation-Estimation Coefficient for each setting. We begin by focusing on structured
bandit settings and contextual bandits, then turn to tabular reinforcement learning in the sequel. We
recall that, to map bandit problems to the DMSO framework, we take the decision space Π to be the
set of “arms”, the observation space O = {∅}, and the reward spaceR to be the rewards from the
bandit (while we do not explicitly include the rewards in the observation space, we assume they are
observed). We defer proofs for all examples to Appendix G.

A.6.1. THE UNIFORM EXPLORATION COEFFICIENT

For the main examples we consider, we proceed by first bounding the Allocation-Estimation Co-
efficient in terms of another, somewhat simpler parameter we refer to as the uniform exploration
coefficient.

Definition A.4 (Uniform Exploration Coefficient). For a randomized estimator ξ ∈ △M, we define
the uniform exploration coefficient with respect to ξ at scale ε > 0 as the value of the following
program:

Cξ
exp(ε) := min

C∈R+,p∈△Π

{
C
∣∣∣ ∀M,M ′ ∈M :

maxM ′′∈{M,M ′} EM∼ξ[Eπ∼p[DKL

(
M(π) ∥M ′′(π)

)
]] ≤ 1/C

=⇒ maxp′∈△Π
Eπ∼p′ [DKL(M(π) ∥M ′(π))] ≤ ε

}
.

We define pξexp(ε) as any minimizing distribution for this program, and let

Cexp(M, ε) := sup
ξ∈△M

Cξ
exp(ε)

denote the uniform exploration constant for classM.

Intuitively, the uniform exploration coefficient characterizes the extent to which it is possible
to explore by uniformly covering the decision space. In particular, one can always choose p to be
uniform over Π, which gives Cexp(M, ε) ≲ |Π|/ε, but in cases where information is shared between
actions, the parameter is significantly smaller, as we will show for familiar examples below. For
example, in the case of linear bandits with dimension d, we have Cexp(M, ε) ≤ Õ(d·log 1/εε ).

The following result shows that the Allocation-Estimation Coefficient can be bounded in terms
of the uniform exploration coefficient.

Proposition A.1 (Informal). ForM0 ⊆M, we can bound aecMε (M0) ≤ Cexp(M0, δ) for any

√
δ ≤ min

M∈M0

min

{
min

{
1

81LKL
,
∆M

min

34VM

}
· ε

2gM/∆M
min + nM

ε/36

,
∆M

min

3

}
.

The full statement of Proposition A.1 is given in Lemma E.6. Using Proposition A.1, we obtain
guarantees for AE2

⋆ on several familiar classes, beginning with several bandit settings. We remark that
Proposition A.1 is not in general tight—it simply shows that the Allocation-Estimation Coefficient is
bounded by a simple, general, and interpretable notion of how easily a class can be explored. As,
such the bounds on the Allocation-Estimation Coefficient in the following examples can almost
certainly be improved using more specialized tools.
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A.6.2. FINITE-ARMED BANDITS

We first consider the simplest bandit setting: multi-armed bandits with finite arms.

Example A.2 (Finite-Armed Bandit). Fix A > 0, and consider the class of finite-armed bandits with
A arms and unit-variance Gaussian noise:

M =
{
M(π) = N (fM(π), 1) | fM ∈ [0, 1]A

}
.

It is straightforward to verify that Assumptions A.1 to A.3 hold with LKL, VM ≤ 4 and dcov =
O(A), Ccov = O(1), and it can also be shown that, as long as fM⋆

(π⋆) < 1, we can bound
n⋆ε ≤ c · A2

ε(∆⋆
min)

4 . In addition, we can bound Cexp(M⋆, ε) ≤ 4A/ε, so Proposition A.1 gives the
following result.

Proposition A.2. For the finite-armed bandit problem with A actions, there exists a universal
constant c > 0 such that

aecMε (M⋆) ≤ c · A15

ε8(∆⋆
min)

24
. (25)

We immediately obtain the following corollary to Theorem A.2.

Corollary A.1. For finite-armed bandits with Gaussian noise, as long as fM⋆
(π⋆) < 1, AE2

⋆ has
regret bounded by

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) + poly(A, 1ε ,

1
∆⋆

min
, log log T ) · log6/7(T ).

With more refined analyses, various works have achieved instance-optimal regret bounds for finite-
armed bandits with tighter lower-order terms than Corollary A.1 (Garivier et al., 2016; Kaufmann
et al., 2016; Lattimore, 2018; Garivier et al., 2019). We emphasize that Corollary A.1 is a special
case of a much more general result. In particular, we proved the bound on the Allocation-Estimation
Coefficient, Eq. (25), using tools which hold for general classes (e.g. Proposition A.1). An analysis
of AE2

⋆ specialized to finite-armed bandits would likely yield a tighter result. ◁

A.6.3. STRUCTURED BANDITS

Many bandit problems exhibit richer structure than the multi-armed bandit setting, and the study
of these settings has been the focus of much of the recent work on instance-optimal learning. We
next consider one such setting, that of structured bandits with bounded eluder dimension (Russo and
Van Roy, 2013).

Example A.3 (Structured Bandits with Bounded Eluder Dimension). Consider a bandit problem
with unit-variance Gaussian noise but where the means are now given by a general function class F
mapping from Π to [0, 1]:

M = {M(π) = N (f(π), 1) | f ∈ F}. (26)

For such general settings, we might hope to capture the complexity of learning in terms of generalized
notions of dimension for F . We consider one such notion here: the eluder dimension.
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Definition A.5 (Eluder Dimension (Russo and Van Roy, 2013)). Let ďE(F , ε′) denote the length
of the longest sequence of actions {π1, . . . , πd} such that, for each n ≤ d, there exist functions

f, f ′ ∈ F with
√∑n−1

i=1 (f(πi)− f ′(πi))2 ≤ ε′ but f(πn)− f ′(πn) > ε′. The eluder dimension of

function class F at scale ε is then defined as dE(F , ε) = supε′≥ε ďE(F , ε′) ∨ 1.

The eluder dimension can be thought of as quantifying how easily a function class can be
“explored”: evaluating a pair of functions on dE(F , ε) points allows one to determine whether they
are nearly identical over the entire space. It is known to be bounded for many standard classes—for
example, for linear function classes with dimension d, dE(F , ε) ≤ Õ(d·log 1/ε)—and is also closely
related to the disagreement coefficient (Foster et al., 2020). Furthermore, it can be shown to be a
sufficient condition for bounded (worst-case) regret in general bandit problems (Russo and Van Roy,
2013). The following result shows that the eluder dimension bounds the Allocation-Estimation
Coefficient.

Proposition A.3. For the structured bandit classM considered in (26), we have

Cexp(M⋆, δ) ≤ 16dE(F ,
√
δ/2)

δ
.

This implies that

aecMε (M⋆) ≤ 16dE(F ,
√
δ/2)

δ
for scale δ = c · ε2∆8

⋆

dE(F , 12∆⋆)2
and ∆⋆ := min

{
∆⋆

min, 1/n
⋆
ε/36

}
,

where c > 0 is a universal constant.

Proposition A.3 highlights the ability of the Allocation-Estimation Coefficient to adapt to the
inherent complexity of “exploring” for the model class under consideration. We henceforth abbreviate
dE := dE(F ,

√
δ/2).

It is straightforward to show that Assumptions A.1 and A.2 are met in this setting with LKL, VM ≤
4 (see Appendix G.2). Furthermore, Assumption A.3 can be shown to hold with dcov scaling with
the covering number of F in the distance d(f, f ′) = supπ∈Π |f(π)− f ′(π)| and Ccov = O(1). In
general, it must be shown that n⋆ε is bounded for each M⋆ and class of interest; as we show in the
following examples, it is bounded for standard structured bandit settings such as linear bandits. We
have the following corollary to Theorem A.2.

Corollary A.2. In the structured bandit setting with bounded eluder dimension considered above,
AE2

⋆ has regret bounded as

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) + poly(dE, dcov,

1
ε ,

1
∆⋆

min
, n⋆ε/36, log log T ) · log

6/7(T ).

To the best of our knowledge, Corollary A.2 is the first result to show that it is possible to obtain
the instance-optimal rate in classes with bounded eluder dimension, with lower-order terms scaling
only polynomially in the eluder dimension. More generally, Corollary A.2 illustrates that AE2

⋆ can
adapt to the structural properties of the given model class, and achieve regret scaling with existing
notions of intrinsic dimension. ◁
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We next consider two examples of structured bandits where it is known that the eluder dimension
is bounded: linear bandits and generalized linear models. While these results are immediate given
Corollary A.2, the additional structure present in these settings allows us to obtain somewhat more
explicit results.

Example A.4 (Linear Bandits). Consider the class of linear bandits with unit-variance Gaussian
noise defined as

M = {M(π) = N (⟨θ, xπ⟩, 1) | θ ∈ Θ},

where Θ ⊆ Rd is some convex set with ℓ2 diameter O(1) and X := {xπ : π ∈ Π} ⊆ Rd is the arm
set, which we assume has ∥xπ∥2 ≤ 1 for all π ∈ Π. As in Example A.3, Assumptions A.1 and A.2
are met in this setting with LKL, VM ≤ 4; furthermore, Assumption A.3 is also met with dcov = O(d)
and Ccov = O(1). We then have the following bound on the AEC.

Proposition A.4. For the linear bandit classM defined above, we have

aecMε (M⋆) ≤ c · d
3

ε2
·
(

1

∆⋆
min

+ n⋆ε/36

)8

· polylog
(
d, 1ε ,

1
∆⋆

min
, n⋆ε/36

)
for a universal constant c > 0.

Using Proposition A.4, we obtain the following corollary to Theorem A.2.

Corollary A.3. In the linear bandit setting defined above, AE2
⋆ has regret bounded as

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) + poly(d, 1ε ,

1
∆⋆

min
, n⋆ε/36, log log T ) · log

6/7(T ).

Corollary A.4 has lower-order terms scaling similarly to the best known lower-order terms in the
linear bandit setting (Tirinzoni et al., 2020; Kirschner et al., 2021). These works, however, develop
algorithms which are specialized to the linear bandit setting, while Corollary A.4 is the instantiation
of a more general result designed for arbitrary general decision-making settings.

The following result shows that under general conditions, we can bound the parameter n⋆ε for
linear bandits.

Proposition A.5 (Informal). For linear bandits satisfying certain regularity conditions, n⋆ε is bounded
by a polynomial function of problem parameters and a geometry-dependent term scaling with the
structure of X and Θ.

The full statement of Proposition A.5 is given in Proposition G.2. The regularity condition for
Proposition A.5 requires primarily that θ⋆ lies sufficiently far within the interior of Θ (see Appendix
G.2.4 for further details). We remark that the guarantees given in both Tirinzoni et al. (2020) and
Kirschner et al. (2021) scale with geometric parameters very similar to n⋆ε .

◁

Example A.5 (Generalized Linear Models). In the generalized linear model setting, we take the
model class to be

M = {M(π) = N (g(⟨θ, xπ⟩), 1) | θ ∈ Θ},
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where Θ and X are as in Example A.4, and g(·) is a known link function which is increasing and
Lipschitz, but potentially nonlinear. Let gmax and gmin denote upper and lower bounds on the
derivative of g, respectively:

gmax := max
θ∈Θ,x∈co(X )

g′(⟨θ, x⟩) and gmin := min
θ∈Θ,x∈co(X )

g′(⟨θ, x⟩).

As in the linear bandit setting, we can show that Assumptions A.1 and A.2 are both met with
LKL, VM ≤ 4, and that Assumption A.3 is also met with dcov = O(d) and Ccov = O(gmax).
Furthermore, under the same conditions as for linear bandits, n⋆ε can be bounded for generalized
linear models exactly as for linear bandits, but with an additional scaling of (gmax

gmin
)2. We then have

the following.

Proposition A.6. For the generalized linear model classM defined above, we have

aecMε (M⋆) ≤ c · d
3g3max

ε2g3min

·
(

1

∆⋆
min

+ n⋆ε/36

)8

· polylog
(
d, 1ε ,

1
∆⋆

min
, n⋆ε/36

)
for a universal constant c > 0.

Using Proposition A.4, we obtain the following corollary to Theorem A.2.

Corollary A.4. In the generalized linear model setting defined above, AE2
⋆ has regret bounded as

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) + poly(d, gmax

gmin
, 1ε ,

1
∆⋆

min
, n⋆ε/36, log log T ) · log

6/7(T ).

To the best of our knowledge, this is the first result to obtain finite-time instance-optimality for
generalized linear models with lower-order terms polynomial in problem parameters. ◁

A.6.4. CONTEXTUAL BANDITS

The previous examples illustrate that AE2
⋆ is able to learn efficiently in a variety of structured bandit

settings. We now show that it leads to new guarantees for finite-action contextual bandits with general
function approximation.

Example A.6 (Contextual Bandits with Finitely Many Arms). Consider the contextual bandit setting
with context set X (which could be arbitrarily large) and action set A such that A := |A| <∞. Let
pX denote the context distribution, which we assume is known to the learner. The learning protocol
is then, for step t = 1, 2, 3, . . .:

1. Environment samples context xt ∼ pX .

2. Learner chooses action at ∈ A, receives reward rt.

We assume that rt = f⋆(xt, at) + wt for wt ∼ N (0, 1), for some f⋆ : X ×A → [0, 1]. We assume
as well that the learner is given access to a set of functions F such that f⋆ ∈ F .

To view this setting as a special case of the DMSO framework, we take the decision space to
be the set Π = (X → A) of all policies mapping from X to A, and take O = X as the observation
space. The learner’s decision at round t is a policy πt, and they receive a reward-observation pair
(rt, ot) = (rt, xt) under the process xt ∼ pX , rt ∼ N (f⋆(xt, πt(xt)), 1). The model classM is the
set of all instances of this form for f⋆ ∈ F .

The following result shows that the Allocation-Estimation Coefficient is be bounded by the
number of actions A, and is independent of the size of the context space. See Appendix G.3 for a
proof.
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Proposition A.7. For the contextual bandit setting, we can bound

Cexp(M⋆, ε) ≤ 4A

ε
,

which implies that

aecMε (M⋆) ≤ c · A
3

ε2
·
(

1

∆⋆
min

+ n⋆ε/36

)8

,

for a universal constant c > 0.

As in the cases of bandits with bounded eluder dimension, n⋆ε must be bounded for each M⋆

and class F of interest. It is straightforward to show, however, that Assumptions A.1 and A.2 are
met in this setting with LKL, VM ≤ 4, and, furthermore, that Assumption A.3 is also met with dcov
scaling as the covering number of F in the distance d(f, f ′) = supx∈X ,a∈A |f(x, a)− f ′(x, a)|, and
Ccov = O(1). We then have the following corollary.

Corollary A.5. In the finit-action contextual bandit setting considered above, AE2
⋆ has regret bounded

as

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) + poly(A, dcov,

1
ε ,

1
∆⋆

min
, n⋆ε/36, log log T ) · log

6/7(T ).

To the best of our knowledge, Corollary A.5 is the first instance-optimal guarantee in the
contextual bandit setting with general function approximation that obtains lower-order term scaling
polynomially in problem parameters. Notably, the lower-order term scales independently of the size
of the context space, |X |. We anticipate that extending this result to contextual bandit settings that
have large action spaces, but which exhibit additional structure allowing for efficient exploration
(e.g., linearity), will be straightforward. ◁

A.7. Application: Tabular Reinforcement Learning

As a final application of our results, we turn to the setting of episodic tabular reinforcement learning.

Episodic Markov decision processes. Recall that episodic reinforcement learning is a special case
of the DMSO framework in which each model M ∈ M is an episodic Markov Decision Process
(MDP) given by the tuple M = (S,A, H, {PM

h }Hh=1, {RM
h }Hh=1, s1). Here S is a set of states, A

a set of actions, H the horizon, PM
h : S × A → △S the probability transition kernel at step h,

RM
h : S × A → △R the reward distribution at step h, and s1 a deterministic initial state, which

we take to be fixed across models. We assume that RM
h (s, a) is unit-variance Gaussian, and that

Erh∼RM
h (s,a)[rh] ∈ [0, 1/H].6

The decision space Π consists of non-stationary policies π = (π1, . . . , πH), where πh : S → A.
For a fixed policy π, an episode proceeds in an MDP M proceeds as follows. First, beginning from
the initial state s1, we take action a1 ∼ π1(s1), receive reward r1 ∼ RM

1 (s1, a1), and transition
to s2 ∼ PM

1 (· | s1, a1). This continues for H steps at which point the episode terminates and the
process repeats. We define fM(π) := EM,π

[∑H
h=1 rh

]
as the expected reward achieved over the

entire episode under this process.

6. This assumption only serves to ensure that fM(π) ∈ [0, 1], in line with the convention for the rest of the paper. Our
results continue to hold up to poly(H) factors if Erh∼RM

h
(s,a)[rh] ∈ [0, 1].
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Each round t ∈ [T ] in the DMSO framework corresponds to an episode in the underlying
MDP M⋆. At each round, the learner selects a policy πt, and receives reward rt =

∑H
h=1 r

t
h and

ot = (st1, a
t
1, r

t
1, . . . , s

t
H , a

t
H , r

t
H), where (st1, a

t
1, r

t
1, . . . , s

t
H , a

t
H , r

t
H) is the trajectory that results

from executing πt in M⋆ for a single episode.

Tabular model class. In the tabular RL setting, it is assumed that S := |S| and A := |A| are
both finite, and we take Π to be the set of all deterministic policies. In addition to assuming thatM
consists of tabular MDPs, we restrict to the following subclass:

Mtab(Pmin) :=

{
M = (S,A, H, {PM

h }Hh=1, {RM
h }Hh=1, s1) : min

s,a,s′,h
PM
h (s′ | s, a) ≥ Pmin

}
.

(27)

While the assumption that mins,a,s′,h P
M
h (s′ | s, a) ≥ Pmin may be seen as restrictive, the guarantees

we provide scale only with log 1
Pmin

, so Pmin can be taken to be extremely small without affecting
the result significantly.

Note that when our results are specialized to reinforcement learning, ∆⋆
min denotes the gap

between the performance of the optimal policy, and the next-best deterministic policy. This quantity
can be lower bounded in terms of other standard quantities including gaps in the rewards at each state
and the transition probabilities.

Toward instantiating Theorem A.2 in this tabular RL setting, we first provide a bound on the
Allocation-Estimation Coefficient, which we establish by first bounding the Uniform Exploration
Coefficient.

Proposition A.8. ForM←Mtab(Pmin), we can bound7

CH
exp(M⋆, ε) ≤ c · SAH

2 · log2H
ε2

for a universal constant c > 0, which implies that

aecMε (M⋆) ≤ c · S
5A5H14 · log10H

ε4
·
(

1

∆⋆
min

+ n⋆ε/36

)24

· log4 1

Pmin

for a universal constant c > 0.

Next, it can be shown that Assumptions A.1 to A.3 hold forM←Mtab(Pmin) with constants
(see Appendix G.5):

LKL = VM = O(H · log 1/Pmin), dcov = O(S2AH), Ccov = O(H/Pmin).

We then obtain the following corollary to Theorem A.2.

Corollary A.6. ForM←Mtab(Pmin) and ε, AE2
⋆ has regret bounded by

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) + poly(S,A,H, 1ε ,

1
∆⋆

min
, log 1

Pmin
, n⋆ε/36, log log(T )) · log

6/7(T ).

7. Here CH
exp denote the uniform exploration coefficient as defined in Definition A.4, but with DKL(· ∥ ·) replaced with

D2
H(·, ·). To prove Proposition A.8, we show that a variant of Proposition A.1 still holds with this alternate definition

of Cexp(M, ε).
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To our knowledge, Corollary A.6 is the first guarantee for tabular RL that achieves the instance-
optimal rate while obtaining lower-order terms that scale only polynomially in problem parameters.
As noted previously, existing approaches to instance-optimal regret in tabular RL (Ok et al., 2018;
Dong and Ma, 2022) have lower-order terms that scale exponentially in problem parameters, and as a
result are truly asymptotic in nature.

While Corollary A.6 is stated in terms of n⋆ε for the sake of generality, as we show in Appendix G.5,
if M⋆ has rewards that are sufficiently small (in particular, if it satisfies E

rh∼RM⋆

h (s,a)
[rh] < 1/H2

for all (s, a, h)), then we can bound

n⋆ε ≤ c · g⋆

∆⋆
min

·
(
1 +

g⋆

ε(∆⋆
min)

2

)
.

In this case, Corollary A.6 scales polynomially in all standard problem parameters.
Let us remark that the prior work of Dong and Ma (2022) does not require that PM

h (s′ | s, a) ≥
Pmin as we do (the work of Ok et al. (2018) only holds for ergodic MDPs, itself a very strong
assumption). However, the lower-order term obtained in Dong and Ma (2022) scales polynomially in
the inverse probability of observing the trajectory that occurs with minimum (non-zero) probability.
In general, this will scale exponentially in H , and inversely with the probability of the transition with
minimum (non-zero) probability occurring, that is mins,a,s′,h:PM

h (s′|s,a)>0 P
M
h (s′|s, a). Thus, while

we must impose the stronger condition that all transitions occur with some probability Pmin, our
bounds only scale logarithmically in this quantity, and polynomially in S,A, and H , a significant
improvement over Dong and Ma (2022). Understanding whether it is possible to remove the
additional restrictions we impose while still obtaining reasonable finite-time performance is an
interesting direction for future work.

As far as we are aware, there is no prior work on instance-optimal algorithms for RL settings
with general function approximation. While we have only instantiated Theorem A.2 and AE2

⋆ in the
tabular RL setting, the tools we have developed can also be applied to RL with general model classes.
Exploring the application of AE2

⋆ to, for example, bilinear classes (Du et al., 2021) is an exciting
avenue for future work.

A.8. Overview of Analysis

To close this section we briefly sketch the proof of the regret bound for AE2 (Theorem A.1); the
proof of the regret bound for AE2

⋆ (Theorem A.2) builds on these ideas, but is slightly more involved.
See Appendix F for full proofs.

Let us refer to the exploit phase as the subset of rounds t in which Line 6 of AE2 is reached, and
refer to the explore phase as the subset of rounds in which Line 8 is reached. We focus on bounding
the regret in the explore phase—it can be shown (Lemma F.1) that in the exploit phase, where the if
statement on Line 6 is true, πM̂s = π⋆ for all but O(log log T ) rounds, so that the regret incurred in
this phase is at most O(log log T ).

Let sT denote the total number of rounds in the explore phase up to time T . Fix an explore round
s ∈ [sT ]. We bound the regret ∆⋆(ps) by considering three cases.

Case 1: M⋆ ∈ M\Mgl
ε/6(λ

s; nmax). In this case, λs is not an optimal (normalized) allocation
for M⋆, but we can use the AEC to argue that the information gained by the algorithm is large. In
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particular, since ps plays ωs with probability at least 1− q, we can bound

1

E
M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]]

≤ 1

1− q
· 1

E
M̂∼ξs [Eπ∼ωs [DKL

(
M̂(π) ∥M⋆(π)

)
]]

(a)

≤ 1

1− q
· min
λ,ω∈△Π

sup
M∈M\Mgl

ε/6
(λ;nmax)

1

E
M̂∼ξs [Eπ∼ωs [DKL

(
M̂(π) ∥M(π)

)
]]

≲
1

1− q
· aecε/12(M)

as long as nmax is chosen appropriately; here, (a) follows because M⋆ ∈ M\Mgl
ε (λs; nmax) by

assumption in this case, and by the choice of λs and ωs given in Eq. (18). Rearranging this gives

1 ≲
1

1− q
· aecε/12(M) · E

M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]].

This reflects that, when M⋆ ∈M\Mgl
ε/6(λ

s; nmax), our choice of ps ensures that M̂ ∼ ξs and M⋆

can be distinguished, with the amount of information gained lower bounded by O(aecε/12(M)−1)

Adding and subtracting 2
1−q · aecε/12(M) · E

M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]] to ∆⋆(ps),

and using that ∆⋆(ps) ≤ 1 always, we then have that the instantaneous regret in this case is bounded
by

∆⋆(ps) = ∆⋆(ps)− 2

1− q
· aecε/12(M) · E

M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]]

+
2

1− q
· aecε/12(M) · E

M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]]

≤ −1 + 2

1− q
· aecε/12(M) · E

M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]].

Summing over s, it follows that the total regret in this case is bounded by

sT∑
s=1

∆⋆(ps) · I{s in Case 1} ≤ 2

1− q
· aecε/12(M) ·EstKL(sT )−

sT∑
s=1

I{s in Case 1}.

Furthermore, since regret is always non-negative—that is, ∆⋆(p) ≥ 0 for all p—rearranging this
inequality leads to a bound on the total number of times this case can occur:

sT∑
s=1

I{s in Case 1} ≤ 2

1− q
· aecε/12(M) ·EstKL(sT ).

Critically, as given in (17), EstKL(sT ) scales at most poly-logarithmically in sT . Thus, as long as
sT is at most O(log T ), the total regret incurred in this case (as well as the total number of times this
case can occur), will be at most O(aecε/12(M) · log log T ).
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Case 2: M⋆ ∈ Mgl
ε/6(λ

s; nmax) and π⋆ ∈ πM̂s . In this case, we have that λs is a Graves-Lai
optimal allocation for M⋆. Thus, it follows that

∆⋆(λs) ≤ (1 + ε/6)g⋆/n⋆ and inf
M∈Malt(M⋆)

Eπ∼λs [DKL(M
⋆(π) ∥M(π))] ≥ (1− ε/6)/n⋆

for some n⋆ ≤ nmax. This implies that, for any M ∈Malt(M⋆), we can bound

∆⋆(ps) = ∆⋆(ps)− (1 + ε)g⋆Eπ∼ps [DKL(M
⋆(π) ∥M(π))] + (1 + ε)g⋆Eπ∼ps [DKL(M

⋆(π) ∥M(π))]

≲ (1 + ε/6)g⋆/n⋆ − (1 + ε)(1− ε/6)g⋆/n⋆ + (1 + ε)g⋆Eπ∼ps [DKL(M
⋆(π) ∥M(π))]

≲ −εg⋆/n⋆ + (1 + ε)g⋆Eπ∼ps [DKL(M
⋆(π) ∥M(π))]

≤ −εg⋆/nmax + (1 + ε)g⋆Eπ∼ps [DKL(M
⋆(π) ∥M(π))]

Since this bound holds uniformly for all M ∈Malt(M⋆), it follows that the total regret in this case
can be bounded as
sT∑
s=1

∆⋆(ps) · I{s in Case 2} ≲ (1 + ε)g⋆ ·
sT∑
s=1

inf
M∈Malt(M⋆)

Eπ∼ps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

− εg⋆

nmax

sT∑
s=1

I{s in Case 2}.

To bound this, the key observation is that, if we explore at round s, then it must be the case that,

for all πM̂s ∈ πM̂s , there exists some M ∈ Malt(πM̂s) such that
∑s−1

i=1 EM̂∼ξi [log
PM̂,πi

(ri,oi)

PM,πi (ri,oi)
] ≤

log(T log T ). Using Assumption A.1 and Assumption A.2 to move from M̂ ∼ ξi to M⋆ and to
relate the observed log-likelihood ratios to the KL divergence, we can furthermore show that

inf
M∈Malt(M⋆)

sT∑
s=1

Eπ∼ps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

≲ inf
M∈Malt(M⋆)

sT∑
s=1

E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM,πs(rs, os)

]
+
√
sT ·EstKL(sT )

≲ log(T log T ) +
√
sT ·EstKL(sT ).

This allows us to bound

(1 + ε)g⋆ ·
sT∑
s=1

inf
M∈Malt(M⋆)

Eπ∼ps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

≲ (1 + ε)g⋆ · log T + g⋆
√
sT ·EstKL(sT ).

Thus, as long as sT = O(log T ), we can bound the total regret incurred in Case by (1+ε)g⋆ · log T +
o(log T ). Using that regret is always lower bounded by 0 in the same fashion as Case 1, we can
further use this to bound the total number of times that Case 2 occurs by

sT∑
s=1

I{s in Case 2} ≤ nmax

εg⋆

(
g⋆ · log T + g⋆

√
sT ·EstKL(sT )

)
.
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The intuition for this case is that, since we are playing a Graves-Lai allocation for M⋆, the regret will
scale with g⋆, the instance-optimal rate, and, furthermore, the allocation will allow us to distinguish
M⋆ from alternatives M ∈Malt(M⋆). Using that the total estimation error is bounded, and that we
only enter the explore phase if there exists some M ∈Malt(M⋆) that we cannot distinguish from
M⋆, this ultimately implies that the total number of times this phase occurs, and therefore the total
regret incurred by this phase, is bounded.

Case 3: M⋆ ∈ Mgl
ε/6(λ

s; nmax) and π⋆ ̸∈ πM̂s . In this case, we bound ∆⋆(ps) by adding and

subtracting E
M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]] in the same fashion as Case 1. Since π⋆ ̸∈ πM̂s ,

it can be shown that ξs must place Ω(∆min) probability mass on M ∈ Malt(M⋆), allowing us to
lower bound E

M̂∼ξs [Eπ∼ps [DKL

(
M̂(π) ∥M⋆(π)

)
]] using the same reasoning as in Case 2. In total,

we can show that the regret in this case is bounded by O( g⋆

∆min
· EstKL(sT )), and the number of

times this case can occur is at most O( nmax
ε∆min

·EstKL(sT )).

Concluding the Proof. Combining all three cases, we have shown that the regret of the explore
phase is bounded by

(1 + ε)g⋆ · log T + Õ

(
1

1− q
· aecε/12(M) ·EstKL(sT ) + g⋆

√
sT ·EstKL(sT ) +

g⋆

∆min
·EstKL(sT )

)
.

Furthermore, using our bounds on the number of times each case can occur, one can show that
sT = O(log T ). Since EstKL(sT ) is at most polylogarithmic in sT , it follows that the regret is
bounded as

(1 + ε)g⋆ · log T + Õ
(
aecε/12(M) + aec

1/2
ε/12(M) · log1/2 T

)
,

as stated in Theorem A.1.

Appendix B. Lower Bounds for Learning the Optimal Allocation

The AE2 algorithm achieves instance-optimal regret by explicitly learning an ε-optimal Graves-Lai
allocation for the underlying model M⋆. In this section, we introduce an abstract formulation for the
problem of learning an optimal allocation (Appendix B.1), and provide lower bounds which show
that the Allocation-Estimation Coefficient is a fundamental limit for this task (Appendix B.2). We
then present several examples illustrating lower bounds on the Allocation-Estimation Coefficient
(Appendix B.3), and discuss how our lower bounds relate to the problem of minimizing regret
(Appendix B.4).

Additional Notation. Throughout this section we will also make use of the following definition:

Λ(M ; ε, nmax) :=

{
λ ∈ △Π : ∃n ∈ (0, nmax] s.t. ∆M(λ) ≤ (1 + ε)gM

n
, (28)

inf
M ′∈Malt(M)

Eπ∼λ
[
DKL

(
M(π) ∥M ′(π)

)]
≥ 1− ε

n

}
.

That is, Λ(M ; ε, nmax) denotes the set of normalized allocations that are Graves-Lai optimal for M
with tolerance ε, and have normalization factor at most nmax. Unless otherwise stated, the results in
this section do not make use of Assumption 1.3 or Assumption A.4.
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B.1. Learning the Optimal Allocation: Minimax Formulation

We consider the following protocol, which captures the task of learning an optimal Graves-Lai
allocation for an unknown model M⋆.

• For t = 1, . . . , T , sample πt ∼ pt and observe (rt, ot).

• Based on the entire historyHT = (π1, r1, o1), . . . , (πT , rT , oT ), output a normalized alloca-
tion λ̂ ∈ △Π. The allocation may be randomized according to a distribution q ∈ △△Π

.

We formalize an algorithm for this task as a pair A = (p, q), where q(· | HT ) is the distribution
over λ̂ given the history, and p =

{
pt
}
t∈[T ] is a sequence of exploration distributions of the form

pt(· | Ht−1). We let PM,A(·) denote the law of HT when M is the underlying model and A is the
algorithm, and let EM,A[·] denote the corresponding expectation. The goal of the algorithm is to
ensure that λ̂ is an ε-optimal allocation for M⋆ with high probability, i.e.

PM⋆,A
(
λ̂ ∈ Λ(M⋆; ε, nmax)

)
≥ 1− δ

for some failure probability δ > 0 and normalization factor nmax > 0
Intuitively, learning an optimal Graves-Lai allocation is closely related to achieving instance-

optimal regret, but there are some subtle technical differences which we discuss in detail in the
sequel. We study the former task because we find it to be more amenable to non-asymptotic lower
bounds, and because it captures the behavior of “natural” algorithms such as AE2 and essentially
every existing asymptotically optimal algorithm we are aware of.

Minimax framework. To provide lower bounds on the complexity of learning an optimal Graves-
Lai allocation, we consider a minimax framework. Our main quantity of interest will be:

T gl(M; ε, nmax, δ) = inf
A

inf
{
T ∈ N | PM,A

(
λ̂ ∈ Λ(M ; ε, nmax)

)
≥ 1− δ, ∀M ∈M

}
. (29)

This represents the earliest time T ∈ N for which there exists an algorithm that learns an ε-optimal
allocation with probability at least 1− δ, and does so uniformly for all M ∈M. Recall that for our
upper bounds (Theorem A.1), the Allocation-Estimation Coefficient gives a bound on the lower-order
terms in the regret (reflecting the time required to learn an ε-optimal allocation) that holds uniformly
for all models in the classM. To understand the optimality of uniform bounds of this type, a minimax
framework is natural. This framework also naturally complements recent non-asymptotic algorithms
for linear models such as (Tirinzoni et al., 2020; Kirschner et al., 2021), where the complexity of
exploration is captured by problem-dependent quantities such as the feature dimension, which are
bounded uniformly for all models in the class. Nonetheless, exploring other notions of optimality
(for example, instance-dependent complexity) for learning the Graves-Lai allocation is an interesting
direction for future research.

Note that the quantity (29) does not place any constraint on the regret of the algorithm under
consideration. It will also be useful to consider the notion

T gl(M; ε, nmax, δ, R)

= inf
A

inf
{
T ∈ N | PM,A

(
λ̂ ∈ Λ(M ; ε, nmax)

)
≥ 1− δ, EM,A[Reg(T )] ≤ R · log(T ), ∀M ∈M

}
,

(30)
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which captures the minimax complexity of learning the Graves-Lai allocation, subject to the constraint
that the algorithm achieves logarithmic regret throughout the learning process. This notion is
particularly well suited to complement the upper bounds achieved by algorithms such as AE2.

We remark that the restriction to allocations with normalization factor no more than nmax in
the definitions above is natural for several reasons. First, without such a restriction, the returned
allocation can place an arbitrarily small amount of mass on informative actions, and an arbitrarily
large amount of mass on the optimal action, since any Graves-Lai optimal allocation is still Graves-
Lai optimal if the amount of mass on the optimal action is increased arbitrarily. While technically
Graves-Lai optimal, such allocations do not reflect an allocation one could play over a finite time
horizon in order to certify the optimal decision π⋆—as any algorithm with finite-time guarantees must
do—and therefore do not reflect the cost such an algorithm must pay to learn an allocation. Second,
given knowledge of the optimal action, any Graves-Lai optimal allocation which has a normalization
factor larger than nmax can be transformed into a Graves-Lai optimal allocation with normalization
factor nmax by adjusting the mass on the optimal action, assuming nmax is taken to be sufficiently
large (in particular, as large as nmax(M, ε); cf. Eq. (19)). Therefore, if we restrict our attention to
the task to learning the Graves-Lai allocation for a subclass of models which agree on the optimal
action (as we do in Theorem B.2), any lower bound for learning an allocation with normalization
nmax also applies to learning an unrestricted allocation, for large enough nmax. Finally, AE2 itself
plays allocations with bounded normalization, which as we note in Appendix A.2, does not affect the
optimality of its performance—allocations with bounded normalization are always sufficient.

B.2. Main Result

We state two lower bounds. The first scales with the version of the Allocation-Estimation Coefficient
appearing in our upper bound (Theorem A.1), but leads to a lower bound on T gl, while the second
lower bound scales with the AEC for a restrictionM, but is exponentially stronger in the sense that
it provides a similar lower bound on log(T gl). We remark briefly that the regularity conditions of
Appendix A.1 are not required to hold here, unless otherwise stated.

Theorem B.1 (Main lower bound—weak variant). Let ε > 0, nmax > 0, andM0 ⊆M be given,
and set δ := ε

2 ·min{1, infM∈M0 g
M/nmax}. Unless

T >
δ

8
· sup
M∈M+

aecM2ε(M0,M),

any algorithm must have, for some M ∈M0:

PM,A
[
λ̂ /∈ Λ(M ; ε, nmax)

]
≥ δ

6
.

Stated equivalently, Theorem B.1 implies that for any ε > 0, if we set δ = c·ε· infM∈M0 g
M/nmax

for sufficiently small numerical constant c, then

T gl(M; ε, nmax, δ) ≥ δ · sup
M∈M+

aec2ε(M0,M).
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Remark B.1 (Choice of M0). Theorem B.1 is stated with respect to an arbitrary subset, M0,
of M. While one could simply choose M0 ← M, in some cases it is advantageous to choose
M0 ⊊M. In particular, note that our lower bound scale with infM∈M0 g

M . For classesM where
infM∈M gM = 0—which will be the case, for example, ifM corresponds to a model class where
reward means form a compact set—it is advantageous to restrictM0 so that it corresponds only to
instances with gM > 0.

We remark as well that the restriction of the lower bound toM0 is somewhat analogous to our
upper bound Theorem A.2, which provides guarantees in terms of the AEC of a restriction ofM,M⋆.
We may therefore chooseM0 ←M⋆ to obtain lower bounds matching the scaling of Theorem A.2.
In the following section we provide several examples of howM0 can be chosen to yield intuitive
lower bounds.

Lastly, let us mention that M0 may also be chosen to yield lower bounds that have a more
instance-dependent flavor. For example, given some instance M⋆, we could chooseM0 to correspond
to all instances identical to M⋆ up to a permutation of the decisions, in which case Theorem B.1 is
will yield lower bounds on the performance of any algorithm on a permutation of M⋆, rather than
over the entire class.

Remark B.2. The lower bound in Theorem B.1, forM0 =M, scales with the quantity

sup
M∈M+

aecε(M,M) ≥ sup
M∈co(M)

aecε(M,M) ≥ sup
ξ∈△M

aecε(M, ξ) = aecε(M),

which at first glance might appear to be larger than the version of the AEC appearing in our upper
bounds. However, there is no contradiction, because these quantities can be shown to be equivalent
(up to problem-dependent parameters) under the assumptions with which Theorem A.1 is proven.

Our second lower bound yields a lower bound on log(T gl) as opposed to T gl—a significantly
stronger result—but scales with the AEC for a restricted class. To state the result, for M ∈M+ and
M0 ⊆M, define

Mopt
0 (M) =

{
M ∈M0 | πM ⊆ πM , DKL

(
M(π) ∥M(π)

)
= 0 ∀π ∈ πM

}
.

This represents the set of models M where 1) the optimal decisions for M are also optimal for M
and 2) playing the an optimal decision reveals no information that can distinguish M and M . Our
second lower bound scales with the AEC forMopt

0 (M), and is restricted to algorithms with low
regret.

Theorem B.2 (Main lower bound—strong variant). Let ε > 0, nmax > 0, andM0 ⊆M be given,
and define δ = ε

2 ·min{1, infM∈M0 g
M/nmax}. Unless

sup
M∈M0

gM

∆M
min

· log(T ) ≥ Ω(δ2) · sup
M∈M+

aecM2ε(M
opt
0 (M),M),

there is no algorithm that simultaneously ensures that

1. EM,A[Reg(T )] ≤ 2 · gM log(T ), ∀M ∈M0.

2. PM,A
[
λ̂ /∈ Λ(M ; ε, nmax)

]
≤ δ

12 , ∀M ∈M0.
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Equivalently, Theorem B.2 implies that for any ε > 0, if we set δ = c · ε · infM∈M0 g
M/nmax

for a sufficiently small numerical constant c, then for R := 2 supM∈M0
gM ,

log(T gl(M; ε, nmax, δ, R)) ≥ δ2 · infM∈M0 ∆
M
min

R
· sup
M∈M+

aecM2ε(M
opt
0 (M),M).

B.3. Examples

As we discuss in the sequel, the dependence on the Allocation-Estimation Coefficient in our lower
bounds (particularly Theorem B.2) qualitatively matches the dependence on the AEC in our main
upper bounds, Theorems A.1 and A.2. We defer a detailed discussion comparing our upper and lower
bounds for a moment, and make matters concrete by considering three examples: the informative
arm example from the introduction (Example 1.1), multi-armed bandits, and tabular reinforcement
learning. We defer proofs for all examples to Appendix H.4.

