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Abstract
To deal with non-stationary online problems with complex constraints, we investigate the dynamic
regret of online Frank-Wolfe (OFW), which is an efficient projection-free algorithm for online
convex optimization. It is well-known that in the setting of offline optimization, the smoothness of
functions and the strong convexity of functions accompanying specific properties of constraint sets
can be utilized to achieve fast convergence rates for the Frank-Wolfe (FW) algorithm. However,
for OFW, previous studies only establish a dynamic regret bound of O(

√
T (VT +

√
DT + 1)) by

utilizing the convexity of problems, where T is the number of rounds, VT is the function variation,
and DT is the gradient variation. In this paper, we derive improved dynamic regret bounds for OFW
by extending the fast convergence rates of FW from offline optimization to online optimization.
The key technique for this extension is to set the step size of OFW with a line search rule. In this
way, we first show that the dynamic regret bound of OFW can be improved to O(

√
T (VT + 1))

for smooth functions. Second, we achieve a better dynamic regret bound of O(T 1/3(VT + 1)2/3)
when functions are smooth and strongly convex, and the constraint set is strongly convex. Finally,
for smooth and strongly convex functions with minimizers in the interior of the constraint set, we
demonstrate that the dynamic regret of OFW reduces to O(VT +1), and can be further strengthened
to O(min{P ∗

T , S
∗
T , VT } + 1) by performing a constant number of FW iterations per round, where

P ∗
T and S∗

T denote the path length and squared path length of minimizers, respectively.
Keywords: Online Convex Optimization, Dynamic Regret, Frank-Wolfe Algorithm

1. Introduction

Online convex optimization (OCO) is a powerful learning paradigm, which can be utilized to model
a wide variety of machine learning problems, and is commonly formulated as a repeated game over
a convex constraint set K ⊆ Rd (Hazan, 2016). In each round t = 1, . . . , T , a player first selects
a feasible decision xt ∈ K, and then suffers a loss ft(xt), where ft(x) : K 7→ R is a convex
function and could be selected in the adversarial way. The goal of the player is to minimize the
cumulative loss

∑T
t=1 ft(xt). A standard algorithm is online gradient descent (OGD) (Zinkevich,

2003), which usually has both theoretical and practical appeals. However, to ensure the feasibility of
decisions, OGD needs to perform a projection operation per round, which could be computationally
expensive in high-dimensional problems with complex constraints and thus limits its applications
(Hazan and Kale, 2012). To tackle this issue, Hazan and Kale (2012) propose the first projection-
free algorithm for OCO, namely online Frank-Wolfe (OFW), by eschewing the projection operation
with one iteration of the Frank-Wolfe (FW) algorithm (Frank and Wolfe, 1956; Jaggi, 2013), which
is much more efficient for many complex constraint sets.
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Table 1: Summary of Convergence Rates of FW with T iterations in Offline Optimization. Abbre-
viations: convex → cvx, strongly convex → scvx, smooth → sm.

Reference Function K Location of Minimizers Convergence Rates

Jaggi (2013) sm & cvx cvx unrestricted O(1/T )

Garber and Hazan (2015) sm & scvx scvx unrestricted O(1/T 2)

Garber and Hazan (2015) sm & scvx cvx the interior of K O(exp(−T ))

Attracted by this computational advantage, there has been a growing research interest in devel-
oping and analyzing efficient projection-free online algorithms under different scenarios (Garber
and Hazan, 2016; Levy and Krause, 2019; Hazan and Minasyan, 2020; Wan and Zhang, 2021; Wan
et al., 2020, 2022a,b; Kalhan et al., 2021; Garber and Kretzu, 2021, 2022; Mhammedi, 2022a,b; Lu
et al., 2023; Zhou et al., 2023). However, most of them focus on minimizing the regret

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x) (1)

which compares the player against a fixed comparator, and thus cannot reflect the hardness of prob-
lems with non-stationary environments, where the best decision could be time-varying. To address
this limitation, we investigate efficient projection-free algorithms with a more suitable metric called
dynamic regret (Zinkevich, 2003)

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) (2)

which compares the player against the minimizer x∗
t ∈ argminx∈K ft(x) in each round t. Although

a few studies (Kalhan et al., 2021; Zhou et al., 2023) have proposed to minimize the dynamic regret
with OFW (Hazan and Kale, 2012), current theoretical understandings of this way are limited.