Example B.1 (Searching for an Informative Arm (revisited)). LetM be the class constructed in
Example 1.1 with parameters N,A ∈ N and β ∈ (0, 1/2). LetM0 denote the restriction ofM to
models with ∆M

min ≥ ∆ for some ∆ ∈ (0, 1/6) (so that πM is unique), and fM(πM) < 1. As long as
N ≥ 16 and β log(1 + βA) ≥ 2∆/(A− 1), we have

sup
M∈M+

aecMε (Mopt
0 (M),M) ≥ N

4β
. (31)

For this construction, we have ∆M
min ≥ ∆ and Ω(1) ≤ gM ≤ O(β−1) for all M ∈ M0. Thus,

Theorem B.2 implies that any algorithm with EM,A[Reg(T )] ≤ 2gM log(T ) for all M ∈M0 must
fail to learn an ε-optimal allocation with probability δ = Ω(ε/nmax) unless

sup
M∈M

gM

∆M
min

· log(T ) ≳ ε2

n2max

· N
β
,

which implies that log(T gl(M0; ε, nmax, δ, R)) ≳ ε2/n2max ·N for R = 2 supM∈M gM = O(β−1).
Any Graves-Lai allocation need only take at most O(β−1) pulls to eliminate alternative instances, so
an appropriate choice of nmax is O(β−1), yielding log(T gl(M0; ε, nmax, δ, R)) ≳ β2ε2 ·N . While
the dependence on the parameter nmax, ε,∆ > 0 here is certainly loose, this formalizes the intuition
sketched in the introduction: any algorithm that learns an optimal allocation must explore Ω(N)
times, yet any algorithm that achieves near-instance-optimal regret EM,A[Reg(T )] ≤ 2gM log(T ) ≲
β−1 log(T ) can play a sub-optimal decision no more than roughly β−1 log(T )/∆ times, leading to
the constraint that

log(T ) ≳ N.

We can also apply Theorem B.1 to show that any algorithm must fail to learn an ε-optimal allocation
with probability δ = Ω(ε/nmax) unless T ≳ ε/nmax · Nβ . ◁

Example B.2 (Finite-Armed Bandit). Let A ≥ 6 and ∆ ∈ (0, 1/2) be given and set Π = [A]. Let
M be the set of all multi-armed bandit instances with Gaussian noise:

M =
{
M(π) = N (fM(π), 1/2) | fM ∈ [0, 1]A

}
(32)
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and letM0 = {M ∈M : |πM | = 1,∆M(π) ∈ [∆, 2∆] for π ̸= πM , fM(πM) < 1} denote the set
of all bandit instances where suboptimal arms have gaps on order ∆. Then for all ε ∈ (0, 1/32),

sup
M∈M

aecMε (Mopt
0 (M),M) ≥ c · ε−2 · A

∆2
, (33)

where c > 0 is an absolute constant.
It can be shown that, by the construction of M0, gM = Θ(A/∆) for all M ∈ M0, so δ ∝

ε · min{1, A
∆nmax

}. Theorem B.1 then implies that any algorithm must fail to learn an ε-optimal
allocation with probability δ = Ω(ε ·min{1, A

∆nmax
}) unless

T ≳ min

{
1,

A

∆nmax

}
· A

ε∆2
.

Any Graves-Lai allocation need only take O( A
∆2 ) pulls to eliminate all alternate instances, so a reason-

able choice of nmax is therefore O( A
∆2 ). With this choice of nmax, we have T gl(M; ε, nmax, δ) ≳ A

ε∆ .
We remark that the scaling on all parameters here is natural. Intuitively, we would expect that we
need to pull each arm at least once to learn a near-optimal allocation, yielding an Ω(A) scaling. In
addition, note that for multi-armed bandits, the optimal allocation places mass ∝ 1

∆2 on arms with
gap ∆. To correctly estimate this proportion requires an accurate estimate of ∆, which becomes
increasingly difficult as ∆ becomes smaller, yielding an Ω( 1

∆) scaling. Finally, as we decrease ε,
we require that the returned allocation becomes closer to a truly optimal allocation, and we would
therefore expect an Ω(1ε ) scaling.

Note that the result derived by applying Theorem B.1 above only gives a lower bound on T . To
obtain a lower bound on log(T ), we combine Theorem B.2 and Eq. (33) with nmax = O( A

∆2 ) as
above, which implies that any algorithm with EM,A[Reg(T )] ≤ 2gM log(T ) for all M ∈M0 must
fail to learn an ε-optimal allocation with probability δ = Ω(ε ·min{1, A

∆nmax
}) unless

sup
M∈M0

gM

∆M
min

· log(T ) ≳ A,

or equivalently log(T gl(M; ε, nmax, δ, R)) ≳ A
supM∈M0

gM/∆M
min

for R = 2 supM∈M gM . To see

why such scaling is natural, note that any algorithm which has EM,A[Reg(T )] ≤ 2gM log(T ) for
each instance M can afford to explore (that is, play a suboptimal decision) at most 2 gM

∆M
min

log(T )

times, or their regret could exceed 2gM log(T ). However, no algorithm has any hope of learning an
optimal allocation unless they play every arm at least once, so taking at least A pulls of suboptimal
arms seems unavoidable, and we therefore would expect that we must have 2 gM

∆M
min

log(T ) ≳ A,
which is precisely the necessary scaling shown here.

We make two remarks on this log(T ) lower bound. First, note that due to the presence of the δ2

term in Eq. (33) (which we believe to be loose), the lower bound we derive by applying Theorem B.2
does not scale with the parameter ε−1, as one might hope. Second, as noted, for M ∈M0 forM0

chosen as in Example B.2, we have gM = Ω(A/∆), in which cases the dependence on A cancels,
and the lower bound becomes trivial. Note that this is somewhat to be expected. Theorem B.2 will
give a trivial lower bound whenever supM∈M0

gM is much larger than the AEC. Recall that in our
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upper bound, Theorem A.2, the leading order g⋆ · log T term will dominate the lower-order terms
once

g⋆ · log T ≳ Ω(aecε(M)).

Therefore, if g⋆ is much larger than the AEC, Theorem A.2 simply gives an upper bound scaling
as approximately g⋆ · log T , as long as log T = Ω(1). The interpretation in this setting is that the
complexity of learning the Graves-Lai allocation is dominated by the regret incurred by playing the
Graves-Lai allocation, which we know is necessary from Proposition 1.1, and therefore we would
not expect lower-order terms to be significant components of the regret, as reflected by Theorem A.2.
However, as we have already shown, In settings such as Example B.1 where this is not the case and
the AEC is much larger than g⋆, Theorem B.2 will give a non-trivial lower bound which reflects the
difficulty of learning the optimal allocation. ◁

Example B.3 (Tabular Reinforcement Learning). Let S,A,H ∈ N and ∆ ∈ (0, 1/2) be given, and
assume that SA ≥ 24 and H ≥ log2(S/2). LetM be the set of all tabular MDPs with 1) |S| = S,
|A| = A and horizon H , and 2) Gaussian rewards with variance σ2 = 1/2 (cf. Appendix A.7). Let
M0 be the result of restrictingM in the same fashion as Example B.2. Then for all ε ∈ (0, 1/32),

sup
M∈M

aecMε (Mopt
0 (M),M) ≥ c · ε−2 · SA

∆2
, (34)

where c > 0 is an absolute constant.
It can be shown that, by the construction of M0, gM ≥ Ω(SA/∆) for all M ∈ M0. Thus,

analogous to the multi-armed bandit example, Theorem B.1 and Eq. (34) imply that any algorithm
must fail to learn an ε-optimal allocation with probability δ = Ω(ε ·min{1, SA

∆nmax
}) unless

T ≳ min

{
1,

SA

∆nmax

}
· SA
ε∆2

.

Choosing nmax = O(SA
∆2 ) gives T gl(M; ε, nmax, δ) ≳ SA

ε∆ . With this same choice of nmax, Theo-
rem B.2 implies that any algorithm with EM,A[Reg(T )] ≤ 2gM log(T ) for all M ∈M0 must fail to
learn an ε-optimal allocation with probability δ = Ω(ε∆) unless

sup
M∈M0

gM

∆M
min

· log(T ) ≳ SA,

or equivalently log(T gl(M; ε, nmax, δ, R)) ≳ SA
supM∈M0

gM/∆M
min

for R = 2 supM∈M0
gM .

◁

B.4. Discussion and Interpretation

Our lower bounds show that the Allocation-Estimation Coefficient serves as a fundamental limit on
the sample complexity required to learn an approximate Graves-Lai allocation. In particular, they
capture phenomena such as the necessity of searching for an informative arm in Example 1.1 that are
missed by purely asymptotic analyses. To the best of our knowledge, our lower bounds represent
the first attempt to systematically understand the sample complexity of learning the Graves-Lai
allocation in a general decision making framework. As such, they are somewhat coarse (in particular,
the dependence on parameters such as ε, nmax, and ∆M

min is almost certainly loose), and they are
best thought of as a starting point for further research. In what follows, we provide additional
interpretation of the results, and highlight some of the most interesting remaining questions.
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Regret versus learning the optimal allocation. Theorems B.1 and B.2 lower bound the sample
complexity required to learn an ε-optimal Graves-Lai allocation. Intuitively, this task is closely
related to achieving instance-optimal regret. Our analysis of AE2 shows that it is sufficient, and many
prior works aim to directly estimate the optimal allocation as well. However, it is unclear to what
extent learning the optimal allocation is necessary to achieve instance-optimal regret.

In more detail, it is quite straightforward to show that if an algorithm achieves instance-optimal
regret, its empirical frequencies act as an optimal allocation in expectation.

Lemma B.1. Let ε ∈ (0, 2), and suppose that Assumption A.4 holds. Fix T ∈ N and consider an
algorithm A such that for all M ∈M,

EM,A[Reg(T )] ≤ (1 + ε)gM · log(T ).

For each M ∈M, define ηM ∈ RΠ
+ via ηM(π) = EM,A

[
T (π)
log(T )

]
, where T (π) denotes the number of

pulls of decision π, and define λM = ηM/∥ηM∥1. Then if

log(T ) ≥ 6

ε
log

(
sup
M∈M

2gM

∆M
min

· log(T )
)
,

we have that for all M ∈M,
λM ∈ Λ(M ; ε). (35)

This result gives a guarantee on the expected frequencies of any instance-optimal algorithm, but
does not give any guarantee for the realized frequencies. As such, without further assumptions on the
algorithm under consideration, it is unclear whether instance-optimal regret implies that it is possible
to learn an optimal allocation with high or even constant probability. We cannot currently rule out
the existence of pathological algorithms for which ηM is optimal in expectation, yet the empirical
arm frequencies deviate from the mean with moderate probability. Nonetheless, if one is willing
to make stronger assumptions on the algorithm under consideration—in particular, that the second
moment of regret is controlled—then it is possible to derive lower bounds on regret directly.

Theorem B.3 (Simplified version of Theorem H.3). Let the time horizon T ∈ N and ε ∈ (0, 1/2) be
given, and suppose that Assumptions A.2 and A.4 hold. Suppose there exists an algorithm A with the
property that for all M ∈ M: 1) EM,A[Reg(T )] ≤ (1 + ε)gM log(T ), 2)

√
EM,A[(Reg(T ))2] ≤

2gM log(T ), and 3) for all π ∈ Π, if EM,A[T (π)] ̸= 0, then EM,A[T (π)] ≥ 1. Then if we define
δ = ε ·min{1, infM∈M0

gM

3gM/∆M
min+nMε

}, it must be the case that

log3(T ) ≥ δ2

C
· sup
M∈M+

aecM4ε(Mopt(M),M).

for C ≤ O
(
(supM∈M

gM

∆M
min

)4 · V
2
M log(δ−1)

ε2

)
.

See Appendix H.5 for a full statement and details. The idea behind the proof is to 1) show (via
robust mean estimation) that any instance-optimal algorithm with well-behaved tails can be used
to estimate the optimal allocation with high probability (with a small blowup in time horizon), and
then 2) appeal to Theorem B.2. More work is required to understand whether 1) we can prove lower
bounds on regret directly, and 2) whether it is possible to show that low regret and learning the
optimal allocation are equivalent in a stronger sense.
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Comparing upper and lower bounds. Keeping the differences between regret minimization and
learning the optimal allocation in mind, let us highlight that the lower bound on T provided by
Theorem B.2 seems to qualitatively match the upper bound from Theorems A.1 and A.2. In particular,
ignoring problem-dependent parameters and polylogarithmic factors, the upper bound Theorem A.1
scales, for every model M ∈M, as

EM [Reg(T )] ≤ (1 + ε)gM log(T ) + Õ+(aecε(M)).

In order for this bound to simplify to, say,

EM [Reg(T )] ≤ (1 + 2ε)gM log(T ),

we need

gM · log(T ) ≥ Ω̃+(1) · aecε(M)

ε
,

which has similar scaling to the lower bound

log(T ) ≳ Ω̃+(1) · sup
M∈M+

aecMε (Mopt
0 (M),M)

from Theorem B.2. As discussed in the prequel, the former result is concerned with regret, while the
latter considers the task of learning the optimal allocation, but the scaling log(T ) ≳ aecε(M) seems
to be fundamental for both. Of course, beyond the gap between regret and learning the allocation,
there is still much room to improve the dependence on problem-dependent parameters in both results.

Comparing Theorem B.1 and Theorem B.2. Theorem B.1 and Theorem B.2 exhibit an interesting
dichotomy: Theorem B.1 places no constraints on the regret of the algorithm under consideration,
and gives a lower of the form T ≳ Ω̃+(1) · supM∈M+ aecMε (M0,M), while Theorem B.2 gives a
lower bound of the form log(T ) ≳ Ω̃+(1) · supM∈M+ aecMε (Mopt

0 (M),M), or equivalently T ≳

exp(Ω̃+(1) · supM∈M+ aecε(Mopt
0 (M),M)); the latter lower bound is exponentially stronger, with

the caveat that 1) the classM0 is replaced with the subclassMopt
0 (M) and 2) Theorem B.2 assumes

that the algorithm achieve nearly-instance optimal regret for every model inM0 (EM,A[Reg] ≤
2 · gM log(T )). In what follows, we argue that this tradeoff is fundamental.

• First, let us consider the role of the assumption EM,A[Reg] ≤ 2 · gM log(T ). Without this
assumption, the lower bound from Theorem B.1 is qualitatively tight: if the algorithm explores
optimally for every round t ∈ [T ], it gains roughly (supM∈M+ aecMε (M0,M))−1 units
of information per round, which is sufficient to identify an optimal allocation as soon as
T ≳ supM∈M+ aecMε (M0,M).

• On the other hand, if the require that EM,A[Reg] ≤ 2 · gM log(T ), then for each M ∈ M0,
the algorithm can afford to explore (i.e., play a non-optimal action) at most 2 · gM

∆M
min

log(T )

times. This changes the “effective” time horizon for exploration to T ′ = 2 · gM

∆M
min

log(T ), but
only if we restrict to models for which playing an optimal decision gives no information. This
is precisely what the subclassMopt

0 (M) captures: models M ∈M0 for which decisions that
are optimal for M lead to no information. Combining these insights leads to the lower bound
T ′ ≈ gM

∆M
min

log(T ) ≳ Ω(1) · supM∈M+ aecMε (Mopt
0 (M),M) in Theorem B.2.
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We remark in passing that the definition ofMopt
0 (M), which places the constraint that DKL

(
M(π) ∥M(π)

)
=

0, ∀π ∈ πM is somewhat coarse. We expect that both Theorem B.2 and Theorem A.1/Theorem A.2
can be improved to scale with

Mopt
0 (M ;α) =

{
M ∈M0 | πM ⊆ πM , DKL

(
M(π) ∥M(π)

)
≤ α2 ∀π ∈ πM

}
for α ≈ 1/

√
T ; the intuition is that we get Ω(T ) rounds worth of information on πM for “free”,

which facilitates accurate estimation.

Minimax versus instance-dependent lower bounds. As mentioned in the prequel, our lower
bounds have a (constrained) minimax flavor. Specifically, Theorem B.2 shows that if T is not
sufficiently large, then for any algorithm, there must exist a “worst-case” model M ∈M for which
the algorithm either 1) fails to achieve (approximately) instance-optimal regret or 2) fails to learn
an ε-optimal Graves-Lai allocation. While this is quite different from a classical minimax analysis,
and certainly is closely connected to instance-optimality, an interesting direction for future work
is to develop a fully instance-dependent understanding of the complexity of learning Graves-Lai
allocations.

Appendix C. Additional Related Work

In this section, we discuss further related work not already covered in detail.

Asymptotic guarantees for general decision making. For the general decision making frame-
work we consider, which allows for arbitrary model classes and subsumes structured bandits and
reinforcement, the only prior works we are aware of that achieve the instance-optimal lower bound
from Graves and Lai (1997) are Komiyama et al. (2015), which restricts to finite observation spaces,
and Dong and Ma (2022), which restricts to finite decision spaces; these works do not provide
non-asymptotic guarantees.

Many works provide purely asymptotic instance-optimality guarantees for more specialized
settings, including multi-armed bandits (Lai and Robbins, 1985; Garivier et al., 2016; Lattimore,
2018; Garivier et al., 2019), linear bandits (Lattimore and Szepesvari, 2017; Hao et al., 2019, 2020),
and general structured bandits (Burnetas and Katehakis, 1996; Magureanu et al., 2014; Combes
et al., 2017; Van Parys and Golrezaei, 2020; Degenne et al., 2020b). Some of these works do
provide non-asymptotic bounds on regret, but these results generally have lower-order terms that
scale linearly in |Π|, which renders them vacuous until log(T ) ≳ |Π|; we consider such results to be
asymptotic in spirit. Along these lines, it is worth discussing Jun and Zhang (2020), which provides
non-asymptotic guarantees for structured bandits in which the lower-order terms scale with a quantity
Kψ that aims to capture the number of “effective arms”. While this quantity can improve over |Π| in
certain situations, it is not clear whether it is well behaved for standard classes of interest (e.g., linear
bandits).

Non-asymptotic guarantees for linear bandits. For linear bandits, a number of recent works
provide non-asymptotic instance-optimal regret bounds in which lower order terms scale only with
the dimension d rather than the number of decisions |Π| (Tirinzoni et al., 2020; Kirschner et al.,
2021). These results take advantage of the specialized geometric structure of the linear bandit setting
(e.g., existence of optimal design) for exploration, and cannot be directly adapted to general function
approximation, but our results can be viewed as generalizing these guarantees.
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Reinforcement learning. For reinforcement learning, a number of works—mostly focusing on
tabular settings or linear function approximation—provides non-asymptotic guarantees that are
instance-dependent, but not necessarily instance-optimal (Simchowitz and Jamieson, 2019; Al Mar-
jani and Proutiere, 2021; Dann et al., 2021; Al Marjani et al., 2021; Wagenmaker et al., 2022b;
Wagenmaker and Jamieson, 2022; Wagenmaker and Pacchiano, 2022). For instance-optimality, the
results we are aware of are the classical work of Agrawal et al. (1988) and very recent work Dong
and Ma (2022), which provides asymptotic guarantees for finite-horizon tabular RL, Ok et al. (2018),
which provides asymptotic guarantees for an infinite-horizon setting under ergodicity assumptions,
and Tirinzoni et al. (2022) which provides PAC guarantees for deterministic MDPs (though we note
that the guarantee of Tirinzoni et al. (2022) is also achieved, up to H factors, by Wagenmaker and
Jamieson (2022)).

Instance-optimal PAC guarantees. Our discussion has largely centered on regret, which is the
focus of our work. For the PAC setting, where the goal is to identify the optimal decision (or a
near-optimal decision) as quickly as possible, a number of recent works have employed similar
techniques to derive instance-optimal algorithms for settings such as multi-armed and structured
bandits (Kaufmann et al., 2016; Garivier and Kaufmann, 2016; Russo, 2016; Degenne and Koolen,
2019; Degenne et al., 2019, 2020a). While many of these works are asymptotic in nature, in
specialized settings such as multi-armed bandits (Jamieson et al., 2014), linear bandits (Fiez et al.,
2019; Katz-Samuels et al., 2020), and linear dynamical systems (Wagenmaker et al., 2021), recent
work has shown that the optimal rates are achievable in finite-time.

Complexity of learning the Graves-Lai allocation. The Allocation-Estimation Coefficient aims
to capture the sample complexity required to learn an ε-optimal Graves-Lai allocation. To the best of
our knowledge, our work is the first to study the complexity of learning the allocation with general
function approximation, but a small body of work has studied the complexity in simple settings such
as top-k bandits (Simchowitz et al., 2017; Chen et al., 2017), and graph bandits (Marinov et al.,
2022a,b).

Minimax regret. While the focus of this work has been on instance-optimality, a large body of work
exists on minimax optimality, where the goal is to perform optimally on the hardest instance within a
class. This line of work has established worst-case optimal (or nearly optimal) rates in settings such as
multi-armed bandits (Auer et al., 2002; Audibert and Bubeck, 2009), linear bandits (Dani et al., 2008;
Abbasi-Yadkori et al., 2011), tabular reinforcement learning (Dann et al., 2019; Zhang et al., 2021),
and reinforcement learning with function approximation (Zhou et al., 2021; Du et al., 2021). The
recent line of work Foster et al. (2021, 2022b, 2023) shows that, in the interactive decision-making
setting considered in this work, the minimax-optimal rates are governed by a quantity known as the
Decision-Estimation Coefficient. While our work takes inspiration and bears some similarity with
this work, we remark that the techniques necessary to establish instance-optimality are significantly
more intricate. It is also worth stating that it is always possible to bound the DEC by the AEC; the
converse, however, is not true.

54



INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

Part II

Proofs

Appendix D. Additional Notation

Mathematical Notation Definition
DKL(· ∥ ·) KL divergence
DH(·, ·) Hellinger distance
DTV(·, ·) Total variation distance
D(· ∥ ·) General divergence
△X Set of probability distributions over X

DMSO Notation
M Model
M⋆ Ground truth model
M Set of models
M0 Arbitrary subset ofM
π,Π Decision π, set of all decisions Π
r,R Reward r, set of all rewardsR
o,O Observation o, set of all observations O

EM,π[·],PM,π[·] Expectation and distribution of (r, o) ∼M(π)
EM [·],PM [·] Expectation and distribution induced over histories on M

fM(π) Expected reward playing π on M , fM(π) = EM,π[r]
πM Optimal decision of model M , πM ∈ argmaxπ∈Π fM(π)
πM Set of optimal decisions of model M

∆M(π) Gap of decision π on model M , ∆M(π) = fM(πM)− fM(π)
∆M

min Minimum gap on model M (see Eq. (2))
M+ Set of all possible models,M+ = {M : Π→△R×O | fM(π) ∈ [0, 1]}

Reg(T ) Regret after T rounds (see Eq. (1))
LKL Lipschitz constant of KL divergence (see Assumption A.1)
VM Sub-gaussian parameter of log-likehood ratio (see Assumption A.2)

Ncov(M, ρ, µ) (ρ, µ) covering number ofM (see Definition A.1)
dcov, Ccov Bounds on covering number (see Assumption A.3)

nM
ε

Information content of optimal decision on M with
tolerance ε (see Definition A.2)

nM
ε Maximum information content of optimal decision onM, nM

ε = supM∈M nM
ε

Mx,y Mx,y = {M ∈M : ∆M
min ≥ x, nM

ε ≤ y}
∆⋆ ∆⋆ = min{∆⋆

min, 1/n
⋆
ε/36}

M⋆ Restriction ofM induced by M⋆ (see Eq. (24))
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Graves-Lai Notation
glc(M,M) Graves-Lai Coefficient for classM, model M (see Eq. (3))

gM , g⋆ Graves-Lai Coefficient for model M , M⋆; gM = glc(M,M), g⋆ = glc(M,M⋆)
gM Minimum non-zero Graves-Lai Coefficient onM, gM := minM∈M:gM>0 g

M

Malt(M) Alternate set for model M ,Malt(M) = {M ′ ∈M | πM ∩ πM′ = ∅}
M⋆

alt Alternate set for M⋆,M⋆
alt =Malt(M⋆)

η Allocation, η ∈ RΠ
+

λ Normalized allocation, λ ∈ △Π

ω Exploration distribution, ω ∈ △Π

Λ(M ; ε) Set of ε-optimal normalized Graves-Lai allocations for model M (see Eq. (8))

Λ(M ; ε, nmax)
Set of ε-optimal normalized Graves-Lai allocations for model M with

normalization factor at most nmax (see Eq. (28))
Mgl

ε (λ) Models for which λ is an ε-optimal Graves-Lai allocation (see Eq. (9))

Mgl
ε (λ; nmax)

Models for which λ is an ε-optimal Graves-Lai allocation with
normalization factor at most nmax (see Eq. (37))

IM(η;M) Information content of η on M with respect toM (see Eq. (36))
IM(η) IM(η) = IM(η;M)

T gl(M0; ε, nmax, δ) Minimum time to learn Graves-Lai allocation overM0 (see Eq. (29))
AEC Notation
aecMε (M0,M) AEC with tolerance ε, model setM0, reference model M (see Eq. (10))
aecε(M,M) aecε(M,M) = aecMε (M,M)

aecε(M) aecε(M) = supM∈co(M) aecε(M,M)

aecMε (M0, ξ) AEC with randomized estimator ξ (see Eq. (20))
aecε(M, ξ) aecε(M, ξ) = aecMε (M, ξ)
aecε(M) aecε(M) = supξ∈△M aecε(M, ξ)

aecDε(M,M) AEC defined with respect to general divergence (see Eq. (38))
aecDε(M, ξ) AEC with randomized estimator, general divergence (see Eq. (39))

Uniform Exploration
Notation
Cξ
exp(ε) Uniform exploration coefficient with respect to ξ at scale ε (see Definition A.4)

pξexp(ε) Uniform exploration distribution with respect to ξ at scale ε
Cexp(M, ε) Uniform exploration coefficient for classM at scale ε

CD,ξ
exp(ε) Uniform exploration coefficient, general divergence (see Definition E.1)

pD,ξexp(ε) Uniform exploration distribution, general divergence
CD
exp(M, ε) Uniform exploration coefficient for classM, general divergence

Estimation Notation
AlgKL Estimation oracle

EstKL(s) Cumulative KL estimation error (see Definition A.3)
EstD(s) Cumulative estimation error with respect to divergence D (see Eq. (40))
ÊstD(s) Cumulative estimation error with arguments flipped (see Eq. (41))
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Divergences. For probability distributions P and Q over a measurable space (Ω,F ) with a common
dominating measure, we define the total variation distance as

DTV(P,Q) = sup
A∈F
|P(A)−Q(A)| = 1

2

∫
|dP− dQ|

and (squared) Hellinger distance as

D2
H(P,Q) =

∫ (√
dP−

√
dQ
)2

.

Interactive decision making. We formalize probability spaces in the same fashion as Foster et al.
(2021, 2022b). Decisions are associated with a measurable space (Π,P), rewards are associated
with the space (R,R), and observations are associated with the space (O,O). The history after
round t is denoted byHt = (π1, r1, o1), . . . , (πt, rt, ot). We define

Ωt =

t∏
i=1

(Π×R×O), and F t =

t⊗
i=1

(P ⊗R ⊗ O)

so thatHt is associated with the space (Ωt,F t).
When the algorithm is clear from context, we let PM denote the law it induces on HT when

M : Π→△R×O is the underlying model, and let EM [·] denote the corresponding expectation. We
will also overload notation somewhat and let PM,π the density of (r, o) ∼M(π).

Notation for complexity measures and allocations. We let T (π) denote the number of times
decision π is taken up to time T . For η ∈ RΠ

+, we define

IM(η ;M) = inf
M ′∈Malt(M)

∑
π∈Π

η(π)DKL

(
M(π) ∥M ′(π)

)
, (36)

so that we can write glc(M,M⋆) = infη∈RΠ
+

{∑
π∈Π η(π)∆M⋆

(π) | IM⋆
(η;M) ≥ 1

}
. We abbrevi-

ate IM(η) = IM(η;M) whenever the classM is clear from context. We will occasionally overload
notation and write ∆M(η) =

∑
π∈Π η(π)∆M(π) for η ∈ RΠ

+. We also letM⋆
alt :=Malt(M⋆) and

Mgl
ε (λ; nmax) := {M ∈M : λ ∈ Λ(M ; ε, nmax)}. (37)

Recall the definition

Λ(M ; ε) =

{
λ ∈ △Π | ∃n ∈ R+ s.t. Eπ∼λ[∆M(π)] ≤ (1 + ε)gM

n
,

inf
M ′∈Malt(M)

Eπ∼λ
[
DKL

(
M(π) ∥M ′(π)

)]
≥ 1− ε

n

}
.

For a given λ ∈ Λ(M ; ε), we refer to the n ∈ R+ which realizes

Eπ∼λ[∆M(π)] ≤ (1 + ε)gM

n
and inf

M ′∈Malt(M)
Eπ∼λ

[
DKL

(
M(π) ∥M ′(π)

)]
≥ 1− ε

n

as the normalization factor of λ.
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General divergences. While in the main text we have focused on results that hold for the KL
divergence, throughout the appendix we will consider more general divergences D

(
· ∥ ·

)
. In

particular, rather than fixing the divergence in Eq. (18) to the KL divergence, we utilize divergence D.
We also perform online estimation with respect to D rather than with respect to the KL divergence.
While D could be an arbitrary non-negative function, we make the following assumptions on it.

First, we replace Assumption A.1 with the following more general assumption.

Assumption D.1. For all M,M ′,M ′′ ∈M, and π ∈ Π, there exists some LKL such that∣∣DKL

(
M(π) ∥M ′′(π)

)
−DKL

(
M ′(π) ∥M ′′(π)

)
]
∣∣ ≤ LKL

√
D
(
M(π) ∥M ′(π)

)
.

Note that, by Jensen’s inequality, Assumption D.1 immediately implies that, for ξ ∈ △(M),∣∣∣DKL

(
M(π) ∥M ′′(π)

)
− EM∼ξ[DKL

(
M(π) ∥M ′′(π)

)
]
∣∣∣ ≤ LKL

√
EM∼ξ[D

(
M(π) ∥M(π)

)
].

We in addition make the following assumption, which we note is met for the KL divergence.

Assumption D.2. For all M,M ′ ∈ co(M), and π, we have

D2
H

(
M(π),M ′(π)

)
≤ D

(
M(π) ∥M ′(π)

)
.

Furthermore, D
(
· ∥ ·

)
is convex in its second argument.

A direct consequence of this assumption is that, when rewards are observed and bounded in [0, 1],
we have

|fM(π)− fM′
(π)| ≤

√
D
(
M(π) ∥M ′(π)

)
.

Throughout the appendix, we assume that Assumption D.1 and Assumption D.2 hold for our
divergence D.

We also generalize the definition of the Allocation-Estimation Coefficient to account for general
divergences as

aecDε(M,M) := inf
λ,ω∈△Π

sup
M∈M\Mgl

ε (λ)

1

Eπ∼ω[D
(
M(π) ∥M(π)

)
]

(38)

and

aecDε(M; ξ) := inf
λ,ω∈△Π

sup
M∈M\Mgl

ε (λ)

1

EM∼ξ[Eπ∼ω[D
(
M(π) ∥M(π)

)
]]
. (39)

Other variants of the AEC are generalized similarly with a superscript D. Our guarantees will also
depend on a notion of estimation error for general divergences, given by

EstD(s) :=

s∑
i=1

E
M̂∼ξi [Eπ∼pi [D

(
M⋆(π) ∥ M̂(π)

)
]]. (40)

It will also be convenient to work with the following notion of estimation error:

ÊstD(s) :=
s∑
i=1

E
M̂∼ξi [Eπ∼pi [D

(
M̂(π) ∥M⋆(π)

)
]]. (41)
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Appendix E. Technical Tools

E.1. Online Learning

In this section, we state online estimation guarantees for variants of the Tempered Aggregation
algorithm of Chen et al. (2022). Throughout the section we abbreviate Et−1[·] = E[· | Ht−1, pt, ξt].
We recall that PM,π(r, o) denotes the density over rewards and observations (r, o) under M(π)

Algorithm 4 Tempered Aggregation
1: input: Finite classM.
2: Initialize ξ1 ← Unif(M).
3: for t = 1, 2, 3, . . . do
4: Receive (πt, rt, ot).
5: Update estimator:

ξt+1(M) ∝ ξt(M) · exp
(
1

2
logPM,πt

(rt, ot)

)
∀M ∈M.

Proposition E.1 (Tempered Aggregation, Finite Class Setting). Assume |M| ≤ ∞ and M⋆ ∈M.
Then Algorithm 4 produces estimates (ξt)Tt=1 which satisfy, with probability at least 1− δ,

T∑
t=1

EM∼ξt [Eπ∼pt [D2
H(M

⋆(π),M(π))]] ≤ 2 log
|M|
δ

.

Proof of Proposition E.1. We follow closely the proof of Theorem C.1 of Chen et al. (2022). Define
the random variable

At := − logEM∼ξt

[
exp

(
β log

PM,πt
(rt, ot)

PM⋆,πt(rt, ot)

)]
.

We have

Et−1[exp(−At)] = Et−1

[
EM∼ξt

[
exp

(
1

2
log

PM,πt
(rt, ot)

PM⋆,πt(rt, ot)

)]]

=
∑
M∈M

ξt(M)Et−1

[
exp

(
1

2
log

PM,πt
(rt, ot)

PM⋆,πt(rt, ot)

)]

=
∑
M∈M

ξt(M)Et−1

[
Eo∼M⋆(πt)

[√
PM,πt(rt, ot)

PM⋆,πt(rt, ot)

]]

=
∑
M∈M

ξt(M) ·
(
1− 1

2
Eπ∼pt [D2

H(M
⋆(π),M(π))]

)
where the last equality holds by the definition of the Hellinger distance. This implies that

1− Et−1[exp(−At)] =
1

2
EM∼ξt

[
Eπ∼pt [D2

H(M
⋆(π),M(π))]

]
.
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By Lemma A.4 of Foster et al. (2021), we have that with probability at least 1− δ,

T∑
t=1

At + log
1

δ
≥

T∑
t=1

− logEt−1[exp(−At)]

≥
T∑
t=1

(
1− Et−1[exp(−At)]

)
=

1

2

T∑
t=1

EM∼ξt
[
Eπ∼pt [D2

H(M
⋆(π),M(π))]

]
.

We turn to upper bounding
∑T

t=1A
t. Following the proof of Theorem C.1 of Chen et al. (2022), we

have

T∑
t=1

At = − log

( ∑
M∈M

ξ1(M) exp

(
T∑
t=1

1

2
log

PM,πt
(rt, ot)

PM⋆,πt(rt, ot)

))
.

Since M⋆ ∈M, we can then bound

T∑
t=1

At ≤ − log

(
ξ1(M⋆) exp

(
T∑
t=1

1

2
log

PM⋆,πt
(rt, ot)

PM⋆,πt(rt, ot)

))
= log |M|.

Combining these expressions gives the result.

Proposition E.2 (Tempered Aggregation, Infinite Class Setting). LetMcov denote a (ρ, µ)-cover of
M with covering number Ncov(M, ρ, µ). If we apply Algorithm 4 toMcov, we have that whenever
M⋆ ∈M, with probability at least 1− δ − Tµ,

T∑
t=1

EM∼ξt [Eπ∼pt [D2
H(M

⋆(π),M(π))]] ≤ 2 log
Ncov(M, ρ, µ)

δ
+ Tρ.

Proof of Proposition E.2. Defining At as in Proposition E.1, the first part of the proof is identical to
that of Proposition E.1, and we conclude that, with probability at least 1− δ,

T∑
t=1

At + log
1

δ
≥ 1

2

T∑
t=1

EM∼ξt [Eπ∼pt [D2
H(M

⋆(π),M(π))]]

and

T∑
t=1

At = − log

( ∑
M∈Mcov

ξ1(M) exp

(
T∑
t=1

1

2
log

PM,πt
(rt, ot)

PM⋆,πt(rt, ot)

))
.

Let E denote the event associated withMcov, as defined in Definition A.1, which satisfies supM ′∈M supπ PM′
(E |

π) ≤ µ. Let M̃ ∈Mcov denote the element in the cover which satisfies∣∣∣∣log PM⋆,π(r, o)

PM̃,π(r, o)

∣∣∣∣ = ∣∣∣logPM⋆,π(r, o)− logPM̃,π(r, o)
∣∣∣ ≤ ρ,
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for all (r, o, π) with supM ′∈M PM′,π(r, o | E) > 0. We then have

T∑
t=1

log
PM,πt

(rt, ot)

PM⋆,πt(rt, ot)
=

T∑
t=1

(
log

PM,πt
(rt, ot)

PM̃,πt(rt, ot)
+ log

PM̃,πt
(rt, ot)

PM⋆,πt(rt, ot)

)

so we can bound

T∑
t=1

At ≤ log |Mcov|+
1

2

T∑
t=1

log
PM⋆,πt

(rt, ot)

PM̃,πt(rt, ot)

which gives that with probability at least 1− δ,

T∑
t=1

EM∼ξt [Eπ∼pt [D2
H(M

⋆(π),M(π))]] ≤ 2 log |Mcov|+ 2 log
1

δ
+

T∑
t=1

log
PM⋆,πt

(rt, ot)

PM̃,πt(rt, ot)
.

Let Et denote the event that E occurs at step t. Denote the event E1 := ∩Tt=1Et and

E2 :=

{
T∑
t=1

EM∼ξt [Eπ∼pt [D2
H(M

⋆(π),M(π))]] ≤ 2 log |Mcov|+ 2 log
1

δ
+ Tρ

}
.

Then

PM⋆
[E2] ≤ PM⋆

[E2 ∩ E1] + PM⋆
[Ec1].

By definition of Et and a union bound we have PM⋆
[Ec1] ≤ Tµ. Furthermore, on the event E1 we can

bound, for each t ≤ T ,

log
PM⋆,πt

(rt, ot)

PM̃,πt(rt, ot)
≤ ρ.

Thus, it follows that on E1,
∑T

t=1 log
PM⋆,πt

(rt,ot)

PM̃,πt (rt,ot)
≤ Tρ, which implies that PM⋆

[E2 ∩ E1] ≤ δ. The

result follows.

E.2. Properties of Graves-Lai Program

In this section, we establish some basic properties of the Graves-Lai coefficient gM ≡ glc(M,M).
Through out the section, we omit dependence on the class M for various quantities of interest
whenever it is clear from context. Throughout, we will use the fact that whenever ∆M

min > 0, πM is
unique.

E.2.1. BASIC PROPERTIES OF GRAVES-LAI PROGRAM

Lemma E.1. For any M ∈M and n > 0, we have

gM

n
≤ inf

λ∈△Π

{
∆M(λ) : IM(λ) ≥ 1

n

}
.
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Proof of Lemma E.1. Assume the contrary. Then there exists some λ̃ such that

∆M(λ̃) < gM/n and IM(λ̃) ≥ 1/n.

However, since both ∆M(λ) and IM(λ) are linear in rescaling of λ, this implies that

∆M(nλ̃) < gM and IM(nλ̃) ≥ 1.

By definition we have

gM = inf
η∈RΠ

+

∆M(η) s.t. IM(η) ≥ 1.

This is a contradiction, so the desired conclusion follows.

Lemma E.2. For any M ∈M+ with ∆M
min > 0, we can bound

gM ≤ Cξ
exp(

1
4(∆

M
min)

2)

for ξ = IM .

Proof of Lemma E.2. By definition we have

gM = inf
η∈RΠ

+

∆M(η) s.t. inf
M ′∈Malt(M)

∑
π

η(π)DKL

(
M(π) ∥M ′(π)

)
≥ 1

≤ inf
η∈RΠ

+

∥η∥1 s.t. inf
M ′∈Malt(M)

∑
π

η(π)DKL

(
M(π) ∥M ′(π)

)
≥ 1.

Let ξ ∈ △M denote the distribution with ξ(M) = 1. Let and let pexp := pξexp(ε) denote the uniform
exploration distribution defined with respect to ξ, and Cξ

exp(ε) the corresponding uniform exploration
coefficient, for some ε to be chosen.

Consider some M ′ ∈Malt(M). Since EM∼ξ[Eπ∼p[DKL

(
M(π) ∥M ′′(π)

)
]] = Eπ∼p[DKL(M(π) ∥M ′′(π))]

for all M ′′ and DKL(M(π) ∥M(π)) = 0 for all π, it follows from the definition of the uniform
exploration coefficient that

Epexp [DKL

(
M(π) ∥M ′(π)

)
] ≤ 1/Cξ

exp(ε) =⇒ sup
p∈△Π

Ep[DKL

(
M(π) ∥M ′(π)

)
] ≤ ε

or, alternatively,

sup
p∈△Π

Ep[DKL

(
M(π) ∥M ′(π)

)
] > ε =⇒ Epexp [DKL

(
M(π) ∥M ′(π)

)
] > 1/Cξ

exp(ε).

If M ′ ∈ Malt(M), then it follows that πM ̸∈ πM′ . Take some πM′ ∈ πM′ . By definition we have
fM(πM) ≥ fM(πM′) + ∆M

min and fM′
(πM′) ≥ fM′

(πM). Thus,

∆M
min ≤ fM(πM)− fM(πM′) + fM′

(πM′)− fM′
(πM)

≤ |fM(πM)− fM′
(πM)|+ |fM′

(πM′)− fM(πM′)|

≤
√
D
(
M(πM) ∥M ′(πM)

)
+
√
D
(
M(πM′) ∥M ′(πM′)

)
.
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This implies that there exists some π such that D
(
M(π) ∥M ′(π)

)
≥ (∆M

min/2)
2, so we can lower

bound

sup
p∈△Π

Ep[DKL

(
M(π) ∥M ′(π)

)
] ≥ 1

4
(∆M

min)
2.

Thus, setting ε = 1
4(∆

M
min)

2, we have that

Epexp [DKL

(
M(π) ∥M ′(π)

)
] > 1/Cξ

exp(
1
4(∆

M
min)

2).

It follows that the allocation η = Cξ
exp(

1
4(∆

M
min)

2) · pexp realizes

inf
M ′∈Malt(M)

∑
π

η(π)DKL

(
M(π) ∥M ′(π)

)
= inf

M ′∈Malt(M)
Cξ
exp(

1
4(∆

M
min)

2) · EpMexp [DKL

(
M(π) ∥M ′(π)

)
] ≥ 1,

which proves the result.

Lemma E.3. Assume gM > 0,∆M
min > 0, and nM

1/4 <∞. Then it must be the case that

gM ≥ ∆M
min ·

1

maxM ′∈M,π∈ΠDKL(M(π) ∥M ′(π))
.

Proof of Lemma E.3. Recall that

gM = inf
η∈RΠ

+

∆M(η) s.t. inf
M ′∈Malt(M)

∑
π

η(π)DKL

(
M(π) ∥M ′(π)

)
≥ 1.

By the definition of nM

1/4, for any allocation η ∈ RΠ
+ satisfying infM ′∈Malt(M)

∑
π η(π)DKL(M(π) ∥M ′(π)) ≥

3/4, the allocation η̃ defined as η̃(π) = η(π) for π ̸= πM , and η̃(πM) = nM

1/2 satisfies

inf
M ′∈Malt(M)

∑
π

η̃(π)DKL

(
M(π) ∥M ′(π)

)
≥ 1/2,

and furthermore ∆M(η) = ∆M(η̃). It follows that

gM ≥ inf
η∈RΠ

+

∆M(η) s.t. inf
M ′∈Malt(M)

∑
π

η(π)DKL

(
M(π) ∥M ′(π)

)
≥ 3/4

≥ inf
η∈RΠ

+

∆M(η) s.t. inf
M ′∈Malt(M)

∑
π

η(π)DKL

(
M(π) ∥M ′(π)

)
≥ 1/2, η(πM) ≤ nM

1/4.

If for all M ′ ∈Malt(M) we have DKL(M(πM) ∥M ′(πM)) > 0, this implies that we can distinguish
M from M ′ by playing only πM . Furthermore, by what we have just shown, this can be achieved
by playing πM at most 2nM

1/4 times. It follows that, if DKL(M(πM) ∥M ′(πM)) > 0 for all M ′ ∈
Malt(M), then gM = 0. Thus, if gM > 0, there must exist some M ′ ∈ Malt(M) such that
DKL(M(πM) ∥M ′(πM)) = 0.

We then have

gM ≥ inf
η∈RΠ

+

∆M(η) s.t.
∑
π ̸=πM

η(π)DKL

(
M(π) ∥M ′(π)

)
≥ 1
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= inf
η∈RΠ

+,η(πM )=0
∆M(η) s.t.

∑
π ̸=πM

η(π)DKL

(
M(π) ∥M ′(π)

)
≥ 1

≥ inf
η∈RΠ

+,η(πM )=0
∆M

min · ∥η∥1 s.t. max
π

DKL

(
M(π) ∥M ′(π)

)
· ∥η∥1 ≥ 1

= ∆M
min ·

1

maxπDKL(M(π) ∥M ′(π))
.

The result follows.

E.2.2. PROPERTIES OF THE INFORMATION CONTENT OF OPTIMAL DECISIONS

Lemma E.4. Let ε ∈ [0, 1/2) and n > 0 be given. We can bound, for any function g(ω,M) and
M0 ⊆M with infM∈M0 ∆

M
min > 0,

inf
ω,λ∈△Π

sup
M∈M0\Mgl

2ε(λ;n)

g(ω,M) ≤ inf
ω,λ∈△Π

sup
M∈M0\Mgl

ε (λ)

g(ω,M)

as long as

n ≥ max
M∈M0

max

{
nM
ε ,

4gM

∆M
min

,
2gM

ζ∆M
min

}
,

where

ζ := min
M∈M0:gM>0

min

{
gM

gM + 2nM
ε

,
∆M

minε

4

}
.

Proof of Lemma E.4. Note that each of these expressions only depend on λ throughMgl
2ε(λ; n) and

Mgl
ε (λ), respectively. To prove the result, it therefore suffices to show that, for every λ ∈ △Π, there

exists λ′ ∈ △Π such thatM0 ∩Mgl
ε (λ) ⊆M0 ∩Mgl

2ε(λ
′; n).

Fix λ ∈ △Π. Consider M ∈M0 ∩Mgl
ε (λ). By definition we have that there exists some n > 0

such that

∆M(λ) ≤ (1 + ε)gM/n and IM(λ) ≥ (1− ε)/n,

where here IM(λ) = IM(λ;M). We consider two cases.

Case 1: λ = Iπ for some π ∈ Π. First, suppose that π ̸= πM . Then we have

∆M
min ≤ ∆M(λ) ≤ (1 + ε)gM/n =⇒ n ≤ (1 + ε)gM/∆M

min.

It follows that as long as n ≥ (1 + ε)gM/∆M
min, then M ∈Mgl

ε (λ; n).
Now, suppose that π = πM . In this case, by the definition of nM

ε , we immediately have that it
suffices to take n = nM

ε . Thus, for λ = Iπ, we haveMgl
2ε(λ) =M

gl
ε (λ; n) as long as

n ≥ max{nM
ε , (1 + ε)gM/∆M

min}.
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Case 2a: λ ̸= Iπ for any π ∈ Π. Fix some ζ ∈ (0, 1/2) to be chosen. Suppose that there exists
some π′ such that λ(π′) ≥ 1− ζ, and note that there can exist at most one such π′. Define λ′ as

λ′(π′) = 1− ζ, λ′(π) =
ζ

1− λ(π′)
λ(π), ∀π ̸= π′

and note that λ′ ∈ △Π. Our goal is to show thatMgl
ε (λ) ⊆Mgl

2ε(λ
′; n).

Suppose that πM = π′. Then

∆M(λ′) =
ζ

1− λ(π′)
·∆M(λ) ≤ ζ

1− λ(π′)
· (1 + ε)gM

n
.

Denote n′ := ( ζ
1−λ(π′) ·

1
n)

−1. Since IM(λ) ≥ (1− ε)/n, we have IM(nλ) ≥ 1− ε. Then, by the
definition of nM

ε , we have

inf
M ′∈Malt(M)

∑
π ̸=πM

nλ(π)DKL

(
M(π) ∥M ′(π)

)
+ nM

ε DKL

(
M(πM) ∥M ′(πM)

)
≥ 1− 2ε.

However, note that

IM(n′λ′) = inf
M ′∈Malt(M)

∑
π ̸=πM

ζn′

1− λ(πM)
λ(π)DKL

(
M(π) ∥M ′(π)

)
+ n′(1− ζ)DKL

(
M(πM) ∥M ′(πM)

)
= inf

M ′∈Malt(M)

∑
π ̸=πM

nλ(π)DKL

(
M(π) ∥M ′(π)

)
+

(1− ζ)(1− λ(π′))n

ζ
·DKL

(
M(πM) ∥M ′(πM)

)
(a)

≥ inf
M ′∈Malt(M)

∑
π ̸=πM

nλ(π)DKL

(
M(π) ∥M ′(π)

)
+ nM

ε DKL

(
M(πM) ∥M ′(πM)

)
(b)

≥ 1− 2ε

where (a) follows as long as

(1− ζ)(1− λ(π′))n

ζ
≥ nM

ε , (42)

and (b) follows from what we have just shown. Rearranging, we have that Eq. (42) is equivalent to

(1− λ(π′))n

(1− λ(π′))n+ nM
ε

≥ ζ.

Note that by Lemma E.1 and the definition of λ, we have

(1− ε)gM

n
≤ inf

λ̃∈△Π

{
∆M(λ̃) : IM(λ̃) ≥ 1− ε

n

}
≤ ∆M(λ),

which implies that

(1− ε)gM ≤ ∆M(λ) · n ≤ (1− λ(πM)) · n.
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As the function x
x+nMε

is increasing in x, a sufficient choice of ζ for this M is then

min{ gM

gM + 2nM
ε

, 3/8} ≥ ζ

Thus, for such a ζ, we have that M ∈Mgl
ε (λ′; n′), which implies that M ∈Mgl

2ε(λ
′; n′). Note that

(1− λ(π′))n ≤ (1 + ε)gM/∆M
min in this case, so we have that M ∈Mgl

2ε(λ
′; n) as long as

n ≥ 2gM

ζ∆M
min

.

Consider now the case where πM ̸= π′. In this case, defining λ′ as before, we can bound

∆M(λ′) ≤ ζ + (1− ζ)∆M(π′) ≤ ζ + λ(π′)∆M(π′) ≤ ζ +∆M(λ) ≤ ζ + (1 + ε)gM/n.

Furthermore,

IM(λ′) = inf
M ′∈Malt(M)

∑
π ̸=π′

ζ

1− λ(π′)
λ(π)DKL

(
M(π) ∥M ′(π)

)
+ (1− ζ)DKL

(
M(π′) ∥M ′(π′)

)
≥ inf

M ′∈Malt(M)

∑
π ̸=π′

(1− ζ)λ(π)DKL

(
M(π) ∥M ′(π)

)
+ (1− ζ)λ(π′)DKL

(
M(π′) ∥M ′(π′)

)
= (1− ζ)IM(λ)

≥ (1− ζ)(1− ε)/n.

Since π′ ̸= πM , we can lower bound ∆M(λ) ≥ (1− ζ)∆M
min, so

(1− ζ)∆M
min ≤ ∆M(λ) ≤ (1 + ε)gM/n =⇒ n ≤ (1 + ε)gM

(1− ζ)∆M
min

≤ 4gM

∆M
min

We can therefore bound ζ ≤ εgM/n as long as

ζ ≤ ∆M
min · ε
4

.

Consider ζ that satisfies this inequality. Then ∆M(λ′) ≤ (1 + 2ε)gM/n. We can also lower bound
(1− ζ)(1− ε) ≥ (1− 2ε) as long as ζ ≤ ε

1−ε ≤ ε. Thus, as long as

ζ ≤ min{1, ∆
M
min

4
} · ε and n ≥ 4gM

∆M
min

,

we have that M ∈Mgl
2ε(λ

′; n).

Case 2b: λ ̸= Iπ for any π ∈ Π. Finally, it remains to handle the case then there does not exist π′

such that λ(π′) ≥ 1− ζ. In this case, we can always lower bound

ζ∆M
min ≤ ∆M(λ) ≤ (1 + ε)gM/n =⇒ n ≤ (1 + ε)gM

ζ∆M
min

,

so as long as n ≥ (1+ε)gM

ζ∆M
min

, we have M ∈Mgl
2ε(λ; n).

Since we are in the regime where λ ̸= Iπ, it must be the case that if M ∈M0 ∩Mgl
ε (λ), then

gM > 0. Thus, a sufficient choice of ζ is

ζ = min
M∈M0:gM>0

min

{
gM

gM + 2nM
ε

,
∆M

minε

4

}
.
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Concluding the Proof. To show the result, we need that n is large enough for each M ∈M0. The
argument above shows that it suffices to take

n ≥ max
M∈M0

max

{
nM
ε ,

4gM

∆M
min

,
2gM

ζ∆M
min

}
for

ζ := min
M∈M0:gM>0

min

{
gM

gM + 2nM
ε

,
∆M

minε

4

}
.

This proves the result.

Lemma E.5. For every M ∈M with ∆M
min > 0, there exists some λ ∈ Λ(M ; ε) with normalization

factor n satisfying

n ≤ gM/∆M
min + nM

ε ,

i.e., we have M ∈Mgl
ε (λ; n).

Proof of Lemma E.5. Consider some allocation η ∈ RΠ
+ such that

∆M(η) ≤ gM and IM(η) ≥ 1. (43)

Let η′ denote the allocation satisfying η′(π) = η(π) for π ̸= πM , and η′(πM) = 0. Note that
∆M(η) ≥ ∆M

min∥η′∥1, which implies that

∥η′∥1 ≤ gM/∆M
min.

Let η′′ denote the allocation satisfying η′′(π) = η(π) for π ̸= πM and η′′(πM) = nM
ε . Then

by definition of nM
ε , and since η satisfies Eq. (43), we have IM(η′′) ≥ 1 − ε. Furthermore,

it is straightforward to see that ∆M(η′′) ≤ gM . This implies that η′′/∥η′′∥1 ∈ Λ(M ; ε) with
normalization factor ∥η′′∥1. However, we can bound

∥η′′∥1 = ∥η′∥1 + nM
ε ≤ gM/∆M

min + nM
ε .

This proves the result.

E.2.3. BOUNDING ALLOCATION-ESTIMATION COEFFICIENT VIA UNIFORM EXPLORATION

COEFFICIENT

In this section we prove a generalized version of Proposition A.1. In particular, rather than specializing
to the KL divergence, we consider a general divergence D. We define the uniform exploration
coefficient with respect to D as follows.
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Definition E.1 (Uniform Exploration Coefficient, General Divergences). For a randomized estimator
ξ ∈ △M and divergence D

(
· ∥ ·

)
, we define the uniform exploration coefficient with respect to ξ at

scale ε > 0 as the value of the following program:

CD,ξ
exp(ε) := min

C∈R+,p∈△Π

{
C
∣∣∣ ∀M,M ′ ∈M :

maxM ′′∈{M,M ′} EM∼ξ[Eπ∼p[D
(
M(π) ∥M ′′(π)

)
]] ≤ 1/C

=⇒ maxp′∈△Π
Eπ∼p′ [D

(
M(π) ∥M ′(π)

)
] ≤ ε

}
.

We define pD,ξexp(ε) as the minimizing distribution for this program, and let

CD
exp(M, ε) := sup

ξ∈△M

CD,ξ
exp(ε)

denote the uniform exploration constant for classM.

Lemma E.6 (Formal version of Proposition A.1). Let ε ∈ [0, 1/2) andM0 ⊆ M be given, and
assume that infM∈M0 g

M > 0, infM∈M0 ∆
M
min > 0, supM∈M0

nM

1/4 < ∞, and Assumptions A.2,
D.1 and D.2 hold. Then for any ξ ∈ △M0 , we can bound

min
λ,ω∈△Π

sup
M∈M0\Mgl

ε (λ)

1

EM∼ξ[Eω[D
(
M(π) ∥M(π)

)
]]
≤ CD

exp(M0, δ)

for any δ > 0 satisfying

√
δ ≤ min

M∈M0

min

{
min

{
1

81LKL
,
∆M

min

34VM

}
· ε

2gM/∆M
min + nM

ε/36

,
∆M

min

3

}
.

Proof of Lemma E.6. Let δ > 0 be some tolerance to be chosen. Let M̃ denote some M ∈ M0

such that EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]] ≤ 1/Cexp, where we abbreviate Cexp := CD

exp(M0, δ)

and pexp := pD,ξexp(δ) is a distribution that achieves the value of CD
exp(M0, δ) for ξ; if such an M̃ does

not exist, we let M̃ = argminM∈M0
EM∼ξ[Epexp [D

(
M(π) ∥M(π)

)
]]. Let ε′ > 0 be some value

to be chosen, and let λ̃ ∈ Λ(M̃ ; ε′) denote the allocation in Λ(M̃ ; ε′) with smallest normalizing
factor n. Let ñ denote the value of this normalizing factor, then:

∆M̃(λ̃) ≤ (1 + ε′)gM̃/ñ and IM̃(λ̃) ≥ (1− ε′)/ñ.

We can bound:

min
λ∈△Π

min
ω∈△Π

sup
M∈Mgl

ε (λ)c∩M0

1

EM∼ξ[Eω[D
(
M(π) ∥M(π)

)
]]

≤ sup
M∈Mgl

ε (λ̃)c∩M0

1

EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]]

≤ sup
M∈Mgl

ε (λ̃)c∩M0

I{EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]] ≤ 1/Cexp}

EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]]

+ Cexp, (44)

where here we take 0
0 = 0. If EM∼ξ[Epexp [D

(
M(π) ∥ M̃(π)

)
]] > 1/Cexp, then by definition of M̃ ,

for all M ∈M0 we have

EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]] > 1/Cexp,

68



INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

so we can simply bound Eq. (44) ≤ Cexp. Going forward, we assume this is not the case, so
that EM∼ξ[Epexp [D

(
M(π) ∥ M̃(π)

)
]] ≤ 1/Cexp. Our goal is to show that, for small enough

δ, λ̃ ∈ Λ(M ; ε) for every other M ∈ M0 with EM∼ξ[Epexp [D
(
M(π) ∥ M̃(π)

)
]] ≤ 1/Cexp,

so that M ∈ Mgl
ε (λ̃). This will imply that there does not exist M ∈ Mgl

ε (λ̃)c ∩ M0 with
EM∼ξ[Epexp [D

(
M(π) ∥ M̃(π)

)
]] ≤ 1/Cexp, which further implies that Eq. (44) ≤ Cexp.

Fix any M ∈M0. We note that by the definition of pexp, if EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]] ≤

1/Cexp, then

sup
p∈△Π

Ep[D
(
M̃(π) ∥M(π)

)
] ≤ δ,

This implies in particular that, for each π, D
(
M̃(π) ∥M(π)

)
≤ δ.

Step 1: EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]] ≤ 1/Cexp implies πM = πM̃ . As noted, if

EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]] ≤ 1/Cexp,

we have D
(
M̃(π) ∥M(π)

)
≤ δ for all π. Assume that πM ̸= πM̃ (note that since infM∈M0 ∆

M
min >

0 by assumption, all M ∈M0 have unique optimal). By definition we have f M̃(πM̃) ≥ f M̃(πM) +
∆M̃

min and fM(πM) ≥ fM(πM̃). Thus,

∆M̃
min ≤ f M̃(πM̃)− f M̃(πM) + fM(πM)− fM(πM̃)

≤ |f M̃(πM̃)− fM(πM̃)|+ |fM(πM)− f M̃(πM)|

≤
√
D
(
M̃(πM̃) ∥M(πM̃)

)
+

√
D
(
M̃(πM) ∥M(πM)

)
.

This implies that there exists some π such that D
(
M̃(π) ∥M(π)

)
≥ (∆M̃

min/2)
2. Assuming

δ ≤ min
M∈M0

(∆M̃
min/3)

2, (45)

this is a contradiction. Thus, it must be the case that πM = πM̃ , as long as Eq. (45) is satisfied.

Step 2: EM∼ξ[Epexp [D
(
M(π) ∥M(π)

)
]] ≤ 1/Cexp implies λ̃ ∈ Λ(M ; ϵ). Under Assumption

D.2, we can bound, ∀π ∈ Π,

|f M̃(π)− fM(π)| ≤
√

D
(
M̃(π) ∥M(π)

)
≤
√
δ.

This implies that, for any λ ∈ △Π,

|∆M̃(λ)−∆M(λ)| ≤ |f M̃(πM)− fM(πM)|+
∑
π

λπ|f M̃(π)− fM(π)| ≤ 4
√
δ.

In addition, under Assumption D.1, we have

DKL

(
M(π) ∥M ′(π)

)
≥ DKL

(
M̃(π) ∥M ′(π)

)
− LKL

√
D
(
M̃(π) ∥M(π)

)
≥ DKL

(
M̃(π) ∥M ′(π)

)
− 2LKL

√
δ.

69



WAGENMAKER FOSTER

This implies, for any λ ∈ △Π,

IM(λ) = inf
M ′∈Malt(M)

∑
π

λ(π)DKL

(
M(π) ∥M ′(π)

)
≥ inf

M ′∈Malt(M)

∑
π

λ(π)DKL

(
M̃(π) ∥M ′(π)

)
− 2LKL

√
δ

= IM̃(λ)− 2LKL

√
δ

where the final equality uses that, given what we have already shown, πM = πM̃ , so thatMalt(M) =

Malt(M̃). Repeating the calculation in the other direction, we get that |IM(λ)− IM̃(λ)| ≤ 2LKL

√
δ.

We next relate gM to gM̃ . By definition we have

(1 + ε′)gM/ñ ≥ inf
λ∈△Π

∆M(λ) s.t. IM(λ) ≥ (1− ε′)/ñ.

Applying our perturbation bounds we can lower bound this as

≥ inf
λ∈△Π

∆M̃(λ)− 4
√
δ s.t. IM̃(λ) ≥ (1− ε′)/ñ− 2LKL

√
δ

≥ gM̃

((1− ε′)/ñ− 2LKL

√
δ)−1

− 4
√
δ

where the last inequality follows from Lemma E.1. This implies that

gM̃ ≤ ((1− ε′)/ñ− 2LKL

√
δ)−1(1 + ε′) · g

M

ñ
+ 4((1− ε′)/ñ− 2LKL

√
δ)−1
√
δ. (46)

Assuming that
√
δ ≤ ε′ − 2(ε′)2

2(1 + 2ε′)LKLñ
,

some algebra shows that

Eq. (46) ≤ (1 + 2ε′)2gM + 4(1 + 2ε′)ñ
√
δ.

Now we can bound

∆M(λ̃) ≤ ∆M̃(λ̃) + 4
√
δ

≤ (1 + ε′)gM̃/ñ+ 4
√
δ

≤ (1 + 2ε′)3gM/ñ+ 4(1 + 2ε′)2
√
δ + 4

√
δ

and

IM(λ̃) ≥ IM̃(λ̃)− 2LKL

√
δ ≥ (1− ε′)/ñ− 2LKL

√
δ.

If ε′ and δ are small enough so that

(1 + 2ε′)3 ≤ 1 + ε/2 and 4(1 + 2ε′)2
√
δ + 4

√
δ ≤ εgM/2ñ

and

1− ε′ ≥ 1− ε/2 and 2LKL

√
δ ≤ ε/2ñ,

then ∆M(λ̃) ≤ (1 + ε)gM/ñ and IM(λ̃) ≥ (1− ε)/ñ, which implies that λ̃ ∈ Λ(M ; ε) with scaling
factor ñ.
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Step 3: Condition on δ. Altogether, we have assumed that δ satisfies Eq. (45) and, that for some
M ∈M0 with EM∼ξ[Epexp [D

(
M(π) ∥M(π)

)
]] ≤ 1/Cexp, we have

√
δ ≤ ε′ − 2(ε′)2

2(1 + 2ε′)LKLñ
, 4(1 + 2ε′)2

√
δ + 4

√
δ ≤ εgM/2ñ, 2LKL

√
δ ≤ ε/2ñ (47)

and

(1 + 2ε′)3 ≤ 1 + ε/2, 1− ε′ ≥ 1− ε/2.

Some algebra shows that, as long as ε ≤ 1, it suffices to take ε′ = ε/36 to satisfy the latter two
conditions. Furthermore, some calculation shows that a sufficient condition for Eq. (47) to be met is
that

√
δ ≤ min

{
1

81LKL
,
gM

17

}
· ε
ñ
.

By Lemma E.5 and our choice of ñ, we can bound

ñ ≤ 2gM̃/∆M̃
min + nM̃

ε/36

so it suffices that we take

√
δ ≤ min

{
1

81LKL
,
gM

17

}
· ε

(
2gM̃

∆M̃
min

+ nM̃
ε

)−1

.

As M̃ was chosen to an arbitrary model inM0 with EM∼ξ[Epexp [D
(
M(π) ∥ M̃(π)

)
]] ≤ 1/Cexp,

we take it to minimize gM̃ over this constraint. It suffices then that

√
δ ≤ min

{
1

81LKL
,
gM̃

17

}
· ε

(
2gM̃

∆M̃
min

+ nM̃

ε/36

)−1

.

Finally, by Lemma F.13 (under Assumption A.2) and Lemma E.3, we can lower bound gM̃ ≥
∆M̃

min/2VM. Combining this condition with Eq. (45) gives the result.

Appendix F. Proofs from Appendix A

Organization of Appendix F. In this section we prove the main results from Appendix A. We
consider a slightly generalized version of the setting in Appendix A, where we allow for divergences
other than just the KL divergence, as described below. This section is organized as follows.

• First, in Appendix F.1, we give the proof of our main result, Theorem A.1. We break this
proof into two principle components: bounding the regret of AE2 in the exploit phase (Section
F.1.1), and explore phase (Section F.1.2). The key results in this section are Lemma F.3, which
formalizes the key algorithm intuition given in Appendix A, showing that exploring via the
AEC yields low regret, and Lemma F.4, which shows that, to enter the explore phase, the
total “information gain” must be bounded as O(log T ), which ultimately yields the optimal
leading-order scaling. We combine these results with our estimation guarantees in Appendix
F.1.3, where we give the proof of Theorem A.1.
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• In Appendix F.2, we extend AE2 and Theorem A.1 to the case where we assume no lower
bound on the minimum gap over the model class, first presenting our main algorithm in this
setting, Algorithm 6, and then giving a proof of Theorem A.2. The structure of this section is
similar to Appendix F.1—the primary difference being a slightly different argument to handle
the need to adapt to the minimum gap of the ground truth instance.

• Finally, in Appendix F.3 we present our estimation routine with covering, and prove that it
achieves low estimation error, and in Appendix F.4 we provide the proofs of miscellaneous
results used throughout Appendix F.

F.1. Regret Bound for Uniformly Regular Classes (Theorem A.1)

In this section we prove Theorem F.1, which generalizes Theorem A.1. To do so, we analyze
Algorithm 5, wich generalizes Algorithm 2 to allow for general divergences.

Throughout, we define

gM := min
M∈M:gM>0

gM .

Algorithm 5 Allocation Estimation via Adaptive Exploration (AE2, general divergences)
1: input: Optimality tolerance δ, model classM, estimation oracle AlgD.

2: Initialize s← 1, ε← δ
4+2δ , nmax ← nmax(M, ε), q ← 4nmax+δgM

4nmax+2δgM
.

3: Compute ξ1 ← AlgD({∅}) and M̂1 ← EM∼ξ1 [M ].
4: for t = 1, 2, 3, . . . do

5: if ∃πM̂s ∈ πM̂s s.t. ∀M ∈Malt(πM̂s),
∑s−1

i=1 EM̂∼ξi

[
log PM̂,πi

(ri,oi)

PM,πi (ri,oi)

]
≥ log(t log t) then

6: Play πM̂s . // Exploit

7: else // Explore

8: Set ps ← qλs + (1− q)ωs for

λs, ωs ← argmin
λ,ω∈△Π

sup
M∈M\Mgl

ε (λ;nmax)

1

E
M̂∼ξs

[
Eπ∼ω

[
D
(
M̂(π) ∥M(π)

)]] . (48)

9: Draw πs ∼ ps, observe rs, os.
10: Compute estimate ξs+1 ← AlgD({(πi, ri, oi)}si=1) and let M̂ s = EM∼ξs [M ].
11: s← s+ 1.

F.1.1. BOUNDING REGRET OF EXPLOIT PHASE

We refer to the exploit phase as the subset of rounds t in which Line 6 is reached, and refer to the
explore phase as the subset of rounds in which Line 8 is reached.

Lemma F.1. The total expected regret incurred by the exploit phase of Algorithm 5 is bounded by
2 log log T + 3.
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Proof of Lemma F.1. Let Et denote the event that we exploit at round t, and that πM̂s ̸= π⋆. Then,
since we can incur suboptimality of at most 1 at each round, the total expected regret incurred by the
exploit phase is bounded by

T∑
t=1

EM⋆
[I{Et}].

Let Ẽt denote the event

Ẽt :=

{
∀s ≥ 1 :

s∑
i=1

E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM⋆,πi(ri, oi)

]
< log(t log t)

}
.

By Lemma F.2, we have PM⋆
[I{Ẽct }] ≤ 1

t log t , and we can bound

EM⋆
[I{Et}] ≤ EM⋆

[I{Et ∩ Ẽt}] + EM⋆
[I{Ẽct }] ≤ EM⋆

[I{Et ∩ Ẽt}] +
1

t log t
.

Let st denote the exploration round at round t. If we exploit at round t, this implies that for all
M ∈Malt(πM̂s), we have

st−1∑
i=1

E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM,πi(ri, oi)

]
≥ log(t log t). (49)

If πM̂s ̸= π⋆, then M⋆ ∈ Malt(πM̂s), so Eq. (49) must hold for M ← M⋆. This contradicts Ẽt,
however, so EM⋆

[I{Et ∩ Ẽt}] = 0. Thus, EM⋆
[I{Et}] ≤ 1

t log t , so

T∑
t=1

EM⋆
[I{Et}] ≤ 3 +

T∑
t=3

1

t log t
≤ 3 + 2

∫ T

e

1

t log t
dt = 3 + 2 log log T.

Lemma F.2. For {(ri, oi, ξi)}si=1 generated as in Algorithm 5, we have that

PM⋆

[
∃s ≥ 1 :

s∑
i=1

E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM⋆,πi(ri, oi)

]
≥ ε

]
≤ e−ε.

Proof of Lemma F.2. Denote

Xs := exp

(
s∑
i=1

E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM⋆,πi(ri, oi)

])
.

We first show that Xs is a supermartingale. Letting Fs−1 denote the filtration up to s− 1, we have

EM⋆
[Xs | Fs−1] = exp

(
s−1∑
i=1

E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM⋆,πi(ri, oi)

])
· EM⋆

[
exp

(
E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM⋆,πs(rs, os)

])
| Fs−1

]
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= Xs−1 · EM⋆

[
exp

(
E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM⋆,πs(rs, os)

])
| Fs−1

]
(a)

≤ Xs−1 · EM⋆

[
E
M̂∼ξs

[
exp

(
log

PM̂,πs
(rs, os)

PM⋆,πs(rs, os)

)]
| Fs−1

]

= Xs−1 · EM⋆

[
E
M̂∼ξs [P

M̂,πs
(rs, os)]

PM⋆,πs(rs, os)
| Fs−1

]
= Xs−1

where (a) holds by Jensen’s inequality, and the final equality holds since E
M̂∼ξs [P

M̂,π(·, ·)] is a
valid distribution over R × O. Thus, Xs is a supermartingale. Ville’s Maximal Inequality then
immediately gives that

PM⋆
[∃s ≥ 1 : Xs ≥ eε] ≤ EM⋆

[X1]

eε
.

To complete the proof, using the same calculation as above, we bound

EM⋆
[X1] = EM⋆

[
exp

(
E
M̂∼ξ1

[
log

PM̂,π1
(r1, o1)

PM⋆,π1(r1, o1)

])]
≤ EM⋆

[
E
M̂∼ξ1

[
exp

(
log

PM̂,π1
(r1, o1)

PM⋆,π1(r1, o1)

)]]
≤ 1.

F.1.2. BOUNDING REGRET OF EXPLORE PHASE

Lemma F.3 (Main Explore Phase Regret Bound). Let sT denote the total number of exploration
rounds (which is a random variable), and assume that δ ∈ [0, 1/2). Then running Algorithm 5, if
g⋆ > 0, we can bound

E[sT ] ≤
24n2max + 8nmaxg

M

(δgM)2
· aecDε/2(M) · E[ÊstD(sT )] +

12nmax

δ∆min
· E[EstKL(sT )]

+
6nmax

δ
· E
[ sT∑
s=1

inf
M∈Malt(M⋆)

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
and the regret during exploration rounds is bounded as

E
[ sT∑
s=1

∆⋆(πs)

]
≤

8nmax + 2gM

δgM
· aecDε/2(M) · E[ÊstD(sT )] +

2(1 + δ)g⋆

∆min
· E[EstKL(sT )]

+ (1 + δ)g⋆ · E
[ sT∑
s=1

inf
M∈Malt(M⋆)

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
.

Proof of Lemma F.3. The expected regret during exploration can be written as E[
∑sT

s=1∆
⋆(πs)] =

E[
∑sT

s=1 Eps [∆⋆(π)]]. By definition, for exploration rounds, we have ps ← qλs+(1−q)ωs. For each
s ≤ sT , we consider three cases to bound the instantaneous expected regret, Eps [∆⋆(π)] = ∆⋆(ps).
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Case 1: M⋆ ∈M\Mgl
ε (λs; nmax). Denote such rounds as S1exp. Write

∆⋆(ps) =
[
∆⋆(ps)− γsE

M̂∼ξs

[
Eps [D

(
M̂(π) ∥M⋆(π)

)
]
]]

+ γsE
M̂∼ξs

[
Eps [D

(
M̂(π) ∥M⋆(π)

)
]
]

for

γs :=
1 + δ

1− q
· 1

E
M̂∼ξs [Eωs [D

(
M̂(π) ∥M⋆(π)

)
]]
. (50)

In this case we have that

γsE
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]]

=
1 + δ

1− q
· 1

Eωs [E
M̂∼ξs [D

(
M̂(π) ∥M⋆(π)

)
]]
E
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]]

≥ 1 + δ

E
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]]
E
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]]

= 1 + δ.

Thus, since the suboptimality gap is always bounded by 1, we can bound

∆⋆(ps)− γsE
M̂∼ξs

[
Eps [D

(
M̂(π) ∥M⋆(π)

)
]
]
≤ 1− γsE

M̂∼ξs

[
Eps [D

(
M̂(π) ∥M⋆(π)

)
]
]
≤ −δ.

So,

∆⋆(ps) ≤ −δ + γsE
M̂∼ξs

[
Eps [D

(
M̂(π) ∥M⋆(π)

)
]
]
.

Case 2: M⋆ ∈Mgl
ε (λs; nmax), π⋆ ∈ πM̂s . Denote such rounds as S2exp, and write

∆⋆(ps) = [∆⋆(ps)− (1 + δ)g⋆ · Eps [DKL(M
⋆(π) ∥M(π))]] + (1 + δ)g⋆ · Eps [DKL(M

⋆(π) ∥M(π))]

for any M ∈ M⋆
alt. In this case, since M⋆ ∈ Mgl

ε (λs; nmax), we have that λs ∈ Λ(M⋆; ε). This
then implies that

∆⋆(λs) ≤ (1 + ε)g⋆/n⋆ and inf
M∈M⋆

alt

Eλs [DKL(M
⋆(π) ∥M(π))] ≥ (1− ε)/n⋆

for some n⋆ ≤ nmax. Since M ∈ M⋆
alt, it follows that Eλs [DKL(M

⋆(π) ∥M(π))] ≥ (1 − ε)/n⋆.
Thus,

∆⋆(ps)− (1 + δ)g⋆Eps [DKL(M
⋆(π) ∥M(π))] ≤ q [∆⋆(λs)− (1 + δ)g⋆Eλs [DKL(M

⋆(π) ∥M(π))]] + 1− q

≤ q [(1 + ε)g⋆/n⋆ − (1 + δ)(1− ε)g⋆/n⋆] + 1− q

= q [2ε− δ(1− ε)] · g
⋆

n⋆
+ 1− q

(a)
= −qδ

2

g⋆

n⋆
+ 1− q

≤ −qδ

2

g⋆

nmax
+ 1− q
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(b)

≤ −δ

4

g⋆

nmax
,

where (a) follows from our choice of ε = δ/2
2+δ and setting of n⋆, and (b) follows from our setting of

q =
4nmax+δgM

4nmax+2δgM
, since g⋆ > 0, and some algebra. Thus,

∆⋆(ps) ≤ (1 + δ)g⋆Eps [DKL(M
⋆(π) ∥M(π))]− δ

4

g⋆

nmax
.

As this holds for every M ∈M⋆
alt, we therefore have

∆⋆(ps) ≤ inf
M∈M⋆

alt

(1 + δ)g⋆Eps [DKL(M
⋆(π) ∥M(π))]− δ

4

g⋆

nmax
.

Case 3: M⋆ ∈Mgl
ε (λs; nmax), π⋆ ̸∈ πM̂s . Denote such rounds as S3exp, and write

∆⋆(ps) =

[
∆⋆(ps)− 2(1 + δ)g⋆

∆min
· E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]

]
+

2(1 + δ)g⋆

∆min
· E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]].

Since M⋆ ∈Mgl
ε (λs; nmax), we have that λs ∈ Λ(M⋆; ε). This then implies that for any M ∈M⋆

alt:

∆⋆(λs) ≤ (1 + ε)g⋆/n⋆ and inf
M∈M⋆

alt

Eλs [DKL(M
⋆(π) ∥M(π))] ≥ (1− ε)/n⋆

for some n⋆ ≤ nmax. By Lemma F.9, since π⋆ ̸∈ πM̂s , we can lower bound E
M̂∼ξs [I{M̂ ∈

M⋆
alt}] ≥

1
2∆min. Thus, we have

2(1 + δ)g⋆

∆min
E
M̂∼ξs [Eλs [DKL

(
M⋆(π) ∥ M̂(π)

)
]] ≥ 2(1 + δ)g⋆

∆min
E
M̂∼ξs [Eλs [DKL

(
M⋆(π) ∥ M̂(π)

)
· I{M̂ ∈M⋆

alt}]]

≥ (1 + δ)(1− ε)g⋆

n⋆
.

This implies that

∆⋆(ps)− 2(1 + δ)g⋆

∆min
· E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] ≤ q[(1 + ε)g⋆/n⋆ − (1 + δ)(1− ε)g⋆/n⋆] + 1− q

≤ −δ

4

g⋆

nmax
,

where the final inequality follows by the same argument as in Case 2. Thus,

∆⋆(ps) ≤ 2(1 + δ)g⋆

∆min
· E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]− δ

4

g⋆

nmax
.

76



INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

Completing the Proof. In total we have

E
[ sT∑
s=1

∆⋆(ps)

]
≤ E

[
− δ|S1exp| −

δg⋆

4nmax
|S2exp ∪ S3exp|+

∑
s∈S1

exp

γsE
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]]

+ (1 + δ)g⋆
∑
s∈S2

exp

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))]

+
2(1 + δ)g⋆

∆min

∑
s∈S3

exp

E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]

]

≤ E
[
− δg⋆

4nmax
· sT +

8nmax + 2gM

δgM
· aecDε/2(M) · ÊstD(sT ) +

2(1 + δ)g⋆

∆min
·EstKL(sT )

+ (1 + δ)g⋆
sT∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
where the last inequality follows from Lemma F.10, which bounds

γs ≤
8nmax + 2gM

δgM
· aecDε/2(M),

and also using that for any s ∈ S2exp we have π⋆ ∈ πM̂s . Upper bounding − δg⋆

4nmax
· sT ≤ 0 proves

the second claim in the lemma statement.
For the first claim, as regret is always nonnegative, it follows that

0 ≤ E
[
− δg⋆

4nmax
· sT +

8nmax + 2gM

δgM
· aecDε/2(M) · ÊstD(sT ) +

2(1 + δ)g⋆

∆min
·EstKL(sT )

+ (1 + δ)g⋆ ·
sT∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
which implies

E[sT ] ≤
4nmax

δg⋆
· E
[
8nmax + 2gM

δgM
· aecDε/2(M) · ÊstD(sT ) +

2(1 + δ)g⋆

∆min
·EstKL(sT )

+ (1 + δ)g⋆ ·
sT∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
.

Lemma F.4. When running both Algorithm 5 and Algorithm 6, for all α ∈ [0, 1), we have

E
[ sT∑
s=1

inf
M∈Malt(M⋆)

sα · Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
≤ E[sαT ] log T + E

[
VMs

1/2+α
T

√
1344dcov · log(128CcovsT )
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+ (VM + LKL)

(
4
s
1/2+α/2
T

1− α
+

sT∑
s=1

s1/2+α/2 · E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

)]
+ E[sαT ] log log T + 7VM.

Proof of Lemma F.4. Let s̃T denote the final exploration round for which π⋆ ∈ πM̂s . Then, upper
bounding the KL divergence by 2VM via Lemma F.13, we have

sT∑
s=1

inf
M∈M⋆

alt

sαEps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

≤ s̃αT

s̃T−1∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] + 2VMsαT .