To be precise, Kalhan et al. (2021) for the first time prove that OFW can attain a dynamic regret
bound of O(

√
T (VT +

√
DT + 1)) for smooth functions by directly applying the FW iteration to

the function ft(x), where VT =
∑T

t=2maxx∈K |ft(x) − ft−1(x)| and DT =
∑T

t=2 ∥∇ft(xt) −
∇ft−1(xt−1)∥22 denote the function variation and the gradient variation, respectively. However, very
recently, Zhou et al. (2023) show that OFW actually can attain the O(

√
T (VT +

√
DT +1)) dynamic

regret bound by only utilizing the convexity of problems, which implies that the smoothness of
functions is not appropriately exploited. Notice that in the setting of offline optimization, it is well-
known that the smoothness of functions is essential for the convergence of the FW algorithm (Jaggi,
2013). Moreover, if functions are smooth and strongly convex, the convergence rate of the FW
algorithm can be further improved by utilizing the strong convexity of sets or the special location of
the minimizers of functions (see Table 1 for details) (Garber and Hazan, 2015). Thus, it is natural to
ask whether these fast convergence rates of FW can be extended from offline optimization to online
optimization for improving the dynamic regret of OFW.

In this paper, we provide an affirmative answer to the above question. Specifically, we first
consider smooth functions and establish a dynamic regret bound of O(

√
T (VT + 1)) for OFW,
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which improves the existing O(
√
T (VT +

√
DT +1)) bound (Kalhan et al., 2021; Zhou et al., 2023)

by removing the dependence on DT and reducing the dependence on VT . The insight behind these
improvements is that by refining the existing analysis of OFW for smooth functions (Kalhan et al.,
2021), the dynamic regret of OFW with a fixed step size σ actually is O(σ−1(VT + 1) + σT ),
which does not depend on DT and motivates us to minimize the dependence on VT by adjusting the
step size. The key technical challenge is that the value of VT actually is unknowable in practice,
which limits the choice of the step size. Inspired by previous studies on OCO (van Erven and
Koolen, 2016; Zhang et al., 2018a), a standard way to address this limitation is to run multiple
OFW, each with a different step size depending on an estimated VT , and combine them via an
expert-tracking algorithm. However, it requires O(log T ) instances of OFW, which clearly increases
the computational complexity and is unacceptable for real applications with a large T . By contrast,
we adopt a simple line search rule (Garber and Hazan, 2015) to select the step size of OFW, which
can be implemented as efficient as the original OFW.

Furthermore, if functions are smooth and strongly convex, we prove that the line search rule
enables OFW to automatically reduce the dynamic regret to O(T 1/3(VT + 1)2/3) over strongly
convex sets, and O(VT +1) over convex sets in case the minimizers of functions lie in the interior of
the set. These two improvements are analogous to the improvements in the convergence rate of FW
for offline optimization. Finally, we demonstrate that under the same assumptions, the O(VT + 1)
dynamic regret can be further strengthened to O(min{P ∗

T , S
∗
T , VT } + 1) by performing a constant

number of FW iterations per round, where P ∗
T =

∑T
t=2 ∥x∗

t −x∗
t−1∥2 and S∗

T =
∑T

t=2 ∥x∗
t −x∗

t−1∥22
denote the path length and squared path length of minimizers, respectively. Notice that P ∗

T , S∗
T , and

VT reflect different aspects of the non-stationarity of environments, and thus are favored in different
scenarios. Therefore, the strengthened bound achieves a best-of-three-worlds guarantee. Moreover,
this bound matches the best known dynamic regret bound achieved by a projection-based algorithm
under the same assumptions (Zhang et al., 2017; Zhao and Zhang, 2021), which needs to perform
a constant number of projected gradient descent iterations per round, and thus is less efficient than
our algorithm for complex sets.