Under Assumption D.1 and via Jensen’s inequality and AM-GM, we have, for any αs > 0 and
M ∈M,

Eps [DKL(M
⋆(π) ∥M(π))] ≤ E

M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]] + LKL

√
E
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]]

≤ E
M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]] + LKL

(
1

αs
+ αsEM̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]]

)
,

We now wish to bound

E
[
s̃αT

s̃T−1∑
s=1

inf
M∈M⋆

alt

E
M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]]

]
.

LetMj
cov denote an (ρj , µj)-cover ofM⋆

alt and Esj the corresponding event at step s ≤ 2j , for some
ρj and µj to be chosen. Let Ej := ∩s≤2jEsj . By definition PM⋆ [Esj ] ≥ 1−µj , so PM⋆ [Ej ] ≥ 1−2jµj .
Define an event

Aj :=

{
∀s ≤ 2j ,M ∈Mj

cov : (s+ 1)α
s∑
i=1

E
M̂∼ξi [Epi [DKL

(
M̂(π) ∥M(π)

)
]]

≤ (s+ 1)α
s∑
i=1

E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM,πi(ri, oi)

]
+ VM(s+ 1)

1
2
+α

√
56 log

2jNcov(M⋆
alt, ρj , µj)

δj

+ VM ·

(
4
(s+ 1)

1+α
2

1− α
+

s∑
i=1

i
1+α
2 · E

M̂∼ξi [Eπ∼pi [D
(
M̂(π) ∥M⋆(π)

)
]

)}

sfor some δj to be chosen. By invoking Lemma F.12 with βi = i1/2+α/2/(s + 1)α and a union
bound, we have P[Aj ] ≥ 1− δj (while Lemma F.12 does not contain the (s+ 1)α term, the bound
in the expression for Aj simply gives the bound from Lemma F.12 multiplied through with (s+ 1)α,
which is non-random, so this is admissible). We can decompose

E
[
s̃αT

s̃T−1∑
s=1

inf
M∈M⋆

alt

E
M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]]

]
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≤
⌈log T ⌉∑
j=1

E
[
s̃αT · inf

M∈M⋆
alt

s̃T−1∑
s=1

E
M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]] · I{s̃T ∈ [2j−1, 2j), Aj ∩ Ej}

]

+

⌈log T ⌉∑
j=1

E
[
s̃αT · inf

M∈M⋆
alt

s̃T−1∑
s=1

E
M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]] · I{s̃T ∈ [2j−1, 2j), Acj ∪ Ecj }

]
.

We bound these terms separately. We can bound the second term as

⌈log T ⌉∑
j=1

E
[
s̃αT · inf

M∈M⋆
alt

s̃T−1∑
s=1

E
M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]] · I{s̃T ∈ [2j−1, 2j), Acj ∪ Ecj }

]

≤
⌈log T ⌉∑
j=1

2VM22j(P[Acj ] + P[Ecj ])

≤
⌈log T ⌉∑
j=1

2VM22j(δj + 2jµj)

where the first inequality follows by bounding Lemma F.13, and s̃T ≤ 2j , and the second follows by
our bound on the probability of Aj . Letting δj =

1
23j

, µj =
1
24j

, this term can be bounded by 4VM.
We turn now to the first term. Fix j ∈ [⌈log T ⌉]. By definition of the event Aj , and since s̃T ≤ 2j ,
plugging in our choice of δj we can bound, for any M ∈Mj

cov,

E
[
s̃αT · inf

M∈M⋆
alt

s̃T−1∑
s=1

E
M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]] · I{s̃T ∈ [2j−1, 2j), Aj ∩ Ej}

]

≤ E

[(
s̃αT · inf

M∈M⋆
alt

s̃T−1∑
s=1

E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM,πs(rs, os)

]
+ VMs̃

1/2+α
T

√
56 log(23jNcov(M⋆

alt, ρj , µj))

+ VM ·

(
4
s̃
1/2+α/2
T

1− α
+

s̃T∑
s=1

s1/2+α/2E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

))
· I{s̃T ∈ [2j−1, 2j), Ej}

]

≤ E

[(
s̃αT · inf

M∈M⋆
alt

s̃T−1∑
s=1

E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM,πs(rs, os)

]
+ VMs̃

1/2+α
T

√
168 log(8s̃TNcov(M⋆

alt, ρj ,
s̃−4
T
16 ))

+ VM ·

(
4
s̃
1/2+α/2
T

1− α
+

s̃T∑
s=1

s1/2+α/2E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

))
· I{s̃T ∈ [2j−1, 2j), Ej}

]
(51)

where the second inequality follows since, if s̃T ∈ [2j−1, 2j), then we can bound 2j ≤ 2s̃T .
Since s̃T is an exploration round by definition, we know that for all π

M̂s̃T ∈ π
M̂s̃T , there exists

some M ′ ∈Malt(π
M̂s̃T ) such that

s̃T−1∑
s=1

E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM′,πs(rs, os)

]
≤ log(T log T ).
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By assumption we have π⋆ ∈ π
M̂s̃T , so it follows that there exists some (random) M ′ ∈M⋆

alt such
that the above inequality holds. Let M ′′ ∈Mj

cov denote the model inMj
cov such that∣∣∣∣log PM′,π(r, o)

PM′′,π(r, o)

∣∣∣∣ = ∣∣∣logPM′,π(r, o)− logPM′′,π(r, o)
∣∣∣ ≤ ρj ,

for all (r, o, π) for which sup
M̃∈M PM̃,π(r, o | Ej) > 0, which is guaranteed to exist by Defini-

tion A.1. Note that by definition ofMj
cov, we have M ′′ ∈M⋆

alt. We then have

s̃αT · inf
M∈M⋆

alt

s̃T−1∑
s=1

E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM,πs(rs, os)

]
· I{s̃T ∈ [2j−1, 2j), Ej}

≤ s̃αT

s̃T−1∑
s=1

E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM′′,πs(rs, os)

]
· I{s̃T ∈ [2j−1, 2j), Ej}

= s̃αT

s̃T−1∑
s=1

[
E
M̂∼ξs

[
log

PM̂,πs
(rs, os)

PM′,πs(rs, os)

]
+ log

PM′,πs
(rs, os)

PM′′,πs(rs, os)

]
· I{s̃T ∈ [2j−1, 2j), Ej}

≤ s̃αT log(T log T ) + ρj · s̃1+αT ,

where the inequality holds since on Ej , we can ensure that log PM′,πs
(rs,os)

PM′′,πs (rs,os)
≤ ρj . Therefore,

choosing ρj = 2−3j , we have

Eq. (51) ≤ E

[(
s̃αT log(T log T ) + ρj · s̃1+αT + VMs̃

1/2+α
T

√
168s̃T log(8Ncov(M⋆

alt, ρj ,
s̃−4
T
16 ))

+ VM ·

(
4
s̃
1/2+α/2
T

1− α
+

s̃T∑
s=1

s1/2+α/2E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

))
· I{s̃T ∈ [2j−1, 2j)}

]

≤ E

[(
s̃αT log(T log T ) + 2−j + VMs̃

α+1/2
T

√
168 log(8s̃TNcov(M⋆

alt,
s̃−3
T
8 ,

s̃−4
T
16 ))

+ VM ·

(
4
s̃
1/2+α/2
T

1− α
+

s̃T∑
s=1

s1/2+α/2E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

))
· I{s̃T ∈ [2j−1, 2j)}

]
.

As this holds for each j, and the events {s̃T ∈ [2j−1, 2j)} are disjoint, we can sum over j to bound

⌈log T ⌉∑
j=1

E
[
s̃αT · inf

M∈M⋆
alt

s̃T−1∑
s=1

E
M̂∼ξs [Eps [DKL

(
M̂(π) ∥M(π)

)
]] · I{s̃T ∈ [2j−1, 2j), Aj ∩ Ej}

]

≤ E

[
s̃αT log(T log T ) + 1 + VMs̃

α+1/2
T

√
168 log(8s̃TNcov(M⋆

alt,
s̃−3
T
8 ,

s̃−4
T
16 ))

+ VM ·

(
4
s̃
1/2+α/2
T

1− α
+

s̃T∑
s=1

s1/2+α/2E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

)]
.
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Finally, under Assumption A.3 and Lemma F.15 we can bound

log(8s̃TNcov(M⋆
alt,

s̃−3
T
8 ,

s̃−4
T
16 )) ≤ log(8s̃T ) + logNcov(M,

s̃−3
T
8 ,

s̃−4
T
16 )

≤ log(8s̃T ) + dcov · log
(
128Ccovs̃

7
T

)
≤ 8dcov · log(128Ccovs̃T ).

The result follows.

F.1.3. COMPLETING THE PROOF

Theorem F.1 (Full version of Theorem A.1). For any δ ≤ 1/2, if we set D
(
· ∥ ·

)
= DKL(· ∥ ·) and

instantiate AlgD with Algorithm 7, under Assumptions 1.1 to 1.3 and A.1 to A.4 and if g⋆ > 0, the
expected regret of Algorithm 5 is bounded by

EM⋆
[Reg(T )] ≤ (1 + δ)g⋆ · log T + Caec · aecε/2(M) · log3/2(log T ) + lin

(
Clow,

√
log T , log3/2(log T )

)
,

for

Clow := lin

(
g⋆, max

M∈M
gM , V

13/2
M , L2

KL, dcov, logCcov,
1

δ2
,

1

∆3
min

, nM
δ/6,

√
aecε/2(M)

)
Caec := c ·

V 2
Mdcov log(Ccov) ·maxM∈M gM · (δ−1 + VMnM

δ/6)

δ∆3
min

· log(Clow)

and where lin(·) denotes a function linear and poly-logarithmic in its arguments and c > 0 is a
universal constant.

Proof of Theorem F.1. Letting Texploit denote the exploitation rounds, we can bound the total
expected regret as

T∑
t=1

E[∆⋆(πt)] = E

 ∑
t∈Texploit

∆⋆(πt)

+ E

[
sT∑
s=1

∆⋆(πs)

]
≤ 2 log log T + 3 + E

[
sT∑
s=1

∆⋆(πs)

]
,

where the inequality follows from Lemma F.1. It remains to bound the regret in the exploration
rounds. By Lemma F.3, we can bound this as

E
[ sT∑
s=1

∆⋆(πs)

]
≤

8nmax + 2gM

δgM
· aecDε/2(M) · E[ÊstD(sT )] +

2(1 + δ)g⋆

∆min
· E[EstKL(sT )]

+ (1 + δ)g⋆ · E
[ sT∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
.

Applying Lemma F.4 with α = 0, we can bound

E
[ sT∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
≤ log T + E

[
VM

√
1344dcovsT · log(128CcovsT )
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+ (VM + LKL)

(
4
√
sT +

sT∑
s=1

√
s · E

M̂∼ξs [Eπ∼ps [D
(
M̂(π) ∥M⋆(π)

)
]]

)]
+ log log T + 7VM

≤ log T + VM

√
1344dcovE[sT ] · log(128CcovE[sT ])

+ (VM + LKL)

(
4
√

E[sT ] + E

[
sT∑
s=1

√
s · E

M̂∼ξs [Eπ∼ps [D
(
M̂(π) ∥M⋆(π)

)
]]

])
+ log log T + 7VM

(52)

where the last inequality follows from Lemma F.16—applied with α = β = 1/2, a = 128Ccov—and
the concavity of

√
x. Note that the condition of Lemma F.16 is met here since we assume Ccov ≥ 1.

It follows from Lemma F.7 that

E

[
sT∑
s=1

√
s · E

M̂∼ξs [Eπ∼ps [D
(
M̂(π) ∥M⋆(π)

)
]]

]
≤ E

[
(2 + 6VM)(20dcov · log(64CcovsT ) + 1) · 5

√
2sT log(2sT )

]
+ E[32(1 + VM) log(sT )] + 8

≤ (2 + 6VM)(20dcov · log(64CcovE[sT ]) + 1) · 5
√
2E[sT ] log(2E[sT ])

+ 32(1 + VM) logE[sT ] + 8

= O
(
VMdcov log(CcovE[sT ])

√
E[sT ] log(E[sT ]) + VM

√
E[sT ]

)
, (53)

where the last inequality follows from Lemma F.16. Similarly, by Lemma F.8, we can bound both
E[ÊstD(sT )] and E[EstKL(sT )] as

E[ÊstD(sT )],E[EstKL(sT )] ≤ E
[
(2 + 5VM)(20dcov · log(64CcovsT ) + 1) ·

√
log(2sT )

]
+ E[32(1 + VM) log(sT )] + 8

≤ (2 + 5VM)(20dcov · log(64CcovE[sT ]) + 1) ·
√
log(2E[sT ])

+ 32(1 + VM) log(E[sT ]) + 8

= O
(
VMdcov log(CcovE[sT ])

√
log(E[sT ]) + VM log(E[sT ])

)
,

(54)

where the second inequality follows from Lemma F.16 and Jensen’s inequality, which lets us pass the
expectation through. Together this gives a regret bound of

E
[ sT∑
s=1

∆⋆(πs)

]
≤ (1 + δ)g⋆ · log T + (1 + δ)g⋆VM

√
1344dcovE[sT ] · log(128CcovE[sT ]) + (1 + δ)g⋆(log log T + 7VM)

+ (1 + δ)g⋆(VM + LKL) ·O
(√

E[sT ] + VMdcov · log(CcovE[sT ])
√
E[sT ] log(E[sT ]) + VM logE[sT ]

)
+

8nmax + 2gM

δgM
· aecDε/2(M) ·O

(
VMdcov log(CcovE[sT ])

√
log(E[sT ]) + VM log(E[sT ])

)
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+
2(1 + δ)g⋆

∆min
·O
(
VMdcov log(CcovE[sT ])

√
log(E[sT ]) + VM log(E[sT ])

)
By Lemma F.3 we can bound the total number of exploration rounds by

E[sT ] ≤
24n2max + 8nmaxg

M

(δgM)2
· aecDε/2(M) · E[ÊstD(sT )] +

12nmax

δ∆min
· E[EstKL(sT )]

+
6nmax

δ
· E
[ sT∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]

≤
24n2max + 8nmaxg

M

(δgM)2
· aecDε/2(M) ·O

(
VMdcov log(CcovE[sT ])

√
log(E[sT ]) + VM log(E[sT ])

)
+

12nmax

δ∆min
·O
(
VMdcov log(CcovE[sT ])

√
log(E[sT ]) + VM log(E[sT ])

)
+

6nmax

δ
· (log T + VM

√
1344dcovE[sT ] · log(128CcovE[sT ]) + log log T + 7VM)

+
6nmax

δ
(VM + LKL)

(
4
√

E[sT ] +O
(
VMdcov log(CcovE[sT ])

√
E[sT ] log(E[sT ]) + VM

√
E[sT ]

))
where the second inequality follows from Equations (52) to (54). Using Lemma F.17 and bounding
gM ≤ nmax, we can solve this for E[sT ] to get

E[sT ] ≤ Õ

(
nmax

δ
· log T +

VMdcov logCcov · n2max

(δgM)2
· aecDε/2(M) +

nmaxVMdcov logCcov

δ∆min

+
n2max(VM + LKL)

2(V 2
Md2cov log

2Ccov + V 2
M)

δ2

)
.

Finally, by Lemma F.13 and Lemma E.3 we can lower bound gM ≥ ∆min/2VM. Plugging this into
the above expression and using that

nmax = nmax(M, δ/6) :=
32

∆2
min

·
(
6

δ
+ 2VMnM

δ/6

)
· max
M∈M

gM ,

gives the result, after simplifying.

F.2. Regret Bound without Uniform Regularity (Theorem A.2)

In this section, we prove Theorem A.2 (as well as a more general result, Theorem F.2), which gives
regret bounds for a variant of AE2, Algorithm 6, AE2

⋆, which does not require uniform regularity,
and adapts to the gap ∆⋆

min := ∆M⋆

min for the underlying model M⋆. Algorithm 6 is a slightly more
general version of Algorithm 3, incorporating general divergences D.

Throughout this section, we let s⋆ denote the first exploration round s such that M⋆ ∈ Mℓ in
Algorithm 3. Note that s⋆ is a deterministic quantity (though, the first round t in which s = s⋆ is not
deterministic).

83



WAGENMAKER FOSTER

We remark briefly that, to bound Eq. (55) by a restriction of the AEC, it is critical that our
estimator produced at each exploration round s, ξs, is only supported onMℓ. To accomplish this,
we explicitly generate a cover ofMℓ,Mℓ

cov, and run an estimation procedure on this cover. As
Algorithm 7, the estimation procedure used to prove Theorem A.1, directly covers all ofM, to prove
Theorem A.2 we do not appeal directly to this algorithm, yet we note that the covering and estimation
procedure employed by AE2

⋆ are essentially identical to that in Algorithm 7, modulo the choice of
which set is being covered.

Algorithm 6 Adaptive Exploration for Allocation Estimation for classes without uniform regularity
(AE2

⋆)
1: input: Optimality tolerance δ, divergence D, estimation oracle AlgD, growth parameters αq,

αn, αM.
2: s← 1, ℓ← 1, ε← δ

4+2δ .
3: qs ← 1− s−αq , ns ← sαn .
4: Compute ξ1 ← AlgD({∅}) and M̂1 ← EM∼ξ1 [M ].
5: for t = 1, 2, 3, . . . do
6: if s ≥ 2ℓ then // Form active set and cover

7: ℓ← ℓ+ 1.
8: ∆ℓ ← argmin∆≥0∆ s.t. aecD,M

ε/2 (M∆, 1
∆
) ≤ sαM .

9: Mℓ ←M∆ℓ, 1

∆ℓ
∩
{
M ∈M : nM

ε + 1
∆M

min

+ 4gM

∆M
min

+ 2nMε
gM

+ 4
∆M

minε
≤
√
ns
}

.

10: Mℓ
cov ← (ρℓ, µℓ)-cover ofMℓ for ρℓ ← 2−ℓ, µℓ ← 2−5ℓ, Dℓ ← ∅.

11: if ∃πM̂s ∈ πM̂s s.t. ∀M ∈Malt(πM̂s),
∑s−1

i=1 EM̂∼ξi

[
log PM̂,πi

(ri,oi)

PM,πi (ri,oi)

]
≥ log(t log t) then

12: Play πM̂s . // Exploit

13: else // Explore

14: Set ps ← qsλs + (1− qs)ωs for

λs, ωs ← argmin
λ,ω∈△Π

sup
M∈Mℓ\Mgl

ε (λ;ns)

1

E
M̂∼ξs [Eπ∼ω[D

(
M̂(π) ∥M(π)

)
]]
. (55)

15: Draw πs ∼ ps, observe rs, os, set Dℓ ← Dℓ ∪ {(πs, rs, os)}.
16: Compute estimate ξs+1 ← AlgD(D

ℓ,Mℓ
cov) and M̂ s+1 = EM∼ξs+1 [M ].

17: s← s+ 1.

F.2.1. BOUNDING REGRET OF EXPLORE PHASE

Lemma F.5. We have

s⋆ ≤
(
aecD,M

ε/2 (M
⋆)
) 1

αM +

(
n⋆ε +

1

∆⋆
min

+
4g⋆

∆⋆
min

+
2n⋆ε
g⋆

+
4

∆⋆
minε

) 2
αn

.

Proof of Lemma F.5. We will have M⋆ ∈Mℓ as soon as M⋆ ∈M′ and M⋆ ∈M′′ for

M′ ←
{
M ∈M : nM

ε +
1

∆M
min

+
4gM

∆M
min

+
2nM

ε

gM
+

4

∆M
minε

≤
√
n2ℓ−1

}
, M′′ ←M∆ℓ, 1

∆ℓ
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where

∆ℓ = argmin
∆≥0

∆ s.t. aecD,M
ε/2 (M∆, 1

∆
) ≤ sαM .

Note that if this occurs for some ℓ, then the first exploration round s such that M⋆ ∈Mℓ is s = 2ℓ−1.
From the definition n2

ℓ−1
= 2αn(ℓ−1), we have M⋆ ∈M′ as soon as√

2αn(ℓ−1) ≥ n⋆ε +
1

∆⋆
min

+
4g⋆

∆⋆
min

+
2n⋆ε
g⋆

+
4

∆⋆
minε

⇐⇒ 2ℓ−1 ≥
(
n⋆ε +

1

∆⋆
min

+
4g⋆

∆⋆
min

+
2n⋆ε
g⋆

+
4

∆⋆
minε

)2/αn

.

To have M⋆ ∈M′′, we need ∆ℓ ≤ ∆⋆
min and n⋆ε ≤ 1

∆ℓ , which will be the case once

aecD,M
ε/2 (M

⋆) ≤ 2(ℓ−1)·αM ⇐⇒
(
aecD,M

ε/2 (M
⋆)
) 1

αM ≤ 2ℓ−1.

The result then follows by combining these bounds.

Lemma F.6. Let sT denote the total number of exploration rounds. For δ ≤ 1/2, running Algorithm 6,
we can almost surely bound bound

sT ≤
4

δg⋆

( sT∑
s=s⋆

2sαq+αME
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]

+

sT∑
s=s⋆

sαn · 2g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

+

sT∑
s=s⋆

s3αn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 4g⋆( 8

δg⋆ )
1+αn
αq−αn

)
+ s⋆.

In addition, the regret during exploration rounds is bounded as

E
[ sT∑
s=s⋆

∆⋆(πs)

]
≤ E

[ sT∑
s=s⋆

2sαq+αME
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]

+

sT∑
s=s⋆

(1 + δ)g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

+

sT∑
s=s⋆

sαn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]

]
+ 4g⋆( 8

δg⋆ )
1

αq−αn .

Proof of Lemma F.6. We first prove the bound on the regret during the exploration rounds, then use
this result to prove the bound on sT .

Recall that by definition, for exploration rounds, we have ps ← qsλs + (1− qs)ωs. We consider
three cases to bound the instantaneous expected regret, ∆⋆(ps), for each s ≥ s⋆.
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Case 1: M⋆ ∈ Mℓ\Mgl
ε (λs; ns). Denote such rounds as S1exp. This case follows identically to

Case 1 in Lemma F.3 with

γs =
1 + g⋆δ

1 + qs
· 1

E
M̂∼ξs [Eωs [D

(
M̂(π) ∥M⋆(π)

)
]
. (56)

We therefore omit the proof and conclude that

∆⋆(ps) ≤ −g⋆δ + γsE
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]

≤ γsE
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
].

As regret is always lower-bounded by 0, we have ∆⋆(ps) ≥ 0, so for rounds s ∈ S1exp, we can also
write

g⋆δ ≤ γsE
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]. (57)

Case 2: M⋆ ∈Mgl
ε (λs; ns), π⋆ ∈ πM̂s . Denote such rounds as S2exp, and write

∆⋆(ps) = [∆⋆(ps)− (1 + δ)g⋆ · Eps [DKL(M
⋆(π) ∥M(π))]] + (1 + δ)g⋆ · Eps [DKL(M

⋆(π) ∥M(π))]

for an arbitrary model M ∈ M⋆
alt. In this case, since M⋆ ∈ Mgl

ε (λs; ns), we have that λs ∈
Λ(M⋆; ε). This implies that

∆⋆(λs) ≤ (1 + ε)g⋆/n⋆s and inf
M∈M⋆

alt

Eλs [DKL(M
⋆(π) ∥M(π))] ≥ (1− ε)/n⋆s

for some n⋆s ≤ ns.
Since M ∈M⋆

alt, it follows that Eλs [DKL(M
⋆(π) ∥M(π))] ≥ (1− εs)/n⋆s. Thus,

∆⋆(ps)− (1 + δ)g⋆Eps [DKL(M
⋆(π) ∥M(π))] ≤ qs [∆⋆(λs)− (1 + δ)g⋆Eλs [DKL(M

⋆(π) ∥M(π))]] + 1− qs

≤ qs [(1 + ε)g⋆/n⋆s − (1 + δ)(1− ε)g⋆/n⋆s] + 1− qs

= qs [2ε− δ(1− ε)] · g
⋆

n⋆s
+ 1− qs

(a)
= −(1− s−αq)δ

2
· g

⋆

n⋆s
+ s−αq

(b)

≤

{
s−αq s < (8n

⋆
s

δg⋆ )
1/αq

− δg⋆

4n⋆s
s ≥ (8n

⋆
s

δg⋆ )
1/αq

(c)

≤

s−αq s < ( 8
δg⋆ )

1
αq−αn

−1
4δg

⋆ · s−αn s ≥ ( 8
δg⋆ )

1
αq−αn

(d)

≤ 2g⋆I{s < ( 8
δg⋆ )

1
αq−αn } − 1

4
δg⋆ · s−αn

where (a) follows from our choice of ε = δ/2
2+δ and qs = 1−s−αq , (b) follows from some algebra, (c)

uses that n⋆s ≤ ns and ns = sαn , and (d) follows since we will always have s−αq ≤ 2g⋆− 1
4δg

⋆ ·s−αn .
Thus:

∆⋆(ps) ≤ (1 + δ)g⋆Eps [DKL(M
⋆(π) ∥M(π))] + 2g⋆I{s < ( 8

δg⋆ )
1

αq−αn } − 1

4
δg⋆ · s−αn
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≤ (1 + δ)g⋆Eps [DKL(M
⋆(π) ∥M(π))] + 2g⋆I{s < ( 8

δg⋆ )
1

αq−αn }.

As this holds for all M ∈M⋆
alt, we have

∆⋆(ps) ≤ (1 + δ)g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] + 2g⋆I{s < ( 8

δg⋆ )
1

αq−αn }.

Since ∆⋆(ps) ≥ 0, this also implies that for s ∈ S2exp:

1

4
δg⋆ ≤ sαn · 2g⋆ · inf

M∈M⋆
alt

Eps [DKL(M
⋆(π) ∥M(π))] + 2g⋆sαnI{s < ( 8

δg⋆ )
1

αq−αn }

≤ sαn · 2g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] + 2g⋆( 8

δg⋆ )
αn

αq−αn · I{s < ( 8
δg⋆ )

1
αq−αn }.

(58)

Case 3: M⋆ ∈Mgl
ε (λs; ns), π⋆ ̸∈ πM̂s . Denote such rounds as S3exp, and write

∆⋆(ps) =
[
∆⋆(ps)− 2(1 + δ)g⋆

√
ns · E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]
]

+ 2(1 + δ)g⋆
√
ns · E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]].

Since M⋆ ∈Mgl
ε (λs), we have that λs ∈ Λ(M⋆; ε). This implies that for any M ∈M⋆

alt:

∆⋆(λs) ≤ (1 + ε)g⋆/n⋆s and inf
M∈M⋆

alt

Eλs [DKL(M
⋆(π) ∥M(π))] ≥ (1− ε)/n⋆s

for some n⋆s ≤ ns. Assume that we are at epoch ℓ. By construction we have that, for M ∈ Mℓ,
1

∆M
min

≤
√
n2ℓ ⇐⇒ ∆M

min ≥ 1√
n2ℓ

. Since ns is increasing in s, this implies that ∆M
min ≥ 1√

ns
. As ξs

is only supported onMℓ, since π⋆ ̸∈ πM̂s , Lemma F.9 implies that EM∼ξs [I{M ∈M⋆
alt}] ≥

1
2
√
ns

.
Thus, we have

2(1 + δ)g⋆
√
ns · E

M̂∼ξs [Eλs [DKL

(
M⋆(π) ∥ M̂(π)

)
]]

≥ 2(1 + δ)g⋆
√
ns · E

M̂∼ξs [Eλs [DKL

(
M⋆(π) ∥ M̂(π)

)
· I{M ∈M⋆

alt}]]

≥ 2(1 + δ)g⋆
√
ns · 1− ε

2
√
nsn⋆s

≥ (1 + δ)(1− ε)g⋆

n⋆s
.

This implies that

∆⋆(ps)− 2(1 + δ)g⋆
√
ns · E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]

≤ qs[(1 + ε)g⋆/n⋆s − (1 + δ)(1− ε)g⋆/n⋆s] + 1− qs

≤ 2g⋆I{s < ( 8
δg⋆ )

1
αq−αn } − 1

4
δg⋆ · s−αn ,

where the final inequality follows by the same argument as in Case 2. Thus,

∆⋆(ps) ≤ 2(1 + δ)g⋆
√
ns · E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 2g⋆I{s < ( 8

δg⋆ )
1

αq−αn } − 1

4
δg⋆ · s−αn
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= sαn/2 · 2(1 + δ)g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 2g⋆I{s < ( 8

δg⋆ )
1

αq−αn } − 1

4
δg⋆ · s−αn

≤ sαn/2 · 2(1 + δ)g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 2g⋆I{s < ( 8

δg⋆ )
1

αq−αn }.

Just as in Case 2, using that ∆⋆(ps) ≥ 0, this also implies that for s ∈ S3exp:

1

4
δg⋆ ≤ s3αn/2 · 2(1 + δ)g⋆E

M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 2g⋆( 8

δg⋆ )
αn

αq−αn · I{s < ( 8
δg⋆ )

1
αq−αn }.

(59)

Completing the Proof. In total we have

sT∑
s=s⋆

∆⋆(ps) ≤
∑
s∈S1

exp

γsE
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
] +

∑
s∈S2

exp

(1 + δ)g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))]

+
∑
s∈S3

exp

sαn/2 · 2(1 + δ)g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 4g⋆( 8

δg⋆ )
1

αq−αn .

By Lemma F.11, for s ∈ S1exp, we can bound γs ≤ (1 + g⋆δ) · sαq+αM . This gives an upper bound
on the above of

≤
sT∑
s=s⋆

(1 + g⋆)sαq+αME
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]

+

sT∑
s=s⋆

(1 + δ)g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

+

sT∑
s=s⋆

sαn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 4g⋆( 8

δg⋆ )
1

αq−αn ,

which proves the regret bound.
We now bound the number of exploration rounds. Since for every s ∈ S1exp Eq. (57) holds, for

every s ∈ S2exp Eq. (58) holds, and for every s ∈ S3exp Eq. (59) holds, combining these inequalities
gives

1

4
δg⋆|S1exp ∪ S2exp ∪ S3exp|

≤
∑
s∈S1

exp

γsE
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
] +

∑
s∈S2

exp

sαn · 2g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))]

+
∑
s∈S3

exp

s3αn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 4g⋆( 8

δg⋆ )
1+αn
αq−αn

≤
sT∑
s=s⋆

(1 + g⋆)sαq+αME
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]

+

sT∑
s=s⋆

sαn · 2g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}
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+

sT∑
s=s⋆

s3αn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]] + 4g⋆( 8

δg⋆ )
1+αn
αq−αn .

Using that |S1exp ∪ S2exp ∪ S3exp| = sT − s⋆ and rearranging gives the bound on sT .

F.2.2. COMPLETING THE PROOF

Theorem F.2 (Full version of Theorem A.2). Consider Algorithm 6, and suppose we set δ ≤ 1/2,
D
(
· ∥ ·
)
= DKL(· ∥ ·), αM = 1/2, αζ = 1/8, and αq = 1/4, and instantiate AlgD with Algorithm 4.

Then if Assumptions 1.1 to 1.3 and A.1 to A.3 hold and g⋆ > 0, the expected regret of is bounded by

EM⋆
[Reg(T )] ≤ (1 + δ)g⋆ log T + Caec ·

(
aecD,M

ε/2 (M
⋆)
)3
· log3/2 log T + Clow · log6/7 T

for ε← δ
4+2δ ,

Caec := Õ

(
(VM + LKL)V

3
Mdcov log(Ccov)

δ∆⋆
min

)
,

and

Clow := Õ

(
poly

(
VM, LKL, n

⋆
ε, dcov, logCcov, g

⋆,
1

∆⋆
min

,
1

δ
, log log T

))
.

Proof of Theorem F.2. The bound on the regret incurred in the exploit phase follows identically to
Theorem F.1, since the exploit test is the same. We turn to bounding the regret in the explore phase.
First, since we can incur regret of at most 1 at every round, we bound

E

[
sT∑
s=1

∆M⋆
(ps)

]
≤ E

[
sT∑
s=s⋆

∆M⋆
(ps)

]
+ s⋆

By Lemma F.6, we can bound

E
[ sT∑
s=s⋆

∆⋆(πs)

]
≤ E

[ sT∑
s=s⋆

(1 + g⋆)sαq+αME
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]

+

sT∑
s=s⋆

(1 + δ)g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

+

sT∑
s=s⋆

sαn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]

]
+ 4g⋆( 8

δg⋆ )
1

αq−αn

≤ E
[ sT∑
s=s⋆

(1 + g⋆)sαq+αME
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]

+

sT∑
s=1

(1 + δ)g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}
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+

sT∑
s=s⋆

sαn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]

]
+ 4g⋆( 8

δg⋆ )
1

αq−αn .

Applying Lemma F.4 with α = 0, we have

E
[ sT∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
≤ log T + E

[
VMs

1/2
T ·

√
1344dcov · log(128CcovsT )

+ (VM + LKL)

(
4s

1/2
T +

sT∑
s=1

s1/2 · E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

)]
+ log log T + 7VM.

Note that for s ≥ s⋆, our estimator is applied to a cover of a set containing M⋆. Furthermore, note
that the estimation procedure used in Algorithm 6 is, other than the different choice of set to cover,
identical to that used in Algorithm 7. It follows that the analysis of Algorithm 7 can be applied to the
estimation procedure of Algorithm 6, with only the mild modification accounting for the difference
in the size of the cover (as we are coveringMℓ instead ofM). However, as we can upper bound the
size of the cover ofMℓ by the size of the cover ofM via Lemma F.15, this change is inconsequential.
Thus, by Lemma F.7, we can bound

E

[
sT∑
s=s⋆

2sαq+αME
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]

]
≤ O

(
E
[
VMdcov log(CcovsT )s

αq+αM
T

√
log(sT )

])
≤ O

(
VMdcov log(CcovE[sT ])E[sT ]αq+αM

√
log(E[sT ])

)
,

(60)

where the second inequality uses Jensen’s inequality and Lemma F.16 to pass the expectation through,
which holds as long as 1/100 ≤ αq + αM ≤ 3/4. Similarly,

E

[
sT∑
s=s⋆

sαn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]

]
≤ O

(
g⋆VMdcov log(CcovE[sT ])E[sT ]αn/2

√
log(E[sT ])

)
,

(61)

where we have again used Jensen’s inequality and Lemma F.16 to pass the expectation through,
which holds as long 1/100 ≤ αn/2 ≤ 3/4. For s ≤ s⋆, we do not have M⋆ ∈Mℓ, and therefore the
estimation guarantees are vacuous. In this regime, using that the KL divergence is always bounded
by 2VM (Lemma F.13), we can simply upper bound the estimation error by 2VM. Thus,

E

[
sT∑
s=1

s1/2 · E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

]

≤ E

[
sT∑
s=s⋆

s1/2 · E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

]
+ 2VM(s⋆)3/2

≤ O
(
VMdcov log(CcovE[sT ])E[sT ]1/2

√
log(E[sT ])

)
+ 2VM(s⋆)3/2,

which gives, applying Lemma F.16 again:

E
[ sT∑
s=1

inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}

]
≤ log T +O

(
VME[sT ]1/2

√
dcov · log(CcovE[sT ])
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+ (VM + LKL)
(
E[sT ]1/2 + VMdcov log(CcovE[sT ])E[sT ]1/2

√
log(E[sT ])

))
+ 2VM(s⋆)3/2 + log log T + 7VM. (62)

Combining Eqs. (60) to (62), we have

E
[ sT∑
s=s⋆

∆⋆(πs)

]
≤ (1 + δ)g⋆ log T +O

(
VM

√
dcovE[sT ] log(CcovE[sT ])

+ (VM + LKL)VMdcov log(CcovE[sT ])E[sT ]1/2
√
log(E[sT ])

+ VMdcov log(CcovE[sT ])
√
logE[sT ]((1 + g⋆)E[sT ]αq+αM + εg⋆E[sT ]αn/2)

+ g⋆( 1
δg⋆ )

1
αq−αn + log log T + VM(s⋆)3/2

)
.

To control this, it remains to bound sT . By Lemma F.6 we have the following almost sure bound:

sT ≤
4

δg⋆

( sT∑
s=s⋆

(1 + g⋆)sαq+αME
M̂∼ξs [Eps [D

(
M̂(π) ∥M⋆(π)

)
]︸ ︷︷ ︸

(a)

+

sT∑
s=s⋆

sαn · 2g⋆ · inf
M∈M⋆

alt

Eps [DKL(M
⋆(π) ∥M(π))] · I{π⋆ ∈ πM̂s}︸ ︷︷ ︸

(b)

+

sT∑
s=1

s3αn/2 · 4g⋆E
M̂∼ξs [Eps [DKL

(
M⋆(π) ∥ M̂(π)

)
]]︸ ︷︷ ︸

(c)

+4g⋆( 4
δg⋆ )

1+αn
αq−αn

)
+ s⋆.

We bound the expectation of term (a) as in Eq. (60). To bound term (b), we apply Lemma F.4 with
α = αn to get

E[(b)] ≤ E[sαn
T ] log T + E

[
VMs

1/2+αn

T ·
√
1344dcov · log(128CcovsT )

+ (VM + LKL)

(
4
s
1/2+αn/2
T

1− αn
+

sT∑
s=1

s1/2+αn/2 · E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

)]
+ E[sαn

T ] log log T + 7VM.

Again applying Lemma F.7 and Lemma F.16, we have

E[(c)] ≤ O
(
g⋆VMdcov log(CcovE[sT ])E[sT ]3αn/2

√
log(E[sT ])

)
and

E

[
sT∑
s=1

s1/2+αn/2 · E
M̂∼ξs [Eπ∼ps [D

(
M̂(π) ∥M⋆(π)

)
]]

]
≤ O

(
VMdcov log(CcovE[sT ])E[sT ]1/2+αn/2

√
log(E[sT ])

)
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+ 2VM(s⋆)3/2+αn/2,

as long as 1/100 ≤ αn ≤ 1/4. We therefore have (using Lemma F.16 to pass the expectation
through):

E[sT ] ≤
1

δg⋆
·O
(
E[sT ]αn log T + VME[sT ]1/2+αn

√
dcov log(CcovE[sT ]) + (VM + LKL)E[sT ]1/2+αn/2

+ (VM + LKL)VMdcov log(CcovE[sT ])E[sT ]1/2+αn/2
√
log(E[sT ])

+ VMdcov log(CcovE[sT ])(1 + g⋆)E[sT ]αq+αM
√
log(E[sT ])

+ g⋆VMdcov log(CcovE[sT ])E[sT ]3αn/2
√
log(E[sT ]) + g⋆( 1

δg⋆ )
1+αn
αq−αn + VM(s⋆)3/2+αn/2

)
.

We now set αM = 1/2, αn = 1/8, and αq = 1/4, and note that all of the preceding parameter
restrictions are satisfied for these choices. Furthermore, this parameter choice implies that—using
Lemma F.17 to handle log factors—we have

E[sT ] ≤ Õ

(
1

(δg⋆)8/7
log8/7 T + poly

(
VM, dcov, logCcov, LKL, g

⋆,
1

δ
,
1

g⋆

)
+

VM(s⋆)3/2+αn/2

δg⋆

)
.

Plugging this into the regret bound given above, we have

E
[ sT∑
s=s⋆

∆⋆(πs)

]
≤ (1 + δ)g⋆ log T + Õ

(
poly

(
VM, dcov, logCcov, LKL, g

⋆,
1

δ
,
1

g⋆
, log log T

)
· log6/7 T

+
(1 + 1/g⋆)(VM + LKL)V

2
Mdcov log(Ccov) + VM

δ
· (s⋆)3/2 · log3/2 log T

)
.

Finally, by Lemma F.5, we can bound s⋆ as

s⋆ ≤
(
aecD,M

ε/2 (M
⋆)
) 1

αM +

(
n⋆ε +

1

∆⋆
min

+
4g⋆

∆⋆
min

+
2n⋆ε
g⋆

+
4

∆⋆
minε

) 2
αn

,

and, by Lemma E.3 and Lemma F.13, we can lower bound g⋆ ≥ ∆⋆
min/2VM. Plugging this in gives

the final bound.

F.3. Estimation Guarantees

In this section, we analyze Algorithm 7, which is a variant of the Tempered Aggregation algorithm
(Algorithm 4) designed for infinite classes. This algorithm is used within Algorithm 5 in order to
prove Theorem F.1.

Algorithm 7 simply applies Algorithm 4 to a sequence of covers for the classM on a doubling
epoch schedule. In particular, at every epoch ℓ, Algorithm 7 restarts the Tempered Aggregation
algorithm (Algorithm 4), clearing the Tempered Aggregation instance from the previous epoch from
memory. We denote the ℓth instantiation of Tempered Aggregation as TemperedAggregationℓ.
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Algorithm 7 Estimation with Adaptive Covering
1: input: ClassM.
2: ℓ← 1, Dℓ ← ∅.
3: Mℓ

cov ← (ρℓ, µℓ)-cover ofM for ρℓ ← 2−ℓ, µℓ ← 2−5ℓ.
4: Initialize TemperedAggregationℓ as an instance of Algorithm 4 withMℓ

cov.
5: for s = 1, 2, 3, . . . do
6: Receive (πs, rs, os), Dℓ ← Dℓ ∪ {(πs, rs, os)}.
7: ξs ← TemperedAggregationℓ(Dℓ), M̂ s ← EM∼ξs [M ]
8: if s ≥ 2ℓ then.
9: ℓ← ℓ+ 1, Dℓ ← ∅.

10: Mℓ
cov ← (ρℓ, µℓ)-cover ofM for ρℓ ← 2−ℓ, µℓ ← 2−5ℓ.

11: Initialize TemperedAggregationℓ as an instance of Algorithm 4 withMℓ
cov.

Lemma F.7. Let τ denote some stopping time with respect to the filtration (F t)Tt=1 such that τ ≤ T
almost surely, and let α ∈ (0, 1). When running Algorithm 7 under Assumption A.3, we have

E

[
τ∑
s=1

sα · EM∼ξs [Eπ∼ps [D2
H(M

⋆(π),M(π))]]

]
≤ E

[
(20dcov · log(64Ccovτ) + 1) · 22α

2α − 1
τα
]
+ 4.

In addition, if Assumption A.2 also holds, then

E

[
τ∑
s=1

sα · EM∼ξs [Eπ∼ps [DKL(M
⋆(π) ∥M(π))]]

]

≤ E
[
(2 + 6VM)(20dcov · log(64Ccovτ) + 1) · 22α

2α − 1
τα
√

log(2τ)

]
+ E[32(1 + VM) log(τ)] + 8 (63)

and

E

[
τ∑
s=1

sα · EM∼ξs [Eπ∼ps [DKL(M(π) ∥M⋆(π))]]

]

≤ E
[
(2 + 6VM)(20dcov · log(64Ccovτ) + 1) · 22α

2α − 1
τα
√

log(2τ)

]
+ E[32(1 + VM) log(τ)] + 8. (64)

Proof of Lemma F.7. Let Sk denote the set of s values for which ℓ = k and note that Sk =
{2k−1 + 1, 2k−1 + 2, . . . , 2k}. We can bound

E

[
τ∑
s=1

sαEM∼ξs [Eπ∼ps [D2
H(M

⋆(π),M(π))]]

]
(65)

≤
⌈log2 T ⌉∑
k=1

E

∑
s∈Sk

sα · EM∼ξs [Eπ∼ps [D2
H(M

⋆(π),M(π))]] · I{s ≤ τ}
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≤
⌈log2 T ⌉∑
k=1

2αk · E

∑
s∈Sk

EM∼ξs [Eπ∼ps [D2
H(M

⋆(π),M(π))]] · I{s ≤ τ}

 (66)

since we have that ℓ ≤ ⌈log2 T ⌉ by construction, and since s ≤ 2k for s ∈ Sk. Let Ak denote the
event

Ak :=

{
∀s ∈ Sk :

s∑
i=2k−1

EM∼ξi [Eπ∼pi [D2
H(M

⋆(π),M(π))]] ≤ 2 log
2kNcov(M, ρk, µk)

δk
+ 2kρk

}
.

By Proposition E.2 and a union bound, P[Ak] ≥ 1 − δk − 22kµk. Since the Hellinger distance is
always bounded by 2 and |Sk| ≤ 2k, we can upper bound

Eq. (66) ≤
⌈log2 T ⌉∑
k=1

2αk

∑
s∈Sk

E
[
EM∼ξs [Eπ∼ps [D2

H(M
⋆(π),M(π))]] · I{s ≤ τ,Ak}

]
+ 2 · 2kE[I{Ack}]

.

Choosing δk = 2−3k and since µk = 2−5k, we have

⌈log2 T ⌉∑
k=1

2αk · 2k+1E[I{Ack}] ≤
⌈log2 T ⌉∑
k=1

22k+1 · (δk + 22kµk) =

⌈log2 T ⌉∑
k=1

22k+1 · 2 · 2−3k ≤ 4.

Note that for s ∈ Sk, if s ≤ τ , this implies that 2k−1 ≤ τ . On the event Ak, for ρk = 2−k, when
α > 0 we can bound

⌈log2 T ⌉∑
k=1

2αk
∑
s∈Sk

E
[
EM∼ξs [Eπ∼ps [D2

H(M
⋆(π),M(π))]] · I{s ≤ τ,Ak}

]

≤ E

⌈log2 T ⌉∑
k=1

2αk
(
2 log

2kNcov(M, 2−k, 2−5k)

2−3k
+ 1

)
· I{2k−1 ≤ τ}


≤ E

[(
2 log

Ncov(M, τ−1/2, τ−5/32)

τ−4/16
+ 1

)
·max

k
(

2α

2α − 1
2αk · I{2k−1 ≤ τ})

]
≤ E

[(
2 log

Ncov(M, τ−1/2, τ−5/32)

τ−4/16
+ 1

)
· 22α

2α − 1
τα
]

(67)

where the final two inequalities follow since 2k ≤ 2τ . Under Assumption A.3 we have

log
Ncov(M, τ−1/2, τ−5/32)

τ−4/16
≤ 10dcov · log(64Ccovτ),

which gives the first result.

Bound on KL Estimation Error. By Lemma F.14, for any x > 0 we have

DKL

(
M(π) ∥ M̃(π)

)
≤ (2 + 2VM + x) ·D2

H

(
M(π), M̃(π)

)
+ 32(1 + V 2

M/x+ V 3
M/x2) · exp(−x2/8V 2

M).
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In particular choosing x = VM

√
8 log s2, we have

DKL

(
M(π) ∥ M̃(π)

)
≤ (2 + 2VM + VM

√
8 log s) ·D2

H

(
M(π), M̃(π)

)
+ 32(1 + VM)/s.

Repeating this for each step s, we can therefore bound

E

[
τ∑
s=1

sαEM∼ξs [Eπ∼ps [DKL(M
⋆(π) ∥M(π))]]

]

≤ (2 + 6VM) · E

[
τ∑
s=1

sα
√
log sEM∼ξs [Eπ∼ps [D2

H(M
⋆(π),M(π))]]

]
+ 32(1 + VM) · E[log τ ].

The result in (63) then follows from a calculation nearly identical to our above bound on Hellinger
estimation error. Applying Lemma F.14 in a similar fashion with the arguments flipped gives (64).

In the following, we extend Lemma F.7 to the case when α = 0.

Lemma F.8. Let τ denote some stopping time with respect to the filtration (F t)Tt=1 such that τ ≤ T
almost surely. When running Algorithm 7, under Assumption A.3, we have

E

[
τ∑
s=1

EM∼ξs [Eπ∼ps [D2
H(M

⋆(π),M(π))]]

]
≤ E[(20dcov · log(64Ccovτ) + 1) · (2 log τ + 1)] + 4.

In addition, if Assumption A.2 also holds,

E

[
τ∑
s=1

EM∼ξs [Eπ∼ps [DKL(M
⋆(π) ∥M(π))]]

]
≤ E

[
(2 + 5VM)(20dcov · log(64Ccovτ) + 1)(2 log τ + 1) ·

√
log(2τ)

]
+ E[32(1 + VM) log(τ)] + 8

and

E

[
τ∑
s=1

EM∼ξs [Eπ∼ps [DKL(M(π) ∥M⋆(π))]]

]
≤ E

[
(2 + 5VM)(20dcov · log(64Ccovτ) + 1)(2 log τ + 1) ·

√
log(2τ)

]
+ E[32(1 + VM) log(τ)] + 8.

Proof of Lemma F.8. This follows identically to Lemma F.7 but replacing Eq. (67) with

⌈log2 T ⌉∑
k=1

2αk
∑
s∈Sk

E
[
EM∼ξs [Eπ∼ps [D2

H(M
⋆(π),M(π))]] · I{s ≤ τ,Ak}

]

≤ E

⌈log2 T ⌉∑
k=1

(
2 log

2kNcov(M, 2−k, 2−5k)

2−3k
+ 1

)
· I{2k−1 ≤ τ}
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≤ E
[(

2 log
Ncov(M, τ−1/2, τ−5/32)

τ−4/16
+ 1

)
· (2 log τ + 1)

]
.

The bound on the KL estimation error also follows from the same reasoning as in Lemma F.7.

F.4. Supporting Lemmas

Lemma F.9. Consider running either Algorithm 5 or Algorithm 6. Assume that π⋆ ̸∈ πM̂s and that
minM∈M : ξs(M)>0∆

M
min ≥ ∆. Then EM∼ξs [I{M ∈M⋆

alt}] ≥
1
2∆.

Proof of Lemma F.9. Recall that M̂ s = EM∼ξs [M ], so π ∈ πM̂s implies that π ∈ argmaxπ′∈Π EM∼ξs [f
M(π′)].

If π⋆ ̸∈ πM̂s , then there exists some π̃ such that EM∼ξs [f
M(π̃)] > EM∼ξs [f

M(π⋆)]. Since
fM(π) ∈ [0, 1], this implies that

0 < EM∼ξs [f
M(π̃)− fM(π⋆)] ≤ EM∼ξs [I{M ∈M⋆

alt}]− EM∼ξs [(f
M(π⋆)− fM(π̃)) · I{M ̸∈ M⋆

alt}].

For M ̸∈ M⋆
alt, we have fM(π⋆)− fM(π̃) ≥ ∆M

min ≥ ∆. Thus, the above implies

0 < EM∼ξs [I{M ∈M⋆
alt}]−∆ · EM∼ξs [I{M ̸∈ M⋆

alt}]
⇐⇒ ∆ · (1− EM∼ξs [I{M ∈M⋆

alt}]) < EM∼ξs [I{M ∈M⋆
alt}].

Rearranging gives EM∼ξs [I{M ∈M⋆
alt}] ≥

∆
1+∆ ≥

1
2∆.

Lemma F.10. When running Algorithm 5, on rounds s for which M⋆ ∈ M\Mgl
ε (λs; nmax), we

have

γs ≤
(1 + δ)(4nmax + 2δgM)

δgM
· aecDε/2(M),

for γs as defined in Eq. (50).

Proof of Lemma F.10. Recall that ωs and λs are chosen to minimize

sup
M∈M\Mgl

ε (λs;nmax)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]
.

Since M⋆ ∈M\Mgl
ε (λs; nmax), we can therefore bound

1

E
M̂∼ξs [Eωs [D

(
M̂(π) ∥M⋆(π)

)
]]
≤ inf

ω∈△Π

sup
M∈M\Mgl

ε (λs;nmax)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]]

= inf
λ,ω∈△Π

sup
M∈M\Mgl

ε (λ;nmax)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]
.

Recall that we set

nmax =

(
1

∆minε
+

2VMnM
ε

∆min

)
· max
M∈M

32gM

∆min
.
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By Lemma F.13, under Assumption A.2, we can bound DKL(M(π) ∥M ′(π)) ≤ 2VM for all
M,M ′ ∈M and π ∈ Π. It follows from Lemma E.3 that

2VM

∆min
≥ 1

minM∈M:gM>0 g
M
,

so

nmax ≥
(

1

∆minε
+

nM
ε

minM∈M:gM>0 g
M

)
· max
M∈M

32gM

∆min
.

Given this, straightforward calculation shows that nmax meets the condition required by Lemma E.4,
so Lemma E.4 implies

inf
λ,ω∈△Π

sup
M∈M\Mgl

ε (λ;nmax)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]
≤ inf

λ,ω∈△Π

sup
M∈M\Mgl

ε/2
(λ)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]

= aecDε/2(M; ξs)

≤ aecDε/2(M).

By our choice of q we have 1
1−q =

4nmax+2δgM

δgM
. We can then bound

γs =
1 + δ

1− q
· 1

E
M̂∼ξs [Eωs [D

(
M̂(π) ∥M⋆(π)

)
]
≤

(1 + δ)(4nmax + 2δgM)

δgM
· aecDε/2(M).

Lemma F.11. Consider running Algorithm 6. Then on rounds s for which M⋆ ∈Mℓ\Mgl
ε (λs; ns),

we have

γs ≤ (1 + g⋆δ) · sαq+αM

for γs as defined in Eq. (56), and αq, αM parameters of Algorithm 6.

Proof of Lemma F.11. Assume we are at epoch ℓ. Recall that ωs and λs minimize

sup
M∈Mℓ\Mgl

ε (λs;ns)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]
.

Since M⋆ ∈Mℓ\Mgl
ε (λs; ns), we have can therefore bound

1

E
M̂∼ξs [Eωs [D

(
M̂(π) ∥M⋆(π)

)
]]
≤ inf

ω∈△Π

sup
M∈Mℓ\Mgl

ε (λs;ns)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]]

= inf
λ,ω∈△Π

sup
M∈Mℓ\Mgl

ε (λ;ns)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]
.
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By construction, for every M ∈Mℓ, we have

nM
ε +

1

∆M
min

+
4gM

∆M
min

+
2nM

ε

gM
+

4

∆M
minε

≤
√
ns.

This implies that

ζ := min
M∈Mℓ

min

{
gM

gM + 2nM
ε

,
∆M

minε

4

}
≥ 1√

ns

and

max
M∈Mℓ

max

{
nM
ε ,

4gM

∆M
min

}
≤
√
ns,

which together imply that

max
M∈Mℓ

max

{
nM
ε ,

4gM

∆M
min

,
2gM

ζ∆M
min

}
≤ ns

By Lemma E.4 and sinceMℓ is constructed such that infM∈Mℓ ∆M
min > 0, we can therefore bound

inf
λ,ω∈△Π

sup
M∈Mℓ\Mgl

ε (λ;ns)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]
≤ inf

λ,ω∈△Π

sup
M∈Mℓ\Mgl

ε/2
(λ)

1

E
M̂∼ξs [Eω[D

(
M̂(π) ∥M(π)

)
]

≤ aecD,M
ε/2 (M∆ℓ, 1

∆ℓ
; ξs)

where the last inequality holds by the definition ofMℓ and ∆ℓ. Note that by construction, ξs is only
supported onMℓ, so we can bound aecD,M

ε/2 (M∆ℓ, 1

∆ℓ
; ξs) ≤ aecD,M

ε/2 (M∆ℓ, 1

∆ℓ
). By construction, we

also have aecD,M
ε/2 (M∆ℓ, 1

∆ℓ
) ≤ 2ℓαM ≤ sαM . Lastly, by our choice for qs we have 1

1−qs = sαq . We
can then bound

γs =
1 + g⋆δ

1− qs
· 1

E
M̂∼ξs [Eωs [D

(
M̂(π) ∥M⋆(π)

)
]
≤ (1 + δ) · sαq+αM .

F.4.1. LIKELIHOOD RATIOS

Lemma F.12. Consider running either Algorithm 5 or Algorithm 6. Under Assumption A.2, with
probability at least 1− δ, we can bound, for any M ∈M, s, and βi > 0,

s∑
i=1

E
M̂∼ξi [Eπ∼pi [DKL

(
M̂(π) ∥M(π)

)
]] ≤

s∑
i=1

E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM,πi(ri, oi)

]
+ VM

√
56s log 1/δ

+ VM ·

(
s∑
i=1

1/βi +

s∑
i=1

βiEM̂∼ξi [Eπ∼pi [D
(
M̂(π) ∥M⋆(π)

)
]]

)
.

98



INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

Proof of Lemma F.12. By Theorem 2 of Shamir (2011), under Assumption A.2 we have that with
probability at least 1− δ,

s∑
i=1

E(r,o)∼M⋆

[
E
M̂∼ξi

[
log

PM̂,π(r, o)

PM,π(r, o)

]
| Hi−1

]
≤

s∑
i=1

E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM,πi(ri, oi)

]
+ VM

√
56s log 1/δ.

(68)

Note that

E

[
E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM,πi(ri, oi)

]
| Hi−1

]
= Eπ∼pi

[
E(r,o)∼M⋆(π)

[
E
M̂∼ξi

[
log

PM̂,π(r, o)

PM,π(r, o)

]]]

= Eπ∼pi

[
E
M̂∼ξi

[
E(r,o)∼M⋆(π)

[
log

PM̂,π(r, o)

PM,π(r, o)

]]]

By Lemma B.4 of Foster et al. (2022b), we can bound, for any M̂ ∈M,∣∣∣∣∣E(r,o)∼M⋆(π)

[
log

PM̂,π(r, o)

PM,π(r, o)

]
− E

(r,o)∼M̂(π)

[
log

PM̂,π(r, o)

PM,π(r, o)

]∣∣∣∣∣
≤

√
1

2

(
E(r,o)∼M⋆(π)

[
log2

PM̂,π(r, o)

PM,π(r, o)

]
+ E

(r,o)∼M̂(π)

[
log2

PM̂,π(r, o)

PM,π(r, o)

])
·D2

H

(
M⋆(π), M̂(π)

)
≤
√

2V 2
M ·D2

H

(
M⋆(π), M̂(π)

)
where the second inequality follows under the subgaussian assumption, Assumption A.2. It follows
that for any M̂ ∈M,

Eπ∼pi

[
E(r,o)∼M⋆(π)

[
log

PM̂,π(r, o)

PM,π(r, o)

]]

≥ Eπ∼pi

[
E
(r,o)∼M̂(π)

[
log

PM̂,π(r, o)

PM,π(r, o)

]]
−
√
2V 2

M · Eπ∼pi [D2
H

(
M⋆(π), M̂(π)

)
]

(a)
= Eπ∼pi [DKL

(
M̂(π) ∥M(π)

)
]−
√

2V 2
M · Eπ∼pi [D2

H

(
M⋆(π), M̂(π)

)
]

(b)

≥ Eπ∼pi [DKL

(
M̂(π) ∥M(π)

)
]− V 2

M · (βEπ∼pi [D2
H

(
M⋆(π), M̂(π)

)
] + 1/β)

where (a) follows by the definition of KL divergence, and (b) from AM-GM for any β > 0. Since
this bound holds uniformly for all M̂ ∈M, this implies that

E

[
E
M̂∼ξi

[
log

PM̂,πi
(ri, oi)

PM,πi(ri, oi)

]
| Hi−1

]
≥ E

M̂∼ξi [Eπ∼pi [DKL

(
M̂(π) ∥M(π)

)
]]

− V 2
M · (βEM̂∼ξi [Eπ∼pi [D

2
H

(
M⋆(π), M̂(π)

)
]] + 1/β).

Combining this with Eq. (68), and using Assumption D.2 proves the result.
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Lemma F.13. Under Assumption A.2, we have, for any M,M ′ ∈M,

DKL

(
M ′(π) ∥M(π)

)
≤ 2VM, ∀π ∈ Π.

Proof of Lemma F.13. We have

DKL

(
M ′(π) ∥M(π)

)
= E(r,o)∼M ′(π)

[
log

PM′,π(r, o)

PM,π(r, o)

]
≤ E(r,o)∼M ′(π)

[∣∣∣∣log PM′,π(r, o)

PM,π(r, o)

∣∣∣∣] ≤ 2VM

where the last inequality holds under Assumption A.2.

Lemma F.14. Under Assumption A.2, for any x > 0 and M,M̃ ∈M, we have

DKL

(
M(π) ∥ M̃(π)

)
≤ (2 + 2VM + x) ·D2

H

(
M(π), M̃(π)

)
+ 32(1 + V 2

M/x+ V 3
M/x2) · exp(−x2/8V 2

M).

Proof of Lemma F.14. Fix π. Define

E :=

{∣∣∣∣log PM,π(r, o)

PM̃,π(r, o)
−DKL

(
M(π) ∥ M̃(π)

)∣∣∣∣ ≤ x

}
and for j ∈ N,

Ej :=
{
ej−1 · x <

∣∣∣∣log PM,π(r, o)

PM̃,π(r, o)
−DKL

(
M(π) ∥ M̃(π)

)∣∣∣∣ ≤ ej · x
}
.

Note that E , (Ej)∞j=1 form a partition of the probability space. Furthermore, since DKL

(
M(π) ∥ M̃(π)

)
=

Eo∼M(π)[log
PM,π(r,o)

PM̃,π(r,o)
], under Assumption A.2 we have that PM,π(Ej) ≤ 2 exp(−x2e2(j−1)/V 2

M)

and PM,π(Ec) ≤ 2 exp(−x2/V 2
M). Now,

DKL

(
M(π) ∥ M̃(π)

)
=

∫
log

PM,π(r, o)

PM̃,π(r, o)
dPM,π(r, o)

=

∫
E
log

PM,π(r, o)

PM̃,π(r, o)
dPM,π(r, o) +

∞∑
j=1

∫
Ej
log

PM,π(r, o)

PM̃,π(r, o)
dPM,π(r, o).

Using that DKL

(
M(π) ∥ M̃(π)

)
≤ 2VM by Lemma F.13, we can bound

∞∑
j=1

∫
Ej
log

PM,π(r, o)

PM̃,π(r, o)
dPM,π(r, o) ≤

∞∑
j=1

(ejx+ 2VM) ·
∫
Ej
dPM,π(r, o)

=

∞∑
j=1

(ejx+ 2VM) · PM,π(Ej)

≤
∞∑
j=1

(ejx+ 2VM) · 2 exp(−x2e2(j−1)/V 2
M)

≤
∫ ∞

0
(ejx+ 2VM) · 2 exp(−x2e2(j−1)/V 2

M)dj
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≤ 4(x+ VM)

∫ ∞

0
ej exp(−ej · x2e−2/V 2

M)dj

= 4(x+ VM)V 2
Me2 exp(−x2e−2/V 2

M)/x2

≤ 32(V 2
M/x+ V 3

M/x2) · exp(−x2/8V 2
M).

We turn now to the first term. Note that we can write∫
E
log

PM,π(r, o)

PM̃,π(r, o)
dPM,π(r, o) =

∫
E,PM̃,π(r,o)>PM,π(r,o)

(
log

PM,π(r, o)

PM̃,π(r, o)
+

PM̃,π(r, o)

PM,π(r, o)
− 1

)
dPM,π(r, o)− PM̃,π(Ec)

+

∫
E,PM̃,π(r,o)≤PM,π(r,o)

(
PM(o | π)
PM̃,π(r, o)

log
PM,π(r, o)

PM̃,π(r, o)
+ 1− PM,π(r, o)

PM̃,π(r, o)

)
dPM̃,π(r, o) + PM,π(Ec)

Following the proof of Lemma 4 of Yang and Barron (1998) and using that log PM,π(r,o)

PM̃,π(r,o)
≤

DKL

(
M(π) ∥ M̃(π)

)
+ x ≤ 2VM + x on E , we can bound this as

≤ (2 + 2VM + x)

∫
E
(
√

dPM,π(r, o)−
√

dPM̃,π(r, o))2 + PM,π(Ec)

≤ (2 + 2VM + x)

∫
(
√
dPM,π(r, o)−

√
dPM̃,π(r, o))2 + PM,π(Ec)

≤ (2 + 2VM + x) ·D2
H

(
M(π), M̃(π)

)
+ 2 exp(−x2/V 2

M).

F.4.2. COVERING NUMBERS

Lemma F.15. For any subsetM′ ⊆M, there exists some (ρ, µ)-coverM′
cov ⊆M′ forM′ such

that |M′
cov| ≤ Ncov(M, ρ/2, µ).

Proof of Lemma F.15. LetMcov denote a (ρ/2, µ)-cover ofM with event E . Throughout the proof
we use the shorthand (r, o, π) ∈ E to denote that there exists M ∈M such that PM,π(r, o | E) > 0.
By definition, it follows that for any M ∈M, there exists M ′ ∈Mcov such that

sup
r,o,π : (r,o,π)∈E

∣∣∣∣log PM,π(r, o)

PM′,π(r, o)

∣∣∣∣ ≤ ρ/2. (69)

LetM′
cov = ∅ and consider running the following procedure for every M ′ ∈Mcov:

1. Choose a single M ∈ M′ such that supr,o,π:(r,o,π)∈E
∣∣∣log PM,π(r,o)

PM′,π(r,o)

∣∣∣ ≤ ρ/2 (if such an M

exists).

2. If there exists an M ∈ M′ in step 1, setM′
cov ←M′

cov ∪ {M}. OtherwiseM′
cov remains

unchanged.

By constructionM′
cov ⊆M′, and |M′

cov| ≤ |Mcov|. We claim thatM′
cov is a (ρ, µ)-cover ofM′.

To see why, take some M ∈ M′. Let M ′ ∈ Mcov denote the point realizing Eq. (69) for M . Let
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M ′′ denote the point chosen in the above procedure for M ′. Note that there must exist some M ′′

chosen for this M ′ since Eq. (69) holds for M , so in particular M ∈M′ satisfies the condition of
step 1 in the above procedure. Then,

sup
r,o,π : (r,o,π)∈E

∣∣∣∣log PM,π(r, o)

PM′′
(o|π)

∣∣∣∣ = sup
r,o,π : (r,o,π)∈E

∣∣∣∣log PM,π(r, o)

PM′,π(r, o)
+ log

PM′,π(r, o)

PM′′
(o|π)

∣∣∣∣
≤ sup

r,o,π : (r,o,π)∈E

∣∣∣∣log PM,π(r, o)

PM′,π(r, o)

∣∣∣∣+ sup
r,o,π : (r,o,π)∈E

∣∣∣∣log PM′′
(o|π)

PM′,π(r, o)

∣∣∣∣
≤ ρ/2 + ρ/2 = ρ

where the last inequality follows by our choice of M ′ and the definition of M ′′. Thus, it follows that
M′

cov is a (ρ, µ)-cover ofM′.

F.4.3. FURTHER LEMMAS

Lemma F.16. For a > 0, α ≤ [0, 3/4], and β > 0, the function xα logβ(ax) is concave in x for

x ≥ 1
a exp

(
4β
α

)
when β ≤ 1, and for x ≥ max

{
1
a exp

(√
8(β−1)β

α

)
, 1a exp

(
4β
α

)}
when β > 1.

Proof of Lemma F.16. By some calculation, we have

d2

d2x

(
xα logβ(ax)

)
= (−1 + β)βx−2+α logβ−2(ax) + (−β + 2αβ)x−2+α logβ−1(ax)

+ (−1 + α)αx−2+α logβ(ax).

If we restrict to x ≥ 1/a, then to show that the function is concave it then suffices to show that

(−1 + β)β log−2(ax) + (−β + 2αβ) log−1(ax) + (−1 + α)α ≤ 0

which, since α ≤ 3/4, is implied by

(−1 + β)β log−2(ax) +
1

2
β log−1(ax) ≤ 1

4
α

which is further implied by

(−1 + β)β log−2(ax) ≤ 1

8
α and

1

2
β log−1(ax) ≤ 1

8
α.

The former condition is met for x > 1/a for all β ∈ (0, 1]. For β > 1, it is met as long as

8(β − 1)β

α
≤ log2(ax) ⇐⇒ x ≥ 1

a
exp

(√
8(β − 1)β

α

)
.

The latter condition is met for

x ≥ 1

a
exp

(
4β

α

)
.
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Lemma F.17. For all B,C, n ≥ 1, if x ≤ C logn(Bx), then x ≤ C(2n)n logn(2nBC).

Proof of Lemma F.17. This is a direct consequence of Lemma A.4 of Wagenmaker et al.
(2022a).

Appendix G. Proofs for Examples

In this section, we provide proofs for the examples given in Appendix A. We begin in Appendix G.1
by introducing a condition which implies nM⋆

ε is bounded, and is easy to verify for many classes
of interest. Next, in Appendix G.2, we consider a variety of structured bandit settings, and in
Appendix G.3 extend this to contextual bandits with finitely many arms. In Appendix G.4, we
provide proofs for the informative arm example of Section 1.3. Finally, in Appendix G.5, we consider
tabular MDPs.

G.1. Preliminaries: Regular Models

To bound the quantity n⋆ε = nM⋆

ε for the examples we consider, it will be helpful to introduce the
following notion of a regular model.

Definition G.1 (Regular Model). We say instance M ∈M is a regular model if there exists some
constant LM

M > 0 such that, for any M ′ ∈Malt(M) with DKL(M(πM) ∥M ′(πM)) > 0, there exists
M ′′ ∈Malt(M) such that DKL(M(πM) ∥M ′′(πM)) = 0 and, for all π ∈ Π,

|DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′′(π)

)
| ≤

√
LM

MDKL(M(πM) ∥M ′(πM))

+ LM
MDKL

(
M(πM) ∥M ′(πM)

)
.

(70)

Our definition of a regular model is a direct generalization of existing notions of class regularity
found in the literature (Degenne et al., 2020b). As we will see, for a variety of standard bandit classes
(including multi-armed bandits, linear bandits, and Lipschitz bandits), as well as tabular MDPs, one
can show thatM⋆ is a regular model with L⋆M = LM⋆

M bounded by a polynomial function of problem
parameters. Intuitively, M⋆ will be a regular model if, for any instance M ′ ∈Malt(M⋆) for which it
is sufficient to pull π⋆ in order to distinguish M⋆ and M ′ (thereby ruling out M ′ while incurring no
regret), then there exists some other instance M ′′ ∈Malt(M⋆) which is “close” to M ′ in a certain
sense, and which cannot be distinguished from M⋆ by simply pulling π⋆. As the following result
shows, the quantity n⋆ε can be bounded whenever M⋆ is a regular model.

Proposition G.1. If M is a regular model with ∆M
min > 0, we can bound

nM
ε ≤

2gM

∆M
min

·
(
1 + LM

M +
2gM

ε∆M
min

· LM
M

)
.

Given Proposition G.1, for many of the examples in this section, rather than bounding n⋆ε directly,
we first show that M⋆ is a regular model with L⋆M well-bounded, and then use Proposition G.1 to
obtain a bound on n⋆ε .
Proof of Proposition G.1. To prove this result, it suffices to show that, for every normalized
allocation λ ∈ Λ(M, ε) with normalization factor n, there exists some allocation η ∈ RΠ

+ such that 1)
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η(π) = nλ(π) for π ̸= πM , and η(πM) ≤ n for some well-bounded n, and 2) ∆M(η) ≤ (1 + 2ε)gM

and IM(η) ≥ 1− 2ε.
Fix some λ ∈ Λ(M, ε) with normalization factor n > 0. Note that if M is a regular model,

then IM(IπM ) = 0. Since λ ∈ Λ(M, ε), this implies that λ(πM) < 1. Let λ′ denote the allocation
λ′(πM) = 1− ζ and λ′(π) = ζ

1−λ(πM )λ(π) for π ̸= πM , for some ζ to be chosen.
We have

∆M(λ′) =
ζ

1− λ(πM)
∆M(λ) ≤ ζ

1− λ(πM)
(1 + ε)gM/n. (71)

Take M ′ ∈ Malt(M) such that DKL(M(πM) ∥M ′(πM)) > 0 and let M ′′ ∈ Malt(M) denote the
instance guaranteed to exist under Definition G.1. We then have that, for any π,

DKL

(
M(π) ∥M ′(π)

)
≥ DKL

(
M(π) ∥M ′′(π)

)
−
√

LM
MDKL(M(πM) ∥M ′(πM))− LM

MDKL

(
M(πM) ∥M ′(πM)

)
≥ DKL

(
M(π) ∥M ′′(π)

)
− (1 + α)LM

MDKL

(
M(πM) ∥M ′(πM)

)
− 1

α

where the last inequality follows for any α > 0 by AM-GM. Then∑
π

λ′(π)DKL

(
M(π) ∥M ′(π)

)
=
∑
π ̸=πM

ζ

1− λ(πM)
λ(π)DKL

(
M(π) ∥M ′(π)

)
+ (1− ζ)DKL

(
M(πM) ∥M ′(πM)

)
≥
∑
π ̸=πM

ζλ(π)

1− λ(πM)

(
DKL

(
M(π) ∥M ′′(π)

)
− (1 + α)LM

MDKL

(
M(πM) ∥M ′(πM)

)
− 1

α

)
+ (1− ζ)DKL

(
M(πM) ∥M ′(πM)

)
=
∑
π ̸=πM

ζ

1− λ(πM)
λ(π)DKL

(
M(π) ∥M ′′(π)

)
+
(
(1− ζ)− (1 + α)LM

Mζ
)
DKL

(
M(πM) ∥M ′(πM)

)
− ζ

α
.

We have M ′′ ∈Malt(M), so by definition∑
π

λ(π)DKL

(
M(π) ∥M ′′(π)

)
≥ (1− ε)/n.

However, DKL(M(πM) ∥M ′′(πM)) = 0 by assumption, so it follows that∑
π ̸=πM

ζ

1− λ(πM)
λ(π)DKL

(
M(π) ∥M ′′(π)

)
≥ ζ

1− λ(πM)
· 1− ε

n
.

By assumption, ∆M(λ) ≤ (1 + ε)gM/n, and we can also lower bound ∆M(λ) ≥ (1− λ(πM))∆M
min.

Rearranging these implies that

(1− λ(πM))n ≤ (1 + ε)gM/∆M
min.

Set α = (1+ε)gM

ε∆M
min

, then we have

ζ

1− λ(πM)
· 1− ε

n
− ζ

α
=

ζ

1− λ(πM)
· 1− ε

n
− ζε

(1 + ε)gM/∆M
min
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≥ ζ

1− λ(πM)
· 1− ε

n
− ζε

(1− λ(πM))n

=
ζ

1− λ(πM)
· 1− 2ε

n
.

Furthermore, with this choice of α, if

ζ ≤ 1

1 + (1 + α)LM
M

=
1

1 + (1 + (1 + ε)gM/ε∆M
min)L

M
M
,

we have (
(1− ζ)− (1 + α)LM

Mζ
)
DKL

(
M(πM) ∥M ′(πM)

)
≥ 0.

We therefore have that, for any M ′ ∈Malt(M) with DKL(M(πM) ∥M ′(πM)) > 0, that∑
π

λ′(π)DKL

(
M(π) ∥M ′(π)

)
≥ ζ

1− λ(πM)
· 1− 2ε

n
.

Now consider M ′ ∈Malt(M) with DKL(M(πM) ∥M ′(πM)) = 0. In this case we have∑
π

λ′(π)DKL

(
M(π) ∥M ′(π)

)
=

ζ

1− λ(πM)
·
∑
π

λ(π)DKL

(
M(π) ∥M ′(π)

)
≥ ζ

1− λ(πM)
· 1− ε

n

where the inequality follows since λ ∈ Λ(M, ε) with normalization factor n by assumption. Together
these bounds then imply that:

IM(λ′) ≥ ζ

1− λ(πM)
· 1− 2ε

n
.

Combining this with our bound on ∆M(λ′) in (71) implies that λ′ ∈ Λ(M ; 2ε) with parameter
n′ = 1−λ(πM )

ζ · n.
To conclude, define the allocation η := n′λ′. Then for π ̸= πM :

η(π) =
1− λ(πM)

ζ
· nλ′(π) = nλ(π)

and

η(πM) =
1− λ(πM)

ζ
· nλ′(πM) ≤ 1− λ(πM)

ζ
· n

It follows then that ∆M(η) = n∆M(λ) ≤ (1 + ε)gM , and IM(η) ≥ n′IM(λ′) ≥ 1− 2ε. Therefore,
η satisfies the desired condition. Since λ ∈ Λ(M, ε), we have

∆M(λ) ≤ (1 + ε)gM/n =⇒ (1− λ(πM))n ≤ (1 + ε)gM/∆M
min,

and thus

η(πM) ≤ (1 + ε)gM

∆M
min · ζ

≤ 2gM(1 + (1 + 2gM/ε∆M
min)L

⋆
M)

∆M
min

.

which proves the result.

105



WAGENMAKER FOSTER

G.2. Structured Bandits with Gaussian Noise

In this section, we consider the problem of structured bandits with Gaussian noise, in whichO = {∅},
and the mean reward functions belong to a given function class F . Concretely, we consider the model
class

M =
{
M(π) = N (f(π), σ2) : f ∈ F

}
.

We set

D
(
M(π) ∥M(π)

)
← DKL

(
M(π) ∥M(π)

)
=

1

2σ2
(fM(π)− fM(π))2 (72)

for D the divergence used by AE2
⋆. In general in the following examples we take σ = 1 for simplicity.

We begin by verifying that the basic regularity conditions required by our results are satisfied for
generic classes F , then provide bounds on the AEC for specific classes of interest.

Lemma G.1. For bandits with Gaussian noise:

1. For D ← DKL, Assumptions A.2, D.1 and D.2 hold with parameters

LKL = VM =
2
√
2

σ
.

2. We can bound Ncov(M, ρ, µ) by the covering number of M in the distance d(M,M ′) :=

supπ∈Π |fM(π) − fM′
(π)| at tolerance σ2·ρ

2+
√

2σ2 log(2/µ)
. Furthermore, it suffices to take

E := {|r| ≤ 1 +
√
2σ2 log(2/µ)}.

Proof of Lemma G.1. In this setting, we have that for any M,M ′ ∈M and any π ∈ Π,

DKL

(
M(π) ∥M ′(π)

)
=

1

2σ2
(fM(π)− fM′

(π))2.

For M ∈M, we therefore have∣∣DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′(π)

)∣∣ = 1

2σ2

∣∣∣(fM(π)− fM′
(π))2 − (fM(π)− fM′

(π))2
∣∣∣

≤ 2

σ2
|fM(π)− fM(π)|

=
2
√
2

σ

√
D
(
M(π) ∥M(π)

)
,

where the inequality follows from the Mean Value Theorem and the assumption that fM(π) ∈ [0, 1]

for all π ∈ Π. This verifies that Assumption D.1 holds with LKL = 2
√
2

σ .
To show that Assumption A.2 is met, we note that for all M,M,M ′ ∈M,

log
PM,π(r, o)

PM,π(r, o)
=

1

2σ2
(r − fM(π))2 − 1

2σ2
(r − fM(π))2

=
1

2σ2

[
fM(π)2 + fM(π)2 − 2r(fM(π)− fM(π))

]
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=
1

2σ2

[
fM(π)2 + fM(π)2 − 2fM′

(π)(fM(π)− fM(π)) + 2(fM′
(π)− r)(fM(π)− fM(π))

]
= E(r,o)∼M ′(π)

[
log

PM,π(r, o)

PM,π(r, o)

]
+

1

σ2
(fM′

(π)− r)(fM(π)− fM(π)).

It follows that

log
PM,π(r, o)

PM,π(r, o)
− E(r,o)∼M ′(π)

[
log

PM,π(r, o)

PM,π(r, o)

]
is sub-gaussian with parameter Er∼M ′(π)[(

1
σ2 (f

M′
(π)−r)(fM(π)−fM(π)))2] ≤ 4

σ2 , which verifies
Assumption A.2 with V 2

M = 8
σ2 .

Finally, we bound the covering number. Let E := {|r| ≤ 1 +
√

2σ2 log(2/µ)}. Elementary
manipulations show that PM,π(Ec) ≤ µ for any M ∈M and π. Using the same calculation as above,
we have

log
PM,π(r, o)

PM′,π(r, o)
=

1

2σ2
(r − fM(π))2 − 1

2σ2
(r − fM′

(π))2 ≤ 1 + |r|
σ2

· |fM(π)− fM′
(π)|

where the inequality follows from the Mean Value Theorem. We therefore have that for any
M,M ′ ∈M,

sup
r,o,π : |r|≤1+

√
2σ2 log(2/µ)

∣∣∣∣log PM,π(r, o)

PM′,π(r, o)

∣∣∣∣ ≤ 2 +
√
2σ2 log(2/µ)

σ2
· sup

π
|fM(π)− fM′

(π)|.

It follows that if we can form a σ2·ρ
2+
√

2σ2 log(2/µ)
-cover ofM in the distance d(M,M ′) = supπ∈Π |fM(π)−

fM′
(π)|, this will serve as an (ρ, µ) cover ofM.

G.2.1. DISCRETE STRUCTURED BANDITS

As a first example of bandits with Gaussian noise, we present an additional class that satisfies the
uniformly regular assumption.

Example G.1 (Discrete Structured Bandits). Fix ∆min > 0, and consider a discrete reward space
R ⊆ [0, 1] satisfying minr,r′∈R |r−r′| ≥ ∆min. Consider any function class F ⊆ (Π→ R) defined
such that each f ∈ F has a unique optimal decision. Let our model class be defined as

M = {M(π) = N (f(π), 1) | f ∈ F}.

I t is straightforward to show that Assumption A.1 and Assumption A.2 are met with LKL, VM ≤ 4,
and that Assumption A.3 is satisfied with dcov scaling with the log-covering number of F in the
distance d(f, f ′) = supπ∈Π |f(π) − f ′(π)|, and Ccov = O(1). Furthermore, Assumption A.4 is
satisfied by construction ofR and F , and we can bound nM

ε ≤ 2
∆2

min
.8 We thus have the following

corollary to Theorem A.1.