2. Related Work

In this section, we review related work on the dynamic regret of projection-based and projection-free
algorithms.

2.1. Dynamic Regret of Projection-based Algorithms

The pioneering work of Zinkevich (2003) introduces a more general definition of the dynamic regret,
which compares the player against any sequence of comparators

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut) (3)

where u1, . . . ,uT ∈ K, and shows that OGD with a constant step size can achieve a general dy-
namic regret bound of O(

√
T (PT +1)) for convex functions, where PT =

∑T
t=2 ∥ut−ut−1∥2. By

running O(log T ) instances of OGD with different step sizes and combining them with an expert-
tracking algorithm, Zhang et al. (2018a) improve the general dynamic regret to O(

√
T (PT + 1)),

which has also been proved to be optimal for convex functions. The
√
T part in this bound has
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been improved to some data-dependent terms for convex functions (Cutkosky, 2020) and smooth
functions (Zhao et al., 2020). Furthermore, Baby and Wang (2021) consider exponentially con-
cave functions and strongly convex functions, and respectively establish a general dynamic regret
bound of Õ(d3.5(T 1/3C

2/3
T + 1)) and an improved one of Õ(d2(T 1/3C

2/3
T + 1)),1 where d is the

dimensionality of decisions and CT =
∑T

t=2 ∥ut − ut−1∥1.
Notice that the dynamic regret defined in (2) can be regarded as the worst case of the general

dynamic regret defined in (3), which allows us to derive worst-case bounds by combining the above
results with ut = x∗

t . However, this way may not lead to the best results for the dynamic regret de-
fined in (2), since it ignores the specific property of x∗

t . For this reason, there exist plenty of studies
that focus on the dynamic regret defined in (2). If each function ft(x) is smooth and its minimizer
x∗
t lies in the interior of K, Yang et al. (2016) show that OGD can achieve an O(P ∗

T + 1) dynamic
regret bound. When functions are smooth and strongly convex, Mokhtari et al. (2016) establish
the same dynamic regret bound for OGD. Moreover, when functions are smooth and strongly con-
vex, and their minimizers lie in the interior of K, Zhang et al. (2017) propose the online multiple
gradient descent (OMGD) algorithm, and improve the dynamic regret to O(min{P ∗

T , S
∗
T } + 1).

Besides, Besbes et al. (2015) prove that a restarted variant of OGD can attain O(T 2/3(VT + 1)1/3)
and Õ(

√
T (VT + 1)) dynamic regret bounds for convex and strongly convex functions respectively,

while they need to know the value of VT beforehand. By applying a strongly adaptive online learn-
ing framework (Hazan and Seshadhri, 2007; Daniely et al., 2015), in the case without the value of
VT , Zhang et al. (2018b) establish Õ(T 2/3(VT + 1)1/3), Õ(d

√
T (VT + 1)), and Õ(

√
T (VT + 1))

dynamic regret bounds for convex functions, exponentially concave functions, and strongly convex
functions, respectively. Under the same assumption as Zhang et al. (2017), Zhao and Zhang (2021)
recently refine the dynamic regret of OMGD to O(min{P ∗

T , S
∗
T , VT }+ 1).2 They also demonstrate

that a greedy strategy that sets xt+1 = x∗
t can achieve the same dynamic regret bound without the

strong convexity of functions.

2.2. Dynamic Regret of Projection-free Algorithms

However, the above algorithms require either the projection operation or more complicated com-
putations, which cannot efficiently deal with complex constraints. To tackle this issue, Wan et al.
(2021) propose an online algorithm that only utilizes FW iterations to update the decision, and es-
tablish O(T 2/3(VT + 1)1/3) and Õ(

√
T (VT + 1)) dynamic regret bounds for convex and strongly

convex functions, respectively. Unfortunately, the algorithm needs to utilize Õ(T ) and Õ(T 2) FW
iterations per round for achieving these two bounds, which actually suffers a similar computation
complexity compared with the projection operation. By contrast, Kalhan et al. (2021) prove that by
directly applying the FW iteration to the function ft(x), OFW (Hazan and Kale, 2012) can attain
an O(

√
T (VT +

√
DT + 1)) dynamic regret bound for smooth functions. Recently, Zhou et al.