8. It is not difficult to see that, given the construction of R, once the optimal arm has been played 2
∆2

min
times, no

additional information can be extracted from playing it.
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Corollary G.1. In the discrete structured bandits setting considered above, if g⋆ > 0, the regret of
AE2 is bounded as

EM⋆
[Reg(T )] ≤ (1 + ε)g⋆ · log(T ) + aecε/12(M) · poly

(
max
M∈M

gM , dcov,
1
ε ,

1
∆min

, log log T

)
· log1/2(T )

As we show in Example A.3, the AEC in this setting can be bounded in terms of the eluder
dimension of F . ◁

Proof for Example G.1. We provide calculations for the discrete structured bandits setting
of Example G.1. First, note that Assumptions A.1 to A.3 all hold by Lemma G.1. To bound
nM, consider M ∈ M and M ′ ∈ Malt(M). Note that either DKL(M(πM) ∥M ′(πM)) = 0,
in which case there is no advantage to playing πM , or, due to the discretization of the means,
DKL(M(πM) ∥M ′(πM)) ≥ 1

2∆
2
min. Thus for any allocation η ∈ RΠ

+, as long as η(πM) ≥ 2
∆2

min
, we

have η(πM)DKL(M(πM) ∥M ′(πM)) ≥ 1. It follows that there is no advantage to choosing η(πM)
larger than 2

∆2
min

, so we can bound nM ≤ 2
∆2

min
.

G.2.2. MULTI-ARMED BANDITS (EXAMPLE A.2)

In this section we prove the result in Example A.2. First, note that for any M ∈ M, we have
gM ≤ A/∆M

min. Assumptions A.2, D.1 and D.2 are met due to Lemma G.1, and with constants
LKL, VM ≤ 4, dcov = O(A), and Ccov = O(1). By Lemma G.2—stated and proven below—M⋆ is
a regular model with L⋆M =

√
2 as long as fM⋆

(π⋆) < 1. It remains to bound the AEC.
Proof of Proposition A.2. It is immediate to see that Cexp(M, ε) ≤ O(Aε ) by choosing the
exploration distribution to be uniform over A. By Lemma E.6, we then

aecMε (M⋆) ≤ c1 ·
A3

ε2∆6
⋆

for a universal constant c1. By Proposition G.1, we have

n⋆ε/36 ≤ c2 ·
g⋆

∆⋆
min

·
(
1 +

g⋆

ε∆⋆
min

)
≤ c2 ·

A2

ε(∆⋆
min)

4
,

for a universal constant c2, so we can lower bound ∆⋆ ≥ c3ε(∆
⋆
min)

4/A2, giving

aecMε (M⋆) ≤ c4 ·
A15

ε8(∆⋆
min)

24
.

Lemma G.2. In the multi-armed bandit setting of Example A.2, any model M⋆ ∈M is a regular
model with L⋆M =

√
3 as long as fM⋆

(π⋆) < 1.

Proof of Lemma G.2. Let M ′ ∈Malt(M⋆) and assume that DKL(M
⋆(π⋆) ∥M ′(π⋆)) > 0.

108



INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

Case 1: fM′
(πM′) + fM⋆

(π⋆)− fM′
(π⋆) ≤ 1. Let M ′′ denote the Gaussian bandit instance given

by fM′′
(π) = fM′

(π) + fM⋆
(π⋆)− fM′

(π⋆); by our assumption, M ′′ ∈M, and M ′′ ∈Malt(M⋆).
Furthermore, fM′′

(π⋆) = fM⋆
(π⋆) which implies DKL(M

⋆(π⋆) ∥M ′′(π⋆)) = 0 as desired. Finally,
for any π, we have

fM′
(π)− fM′′

(π) = fM⋆
(π⋆)− fM′

(π⋆).

This implies that for all π, since all models inM have unit Gaussian rewards, using the expression
for the KL divergence given in Eq. (72):

|DKL

(
M⋆(π) ∥M ′(π)

)
−DKL

(
M⋆(π) ∥M ′′(π)

)
| ≤ |fM⋆

(π⋆)− fM′
(π⋆)| =

√
2DKL(M⋆(π⋆) ∥M ′(π⋆))

which implies the condition of Definition G.1 is met with L⋆M =
√
2.

Case 2: fM′
(πM′) + fM⋆

(π⋆) − fM′
(π⋆) > 1. For this case the model M ′′ constructed in Case

1 will not be inM. Assume first that fM⋆
(π⋆) ≥ fM′

(πM′) and in this case define M ′′ to be the
instance

fM′′
(π) =

{
min{fM⋆

(π⋆), f
M′
(π) + fM⋆

(π⋆)− fM′
(π⋆)} π ̸= πM′

fM⋆
(π⋆) + δ π = πM′

or some δ > 0 such that fM⋆
(π⋆) + δ < 1 (note that such a δ exists since we have assumed

fM⋆
(π⋆) < 1). Note that we now have M ′′ ∈ M, and fM′′

(π) < fM′′
(πM′) for all π ̸= πM′ , so

M ′′ ∈ Malt(M⋆). Furthermore, we have fM′′
(π⋆) = fM⋆

(π⋆), so DKL(M
⋆(π⋆) ∥M ′′(π⋆)) = 0.

For π ̸= πM′ , if min{fM⋆
(π⋆), f

M′
(π) + fM⋆

(π⋆)− fM′
(π⋆)} = fM⋆

(π⋆), this implies that

fM⋆
(π⋆) ≤ fM′

(π) + fM⋆
(π⋆)− fM′

(π⋆) =⇒ fM⋆
(π⋆)− fM′

(π) ≤ fM⋆
(π⋆)− fM′

(π⋆).

Since we have assumed fM⋆
(π⋆) ≥ fM′

(πM′), this implies that

|fM′′
(π)− fM′

(π)| = |fM⋆
(π⋆)− fM′

(π)| ≤ |fM⋆
(π⋆)− fM′

(π⋆)|

So by the expression given for the KL divergence in Eq. (72), we have

|DKL

(
M⋆(π) ∥M ′(π)

)
−DKL

(
M⋆(π) ∥M ′′(π)

)
| ≤

√
3DKL(M⋆(π⋆) ∥M ′(π⋆)). (73)

For π ̸= πM′ with min{fM⋆
(π⋆), f

M′
(π) + fM⋆

(π⋆)− fM′
(π⋆)} = fM′

(π) + fM⋆
(π⋆)− fM′

(π⋆),
the bound on |DKL(M

⋆(π) ∥M ′(π))−DKL(M
⋆(π) ∥M ′′(π))| follows identically to Case 1. For

π = πM′ , since we have assumed that fM⋆
(π⋆) ≥ fM′

(πM′) we have

|fM′′
(πM′)− fM′

(πM′)| = fM⋆
(π⋆)− fM′

(πM′) + δ ≤ fM⋆
(π⋆)− fM′

(π⋆) + δ.

For small enough δ, this implies that Eq. (73) is satisfied for π = πM′ as well.
Consider now the case where fM⋆

(π⋆) < fM′
(πM′). In this case define M ′′ by

fM′′
(π) =

{
min{fM′

(πM′)− δ, fM′
(π) + fM⋆

(π⋆)− fM′
(π⋆)} π ̸= πM′

fM′
(πM′) π = πM′
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for δ > 0 small enough that fM′
(πM′) − δ > fM⋆

(π⋆). Note that M ′′ and M ′′ ∈ Malt(M⋆) by
construction, and that fM′′

(π⋆) = fM⋆
(π⋆) by our choice of δ, so DKL(M

⋆(π⋆) ∥M ′′(π⋆)) = 0.
For π ̸= πM′ , if min{fM′

(πM′)− δ, fM′
(π) + fM⋆

(π⋆)− fM′
(π⋆)} = fM′

(πM′)− δ, then we have

|fM′′
(π)− fM′

(π)| = |fM′
(πM′)− δ − fM′

(π)|
≤ fM′

(πM′)− fM′
(π) + δ

≤ |fM⋆
(π⋆)− fM′

(π⋆)|+ δ

where for the final inequality we have used that min{fM′
(πM′)−δ, fM′

(π)+fM⋆
(π⋆)−fM′

(π⋆) =
fM′

(πM′)− δ. It follows that Eq. (73) is satisfied for this π for sufficiently small δ. If we instead
have min{fM′

(πM′)− δ, fM′
(π)+ fM⋆

(π⋆)− fM′
(π⋆)} = fM′

(π)+ fM⋆
(π⋆)− fM′

(π⋆), then the
bound on |DKL(M

⋆(π) ∥M ′(π))−DKL(M
⋆(π) ∥M ′′(π))| follows identically to Case 1.

For π = πM′ , we have |fM′′
(πM′)− fM′

(πM′)| = 0. This proves the result.

G.2.3. STRUCTURED BANDITS WITH BOUNDED ELUDER DIMENSION (EXAMPLE A.3)

In this section, we give generic bounds on the uniform exploration coefficient and Allocation-
Estimation Coefficient for structured bandit classes with bounded eluder dimension (cf. Defini-
tion A.5). These result are used by subsequent examples, including linear bandits.

Lemma G.3. LetM{M(π) = N (f(π), 1) | f ∈ F}. Then for all ε > 0, we have

Cexp(M, ε) ≤ 16dE(F ,
√
ε/2)

ε
.

Proof of Lemma G.3. Let ξ ∈ △(M). Recall the expression for KL divergence between Gaussians
of unit variance:

EM∼ξ[Ep[DKL

(
M(π) ∥M(π)

)
]] =

1

2
EM∼ξ[Ep[(f

M(π)− fM(π))2]].

Abbreviate dE := dE(F ,
√
ε/2) and let {π1, . . . , πdE} denote a maximal sequence of ε-independent

points. By the definition of the eluder dimension, for any π ∈ Π and any M,M ∈M, we have:√√√√ dE∑
i=1

(fM(πi)− fM(πi))2 ≤
√
ε/2 =⇒ |fM(π)− fM(π)| ≤

√
ε/2.

Now, set p to be the uniform distribution over {π1, . . . , πdE}. Assume that M,M ′ ∈ M are such
that

max
M ′′∈{M,M ′}

EM∼ξ Ep[DKL

(
M(π) ∥M ′′(π)

)
] =

1

2
max

M ′′∈{M,M ′}
EM∼ξ Ep[(f

M′′
(π)−fM(π))2] ≤ ε/(16dE),

Markov’s inequality implies that for each M ′′ ∈ {M,M ′}, with probability at least 3/4 over the
draw of M ∼ ξ,

Ep[(fM′′
(π)− fM(π))2] ≤ ε/(2dE).
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Taking a union bound, we conclude that with probability at least 1/2 over the draw of M ∼ ξ,

max
M ′′∈{M,M ′}

Ep[(fM′′
(π)− fM(π))2] ≤ ε/(2dE). (74)

Going forward, let M ∈M be any model such that Eq. (74) holds; we have just proven that such a
model exists. It follows from the maximality of π1, . . . , πdE and the definition of p that for all π̃ ∈ Π,
and M ′′ ∈M,

Ep[(fM′′
(π)− fM(π))2] ≤ ε/(2dE) =⇒ (fM′′

(π̃)− fM(π̃))2 ≤ ε/2.

In particular, since this holds for both M ∈ {M ′,M ′′}, and since Eq. (74) holds, we have that for all
π,

DKL

(
M ′(π) ∥M ′′(π)

)
=

1

2
(fM′

(π)− fM′′
(π))2

≤ (fM′
(π)− fM(π))2 + (fM(π)− fM′′

(π))2

≤ ε.

As this is the condition required by Definition A.4, it suffices to take Cξ
exp(ε) = 16dE(F ,

√
ε/2)/ε.

Since this bound holds uniformly for all choices of ξ, the result follows.

Proof of Proposition A.3. The bound

Cexp(M⋆, δ) ≤ 16dE(F ,
√
δ/2)

δ
.

follows from Lemma G.3, since dE(F ′, δ) ≤ dE(F , δ) for all F ′ ⊆ F .
By Lemma E.6 we can bound aecMε (M⋆):

aecMε (M⋆) ≤ Cexp(M⋆, δ) for δ = min
M∈M⋆

min

{
min

{
1

81LKL
,
∆M

min

34VM

}
· ε

2gM/∆M
min + nM

ε/36

,
∆M

min

3

}2

.

Lemma Lemma E.2 implies that for all M ∈M⋆,

gM ≤ Cexp(M⋆, 14(∆
M
min)

2) ≤
64dE(F , 12∆

M
min)

(∆M
min)

2
≤

64dE(F , 12∆⋆)

∆2
⋆

where we have used that the eluder dimension increases as its scale ε decreases; by Lemma G.1, it
suffices to take LKL = VM = 2. A sufficient value for δ is therefore

δ = c · ε2∆8
⋆

dE(F , 12∆⋆)2

The result follows.
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G.2.4. LINEAR BANDITS (EXAMPLE A.4)

Proof of Proposition A.4. The result follows directly from Proposition A.3, since it is known that
linear bandits have eluder dimension which scales as dE(F , ε) = O(d · log 1/ε) (Russo and Van Roy,
2013).

In what follows, we prove Proposition A.5, providing sufficient conditions under which it is
possible to bound the regularity constant L⋆M (and hence n⋆ε) for linear bandits.

We begin with an geometric assumption on Θ, X , and θ⋆, which we will show ensures that
M⋆(π) = N (⟨xπ, θ⋆⟩, 1) is a regular model. To state our condition, we denote, for any vectors x
and y, we define xy and xȳ to be unique vectors satisfying x = xy + xȳ for xy ∥ y and xȳ ⊥ y.

Assumption G.1 (Regular Linear Bandits). The sets Θ,X and model parameter θ⋆ satisfy:

1. Θ is a convex polytope.

2. For all θ ∈ Θ, we have that there exists some δθ > 0 such that {θ′ ∈ Rd : ∥θ′− θ∥2 ≤ δθ} ⊆
Θ.

3. Letting x⋆ ∈ X denote the optimal action for θ⋆, we have{
θ ∈ Rd : ∥θ − θ⋆∥2 ≤ max

x∈X ,x ̸=x⋆
∆⋆(x)/∥xx̄⋆∥2

}
⊆ Θ.

The first two points above are quite mild. The primary restriction of Assumption G.1 is Point 3,
which requires that θ⋆ is located sufficiently far within the interior of Θ. Using Assumption G.1 we
can state the full version of Proposition A.5.

Proposition G.2 (Full Version of Proposition A.5). If Θ,X , and θ⋆ satisfy Assumption G.1, then n⋆ε
is bounded by a polynomial function of d, 1/∆⋆

min, 1/ε, g
⋆, and a geometry-dependent term scaling

with the structure of X and Θ.

Remark G.1 (Comparison to Existing Work). We remark that Assumption G.1 is similar to the
conditions required by existing works which achieve instance-optimality in linear bandits with
polynomial lower-order terms (Tirinzoni et al., 2020; Kirschner et al., 2021). Though neither of
these works explicitly states such a condition, closer inspection of their analysis reveals it is indeed
required. In particular, the proof of Lemma 1 of Tirinzoni et al. (2020) relies on a result from Degenne
et al. (2020b) which shows that a condition analogous to Definition G.1 is met for linear bandits.
However, the proof given in Degenne et al. (2020b) appears to only hold when Θ is unbounded, or a
condition such as Assumption G.1 holds. As Tirinzoni et al. (2020) assumes that Θ is bounded, their
results therefore only appear to hold if a condition similar to Assumption G.1 also holds. Similarly,
in the proof of Lemma 10 of Kirschner et al. (2021), it is assumed that for every arm x ̸= xπ⋆ , there
exists some instance in the alternate set with optimal arm x. To satisfy this condition, it appears that
an assumption similar to Assumption G.1 is required.

Thus, while not stated explicitly in the existing literature, it therefore seems that all existing
results which obtain reasonable lower-order terms require an assumption similar to Assumption G.1.
Removing this assumption (or showing it is necessary) is an interesting direction for future work.
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Proof of Proposition G.2. Under Assumption G.1, this follows directly from Lemma G.4 and
Proposition G.1.

Lemma G.4. Under Assumption G.1, the linear bandit model M⋆ is regular for some L⋆M < ∞
whose value depends on the geometry of Θ and X .

Proof of Lemma G.4. Fix some θ⋆ ∈ Θ and let x⋆ denote its optimal arm. Let Θalt(θ⋆) ⊆ Θ
denote parameters with optimal arm x ̸= x⋆. Assume there exists some θ ∈ Θalt(θ⋆) such that
⟨θ − θ⋆, x⋆⟩ ≠ 0 (if this is not the case, M⋆ immediately satisfies Definition G.1 and we are done).
Let Θx = {θ ∈ Θ : ⟨x, θ⟩ ≥ ⟨x⋆, θ⟩}, Θ⋆ = {θ ∈ Rd : ⟨θ − θ⋆, x⋆⟩ = 0}, and Θ⋆

x = Θx ∩ Θ⋆.
We first show that, under Assumption G.1, Θ⋆

x ̸= ∅ for all x ∈ X , x ̸= x⋆. We then use this to show
that M⋆(π) = N (⟨xπ, θ⋆⟩, 1) is a regular model.

Part 1: Θ⋆
x ̸= ∅. Fix some x ∈ X with x ̸= x⋆. Consider θ = θ⋆ + axx̄⋆ for some a ∈ R to be

chosen. By construction we have ⟨θ, x⋆⟩ = ⟨θ⋆, x⋆⟩, which implies that θ ∈ Θ⋆ for all a ∈ R. We
wish to choose a large enough that ⟨θ, x⟩ ≥ ⟨θ, x⋆⟩. Note that

⟨θ, x⟩ = ⟨θ⋆, x⟩+ a⟨xx̄⋆ , xx̄⋆ + xx⋆⟩ = ⟨θ⋆, x⟩+ a∥xx̄⋆∥22

and ⟨θ, x⋆⟩ = ⟨θ⋆, x⋆⟩. Thus, to satisfy ⟨θ, x⟩ ≥ ⟨θ, x⋆⟩, we need

a∥xx̄⋆∥22 ≥ ⟨θ⋆, x⋆ − x⟩ ⇐⇒ a ≥ ∆⋆(x)/∥xx̄⋆∥22.

Let a = ∆⋆(x)/∥xx̄⋆∥22, then it follows that ⟨θ, x⟩ ≥ ⟨θ, x⋆⟩. Furthermore, we can bound

∥θ − θ⋆∥2 ≤ a∥xx̄⋆∥2 = ∆⋆(x)/∥xx̄⋆∥2.

Under Assumption G.1, it follows that θ ∈ Θ.

Part 2: M⋆ is a Regular Model. Let Θx = {θ − θ⋆ : θ ∈ Θx}. Note that, since Θ is
a convex polytope, and Θx simply adds a linear inequality constraint, Θx is also convex. Let
Θ
⋆
x = {ϕ ∈ Θx : ⟨ϕ, x⋆⟩ = 0}. From Part 1, we have Θ

⋆
x ̸= ∅. Lemma 23 of Kirschner et al.

(2021) then gives that there exists a geometry-dependent constant C(Θ,X ) such that, for all ϕ ∈ Θx:

min
ϕ′∈Θ⋆

x

∥ϕ− ϕ′∥2 ≤ C(Θ,X ) · |⟨ϕ, x⋆⟩|.

This implies that for all θ ∈ Θx, we have:

min
θ′∈Θ⋆

x

∥θ − θ′∥2 ≤ C(Θ,X ) · |⟨θ − θ⋆, x⋆⟩|.

Now consider some θ ∈ Θalt(θ⋆), and assume that ⟨θ − θ⋆, x⋆⟩ ≠ 0 (by assumption such a θ exists).
Assume that θ has optimal arm x, which implies that θ ∈ Θx. By what we have just shown, we know
that there exists some θ′ ∈ Θ with ⟨θ′, x⟩ > ⟨θ′, x⋆⟩ so that θ′ ∈ Θalt(θ⋆), ⟨θ′ − θ⋆, x⋆⟩ = 0, and

∥θ − θ′∥2 ≤ C(Θ,X ) · |⟨θ − θ⋆, x⋆⟩|.

Note that, for any x′ ∈ X , we have

|DKL

(
θ⋆(x′) ∥ θ(x′)

)
−DKL

(
θ⋆(x′) ∥ θ′(x′)

)
| = 1

2
|⟨θ⋆ − θ, x′⟩2 − ⟨θ⋆ − θ′, x′⟩2|
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≤ 2 max
θ′′∈Θ

|⟨θ′′, x′⟩| · |⟨θ − θ′, x′⟩|

≤ 2 max
θ′′∈Θ

∥θ′′∥2∥x′∥22 · ∥θ − θ′∥2.

Furthermore, note that

√
DKL(θ⋆(x⋆) ∥ θ(x⋆)) =

1√
2
|⟨θ⋆ − θ, x⋆⟩|,

so

|DKL

(
θ⋆(x′) ∥ θ(x′)

)
−DKL

(
θ⋆(x′) ∥ θ′(x′)

)
|

≤
(
2
√
2C(Θ,X ) max

θ′′∈Θ,x′′∈X
∥θ′′∥2∥x′′∥22

)
·
√
DKL(θ⋆(x⋆) ∥ θ(x⋆)).

As θ ∈ Θ⋆(θ⋆) was arbitrary, we have therefore shown that M⋆ is a regular model with

L⋆M =

(
2
√
2 · C(Θ,X ) · max

θ′′∈Θ,x′′∈X
∥θ′′∥2∥x′′∥22

)2

.

G.2.5. GENERALIZED LINEAR MODELS (EXAMPLE A.5)

Proof Sketch for Example A.5. The bound on the AEC follows as in Proposition A.4, using that
the eluder dimension for generalized linear models is bounded as O(d · (gmax

gmin
)2 · log gmax

ε ) (Russo
and Van Roy, 2013). For the other regularity assumptions, note that by the Mean Value Theorem, we
have

|DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′′(π)

)
| = 1

2
|(g(⟨θ, x⟩)− g(⟨θ′, x⟩))2 − (g(⟨θ, x⟩)− g(⟨θ′′, x⟩))2|

≤ 2gmax|⟨θ′ − θ′′, x⟩|

and

√
DKL(M(π) ∥M ′(π)) =

1√
2
|g(⟨θ, x⟩)− g(⟨θ′, x⟩)| ≥ gmin√

2
|⟨θ − θ′, x⟩|.

In light of these inequalities, bounds on all relevant regularity parameters for generalized linear
bandits follow from similar reasoning to the proofs for linear bandits. In particular, the conclusion of
Lemma G.4 holds for generalized linear bandits under Assumption G.1, with L⋆M as in Lemma G.4,
but scaled by (gmax

gmin
)2).
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G.3. Contextual Bandits with Finitely Many Actions (Example A.6)

In this setting we take D
(
M(π) ∥M(π)

)
← DKL

(
M(π) ∥M(π)

)
for D the divergence employed

by AE2
⋆. Note that we have

DKL

(
M(π) ∥M(π)

)
=

1

2
Ex∼pX [Ea∼π(x)[(f

M(x, a)− fM(x, a))2]].

Lemma G.5. In the contextual bandits setting of Example A.6:

1. Assumptions A.2, D.1 and D.2 hold with parameters

LKL = VM = 2
√
2

and D
(
· ∥ ·

)
= DKL(· ∥ ·).

2. We can bound Ncov(M, ρ, µ) by the covering number of M in the distance d(M,M ′) =

supx∈X ,a∈A |fM(x, a) − fM′
(x, a)| at tolerance σ2·ρ

2+
√

2 log(2/µ)
. Furthermore, it suffices to

take E := {|r| ≤ 1 +
√
2 log(2/µ)}.

Proof of Lemma G.5. Using the expression for the KL divergence given above, for any M,M ′,M ∈
M and π ∈ Π, we have∣∣DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′(π)

)∣∣
=

1

2

∣∣∣Ex∼pX [Ea∼π(x)[(fM(x, a)− fM′
(x, a))2]]− Ex∼pX [Ea∼π(x)[(f

M(x, a)− fM′
(x, a))2]]

∣∣∣
≤ 1

2
Ex∼pX

[
Ea∼π(x)

[∣∣∣(fM(x, a)− fM′
(x, a))2 − (fM(x, a)− fM′

(x, a))2
∣∣∣]]

≤ 2Ex∼pX
[
Ea∼π(x)

[∣∣∣fM(x, a)− fM(x, a)
∣∣∣]]

≤ 2

√
Ex∼pX

[
Ea∼π(x)

[
(fM(x, a)− fM(x, a))

2
]]

= 2
√
2
√
DKL

(
M(π) ∥M(π)

)
.

This verifies Assumption D.1 holds with LKL = 2
√
2. Assumption D.2 is immediate.

To show that Assumption A.2 is met, we note that

log
PM,π(r, o)

PM,π(r, o)
= log

PM,π(r | o)PM,π(o)

PM,π(r | o)PM,π(o)
= log

PM,π(r | o)
PM,π(r | o)

,

where the second equality holds because the context distribution is identical for all models. As the
reward likelihoods conditioned on the context are Gaussian, a calculation similar to Lemma G.1
shows that Assumption A.2 with VM = 2

√
2. The covering number bound also follows from the

same reasoning as Lemma G.1.

Lemma G.6. For the contextual bandit setting described above, we can bound

Cexp(M, ε) ≤ 4A

ε
.
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Proof of Lemma G.6. Fix some ξ ∈ △M and let πexp be uniform over A for each context. Then,
for any p′ ∈ △Π, we have

Eπ∼p′ [DKL

(
M(π) ∥M ′(π)

)
]

=
1

2
Eπ∼p′ [Ex∼pX [Ea∼π(x)[(f

M(x, a)− fM′
(x, a))2]]]

≤ EM∼ξ[Eπ∼p′ [Ex∼pX [Ea∼π(x)[(f
M(x, a)− fM(x, a))2 + (fM(x, a)− fM′

(x, a))2]]]]

≤
∑
a∈A

EM∼ξ[Ex∼pX [(f
M(x, a)− fM(x, a))2 + (fM(x, a)− fM′

(x, a))2]]

= AEM∼ξ[Ex∼pX [Ea∼pexp(x)[(f
M(x, a)− fM(x, a))2 + (fM(x, a)− fM′

(x, a))2]]]

≤ 2AEM∼ξ[DKL

(
M(πexp) ∥M(πexp)

)
+DKL

(
M(πexp) ∥M ′(πexp)

)
].

It follows that if

EM∼ξ[DKL

(
M(πexp) ∥M(πexp)

)
] ≤ ε

4A
and EM∼ξ[DKL

(
M(πexp) ∥M ′(πexp)

)
] ≤ ε

4A
,

then we can bound Eπ∼p′ [DKL(M(π) ∥M ′(π))] ≤ ε. Thus, choosing pexp ∈ △(Π) to place proba-
bility mass 1 on πexp, a sufficient bound on Cexp(M, ε) is 4A/ε.

Proof of Proposition A.7. The bound on Cexp(M⋆, ε) follows from Lemma G.6. Hence, by
Lemma E.6 we can bound aecMε (M⋆) as:

aecMε (M⋆) ≤ 4A

δ
for δ = min

M∈M⋆
min

{
min

{
1

81LKL
,
∆M

min

34VM

}
· ε

2gM/∆M
min + nM

ε/36

,
∆M

min

3

}2

.

By Lemma E.2, we have that for all M ∈M⋆,

gM ≤ Cexp(M⋆,
1

4
(∆M

min)
2) ≤ 16A

∆2
⋆

.

By Lemma G.5, we can take LKL = VM = 2
√
2. A sufficient choice for δ is therefore

δ = c · ε
2∆8

⋆

A2
.

The result follows.

G.4. Informative Arms (Example A.1)

In this section, we provide calculations for the bandits with informative arms setting in Example A.1.
We first show that Assumptions A.1 to A.3 are satisfied.

• Lemma G.1 If π ∈ [A], then the response is simply Gaussian, so by Lemma G.1, the condition
of Assumption A.1 is met with LKL = 2. If π = π◦

i , then by the Mean Value Theorem we have∣∣DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′(π)

)∣∣
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=

∣∣∣∣∣∣
∑
a∈[A]

PM,π(a) log
PM,π(a)

PM′,π(a)
−
∑
a∈[A]

PM,π(a) log
PM,π(a)

PM′,π(a)

∣∣∣∣∣∣
≤
(
1 + max

a∈[A]
max

{∣∣∣∣log PM,π(a)

PM′,π(a)

∣∣∣∣ , ∣∣∣∣log PM,π(a)

PM′,π(a)

∣∣∣∣}) · ∑
a∈[A]

|PM,π(a)− PM,π(a)|

=

(
1 + max

a∈[A]
max

{∣∣∣∣log PM,π(a)

PM′,π(a)

∣∣∣∣ , ∣∣∣∣log PM,π(a)

PM′,π(a)

∣∣∣∣}) ·DTV

(
PM,π,PM,π

)
≤
(
1 + max

a∈[A]
max

{∣∣∣∣log PM,π(a)

PM′,π(a)

∣∣∣∣ , ∣∣∣∣log PM,π(a)

PM′,π(a)

∣∣∣∣}) ·
√

1

2
DKL(PM,π ∥PM,π).

Using the bound on the log-likelihood ratio given above, this verifies that Assumption A.1
holds with LKL = max{2, 1 + log A

1−β}.

• If π ∈ [A], then the since the response is Gaussian, by Lemma G.1, the condition of Assumption
A.2 is met with VM = 2. If π = π◦

i , then for M ∈M, either the observation is distributed as
1/A, so PM,π(r, o) = 1/A for all o ∈ [A], or i is the informative arm for instance M , in which
case PM,π(r, o) = (1− β)/A for o ̸= πM , and PM,π(r, o) = β + (1− β)/A for o = πM (note
that we can disregard o =⊥ since it occurs with probability 0 if an informative arm is pulled).
The log-likehood ratio is then at most

log
β + (1− β)/A

(1− β)/A
≤ log

A

1− β
.

Thus, Assumption A.2 is satisfied with VM = max{2, log A
1−β}.

• Using Lemma G.1, it is easy to see that Assumption A.3 is met with dcov = O(A) and
Ccov = O(1).

To bound the parameter nM, consider M ∈M and M ′ ∈Malt(M). Note that either DKL(M(πM) ∥M ′(πM)) =
0, in which case there is no advantage to playing πM , or, due to the discretization of the means,
DKL(M(πM) ∥M ′(πM)) ≥ 1

2∆
2
min. Thus, for any allocation η ∈ RΠ

+, as long as η(πM) ≥ 2
∆2

min
, we

have η(πM)DKL(M(πM) ∥M ′(πM)) ≥ 1. It follows that there is no advantage to choosing η(πM)
larger than 2

∆2
min

, so we can bound nM ≤ 2
∆2

min
.

G.4.1. BOUNDING THE ALLOCATION-ESTIMATION COEFFICIENT

We begin with some basic observations. First, since we restrict M to only contain instances
with a single optimal decision, if fM(πM) = ⌊ 1

∆min
⌋∆min for some M ∈ M, this implies that

fM(π) < ⌊ 1
∆min
⌋∆min for all π ̸= πM . Fix some M ∈ M satisfying fM(πM) = ⌊ 1

∆min
⌋∆min. It

follows that, for every M ′ ∈Malt(M), it must be the case that fM′
(πM) < ⌊ 1

∆min
⌋∆min. Therefore,

since M and M ′ have different reward means at πM , and since this holds for all M ′ ∈Malt(M), M
can be distinguished from every M ′ ∈Malt(M) by playing πM . In this case, then, gM = 0, so any ε-
optimal Graves-Lai allocation must put all its mass on πM , implying Λ(M, ε) = {IπM }. Denote such
instances M with fM(πM) = ⌊ 1

∆min
⌋∆min asM. Note that for M with fM(πM) < ⌊ 1

∆min
⌋∆min,

we have Iπ◦
M
∈ Λ(M, ε).
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We proceed to bound the value of the Fix M ∈ co(M). For a first case, assume that that
fM(πM) ≤ ⌊ 1

∆min
⌋∆min − 1

2∆min and let k = argmaxi∈[N ] PM,π◦
i (o = πM) denote the index of

the most informative arm for M . Let λ = Iπ◦
k
, and note thatMgl

ε (λ) contains only instances inM
that have informative arm k. LetM′ = {M ∈ M : π◦

M ̸= π◦
k} ∪M. ThenM\Mgl

ε (λ) ⊆ M′.
Let ω = 1

2Unif({π
◦
i }i∈[N ]) +

1
2Unif([A]). Then,

aecε(M,M) ≤ sup
M∈M′

1

Eπ∼ω[DKL

(
M(π) ∥M(π)

)
]

≤ sup
M∈M,π◦

M ̸=π◦
k

2N∑N
i=1DKL

(
M(π◦

i ) ∥M(π◦
i )
) + sup

M∈M

2A∑
π∈[A]DKL

(
M(π) ∥M(π)

)
If π◦

M ̸= π◦
k , this implies that o ∼ M(π◦

i ) is uniform on [A] for π◦
i ̸= π◦

M , and o ∼ M(π◦
i ) is

distributed as βIπM +(1−β)Unif([A]) for π◦
i = π◦

M . Note that since k = argmaxi∈[N ] PM,π◦
i (o =

πM) and M ∈ co(M), we can have at most PM,π◦
i (o) ≤ 1/A+ β/2 for all o if i ̸= k, since if this

were not the case, then i must be k. It follows from Pinsker’s inequality that for M with π◦
M ̸= π◦

k :

DKL

(
M(π◦

M) ∥M(π◦
M)
)
≥ 2DTV

(
M(π◦

M),M(π◦
M)
)2

≥ 2|PM,π◦
M (o = πM)− PM,π◦

M (o = πM)|2

= 2|β − 1/A− β/2|2

≥ 2|β/4|2

where the last inequality uses our assumption that β ≥ 4/A. For M ∈ M, since fM(πM) ≤
⌊ 1
∆min
⌋∆min − 1

2∆min, we have that

DKL

(
M(π) ∥M(π)

)
≥ 1

8
∆2

min.

Thus, we can bound

aecε(M,M) ≤ 64N

β2
+

16A

∆2
min

.

Now, consider the second case where M has fM(πM) > ⌊ 1
∆min
⌋∆min − 1

2∆min. Note that in

this case we must have |πM | = 1. Set λ = IπM . Then we have thatMgl
ε (λ) contains every instance

except the single instance with fM(πM) = ⌊ 1
∆min
⌋∆min. Let ω = IπM . Note that for any instance

with fM(πM) < ⌊ 1
∆min
⌋∆min, i.e. every instance inM\Mgl

ε (λ), we have

DKL

(
M(πM) ∥M(πM)

)
≥ 1

8
∆2

min.

It follows that with such an M , we can bound

aecε(M,M) ≤ 8

∆2
min

.
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G.5. Tabular Reinforcement Learning (Appendix A.7)

In this section, we prove all of the claims in Appendix A.7 concerning tabular reinforcement learning.
Throughout this section we let Msh(a) denote the joint distribution of the next state and reward

if we play action a in state s at step h on MDP M ∈M. We also define

wM,π
h (s, a) = PM,π(sh = s, ah = a)

as the state-action visitation probabilities on MDP M under policy π (and define wM,π
h (s) analo-

gously). We let rM
h (s, a) = Er∼RM

h (s,a)[r] denote the mean reward on MDP M at (s, a, h), and let
rh(sh, ah) the denote the realized (random reward) at step h. We let r := (r1(s1, a1), . . . , rH(sH , aH))
denote the vector of all random rewards in a given episode. τ = (s1, . . . , sH) denotes a trajectory of
states, and τh = sh the hth state in the trajectory. We denote the Q-value function on M for policy π
by

QM,π
h (s, a) = EM,π

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah = a

]

and the value function by V M,π
h (s) = Ea∼πh(s)[Q

M,π
h (s, a)]. We denote the value of a policy by

V M,π
1 := V M,π

1 (s1). For any function V : S → R we denote

PM
h [V ](s, a) = Es′∼PM

h (·|s,a)[V (s′)].

For all results in this section concerning general divergences, we take D
(
· ∥ ·

)
← DKL(· ∥ ·).

Proof of Proposition A.8. To bound the AEC, we first move from KL divergence to Hellinger
distance. Since we always have DKL

(
M(π) ∥M(π)

)
≥ D2

H

(
M(π),M(π)

)
, we upper bound

aecMε (M⋆) ≤ sup
ξ∈△M

inf
λ,ω∈△Π

sup
M∈M⋆\Mgl

ε (λ)

1

EM∼ξ[Eω[D2
H

(
M(π),M(π)

)
]]
.

We then apply Lemma E.6 to bound this by CD
exp(M⋆, δ), with D

(
· ∥ ·

)
← D2

H(·, ·). The bound on
CD
exp(M⋆, ε) then follows directly from Lemma G.10, and gives

aecMε (M⋆) ≤ SAH2 · log2H
δ2

for δ = min
M∈M⋆

min

{
min

{
1

81LKL
,
∆M

min

34VM

}
· ε

2gM/∆M
min + nM

ε/36

,
∆M

min

3

}2

.

By Lemma G.8, we have that Assumptions A.2 and D.1 hold with

LKL = VM = 4H + max
M,M ′∈M

max
π∈Π

max
τ∈T

∣∣∣∣log PM′,π(τ)

PM,π(τ)

∣∣∣∣ .
As we assume every transition has probability at least Pmin, we can lower bound PM,π(τ) ≥ PH

min,
so it suffices to take

LKL = VM = H(4 + log 1/Pmin).
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By Lemma E.2, for M ∈M⋆ we can bound

gM ≤ Cexp(M⋆, 14(∆
M
min)

2) ≤ c · SAH
2 · log2H
∆4
⋆

.

A sufficient choice of δ is therefore

δ = c · ε2∆12
⋆

S2A2H6 · log4H · log2 1/Pmin

.

G.5.1. TABULAR MDPS ARE REGULAR CLASSES

Lemma G.7. If M⋆ is such that rM⋆

h (s, a) ∈ [0, 1/H2) for all (s, a, h), then in the setting of
M←Mtab(Pmin), M⋆ is a regular model with constant

L⋆M =
96

∆⋆
min

Proof of Lemma G.7. Take some MDP M ′ ∈Malt(M⋆) such that DKL(M
⋆(π⋆) ∥M ′(π⋆)) > 0.

Let M ′′ be such that

DKL

(
M⋆
sh(π⋆(s, h)) ∥M ′′

sh(π⋆(s, h))
)
= 0, ∀s, h

and

DKL

(
M ′
sh(a) ∥M ′′

sh(a)
)
= 0, ∀s, h, a ̸= π⋆(s, h),

so that M ′′ is the MDP which is identical to M⋆ on optimal actions, and identical to M ′ on
suboptimal actions (recall that optimal actions for M⋆ are unique). By construction, we have that
DKL(M

⋆(π⋆) ∥M ′′(π⋆)) = 0. Furthermore, it is not difficult to see that M ′′ ∈ M. In particular,
to verify that PM′′

h (s′ | s, a) ≥ Pmin for each (s, a, h, s′), we note that since M⋆,M ′ ∈ M, for
every (s, a, h, s′), we have PM⋆

h (s′ | s, a) ≥ Pmin and PM′
h (s′ | s, a) ≥ Pmin. By construction, we

have that PM′′
h (· | s, a) is identical to either PM⋆

h (· | s, a) or PM′
h (· | s, a) for each (s, a, h), so it

follows that PM′′
h (s′ | s, a) ≥ Pmin. The remaining conditions for inclusion inM are immediate.

We consider two cases.

Case 1: M ′′ ∈Malt(M⋆). For π ∈ Π, by Lemma G.15 we have

DKL

(
M⋆(π) ∥M ′(π)

)
=
∑
s,a,h

wM⋆,π
h (s, a)DKL

(
M⋆
sh(a) ∥M ′

sh(a)
)
,

and

DKL

(
M⋆(π) ∥M ′′(π)

)
=
∑
s,a,h

wM⋆,π
h (s, a)DKL

(
M⋆
sh(a) ∥M ′′

sh(a)
)

=
∑
s,a,h

wM⋆,π
h (s, a)DKL

(
M⋆
sh(a) ∥M ′

sh(a)
)
· I{a ̸= π⋆(s, h)}
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so that

|DKL

(
M⋆(π) ∥M ′(π)

)
−DKL

(
M⋆(π) ∥M ′′(π)

)
|

=
∑
s,h

wM⋆,π
h (s, π⋆(s, h))DKL

(
M⋆
sh(π⋆(s, h)) ∥M ′

sh(π⋆(s, h))
)

≤ sup
s,h

wM⋆,π
h (s, π⋆(s, h))

wM⋆,π⋆
h (s, π⋆(s, h))

·DKL

(
M⋆(π⋆) ∥M ′(π⋆)

)
≤ sup

s,h

1

wM⋆,π⋆
h (s)

·DKL

(
M⋆(π⋆) ∥M ′(π⋆)

)
≤ 1

∆⋆
min

·DKL

(
M⋆(π⋆) ∥M ′(π⋆)

)
where the last inequality follows from Lemma G.13. Thus, in this case, M⋆ is a regular model with

L⋆M =
1

∆⋆
min

.

Case 2: M ′′ ̸∈ Malt(M⋆). Let (s̃, ã, h̃) be such that QM′,π⋆
h̃

(s̃, ã) > QM′,π⋆
h̃

(s̃, π⋆(s̃, h̃)), and

note that such a tuple is guaranteed to exist by Lemma G.11 since M ′ ∈Malt(M⋆). Let M̃ ′′ denote
an MDP that is identical to M ′′ everywhere except for at (s̃, h̃, ã), where we set rM̃′′

h̃
(s̃, ã) so that

QM̃′′,π⋆
h̃

(s̃, ã) = QM̃′′,π⋆
h̃

(s̃, π⋆(s̃, h̃)) + δ (75)

for some δ > 0 to be chosen. This will ensure ã is the optimal action in (s̃, h̃), so πM̃′′ ̸=
π⋆. By construction we have that M⋆ and M̃ ′′ behave identically on π⋆, which implies that
QM̃′′,π⋆
h̃

(s̃, π⋆(s̃, h̃)) = QM⋆,π⋆

h̃
(s̃, π⋆(s̃, h̃)). Furthermore, by assumption we have rM⋆

h (s, a) <

1/H2 for all (s, a, h), which implies QM⋆,π⋆

h̃
(s̃, π⋆(s̃, h̃)) < 1/H . As QM̃′′,π⋆

h̃
(s̃, ã) = rM̃′′

h̃
(s̃, ã) +

PM̃′′

h̃
[V M̃′′,π⋆
h̃+1

](s̃, ã) ≥ rM̃′′

h̃
(s̃, ã), it follows that for small enough δ, we can ensure Eq. (75) is met

with rM̃′′

h̃
(s̃, ã) < 1/H , so that M̃ ′′ ∈M.

If we can show that, for all π, |DKL(M
⋆(π) ∥M ′(π))−DKL

(
M⋆(π) ∥ M̃ ′′(π)

)
| is bounded by

some function of DKL(M
⋆(π⋆) ∥M ′(π⋆)), we are then done. We proceed to show this. First, note

that, similar to Case 1:

|DKL

(
M⋆(π) ∥M ′(π)

)
−DKL

(
M⋆(π) ∥ M̃ ′′(π)

)
|

=
∣∣∣∑
s,h

wM⋆,π
h (s, π⋆(s, h))DKL

(
M⋆
sh(π⋆(s, h)) ∥M ′

sh(π⋆(s, h))
)∣∣∣

+ wM⋆,π

h̃
(s̃, ã)

∣∣∣DKL

(
M⋆
s̃h̃
(ã) ∥M ′

s̃h̃
(ã)
)
−DKL

(
M⋆
s̃h̃
(ã) ∥ M̃ ′′

s̃h̃
(ã)
)∣∣∣

≤ sup
s,h

1

wM⋆,π⋆
h (s)

·DKL

(
M⋆(π⋆) ∥M ′(π⋆)

)
+

1

2
wM⋆,π

h̃
(s̃, ã)

∣∣∣(rM⋆

h̃
(s̃, ã)− rM′

h̃
(s̃, ã))2 − (rM⋆

h̃
(s̃, ã)− rM̃′′

h̃
(s̃, ã))2

∣∣∣
(76)
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where the inequality follows by what we showed in Case 1, and since M ′ and M̃ ′′ have identical
transitions at (s̃, ã, h̃), so the contribution to the KL divergence from the transitions cancels, leaving
only the KL divergence between unit-variance Gaussians. By the Mean Value Theorem and since
rewards are in [0, 1/H], we have

1

2

∣∣∣(rM⋆

h̃
(s̃, ã)− rM′

h̃
(s̃, ã))2 − (rM⋆

h̃
(s̃, ã)− rM̃′′

h̃
(s̃, ã))2

∣∣∣ ≤ 1

H
|rM′

h̃
(s̃, ã)− rM̃′′

h̃
(s̃, ã)|.

Thus, it suffices to bound |rM′

h̃
(s̃, ã)− rM̃′′

h̃
(s̃, ã)|.

By assumption QM′,π⋆
h̃

(s̃, ã) > QM′,π⋆
h̃

(s̃, π⋆(s̃, h̃)). We can then ensure

QM̃′′,π⋆
h̃

(s̃, ã)−QM̃′′,π⋆
h̃

(s̃, π⋆(s̃, h̃)) ≤ QM′,π⋆
h̃

(s̃, ã)−QM′,π⋆
h̃

(s̃, π⋆(s̃, h̃))

for δ sufficiently small. This is equivalent to, abbreviating ãM⋆ := π⋆(s̃, h̃):

rM̃′′

h̃
(s̃, ã) + PM̃′′

h̃
[V M̃′′,π⋆
h̃+1

](s̃, ã)− rM̃′′

h̃
(s̃, ãM⋆)− PM̃′′

h̃
[V M̃′′,π⋆
h̃+1

](s̃, ãM⋆)

≤ rM′

h̃
(s̃, ã) + PM′

h̃
[V M′,π⋆
h̃+1

](s̃, ã)− rM′

h̃
(s̃, ãM⋆)− PM′

h̃
[V M′,π⋆
h̃+1

](s̃, ãM⋆).

By construction we have that V M̃′′,π⋆
h (s) = V M⋆,π⋆

h (s) for all (s, h), rM̃′′

h̃
(s̃, ãM⋆) = rM⋆

h̃
(s̃, ãM⋆),

and PM̃′′

h̃
[V M̃′′,π⋆
h̃+1

](s̃, ãM⋆) = PM⋆

h̃
[V M⋆,π⋆

h̃+1
](s̃, ãM⋆), since M̃ ′′ behaves identically to M on actions

taken by π⋆. Furthermore, we have PM̃′′

h̃
[V M̃′′,π⋆
h̃+1

](s̃, ã) = PM′

h̃
[V M⋆,π⋆

h̃+1
](s̃, ã) since M̃ ′′ behaves iden-

tically to M ′ on actions not taken by π⋆, other than the reward at (s̃, ã, h̃). Using these simplifications
and rearranging, we get

|rM̃′′

h̃
(s̃, ã)− rM′

h̃
(s̃, ã)| ≤ |rM′

h̃
(s̃, ãM⋆)− rM⋆

h̃
(s̃, ãM⋆)|+ |PM⋆

h̃
[V M⋆,π⋆

h̃+1
](s̃, ãM⋆)− PM′

h̃
[V M′,π⋆
h̃+1

](s̃, ãM⋆)|

+ |PM′

h̃
[V M⋆,π⋆

h̃+1
](s̃, ã)− PM′

h̃
[V M′,π⋆
h̃+1

](s̃, ã)|

≤ |rM′

h̃
(s̃, ãM⋆)− rM⋆

h̃
(s̃, ãM⋆)|+ |PM⋆

h̃
[V M⋆,π⋆

h̃+1
](s̃, ãM⋆)− PM′

h̃
[V M⋆,π⋆

h̃+1
](s̃, ãM⋆)|

+ |PM′

h̃
[V M⋆,π⋆

h̃+1
](s̃, ãM⋆)− PM′

h̃
[V M′,π⋆
h̃+1

](s̃, ãM⋆)|

+ |PM′

h̃
[V M⋆,π⋆

h̃+1
](s̃, ã)− PM′

h̃
[V M′,π⋆
h̃+1

](s̃, ã)|.

Since rewards are unit-variance Gaussian, we have

|rM′

h̃
(s̃, ãM⋆)− rM⋆

h̃
(s̃, ãM⋆)| ≤

√
2DKL

(
M⋆
h̃,s̃

(ãM⋆) ∥M ′
h̃,s̃

(ãM⋆)
)
≤
√

2

wM⋆,π⋆

h̃
(s̃)

DKL(M⋆(π⋆) ∥M ′(π⋆)).

Since V M⋆,π⋆

h̃+1
∈ [0, 1], we have

|PM⋆

h̃
[V M⋆,π⋆

h̃+1
](s̃, ãM⋆)− PM′

h̃
[V M⋆,π⋆

h̃+1
](s̃, ãM⋆)| ≤

∑
s′

|PM

h̃
(s′ | s̃, ãM⋆)− PM′

h̃
(s′ | s̃, ãM⋆)|

≤ 2DTV

(
PM

h̃
(· | s̃, ãM⋆), PM′

h̃
(· | s̃, ãM⋆)

)
≤
√
2DKL

(
PM

h̃
(· | s̃, ãM⋆) ∥PM′

h̃
(· | s̃, ãM⋆)

)
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≤
√

2

wM⋆,π⋆

h̃
(s̃)

DKL

(
PM

h̃
(· | s̃, ãM⋆) ∥PM′

h̃
(· | s̃, ãM⋆)

)
≤
√

2

wM⋆,π⋆

h̃
(s̃)

DKL(M⋆(π⋆) ∥M ′(π⋆)).

By Lemma G.12 we have

|PM′

h̃
[V M⋆,π⋆

h̃+1
](s̃, ãM⋆)− PM′

h̃
[V M′,π⋆
h̃+1

](s̃, ãM⋆)| ≤
∑
s′

PM′

h̃
(s′ | s̃, ãM⋆)|V M⋆,π⋆

h̃+1
(s′)− V M′,π⋆

h̃+1
(s′)|

≤
∑
s′

PM′

h̃
(s′ | s̃, ãM⋆) ·

√√√√ 8H

wM⋆,π⋆

h̃+1
(s′)
·DKL(M⋆(π⋆) ∥M ′(π⋆))

≤ sup
s

√√√√ 8H

wM⋆,π⋆

h̃+1
(s)
·DKL(M⋆(π⋆) ∥M ′(π⋆))

and similarly

|PM′

h̃
[V M⋆,π⋆

h̃+1
](s̃, ã)− PM′

h̃
[V M′,π⋆
h̃+1

](s̃, ã)| ≤ sup
s

√√√√ 8H

wM⋆,π⋆

h̃+1
(s)
·DKL(M⋆(π⋆) ∥M ′(π⋆)).

Altogether then:

|rM̃′′

h̃
(s̃, ã)− rM′

h̃
(s̃, ã)| ≤

√ 8

wM⋆,π⋆

h̃
(s̃)

+ sup
s

√√√√ 32H

wM⋆,π⋆

h̃+1
(s)

 ·√DKL(M⋆(π⋆) ∥M ′(π⋆))

≤ sup
s,h

√
96H

wM⋆,π⋆
h (s)

·
√
DKL(M⋆(π⋆) ∥M ′(π⋆)).

Combining this with Eq. (76), we have

|DKL

(
M⋆(π) ∥M ′(π)

)
−DKL

(
M⋆(π) ∥ M̃ ′′(π)

)
|

≤ sup
s,h

1

wM⋆,π⋆
h (s)

·DKL

(
M⋆(π⋆) ∥M ′(π⋆)

)
+ sup

s,h

√
96

HwM⋆,π⋆
h (s)

·
√
DKL(M⋆(π⋆) ∥M ′(π⋆))

≤ 1

∆⋆
min

·DKL

(
M⋆(π⋆) ∥M ′(π⋆)

)
+

√
96

H∆⋆
min

·
√
DKL(M⋆(π⋆) ∥M ′(π⋆))

where the second inequality uses Lemma G.13. Thus, in this case M⋆ is a regular model with

L⋆M =
96

∆⋆
min

.
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G.5.2. TABULAR MDPS SATISFY BASIC ASSUMPTIONS

Lemma G.8. Tabular MDPs with unit-variance Gaussian rewards satisfy Assumptions A.2, D.1
and D.2 with

LKL = VM = 8H + max
M,M ′∈M

max
π∈Π

max
τ∈T

∣∣∣∣log PM′,π(τ)

PM,π(τ)

∣∣∣∣ ,
and D

(
· ∥ ·

)
= DKL(· ∥ ·), where T := SH and PM,π(τ) denotes the probability of observing state

sequence τ ∈ T on M when playing policy π.

Proof of Lemma G.8. We verify each assumption separately.

Verifying Assumption D.1. Fix some M,M ′,M ∈M. Our goal is to bound∣∣DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′(π)

)∣∣ .
Let M̃ denote the MDP with transitions identical to M but rewards identical to M . Then∣∣DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′(π)

)∣∣ ≤ ∣∣∣DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M̃(π) ∥M ′(π)

)∣∣∣
+
∣∣∣DKL

(
M̃(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′(π)

)∣∣∣
We bound these terms separately. First, by Lemma G.15 we have

DKL

(
M(π) ∥M ′(π)

)
=
∑
s,a,h

wM,π
h (s, a)DKL

(
Msh(π(s, h)) ∥M ′

sh(π(s, h))
)

=
∑
s,a,h

wM,π
h (s, a)

[
1

2
(rM
h (s, a)− rM′

h (s, a))2 +DKL

(
PM
h (· | s, π(s, h)) ∥PM′

h (· | s, π(s, h))
)]

and, given our definition of M̃ ,

DKL

(
M̃(π) ∥M ′(π)

)
=
∑
s,a,h

wM,π
h (s, a)

[
1

2
(rM
h (s, a)− rM′

h (s, a))2 +DKL

(
PM
h (· | s, π(s, h)) ∥PM′

h (· | s, π(s, h))
)]

.

Thus, ∣∣∣DKL

(
M(π) ∥M ′(π)

)
−DKL

(
M̃(π) ∥M ′(π)

)∣∣∣
=

∣∣∣∣∣∣12
∑
s,a,h

wM,π
h (s, a)

[
(rM
h (s, a)− rM′

h (s, a))2 − (rM
h (s, a)− rM′

h (s, a))2
]∣∣∣∣∣∣

(a)

≤
∑
s,a,h

wM,π
h (s, a)|rM

h (s, a)− rM
h (s, a)|
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≤
∑
s,a,h

wM,π
h (s, a)

√
2DKL

(
Msh(a) ∥M sh(a)

)
≤
√
2H ·

∑
s,a,h

wM,π
h (s, a)DKL

(
Msh(a) ∥M sh(a)

)
=
√
2H ·DKL

(
M(π) ∥M(π)

)
,

where (a) holds by the Mean Value Theorem and the assumption that reward means are in [0, 1], and
the final equality holds by Lemma G.15.

We turn now to bounding the second term. Let T = SH denote the space of all possible state
trajectories. Let PM,π(τ = ·) denote the probability of observing τ ∈ T when playing policy π on
M . We then have

DKL

(
M̃(π) ∥M ′(π)

)
=

∫
log

PM̃,π(r, τ)

PM′,π(r, τ)
dPM̃,π(r, τ)

=

∫ ∫
log

PM,π(r | τ)PM,π(τ)

PM′,π(r | τ)PM′,π(τ)
dPM,π(r | τ)dPM,π(τ)

=

∫
log

PM,π(τ)

PM′,π(τ)
dPM,π(τ) +

∫ (∫
log

PM,π(r | τ)
PM′,π(r | τ)

dPM,π(r | τ)
)
dPM,π(τ)

=
∑
τ∈T

PM,π(τ) log
PM,π(τ)

PM′,π(τ)
+
∑
τ∈T

PM,π(τ)DKL

(
PM,π(r | τ) ∥PM′,π(r | τ)

)
.

It follows that ∣∣∣DKL

(
M̃(π) ∥M ′(π)

)
−DKL

(
M(π) ∥M ′(π)

)∣∣∣
≤

∣∣∣∣∣∑
τ∈T

PM,π(τ) log
PM,π(τ)

PM′,π(τ)
−
∑
τ∈T

PM,π(τ) log
PM,π(τ)

PM′,π(τ)

∣∣∣∣∣
+
∑
τ∈T
|PM,π(τ)− PM,π(τ)|DKL

(
PM,π(r | τ) ∥PM′,π(r | τ)

)
.

Note that, since rewards at each state are independent,

DKL

(
PM,π(r | τ) ∥PM′,π(r | τ)

)
=

H∑
h=1

DKL

(
PM,π(rh | τ) ∥PM′,π(rh | τ)

)
≤ H,

since rewards have means are in [0, 1] and are unit Gaussian. This implies∑
τ∈T
|PM,π(τ)− PM,π(τ)|DKL

(
PM,π(r | τ) ∥PM′,π(r | τ)

)
≤ H

∑
τ∈T
|PM,π(τ)− PM,π(τ)|

= HDTV

(
M(π),M(π)

)
≤ H

√
1

2
DKL

(
M(π) ∥M(π)

)
.
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Note that d
dxx log

x
y = 1 + log x

y , so by the Mean Value Theorem we have∣∣∣∣PM,π(τ) log
PM,π(τ)

PM′,π(τ)
− PM,π(τ) log

PM,π(τ)

PM′,π(τ)

∣∣∣∣
≤
(
1 + max

{∣∣∣∣log PM,π(τ)

PM′,π(τ)

∣∣∣∣ , ∣∣∣∣log PM,π(τ)

PM′,π(τ)

∣∣∣∣}) · |PM,π(τ)− PM,π(τ)|

≤
(
1 + max

M ′∈M
max
τ ′∈T

∣∣∣∣log PM′,π(τ ′)

PM′,π(τ ′)

∣∣∣∣) · |PM,π(τ)− PM,π(τ)|.

It follows that∣∣∣∣∣∑
τ∈T

PM,π(τ) log
PM,π(τ)

PM′,π(τ)
−
∑
τ∈T

PM,π(τ) log
PM,π(τ)

PM′,π(τ)

∣∣∣∣∣
≤
(
1 + max

M ′∈M
max
τ ′∈T

∣∣∣∣log PM′,π(τ ′)

PM′,π(τ ′)

∣∣∣∣) ·∑
τ∈T
|PM,π(τ)− PM,π(τ)|

=

(
1 + max

M ′∈M
max
τ ′∈T

∣∣∣∣log PM′,π(τ ′)

PM′,π(τ ′)

∣∣∣∣) ·DTV

(
M(π),M(π)

)
≤
(
1 + max

M ′∈M
max
τ ′∈T

∣∣∣∣log PM′,π(τ ′)

PM′,π(τ ′)

∣∣∣∣) ·
√

1

2
DKL

(
M(π) ∥M(π)

)
.

This verifies Assumption D.1 with

LKL = 1 +
√
2H +H + max

M ′∈M,M ′∈M
max
π∈Π

max
τ∈T

∣∣∣∣log PM′,π(τ)

PM′,π(τ)

∣∣∣∣ .
Verifying Assumption D.2. That D2

H

(
M(π),M ′(π)

)
≤ D

(
M(π) ∥M ′(π)

)
is immediate, since

KL always upper bounds Hellinger squared.

Verifying Assumption A.2. We have

log
PM,π(r, o)

PM,π(r, o)
= log

PM,π(τ)

PM,π(τ)
+ log

PM,π(r | τ)
PM,π(r | τ)

= log
PM,π(τ)

PM,π(τ)
+

H∑
h=1

log
PM,π(rh | τ)
PM,π(rh | τ)

.

Using the same calculation as in Lemma G.1, we have that log PM,π(rh|τ)
PM,π(rh|τ)

is 8-subgaussian, since

rewards are unit-variance Gaussian. As log PM,π(rh|τ)
PM,π(rh|τ)

and log
PM,π(rh′ |τ)
PM,π(rh′ |τ)

are independent for h ̸= h′,

it follows that log PM,π(r|τ)
PM,π(r|τ) is 8H-subgaussian.

Furthermore, bounding

log
PM,π(τ)

PM,π(τ)
≤ sup

M,M∈M
sup
π∈Π

sup
τ∈T

∣∣∣∣log PM,π(τ)

PM,π(τ)

∣∣∣∣ =: VT ,

we have that log PM,π(τ)
PM,π(τ)

is V 2
T -subgaussian. Since the sum of subgaussian random variables is

subgaussian, it follows that log PM,π(r,o)
PM,π(r,o)

= log PM,π(τ)
PM,π(τ)

+ log PM,π(r|τ)
PM,π(r|τ) is (V 2

T + 8H)-subgaussian,
which verifies Assumption A.2.
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Lemma G.9. Let Pmin := infM∈M infh,s′,s,a P
M
h (s′ | s, a) and assumeM is such that Pmin > 0.

We can construct a (ρ, µ)-cover ofM with respect to E := {|rh| ≤ 1 +
√
2 log(2H/µ),∀h ∈ [H]},

with

Ncov(M, ρ, µ) ≤ 1

min{ρPmin
4H , 2Pmin}S2AH

·
(2H(2 +

√
log(H/µ)))SAH

ρSAH
.

Proof of Lemma G.9. Throughout this proof, we use M = {(PM
h )Hh=1, (r

M
h )Hh=1} ∈ M to denote

the MDP inM with RM
h (s, a) = N (rM

h (s, a), 1); for brevity, we S, A, and s1 to be fixed and the
dependence on them.

Observe that for any models M,M ′ ∈M, we have∣∣∣∣log PM,π(r, o)

PM′,π(r, o)

∣∣∣∣ ≤ ∣∣∣∣log PM,π(τ)

PM′,π(τ)

∣∣∣∣+ ∣∣∣∣log PM,π(r | τ)
PM′,π(r | τ)

∣∣∣∣
=

H∑
h=1

∣∣∣∣∣log PM
h (τh+1 | τh, π(τh, h))

PM′
h (τh+1 | τh, π(τh, h))

∣∣∣∣∣+
H∑
h=1

∣∣∣∣log PM,π(rh | τ)
PM′,π(rh | τ)

∣∣∣∣ .
Let Iε = {ε, 2ε, . . . , ⌊1/ε⌋ε}, so that |Iε| ≤ 1/ε. Let Pε denote an ε cover of△S in the ℓ∞-norm,
so that for any P ∈ △S , there exists some P ′ ∈ Pε such that sups∈S |Ps − P ′

s| ≤ ε. It suffices to
choose Pε = ISε ∩△S , so we can bound |Pε| ≤ 1/εS . Let

Mcov =
{
M = {(PM

h )Hh=1, (r
M
h )Hh=1} : PM

h (· | s, a) ∈ Pε1 , rM
h (s, a) ∈ Iε2 , ∀s, a, h

}
for parameters ε1, ε2 > 0 to be chosen. Then

Mcov = (|Pε1 ||Iε2 |)SAH ≤
1

εS
2AH

1

· 1

εSAH2

.

We will show thatMcov is a (ρ, µ)-cover ofM for appropriately chosen E and ε1, ε2 > 0.
Let E := {|rh| ≤ 1 +

√
2 log(2H/µ),∀h ∈ [H]}. As we assume rewards are unit-variance

Gaussian and have means in [0, 1], it is straightforward to see that P[Ec] ≤ µ. Fix M and let
M ′ ∈Mcov denote the instance such that

|rM
h (s, a)− rM′

h (s, a)| ≤ ε2 and sup
s′∈S
|PM
h (s′ | s, a)− PM′

h (s′ | s, a)| ≤ ε1, ∀s, a, h.

Note that such an instance is guaranteed to exist by definition ofMcov.
By a similar argument as in Lemma G.1, we can bound, on E ,

H∑
h=1

∣∣∣∣log PM,π(rh | τ)
PM′,π(rh | τ)

∣∣∣∣ ≤ H∑
h=1

(1 + |rh|) · sup
s,a
|rM
h (s, a)− rM′

h (s, a)|

≤ H(2 +
√
2 log(2H/µ)) · sup

s,a,h
|rM
h (s, a)− rM′

h (s, a)|

≤ H(2 +
√
2 log(2H/µ)) · ε2.
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We also have

H∑
h=1

∣∣∣∣∣log PM
h (τh+1 | τh, π(τh, h))

PM′
h (τh+1 | τh, π(τh, h))

∣∣∣∣∣ ≤ H · sup
h,s′,s,a

∣∣∣∣∣log PM
h (s′ | s, a)

PM′
h (s′ | s, a)

∣∣∣∣∣
≤ H · sup

|x|≤ε1
sup
h,s′,s,a

∣∣∣∣log PM
h (s′ | s, a)

PM
h (s′ | s, a)− x

∣∣∣∣
≤ H · sup

h,s′,s,a

ε1
PM
h (s′ | s, a)− ε1

where the last inequality holds as long as infh,s′,s,a P
M
h (s′ | s, a) − ε1 > 0. Denoting Pmin :=

infM∈M infh,s′,s,a P
M
h (s′ | s, a), forMcov to be a (ρ, µ)-cover, it therefore suffices that

H(2 +
√
2 log(2H/µ)) · ε2 ≤ ρ/2,

2Hε1
Pmin

≤ ρ/2, and Pmin ≥ ε1/2

so it suffices to take

ε1 = min{ρPmin

4H
, 2Pmin} and ε2 =

ρ

2H(2 +
√

log(H/µ))
.

The result now follows from our bound on |Mcov|.

G.5.3. TABULAR MDPS HAVE BOUNDED UNIFORM EXPLORATION COEFFICIENT

Lemma G.10. For the tabular MDP classM in (27), we can bound, for all ε > 0,

CD
exp(M, ε) ≤ 320000SAH2 · log2H

ε2
.

for D
(
· ∥ ·

)
← D2

H(·, ·).

Proof of Lemma G.10. Let ξ ∈ ∆(M) be given. Define

pexp = argmin
p∈△Π

max
q∈△Π

∑
s,a,h

Eπ∼q

[
EM∼ξ

[
(wM,π

h (s, a))2

Eπ′∼p[w
M,π′

h (s, a)]

]]
.

We first show that, for any M ∈M and any π,

EM∼ξ[D
2
H

(
M(π),M(π)

)
] ≤

√
SAH2 · EM∼ξ[Eπ∼pexp [D2

H

(
M(π),M(π)

)
]].

Consider any policy π. We can bound

EM∼ξ[D
2
H

(
M(π),M(π)

)
]

(a)

≤ 100 log(H) ·
∑
s,a,h

EM∼ξ

[
wM,π
h (s, a)D2

H

(
M sh(a),Msh(a)

)]
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(b)

≤ 100 log(H) ·

√√√√∑
s,a,h

EM∼ξ

[
wM,π
h (s, a)2

Eπ′∼pexp [w
M,π′

h (s, a)]

]

·
√∑
s,a,h

Eπ′∼pexp

[
EM∼ξ

[
wM,π′

h (s, a)D4
H

(
M sh(a),Msh(a)

)]]
(c)

≤ 200 log(H) ·

√√√√∑
s,a,h

EM∼ξ

[
wM,π
h (s, a)2

Eπ′∼pexp [w
M,π′

h (s, a)]

]

·
√∑
s,a,h

Eπ′∼pexp

[
EM∼ξ

[
wM,π′

h (s, a)D2
H

(
M sh(a),Msh(a)

)]]
where (a) follows from Lemma A.13 of Foster et al. (2021), (b) follows from Cauchy-Schwarz and
Jensen’s inequality, and (c) follows because the Hellinger distance is always bounded by 2. Now
note that, by definition of pexp, we have

∑
s,a,h

EM∼ξ

[
wM,π
h (s, a)2

Eπ′∼pexp [w
M,π′

h (s, a)]

]
≤ min

p∈△Π

max
q∈△Π

∑
s,a,h

Eπ∼q

[
EM∼ξ

[
(wM,π

h (s, a))2

Eπ′∼p[w
M,π′

h (s, a)]

]]

and by the minimax theorem, we can bound

min
p∈△Π

max
q∈△Π

∑
s,a,h

Eπ∼q

[
EM∼ξ

[
(wM,π

h (s, a))2

Eπ′∼p[w
M,π′

h (s, a)]

]]
= max

q∈△Π

min
p∈△Π

∑
s,a,h

Eπ∼q

[
EM∼ξ

[
(wM,π

h (s, a))2

Eπ′∼p[w
M,π′

h (s, a)]

]]

≤ max
q∈△Π

∑
s,a,h

Eπ∼q

[
EM∼ξ

[
(wM,π

h (s, a))2

Eπ′∼q[w
M,π′

h (s, a)]

]]

≤ max
q∈△Π

∑
s,a,h

Eπ∼q

[
EM∼ξ

[
wM,π
h (s, a)

Eπ′∼q[w
M,π′

h (s, a)]

]]
= SAH.

By Lemma A.9 of Foster et al. (2021), since µM(s, a, h) := 1
HwM,π′

h (s, a) forms a valid distribution
on S ×A× [H], we can upper bound∑

s,a,h

wM,π′

h (s, a)D2
H

(
M sh(a),Msh(a)

)
≤ HD2

H

(
M(π′),M(π′)

)
.

Altogether then, we have shown that for all π ∈ Π,

EM∼ξ[D
2
H

(
M(π),M(π)

)
] ≤ 200 log(H) ·

√
SAH2 · EM∼ξ[Eπ∼pexp [D2

H

(
M(π),M(π)

)
]]

as desired. Since the Hellinger distance is a metric and satisfies the triangle inequality, this in
particular implies that, for any M,M ′,

D2
H

(
M(π),M ′(π)

)
≤ 2EM∼ξ[D

2
H

(
M(π),M(π)

)
] + 2EM∼ξ[D

2
H

(
M(π),M ′(π)

)
]
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≤ 400 logH ·
√

SAH2 · EM∼ξ[Eπ∼pexp [D2
H

(
M(π),M(π)

)
]]

+ 400 logH
√
SAH2 · EM∼ξ[Eπ∼pexp [D2

H

(
M(π),M ′(π)

)
]].

Thus, if

EM∼ξ[Eπ∼pexp [D
2
H

(
M(π),M ′′(π)

)
]] ≤ ε2

320000SAH2 · log2H

for both M ′′ ∈ {M,M ′}, then D2
H(M(π),M ′(π)) ≤ ε. It follows that a sufficient choice for CD

exp

is 320000SAH2 log2H/ε2.

G.5.4. SUPPORTING LEMMAS

Lemma G.11. If M has a unique optimal policy πM and M ′ ∈ Malt(M), then there exists some
(s̃, ã, h̃) such that

QM′,πM
h̃

(s̃, ã) > V M′,πM
h̃

(s̃).

Proof of Lemma G.11. Assume that this is not the case, i.e. that for all (s, a, h),

QM′,πM
h (s, a) ≤ V M′,πM

h (s) = QM′,πM
h (s, πM(s, h)).

Our goal is to show that in this case πM′ = πM , which contradicts the fact that M ′ ∈Malt(M). We
proceed by induction.

Base Case. Let h = H and assume that for all (s, a),

QM′,πM
H (s, a) ≤ QM′,πM

H (s, πM(s, h)).

This contradicts the assumption that πM is unique.

Inductive Case. Assume that πM′(s, h′) = πM(s, h′) for all s and h′ > h. This then implies that
V M′,πM
h+1 (s) = V

M′,π
M′

h+1 (s) for all s. It follows that for all a

QM′,πM
h (s, a) = rM′

h (s, a) + PM′
h [V M′,πM

h+1 ](s, a) = rM′
h (s, a) + PM′

h [V
M′,π

M′
h+1 ](s, a) = Q

M′,π
M′

h (s, a)

so in particular QM′,πM
h (s, πM(s, h)) = Q

M′,π
M′

h (s, πM(s, h)). Since we have assumed that for all
(s, a)

QM′,πM
h (s, a) ≤ QM′,πM

h (s, πM(s, h))

we have

Q
M′,π

M′
h (s, πM′(s, h)) ≤ Q

M′,π
M′

h (s, πM(s, h)).

However, since each M ∈M has a unique optimal action at each state, this is a contradiction unless
πM′(s, h) = πM(s, h), which proves the inductive hypothesis. The result follows.
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Lemma G.12. For MDPs M,M ′ with unit variance Gaussian rewards, we have

V M′,π
h (s)− V M,π

h (s) ≤
√

8H

wM,π
h (s)

·DKL(M(π) ∥M ′(π)).

Proof of Lemma G.12. In the Gaussian reward setting, we have

rM′
h′ (s

′, a′)− rM
h′ (s

′, a′) ≤
√
(rM′
h′ (s

′, a′)− rM
h′ (s

′, a′))2 ≤
√
2DKL

(
Mh′,s′(a′) ∥M ′

h′,s′(a
′)
)
.

Furthermore, since V M′,π
h′+1 (s

′) ∈ [0, 1], we have

PM′
h′ [V

M′,π
h′+1 ](s

′, a′)− PM
h′ [V

M′,π
h′+1 ](s

′, a′) ≤
∑
s′′

|PM′
h′ (s

′′ | s′, a′)− PM
h′ (s

′′ | s′, a′)|

= 2DTV

(
PM′
h′ (· | s′, a′), PM

h′ (· | s′, a′)
)

≤
√
2DKL

(
PM′
h′ (· | s′, a′) ∥PM

h′ (· | s′, a′)
)

≤
√
2DKL

(
Mh′,s′(a′) ∥M ′

h′,s′(a
′)
)
.

By Lemma G.14, Jensen’s inequality, and Lemma G.15, it follows that

V M′,π
h (s)− V M,π

h (s) ≤
H∑

h′=h

∑
s′,a′

wM,π
h′ (s′, a′ | sh = s) · 2

√
2DKL

(
Mh′,s′(a′) ∥M ′

h′,s′(a
′)
)

≤ 2

√√√√2H
H∑

h′=h

∑
s′,a′

wM,π
h′ (s′, a′ | sh = s)DKL

(
Mh′,s′(a′) ∥M ′

h′,s′(a
′)
)

≤ 2

√√√√ 2H

wM,π
h (s)

·
H∑

h′=h

∑
s′,a′

wM,π
h′ (s′, a′)DKL

(
Mh′,s′(a′) ∥M ′

h′,s′(a
′)
)

≤ 2

√
2H

wM,π
h (s)

DKL(M(π) ∥M ′(π))

where we have used that, for h < h′,

wM,π
h′ (s′, a′) =

∑
s′′

wM,π
h′ (s′, a′ | sh = s′′)wM

π (s′′, h) ≥ wM,π
h′ (s′, a′ | sh = s)wM,π

h (s).

Lemma G.13. For any M ∈M for which πM is unique, we have

∆M
min ≤ min

s,h
wM,πM
h (s).
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Proof of Lemma G.13. Let π̃ denote the policy that differs from policy πM only at the state
s̃ and layer h̃ given by (s̃, h̃) = argmins,hw

M,πM
h (s). Note that this implies, in particular, that

wM,πM
h̃

(s̃) = wM,π̃

h̃
(s̃) since π̃ and πM take identical actions up to step h̃. By the Performance-

Difference Lemma (Kakade, 2003), we have

V M,πM
1 − V M,π̃

1 =
H∑
h=1

∑
s,a

wM,π̃
h (s, a)(V M,πM

h (s)−QM,πM
h (s, a))

(a)
= wM,π̃

h̃
(s̃, π̃(s̃, h̃))(V M,πM

h̃
(s̃)−QM,πM

h̃
(s̃, π̃(s̃, h̃)))

= wM,πM
h̃

(s̃)(V M,πM
h̃

(s̃)−QM,πM
h̃

(s̃, π̃(s̃, h̃)))

≤ wM,πM
h̃

(s̃)

where (a) holds since V M,πM
h (s) = QM,πM

h (s, a) for all (s, a, h) with wM,π̃(s, a, h) > 0 other than
at (s̃, h̃). By assumption, the optimal policy is unique, so V M,πM

1 − V M,π̃
1 > 0, and thus

∆M
min = min

π∈Π : V
M,πM
1 −VM,π

1 >0

V M,πM
1 − V M,π

1 ≤ V M,πM
1 − V M,π̃

1 ≤ wM,πM
h̃

(s̃) = min
s,h

wM,πM
h (s).

Lemma G.14 (Lemma E.15 of Dann et al. (2017)). For MDPs M,M ′ and policy π, we have

V M′,π
h (s)− V M,π

h (s) =

H∑
h′=h

∑
s′,a′

wM,π
h′ (s′, a′ | sh = s)·

[
rM′
h′ (s

′, a′)− rM
h′ (s

′, a′) + PM′
h′ [V

M′,π
h′+1 ](s

′, a′)

− PM
h′ [V

M′,π
h′+1 ](s

′, a′)
]
.

Lemma G.15. For MDPs M,M ′ and policy π, we have

DKL

(
M(π) ∥M ′(π)

)
=

H∑
h=1

∑
s,a

wM,π
h (s, a)DKL

(
Mhs(a) ∥M ′

hs(a)
)
.

Proof of Lemma G.15. This is a standard calculation; see e.g. (Simchowitz and Jamieson, 2019;
Tirinzoni et al., 2021).

Appendix H. Proofs and Additional Results from Appendix B

H.1. Technical Lemmas

Throughout this section, when the classM is clear from context, we define

Λ(M ; ε, n) := {λ ∈ △Π : ∃n ≤ n s.t. ∆M(λ) ≤ (1 + ε)gM/n, IM(λ;M) ≥ (1− ε)/n}. (77)
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Lemma H.1 (Derandomization). Let n > 0 be given. For any p ∈ △(△(Π)), defining λp =
Eλ∼p[λ] ∈ ∆(Π), we have that for all M ∈M,

I
{
λp /∈ Λ(M ; ε, n)

}
≤ δ−1 · Pλ∼p[λ /∈ Λ(M ; ε/2, n)],

where δ := ε
2 · min

{
1, g

M

n

}
.

Proof of Lemma H.1. Let M ∈M be fixed and abbreviate IM(λ) = IM(λ;M). Fix p ∈ △(△(Π)).
For any λ ∈ Λ(M ; ε/2, n), let nλ > 0 denote the least n > 0 such that

∆M(λ) ≤ (1 + ε/2)gM/n, and IM(λ;M) ≥ (1− ε/2)/n.

Define

n =

(
Eλ∼p

[
1

nλ
| λ ∈ Λ(M ; ε/2, n)

])−1

,

and note that by Jensen’s inequality,

n ≤ Eλ∼p[nλ | λ ∈ Λ(M ; ε/2, n)] ≤ n.

We first observe that since ∆M ∈ [0, 1],

∆M(λp) ≤ Eλ∼p[∆M(λ) | λ ∈ Λ(M ; ε/2, n)] + Pλ∼p[λ /∈ Λ(M ; ε/2, n)]

≤ (1 + ε/2)gM · Eλ∼p
[
1

nλ
| λ ∈ Λ(M ; ε/2, n)

]
+ Pλ∼p[λ /∈ Λ(M ; ε/2, n)]

= (1 + ε/2)
gM

n
+ Pλ∼p[λ /∈ Λ(M ; ε/2, n)].

Next, note that the map λ 7→ IM(λ) is concave and non-negative (it is an infimum over non-negative
linear functions), so we have

IM(λp) ≥ Eλ∼p[IM(λ)]

≥ Eλ∼p[IM(λ) | λ ∈ Λ(M ; ε/2, n)] · Pλ∼p[λ ∈ Λ(M ; ε/2, n)]

≥ (1− ε/2)Eλ∼p
[
1

nλ
| λ ∈ Λ(M ; ε/2, n)

]
· Pλ∼p[λ ∈ Λ(M ; ε/2, n)]

= (1− ε/2)
1

n
· Pλ∼p[λ ∈ Λ(M ; ε/2, n)]

= (1− ε/2)
1

n
· (1− Pλ∼p[λ /∈ Λ(M ; ε/2, n)]).

It follows that as long as

Pλ∼p[λ /∈ Λ(M ; ε/2, n)] ≤ δ :=
ε

2
·min

{
1,

gM

n

}
≤ ε

2
·min

{
1,

gM

n

}
,

we have
∆M(λp) ≤ (1 + ε)gM/n, and IM(λp;M) ≥ (1− ε)/n,

so that λp ∈ Λ(M ; ε, n) ⊆ Λ(M ; ε, n). We conclude that

I
{
λp /∈ Λ(M ; ε, n)

}
≤ I{Pλ∼p[λ /∈ Λ(M ; ε/2, n)] > δ} ≤ δ−1 · Pλ∼p[λ /∈ Λ(M ; ε/2, n)].
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Lemma H.2. Let M ∈M be given, and suppose Assumption A.4 holds. Fix T ∈ N and consider an
algorithm A such that for all M ′ ∈Malt(M) ∪ {M},

EM′,A[Reg(T )] ≤ RM′ · log(T ).

for some bound RM ≥ 2. Define ηM ∈ RΠ
+ via

ηM(π) = EM,A

[
T (π)

log(T )

]
.

Then if

log(T ) ≥ 6

ε
log

(
sup

M ′∈Malt(M)∪{M}

RM′

∆M′
min

· log(T )

)
,

we must have
IM(ηM ;M) ≥ (1− ε).

Proof of Lemma H.2. Throughout this proof we will use that πM is uniquely defined for all M ∈M
by Assumption A.4. Note that

EM,A[Reg(T )] ≤ RM log T =⇒
∑
π ̸=πM

EM,A[T (π)] ≤ RM log T

∆M
min

.

Fix some M ′ ∈Malt(M). Then πM ̸= πM′ (recall that under Assumption A.4, each M ∈M has a
unique optimal), so

EM,A[T (πM′)] ≤ RM log T

∆M
min

, EM′,A[T (πM′)] ≥ T − RM′
log T

∆M′
min

.

By Lemma H.1 of Simchowitz and Jamieson (2019), we have that for anyHT -measurable variable
Z ∈ [0, 1], that ∑

π

EM,A[T (π)]DKL(M(π),M ′(π)) ≥ d(EM,A[Z],EM′,A[Z])

for d(x, y) = x log x
y + (1− x) log 1−x

1−y . Choosing Z = T (πM′)/T , and using that

d(x, y) ≥ (1− x) log
1

1− y
− log 2,

we have∑
π

EM,A[T (π)]DKL(M(π),M ′(π)) ≥
(
1− RM log T

∆M
minT

)
log

T

T − (T − RM′
log T

∆M′
min

)
− log 2

=

(
1− RM log T

∆M
minT

)(
log T − log

RM′
log T

∆M′
min

)
− log 2.

134



INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

Now, if

log(T ) ≥ 2

ε
log

(
supM ′∈Malt(M)∪{M}R

M′
log T

∆M′
min

∨ 2

)
,

we have log(2) ≤ ε log(T ),

log T − log

(
RM′

log T

∆M′
min

)
≥ (1− ε) log(T ),

and 1− RM log T
∆M

minT
≥ (1− ε), so we can lower bound

∑
π

EM,A[T (π)]DKL(M(π),M ′(π)) ≥
(
(1− ε)2 − ε

)
log(T ) ≥ (1− 3ε) log(T ).

As this is true for every M ′ ∈Malt(M), the result follows.

Lemma B.1. Let ε ∈ (0, 2), and suppose that Assumption A.4 holds. Fix T ∈ N and consider an
algorithm A such that for all M ∈M,

EM,A[Reg(T )] ≤ (1 + ε)gM · log(T ).

For each M ∈M, define ηM ∈ RΠ
+ via ηM(π) = EM,A

[
T (π)
log(T )

]
, where T (π) denotes the number of

pulls of decision π, and define λM = ηM/∥ηM∥1. Then if

log(T ) ≥ 6

ε
log

(
sup
M∈M

2gM

∆M
min

· log(T )
)
,

we have that for all M ∈M,
λM ∈ Λ(M ; ε). (35)

Proof of Lemma B.1. Immediate consequence of Lemma H.2.

H.2. Proof of Theorem B.1

Theorem H.1 (Full Statement of Theorem B.1). Let ε > 0 andM0 ⊆M be given. Let {nM}M∈M0

be a collection of non-negative scalars indexed byM0, and set δ := ε
2 · min

{
1, infM∈M0

gM

nM

}
.

Unless

T >
δ

8
· sup
M∈M+

aecM2ε(M0,M),

any algorithm must have, for some M ∈M0:

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ

6
.
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Proof of Theorem H.1. Fix ε > 0, and let an algorithm A be given. For any M ∈ M+, define
qM = PM,A(λ̂ = ·) ∈ △(△(Π)), and let ωM := EM,A

[
1
T

∑T
t=1 p

t
]
∈ △(Π).

Fix α > 0 and M ∈M+ be fixed. Define

M = argmax
M∈M0

{
P
λ∼qM [λ /∈ Λ(M ; ε, nM)] | E

π∼ωM

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
;

we assume that such an M ∈ M0 does exist, as otherwise the claim we will prove is trivial. It is
immediate from this definition that we have

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
= P

λ∼qM [λ /∈ Λ(M ; ε, nM)]

= sup
M∈M0

{
P
λ∼qM [λ /∈ Λ(M ; ε, nM)] | E

π∼ωM

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
≥ inf

q∈△(△(Π)),ω∈△(Π)
sup

M∈M0

{
Pλ∼q[λ /∈ Λ(M ; ε, nM)] | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
=: opt,

with the convention that this value is zero if the set
{
M ∈M0 | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
is empty. In addition, we have

E
π∼ωM

[
DKL

(
M(π) ∥M(π)

)]
≤ α2. (78)

Now, define δ := ε
2 · min

{
1, infM∈M0

gM

nM

}
, and let λq := Eλ∼q[λ]. By Lemma H.1, we have

opt = inf
q∈△(△(Π)),ω∈△(Π)

sup
M∈M0

{
Pλ∼q[λ /∈ Λ(M ; ε, nM)] | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
≥ δ · inf

q∈△(△(Π)),ω∈△(Π)
sup

M∈M0

{
I
{
λq /∈ Λ(M ; 2ε, nM)

}
| Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
≥ δ · inf

λ∈△(Π),ω∈△(Π)
sup

M∈M0

{
I{λ /∈ Λ(M ; 2ε, nM)} | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
≥ δ · inf

λ∈△(Π),ω∈△(Π)
sup

M∈M0

{
I{λ /∈ Λ(M ; 2ε)} | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
= δ · I

{
α2 ≥

(
aecM2ε(M0,M)

)−1
}
. (79)

We conclude that

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ · I

{
α2 ≥

(
aecM2ε(M0,M)

)−1
}
. (80)

To proceed, using Lemma A.11 of Foster et al. (2021), we have

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ 1

3
PM,A

[
λ̂ /∈ Λ(M ; ε, nM)

]
− 4

3
DKL(PM,A ∥PM,A)

≥ δ

3
I
{
α2 ≥

(
aecM2ε(M0,M)

)−1
}
− 4

3
DKL(PM,A ∥PM,A).

136



INSTANCE-OPTIMALITY IN INTERACTIVE DECISION MAKING

Using (78) gives

DKL(PM,A ∥PM,A) = EM,A

[
T∑
t=1

Eπ∼pt DKL

(
M(π) ∥M(π)

)]
= T ·E

π∼ωM

[
DKL

(
M(π) ∥M(π)

)]
≤ α2T,

so we have

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ

3
I
{
α2 ≥

(
aecM2ε(M0,M)

)−1
}
− 4

3
α2T.

We set α2 = δ
8T , so that

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ

6
· I
{
α2 ≥

(
aecM2ε(M0,M)

)−1
}

=
δ

6
· I
{
T ≤ δ

8
· aecM2ε(M0,M)

}
.

By taking the supremum over all possible choices for M ∈M+, we conclude that unless

T >
δ

8
· sup
M∈M+

aecM2ε(M0,M),

the algorithm must have PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ

6 .

H.3. Proof of Theorem B.2

Recall that for M ∈M+ we define

πM = argmax
π∈Π

fM(π)

as the set πM ⊆ Π of all optimal decisions π with fM(π) = maxπ′∈Π fM(π′). Unless otherwise
stated, the results in this subsection do not make use of Assumption A.4. For M ∈ M+ and
M0 ⊆M, we define

Mopt
0 (M) =

{
M ∈M0 | πM ⊆ πM , DKL

(
M(π) ∥M(π)

)
= 0 ∀π ∈ πM

}
.

For a subset Π′ ⊆ Π, let
N¬Π′ =

∣∣{t ∈ [T ] | πt /∈ Π′}∣∣.
Note that for all M ∈Mopt

0 (M), since πM ⊆ πM , we have

N¬πM
≤ N¬πM .

Theorem B.2 (Main lower bound—strong variant). Let ε > 0, nmax > 0, andM0 ⊆M be given,
and define δ = ε

2 ·min{1, infM∈M0 g
M/nmax}. Unless

sup
M∈M0

gM

∆M
min

· log(T ) ≥ Ω(δ2) · sup
M∈M+

aecM2ε(M
opt
0 (M),M),

there is no algorithm that simultaneously ensures that
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1. EM,A[Reg(T )] ≤ 2 · gM log(T ), ∀M ∈M0.

2. PM,A
[
λ̂ /∈ Λ(M ; ε, nmax)

]
≤ δ

12 , ∀M ∈M0.

Proof of Theorem B.2. For each M ∈M, if EM,A[Reg(T )] ≤ 2gM log(T ), then EM,A[N¬πM ] ≤
2 gM

∆M
min

log(T ). The result now follows by appealing to Theorem H.2 with nM = nmax and R =

2 supM∈M0

gM

∆M
min

log(T ).

Theorem H.2. Let T ∈ N, ε > 0, R ≥ 1, andM0 ⊆M be given. Let {nM}M∈M0 be a collection

of non-negative scalars indexed byM0. Define δ = ε
2 ·min

{
1, infM∈M0

gM

nM

}
. Unless

R ≥ δ2

192
· sup
M∈M+

aecM2ε(M
opt
0 (M),M),

there is no algorithm that simultaneously ensures that

1. EM,A[N¬πM ] ≤ R, ∀M ∈M0.

2. PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≤ δ

12 , ∀M ∈M0.

Proof of Theorem H.2. Let ε > 0 be fixed. To prove the result, it suffices to lower bound the
constrained minimax value

M := sup
M∈M+

inf
A

{
sup

M∈Mopt
0 (M)

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
| EM′,A[N¬π

M′ ] ≤ R ∀M ′ ∈Mopt
0 (M)

}
.

(81)

We begin by appealing to the following technical lemma.

Lemma H.3. Let M ∈M+ and T ∈ N be given. Consider any algorithm A with the property that
for all M ∈Mopt

0 (M),
EM,A[N¬πM ] ≤ R

for some R ≥ 1. For any β ∈ (0, 1), there exists a modified algorithm A′ with the following
properties:

• PM,A′
[
N¬πM

> ⌈Rβ ⌉
]
= 0 for all models M ∈M+.

• For all M ∈Mopt
0 (M),

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ PM,A′

[
λ̂ /∈ Λ(M ; ε, nM)

]
− β.

By Lemma H.3, for any β ∈ (0, 1), we have

M ≥ sup
M∈M+

inf
A

{
sup

M∈Mopt
0 (M)

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
| PM′,A

[
N¬πM

>

⌈
R

β

⌉]
= 0 ∀M ′ ∈M+

}
− β.

Now, consider an arbitrary choice for M above. We lower bound the minimax value using another
technical lemma.
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Lemma H.4. Let T ∈ N and ε > 0 be given. Let {nM}M∈M be a collection of non-negative scalars
indexed byM. Consider any algorithm A with the property that

PM,A
[
N¬πM

> R
]
= 0

for some R ≥ 1. For any M ∈M+, if we set δ := ε
2 · min

{
1, infM∈Mopt

0 (M)
gM

nM

}
, then unless

R >
δ

8
· aecM2ε(M

opt
0 (M),M),

the algorithm must have

sup
M∈Mopt

0 (M)

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ

6
.

Bounding
⌈
R
β

⌉
≤ 2R

β , it follows from Lemma H.4 that unless

2R

β
>

δ

8
· aecM2ε(M

opt
0 (M),M),

where δ := ε
2 · min

{
1, infM∈Mopt

0 (M)
gM

nM

}
, we have

M ≥ inf
A

{
sup

M∈Mopt
0 (M)

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
| PM′,A

[
N¬πM

>

⌈
R

β

⌉]
= 0 ∀M ′ ∈M+

}
− β ≥ δ

6
− β.

To conclude, we set β = δ
12 and maximize over M ∈M+.

Proof of Lemma H.3. Fix β ∈ (0, 1) and let C := ⌈Rβ ⌉. Fix A = (p, q) and consider the algorithm
A′ = (p′, q′) defined implicitly as follows. For t = 1, . . . , T :

• Sample πt ∼ pt(· | Ht−1).

• If |
{
i ≤ t | πi /∈ πM

}
| = C, break and play an arbitrary decision π ∈ πM until round T .

Return λ̂ ∼ q(· | HT ).
It is immediate from this construction that A′ = (p′, q′) has N¬πM

≤ C almost surely under all
possible models M ∈ M+. We now focus on bounding the performance. Let T0 be the greatest
value of t for which |

{
i ≤ t | πi /∈ πM

}
| ≤ C. First, observe that for all M ∈Mopt

0 (M), since the
algorithms behave identically in law whenever T0 = T ,

PM,A′
[
λ̂ ∈ Λ(M ; ε, nM)

]
≥ PM,A′

[
λ̂ ∈ Λ(M ; ε, nM) ∧ T0 = T

]
= PM,A

[
λ̂ ∈ Λ(M ; ε, nM) ∧ T0 = T

]
= PM,A

[
λ̂ ∈ Λ(M ; ε, nM) ∧N¬πM

≤ C
]
.
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By the union bound, we have

PM,A
[
λ̂ ∈ Λ(M ; ε, nM) ∧N¬πM

≤ C
]
≥ PM,A

[
λ̂ ∈ Λ(M ; ε, nM)

]
− PM,A

[
N¬πM

> C
]
.

Finally, we observe that by Markov’s inequality we have

PM,A
[
N¬πM

> C
]
≤

EM,A
[
N¬πM

]
C

≤ EM,A[N¬πM ]

C
≤ β,

where we have used that N¬πM
≤ N¬πM , since πM ⊆ πM . Rearranging, we obtain

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ PM,A′

[
λ̂ /∈ Λ(M ; ε, nM)

]
− β.

Proof of Lemma H.4. Fix ε > 0, and let an algorithm A be given. For any M ∈ M+, define

qM = PM,A(λ̂ = ·) ∈ △(△(Π)), and let ωM := EM,A

[
1

N¬π
M

∑
t:πt /∈πM

pt
]
∈ △(Π), with the

convention that the value inside the expectation is zero whenever N¬πM
= 0.9

Fix α > 0 and M ∈M+ be fixed. Define

M = argmax
M∈Mopt

0 (M)

{
P
λ∼qM [λ /∈ Λ(M ; ε, nM)] | E

π∼ωM

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
;

we assume that such an M ∈Mopt
0 (M) does exist, as otherwise the claim we will prove is trivial. It

is immediate from this definition that we have

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
= P

λ∼qM [λ /∈ Λ(M ; ε, nM)]

= sup
M∈Mopt

0 (M)

{
P
λ∼qM [λ /∈ Λ(M ; ε, nM)] | E

π∼ωM

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
≥ inf

q∈△(△(Π)),ω∈△(Π)
sup

M∈Mopt
0 (M)

{
Pλ∼q[λ /∈ Λ(M ; ε, nM)] | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
=: opt,

with the convention that this value is zero if the set
{
M ∈Mopt

0 (M) | Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
is empty. In addition, we have

E
π∼ωM

[
DKL

(
M(π) ∥M(π)

)]
≤ α2. (82)

Now, define δ := ε
2 · min

{
1, infM∈Mopt

0 (M)
gM

nM

}
, and let λq := Eλ∼q[λ]. By Lemma H.1, we

have

opt = inf
q∈△(△(Π)),ω∈△(Π)

sup
M∈Mopt

0 (M)

{
Pλ∼q[λ /∈ Λ(M ; ε, nM)] | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
9. If N¬π

M
= 0 almost surely under M , we can take R = 0, in which case the statement of the lemma is vacuous.
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≥ δ · inf
q∈△(△(Π)),ω∈△(Π)

sup
M∈Mopt

0 (M)

{
I
{
λq /∈ Λ(M ; 2ε, nM)

}
| Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
≥ δ · inf

λ∈△(Π),ω∈△(Π)
sup

M∈Mopt
0 (M)

{
I{λ /∈ Λ(M ; 2ε, nM)} | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
≥ δ · inf

λ∈△(Π),ω∈△(Π)
sup

M∈Mopt
0 (M)

{
I{λ /∈ Λ(M ; 2ε)} | Eπ∼ω

[
DKL

(
M(π) ∥M(π)

)]
≤ α2

}
= δ · I

{
α2 ≥

(
aecM2ε(M

opt
0 (M),M)

)−1
}
. (83)

Hence, we have

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ · I

{
α2 ≥

(
aecM2ε(M

opt
0 (M),M)

)−1
}
. (84)

To proceed, using Lemma A.11 of Foster et al. (2021), we have

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ 1

3
PM,A

[
λ̂ /∈ Λ(M ; ε, nM)

]
− 4

3
DKL(PM,A ∥PM,A)

≥ δ

3
I
{
α2 ≥

(
aecM2ε(M

opt
0 (M),M)

)−1
}
− 4

3
DKL(PM,A ∥PM,A).

Now, recall that from the definition, we have that for all M ∈Mopt
0 (M),

DKL(PM,A ∥PM,A) = EM,A

 ∑
t:πt /∈πM

Eπ∼pt DKL

(
M(π) ∥M(π)

)
= EM,A

N¬πM

N¬πM

∑
t:πt /∈πM

Eπ∼pt DKL

(
M(π) ∥M(π)

)
≤ R · EM,A

 1

N¬πM

∑
t:πt /∈πM

Eπ∼pt DKL

(
M(π) ∥M(π)

)
= R · E

π∼ωM

[
DKL

(
M(π) ∥M(π)

)]
≤ α2R,

where the first inequality uses that PM,A
[
N¬πM

> R
]
= 0, and the second inequality uses (82).

With this, we have

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ

3
I
{
α2 ≥

(
aecM2ε(M

opt
0 (M),M)

)−1
}
− 4

3
α2R.

We set α2 = δ
8R , so that

PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ

6
· I
{
α2 ≥

(
aecM2ε(M

opt
0 (M),M)

)−1
}

=
δ

6
· I
{
R ≤ δ

8
· aecM2ε(M

opt
0 (M),M)

}
.
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We conclude that unless

R >
δ

8
· sup
M∈M+

aecM2ε(M
opt
0 (M),M),

the algorithm must have PM,A
[
λ̂ /∈ Λ(M ; ε, nM)

]
≥ δ

6 .

H.4. Proofs for Lower Bound Examples

Proof of Example B.2. Let ∆ ∈ (0, 1) and A ≥ 2 be given and set

M =
{
M(π) = N (fM(π), 1/2) | fM ∈ [0, 1]A

}
and

M0 = {M ∈M : ∆M
min ≥ ∆/2}

Define M ∈M via fM(π) = ∆I{π = A}. Fix ε ∈ (0, 1/2) and define a subclass

M′ = {M} ∪ {Mi}i∈[A−1]

via
fMi(π) = ∆I{π = A}+ ε ·∆I{π = i}.

Since ε ≤ 1/2, we haveM′ ⊆Mopt(M) andM′ ⊆M0. In addition, we have

DKL

(
M(π) ∥Mi(π)

)
= (fM(π)− fMi(π))2.

LetM′′ ⊆M denote the set of instances such that, for M ′ ∈M′′, DKL(Mi(A) ∥M ′(A)) = 0, and
M ′ ∈Malt(Mi), for all i ∈ [A− 1]. Then,

IMi(λ;M) = inf
M ′∈Malt(Mi)

Eπ∼λ[DKL

(
Mi(π) ∥M ′(π)

)
]

≤ inf
M ′∈M′′

Eπ∼λ[DKL

(
Mi(π) ∥M ′(π)

)
]

= min
j∈[A−1]

{
λi · (1− ε)2∆2I{j = i}+ λj ·∆2I{j ̸= i}

}
.

(85)

We also have that

gMi = g :=
(A− 2)

∆
+

1

(1− ε)∆
,

where we have used again that ε ≤ 1/2.
Fix any pair λ, ω ∈ △Π and consider the value

sup
M∈M′\Mgl

ε (λ)

{
1

Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]}.
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Pick δ ≤ ε/32, and let J ⊆ [A− 1] be the set of models i for which λ ∈ Λ(Mi; δ). For each such
model, by definition, there exists ni > 0 such that

∆Mi(λ) ≤ (1 + δ)
g

ni
, and IMi(λ;M) ≥ (1− δ)

1

ni
.

Define n = maxi∈J ni and n = mini∈J ni. Using Eq. (85), it is immediate that for all j ∈ [A− 1],
λj ≥ (1− δ)∆

−2

n , and that for all i ∈ J ,

λi ≥ (1− δ)
(1− ε)−2∆−2

ni
.

In particular, this implies that for all i ∈ J ,

(1− δ)
(A− 2)∆−1

n
+ (1− δ)

(1− ε)−1∆−1

ni
≤ ∆Mi(λ)

≤ (1 + δ)
g

ni

= (1 + δ)
(A− 2)∆−1

ni
+ (1 + δ)

(1− ε)−1∆−1

ni
,

or by rearranging,

(1− δ)
(A− 2)∆−1

n
≤ (1 + δ)

(A− 2)∆−1

ni
+ 2δ

(1− ε)−1∆−1

ni
,

≤ (1 + δ)
(A− 2)∆−1

ni
+ 4δ

∆−1

ni
,

≤ (1 + 2δ)
(A− 2)∆−1

ni

as long as A ≥ 6. Since this holds uniformly for all i ∈ J , rearranging once more gives

n ≤ (1 + 2δ)

1− δ
n ≤ (1 + 2δ)2n ≤ (1 + 8δ)n,

where we have used that δ ≤ 1/2.
Now, observe that for all i ∈ J , we have

∆Mi(λ) ≥ (1− δ)(A− |J | − 1)
1

∆n
+ (1− δ)|J | 1

(1− ε)2∆n
+ (1− δ)

1

(1− ε)∆ni
,

≥ (1− δ)(A− |J | − 1)
1

∆n
+

(1− δ)

1 + 8δ
|J | 1

(1− ε)2∆n
+ (1− δ)

1

(1− ε)∆ni
,

≥ (1− δ)

∆n

(
(A− |J | − 1) + |J | 1− 8δ

(1− ε)2

)
+ (1− δ)

1

(1− ε)∆ni
,

≥ (1− δ)

∆n

(
(A− |J | − 1) + |J | 1

(1− ε)

)
+ (1− δ)

1

(1− ε)∆ni
,

where we have used that 1
1+x ≥ 1− x, and that δ ≤ ε/8. Suppose that |J | ≥ A

2 . Then we have

(A− |J | − 1) + |J | 1

(1− ε)
≥ A

2

(
1 +

1

1− ε

)
− 1 ≥ (1 + ε/2)A− 1
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≥ (1 + ε/2)(A− 1),

so that

∆Mi(λ) ≥ (1− δ)(1 + ε/2)

∆n
(A− 1) + (1− δ)

1

(1− ε)∆ni
.

Noting that n ≤ ni and δ ≤ ε/8, we further have

∆Mi(λ) ≥ (1 + ε/4)
A− 1

∆

1

ni
+ (1− δ)

1

(1− ε)∆ni
.

Observe that the right-hand side above is greater than (1 + δ) g
ni

if and only if

(1 + ε/4)(A− 1) > (1 + δ)(A− 1) +
2δ

1− ε
,

which is satisfied if δ ≤ ε/32. In this case, we have

∆Mi(λ) > (1 + δ)
g

ni
,

which contradicts the assumption that i ∈ J . It follows that we must have |J | < A/2.
Now, to conclude, select i = argmini∈[A−1]\J ωi, and consider the value

sup
M∈M′\Mgl

ε (λ)

{
1

Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]} ≥ 1

Eπ∼ω
[
DKL

(
M(π) ∥Mi(π)

)] = 1

ωi · ε2∆2
,

where the first inequality follows because λ /∈ Λ(Mi; δ) by definition, and the equality follows from
the construction of M and Mi. Since

∑
i∈[A−1]\J ωi ≤ 1 and |[A− 1] \ J | ≥ A

2 , we must have
ωi ≤ 2

A , so that

1

ωi · ε2∆2
≥ A

2ε2∆2

as desired. To complete the proof, note that this holds uniformly for all choices for λ and ω, and that

aecMε (M0,M) = inf
λ,ω∈△Π

sup
M∈M0\Mgl

ε (λ)

{
1

Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]}

≥ inf
λ,ω∈△Π

sup
M∈M′\Mgl

ε (λ)

{
1

Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]}.
To obtain the parameter setting in the theorem statement, we rescale ∆← 2∆ and ε← 32ε.

Proof of Example B.3. We reduce the lower bound to that of multi-armed bandits via a standard
tree construction (Osband and Van Roy, 2016; Domingues et al., 2021); as the argument is standard,
we only sketch the approach. Assume without loss of generality that H is a multiple of 2. Set
H = log2(S/2). Consider a sub-classM′ ⊆ M defined as follows. All models M ∈ M′ have
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identical, deterministic dynamics given by a binary tree. Each layer h has 2h−1 states, so that layer
H has S/4 states, and the total number of states is S − 1. The agent begins from a root state s1
deterministically. For h ≤ H − 1, there are two available actions, left and right. Choosing left leads
to the left successor for the current layer, and right leads to the right successor for the current layer.
There are no rewards for layer h ≤ H − 1. For layer H , there are A available actions, and rewards
are arbitrary, subject to the constraint that the mean lies in [0, 1] and the noise follows N (0, 1/2).

It is clear that the classM′ is equivalent to the class of multi-armed bandit instances with SA/4
actions. As a consequence, the lower bound follows from Example B.2.

Proof of Example B.1. Let ∆ ∈ (0, 1/6), β ∈ (0, 1), and A,N ≥ 2 be given. Consider the
reference model M ∈M+ defined as follows:

• For each bandit arm k ∈ [A], we have fM(k) = 1
2 + ∆I{k = A} and r ∼ N (fM(k), 1).

There are no observations, i.e. o =⊥ almost surely.

• For each revealing arm π◦
k, we receive zero reward almost surely (so fM(π◦

k) = 0) and
o ∼ Unif([A]).

We define a subclass

M′ = {Mj}j∈[N ] ⊂M
opt
0 (M)

as follows

• For each bandit arm k ∈ [A], we have fMj (k) = 1
2 + ∆I{k = A} and r ∼ N (fMj (k), 1).

There are no observations, i.e. o =⊥ almost surely.

• For each revealing arm π◦
k, we receive zero reward almost surely (so fMj (π◦

k) = 0). We have

o ∼
{

Unif([A]), k ̸= j,
βIi + (1− β)Unif([A]), k = j.

Note thatM′ ⊆M0. For all j ∈ [N ], a direct calculation gives

DKL

(
M(π◦

j ) ∥Mj(π
◦
j )
)
=

A− 1

A
log

(
1

1− β

)
+

1

A
log

(
1

1 + β(A− 1)

)
=: α

and

DKL

(
M(π) ∥Mj(π)

)
= α · I{π = π◦

j }. (86)

In addition, it is straightforward to see that α ≤ 2β whenever β ≤ 1/2. Next we calculate that for
any j ∈ [N ] and M ∈M with π◦

M = π◦
j , and πM ̸= A,

DKL

(
Mj(π

◦
j ) ∥M(π◦

j )
)
= β log

(
1 +

βA

1− β

)
=: γ,
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which has γ ≤ O(β) whenever β ≤ 1/A and γ ≥ β log(1+βA). Lastly, we have that for all i ∈ [A],
all M,M ′ ∈M have

DKL

(
M(i) ∥M ′(i)

)
=

1

2
(fM(i)− fM′

(i))2.

LetM′′ denote the set of instances such that for M ′ ∈M′′, πM′ ̸= A, and fM′
(A) = 1

2 +∆, so that
DKL(Mj(A) ∥M ′(A)) = 0 andM′′ ⊆ Malt(Mj) for all j ∈ [N ]. Using the above calculations
and the definition of IMj (λ;M), we can then compute, for all j ∈ [N ],

IMj (λ;M) ≤ inf
M ′∈M′′

Eλ[DKL

(
Mj(π) ∥M ′(π)

)
] =

∆2

2
· min
k∈[A−1]

λk + γ · λπ◦
j

(87)

and

gMj = g := min

{
2
A− 1

∆
,

(
1

2
+ ∆

)
1

γ

}
=

(
1

2
+ ∆

)
1

γ

whenever γ ≥ ∆/2(A− 1).
Fix any pair λ, ω ∈ △Π and consider the value

sup
M∈M′\Mgl

1/2
(λ)

{
1

Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]}.
Let J ⊆ [N ] be the set of models j for which λ ∈ Λ(Mj ; 1/2). For each such model, by definition,
there exists nj > 0 such that

∆Mj (λ) ≤ (1 + 1/2)
g

nj
≤ 1

γnj
, and IMj (λ;M) ≥ 1

2nj
.

Define n = maxj∈J nj and n = minj∈J nj . Let us begin with some basic observations.

• Since ∆Mj = ∆M for all j, we have ∆Mj (λ) ≤ 1
γnj′

for all j, j′ ∈ J , and hence

∆Mj (λ) ≤ 1

γn
. (88)

• Any j ∈ J must have

λπ◦
j
γ ≥ 1

4nj
≥ 1

4n
. (89)

To see this, observe that if it were not the case, we would need mini∈[A−1] λi
∆2

2 ≥
1

4nj
to

satisfy the constraint that IMj (λ;M) ≥ 1
2nj

(by (87)). But if this were to occur, we would
have

A− 1

2∆nj
≤ ∆Mj (λ) ≤ 1

γnj
,

which would contradict the assumption that γ ≥ 2∆/(A− 1).
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Combing the inequalities (88) and (89), it follows that any j ∈ J must have

|J |
8γnj

≤ 1

2

∑
k∈J

λπ◦
k
≤ ∆Mj (λ) ≤ 1

γnj
,

which implies that |J | ≤ 8. Hence, as long as N ≥ 16, we have |[N ] \ J | ≥ N/2.
To conclude, select k = argminj∈[N ]\J ωπ◦

j
, and consider the value

sup
M∈M′\Mgl

1/2
(λ)

{
1

Eπ∼ω
[
DKL

(
M(π) ∥M(π)

)]} ≥ 1

Eπ∼ω
[
DKL

(
M(π) ∥Mk(π)

)] = 1

ωπ◦
k
· α

,

where the first inequality follows because λ /∈ Λ(Mk; 1/2) by definition, and the equality follows
from (86). Since

∑
j∈[N ]\J ωπ◦

j
≤ 1 and |[N ] \ J | ≥ N

2 , we must have ωπ◦
k
≤ 2

N , so that

1

ωπ◦
k
· α
≥ N

2α
.

as desired. Since this holds uniformly for all choices for λ and ω, the proof is completed.

H.5. Lower Bound on Regret for Algorithms with Well-Behaved Tails

In this section, we present an additional result, Theorem H.3, which shows that for algorithms for
which the tail behavior is “well-behaved” in a certain sense, the Allocation-Estimation Coefficient
directly leads to lower bounds on the least possible value of T for which any algorithm can achieve
(approximate) instance-optimality.

Theorem H.3. Let the time horizon T ∈ N, ε ∈ (0, 1/2), andM0 ⊆ M be given. Suppose that
there exists an algorithm A with the property that for all M ∈M0,

1. EM,A[Reg(T )] ≤ (1 + ε)gM log(T ).

2. For all π ∈ Π, if EM,A[T (π)] ̸= 0, then EM,A[T (π)] ≥ 1.

3.
√
EM,A[(Reg(T ))2] ≤ 2gM log(T ).

In addition, assume that 1) gM ≥ 1 for all M ∈M0, 2) Assumption A.4 holds, 3) Assumption A.2
holds with parameter VM ≥ 1, and 4) that

log(T ) ≥ 12

ε
log

(
sup
M∈M

2gM

∆M
min

· log(T )
)
.

Then if we define δ = ε ·min{1, infM∈M0

gM

3gM/∆M
min+nMε

}, it must be the case that

log3(T ) ≥ δ2

C
· sup
M∈M+

aecM4ε(M
opt
0 (M),M),

for C ≤ O
(
(supM∈M

gM

∆M
min

)4 · V
2
M log(δ−1)

ε2

)
.
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We prove Theorem H.3 by combining Theorem B.2 with an another technical result, Proposi-
tion H.1 (stated and proven in the sequel), which shows that for algorithms that satisfy the assumptions
of Theorem H.3, it is possible to use the empirical decision frequencies to compute an allocation that
is approximately optimal with high probability.
Proof of Theorem H.3. Define nM = 3 gM

∆M
min

+ nM
ε , and set

δ := ε ·min

{
1, inf
M∈M0

gM

nM

}
.

Assume that

log(T ) ≥ 12

ε
log

(
sup
M∈M

2gM

∆M
min

· log(T )
)
.

Let A be the algorithm in the statement of the proposition, and let A′ be the modified algorithm
created through Proposition H.1 with parameter δ. By assumption, we have that

√
EM,A[N¬πM ] ≤

R := 2 supM∈M
gM

∆M
min

log(T ). We define n = c · log(24δ
−1)

ε2
· R

3V 2
M

log(T ) for a sufficiently large numerical

constant c and T ′ = T · n. Proposition H.1 implies that for time T ′, the algorithm A′ satisfies√
EM,A′ [N¬πM ] ≤ R′ := R · n

and

PM,A′
[
λ̂ ∈ Λ(M ; 2ε, nM)

]
≥ 1− δ

24
.

On the other hand, since the precondition of Theorem H.2 is now satisfied with parameter R′, we
have that unless

R′ ≥ δ2

192
· sup
M∈M+

aecM4ε(M
opt
0 (M),M), (90)

the algorithm must have

PM,A′
[
λ̂ ∈ Λ(M ; 2ε, nM)

]
≤ 1− δ

12
.

As δ
12 > δ

24 , this is a contradiction unless (90) holds.

Proposition H.1. Let the time horizon T ∈ N andM0 ⊆M be given. Let A be an algorithm with
the property that for all M ∈M0,

1. EM,A[Reg(T )] ≤ (1 + ε)gM log(T ) for some ε ∈ (0, 1).

2. For all π ∈ Π, if EM,A[T (π)] ̸= 0, then EM,A[T (π)] ≥ 1.

3.
√
EM,A

[
N2

¬πM

]
≤ R for some R ≥ 2.
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In addition, assume that 1) gM ≥ 1 for all M ∈M0, 2) Assumption A.4 holds, 3) Assumption A.2
holds with parameter VM ≥ 1, and 4) that

log(T ) ≥ 12

ε
log

(
sup
M∈M

2gM

∆M
min

· log(T )
)
.

Then for any δ ∈ (0, e−1), if we define n = c · log(δ
−1)

ε2
· R

3V 2
M

log(T ) for a sufficiently large numerical
constant c, there exists an algorithm A′ that, using T ′ := T · n rounds, returns a normalized
allocation λ̂ ∈ △Π such that

PM,A′
[
λ̂ ∈ Λ(M ; 2ε, nM)

]
≥ 1− δ,

for nM ≤ 3 gM

∆M
min

+ nM
ε and that

√
EM,A′

[
N2

¬πM

]
≤ R · n and

EM,A′
[
Reg(T ′)

]
≤ (1 + ε)gM log(T ) · n

for all M ∈M0.

Proof of Proposition H.1. We first state a technical lemma regarding robust mean estimation.

Lemma H.5. Let X ∈ Rd be a random variable with µ := E[X]. Assume that ∥µ∥0 ≤ s, where s
is a known upper bound. For any δ ≤ e−1, there exists an estimator µ̂n that, given n independent
samples from X , ensures that with probability at least 1− δ,

∥µ̂n − µ∥1 ≤ 24

√
2s · E∥X − µ∥22 · log(δ−1)

n
.

In addition, ∥µ̂n∥0 ≤ s with probability 1.

Throughout, we will use that since Assumption A.4 holds, πM is unique for all M ∈ M. Fix
M ∈ M0. Let η̂ ∈ RΠ

+ denote the vector of empirical decision frequencies when A is run with
horizon T , i.e. η̂(π) = T (π). Let

ηM = EM,A[η̂].

For parameters n ∈ N and δ ≤ e−1 we define A′ as follows:

• Run A a total of n times independently (so that T ′ = T ·n), and let η̂1, . . . , η̂n be the empirical
decision frequencies.

• Apply the algorithm from Lemma H.5 to η̂1, . . . , η̂n with parameters δ and s = 2R, and let
η̌ ∈ RΠ

+ be the resulting vector (note that we can take η̌ to have non-negative entries without
loss of generality).

• Set π̂ = argmaxπ∈Π η̌, and set η̃(π) = η̌(π)I{π ̸= π̂} and η̃(π̂) = nM
ε · log T (note that nM

ε

is a class-dependent quantity, and so is known to the learner).

• Set λ̂ = η̃/∥η̃∥1.
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It is immediate that this construction satisfies
√

EM,A′
[
N2

¬πM
]
≤ R · n and

EM,A′
[
Reg(T ′)

]
≤ (1 + ε)gM log(T ) · n,

so it remains to show that λ̂ is a near-optimal allocation with high probability when n is chosen
appropriately.

We start by applying Lemma H.5. To do so, we carry out some prerequisite calculations. First,
by assumption, we have ηM(π) ≥ 1 if ηM ̸= 0. Using this, along with Assumption A.4, we have

∥ηM∥0 ≤ 1 +
∑
π ̸=πM

ηM(π) ≤ 1 + EM,A[N¬πM ] ≤ 1 +R ≤ 2R.

Second,

EM,A∥η̂ − ηM∥22 ≤ EM,A
[
(η̂(πM)− ηM(πM))2

]
+
∑
π ̸=πM

EM,A
[
η̂(π)2

]
≤ EM,A

[
(η̂(πM)− ηM(πM))2

]
+ EM,A

[
N2

¬πM
]
.

Furthermore,

EM,A
[
(η̂(πM)− ηM(πM))2

]
= EM,A

 ∑
π ̸=πM

η̂(π)−
∑
π ̸=πM

ηM(π)

2
≤ EM,A

 ∑
π ̸=πM

η̂(π)

2
= EM,A

[
N2

¬πM
]
.

so that

EM,A∥η̂ − ηM∥22 ≤ 2EM,A
[
N2

¬πM
]
≤ 2R2.

As a result, Lemma H.5 implies that with probability 1− δ,

∥η̌ − ηM∥1 ≤
√
C1

log(δ−1)

n
=: εstat (91)

where C1 = O(R3).
Next, we appeal to Lemma H.2, which implies that as long as

log(T ) ≥ 12

ε
log

(
sup
M∈M

2gM

∆M
min

· log(T )
)
, (92)

we have

∆M(ηM) ≤ (1 + ε/2)gM log(T ), and IM(ηM ;M) ≥ (1− ε/2) log(T ).
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Applying (91) and using that ∆M ∈ [0, 1] and DKL(M(π) ∥M ′(π)) ≤ 2VM by Lemma F.13, we
have

∆M(η̌) ≤ (1 + ε/2)gM log(T ) + εstat, and IM(η̌;M) ≥ (1− ε/2) log(T )− εstat · 2VM.

Thus, as long as

εstat ≤
1

2
ε · min

{
gM log(T ), (2VM)−1 log(T )

}
,

we have

∆M(η̌) ≤ (1 + ε)gM log(T ), and IM(η̌;M) ≥ (1− ε) log(T ). (93)

Next, we claim that π̂ = πM . To see this, note that since EM,A[Reg(T )] ≤ 2gM log(T ), we have

ηM(πM) ≥ T − 2
gM

∆M
min

log(T )

T
≥ 3

4
T

as long as T > 8 gM

∆M
min

log(T ), which is implied by the condition (92). Hence, as long as εstat ≤ T
4 ,

we have
η̌(πM) >

T

2
,

which implies that π̂ = πM . By definition of nM
ε , and since η̌ satisfies Eq. (93) above, we then have

that setting η̌(π̂) = nM
ε log(T ) does not affect the regret, and only decreases the information gain by

a factor of ε log(T ). It follows that

∆M(η̃) ≤ (1 + ε)gM log(T ), and IM(η̃;M) ≥ (1− 2ε) log(T ).

We conclude that λ̂ ∈ Λ(M ; 2ε, n) for

n = ∥η̃∥1/ log(T ).

To wrap up, we compute that

∥η̃∥1 ≤
∑
π ̸=πM

ηM(π) + εstat + nM
ε log(T ) ≤ 2

gM

∆M
min

log(T ) + εstat + nM
ε log(T ) ≤ 3

gM

∆M
min

log(T ) + nM
ε log(T )

whenever εstat ≤ gM log(T ).

Proof of Lemma H.5. From Proposition 1 of Lugosi and Mendelson (2019), we have that for any
δ ≤ e−1, there exists an estimator µ̃n that, given n independent samples of X , ensures that with
probability at least 1− δ,

∥µ̃n − µ∥2 ≤ 12

√
E∥X − µ∥22 · log(δ−1)

n
.

Given µ̃n, we define µ̂n = argminu∈Rd:∥u∥0≤s∥u− µ̃n∥2. Since ∥µ∥0 ≤ s, we have ∥µ̃n − µ̂n∥2 =
minu:∥u∥0≤s∥µ̃n − u∥2 ≤ ∥µ̃n − µ∥2. It follows that

∥µ̂n − µ∥2 ≤ ∥µ̃n − µ̂n∥2 + ∥µ̃n − µ∥ ≤ 2∥µ̃n − µ∥2.

Finally, we note that since µ̂n and µ are both s-sparse, ∥µ̂n − µ∥1 ≤
√
2s∥µ̂n − µ∥2.
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