(2023) show that the same dynamic regret bound can be achieved by OFW without the smoothness
of functions.

2.3. Discussions

As previously mentioned, if considering the regret defined in (1) rather than the dynamic regret,
there exist plenty of projection-free online algorithms for different scenarios (Garber and Hazan,

1. The Õ notation hides constant factors as well as polylogarithmic factors in T .
2. The special location of the minimizer is only required to achieve the upper bound in terms of S∗

T .
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Table 2: Comparison of our results to previous studies. Here, we only summarize algorithms, which
utilize at most Õ(1) projections or FW iterations per round, and achieve dynamic regret
bounds that are comparable with our results, i.e., depending on VT . Abbreviations: convex
→ cvx, strongly convex → scvx, smooth → sm, inter(K) → the interior of K, # PROJ →
numbers of projections per round, # FW → numbers of FW iterations per round.

Assumptions Reference # PROJ # FW Dynamic Regret

ft(·): cvx
K: cvx

Zhang et al. (2018b) Õ(1) 0 Õ(T 2/3(VT + 1)1/3)

Zhou et al. (2023) 0 1 O(
√
T (VT +

√
DT + 1))

ft(·): sm & cvx
K: cvx

Kalhan et al. (2021) 0 1 O(
√
T (VT +

√
DT + 1))

Theorem 2 0 1 O(
√

T (VT + 1))

ft(·): sm & scvx
K: scvx

Zhao and Zhang (2021) O(1) 0 O(min{P ∗
T , VT }+ 1)

Theorem 3 0 1 O(T 1/3(VT + 1)2/3)

ft(·): sm & scvx
K: cvx

x∗
t ∈ inter(K)

Zhao and Zhang (2021) O(1) 0 O(min{P ∗
T , S

∗
T , VT }+ 1)

Theorem 4 0 1 O(VT + 1)

Theorem 5 0 O(1) O(min{P ∗
T , S

∗
T , VT }+ 1)

2016; Levy and Krause, 2019; Hazan and Minasyan, 2020; Wan and Zhang, 2021; Wan et al., 2020,
2022a,b; Garber and Kretzu, 2021, 2022; Mhammedi, 2022a,b; Lu et al., 2023). Although both
the dynamic regret and projection-free algorithms have attracted much attention, OFW is the only
efficient projection-free algorithm for minimizing the dynamic regret. In this paper, we improve the
dynamic regret of OFW by extending the fast convergence rates of FW from offline optimization
to online optimization. Moreover, it is worth noting that as summarized in Table 2, even compared
with projection-based algorithms, our results can match the best O(min{P ∗

T , S
∗
T , VT }+1) dynamic

regret bound under the same assumptions, and exploit the smoothness of functions to improve the
Õ(T 2/3(VT + 1)1/3) dynamic regret bound achieved by only utilizing the convexity of functions.3

3. Main Results

We first revisit OFW for smooth functions, and then show the advantage of utilizing a line search
rule. Finally, for smooth and strongly convex functions with minimizers in the interior of the set,
we propose OFW with multiple updates to further strengthen the performance.

3.1. Revisiting Online Frank-Wolfe for Smooth Functions

To minimize the dynamic regret, Kalhan et al. (2021) propose a specific instance of OFW, which
first selects an arbitrary x1 ∈ K and then iteratively updates the decision as follows

vt ∈ argmin
x∈K

⟨∇ft(xt),x⟩, xt+1 = (1− σ)xt + σvt (4)

3. In Appendix H, we show that OGD (Zinkevich, 2003) can also achieve the O(
√

T (VT + 1)) dynamic regret bound
for smooth functions, which may be of independent interest.
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where σ ∈ [0, 1] is a constant step size. To analyze the performance of this algorithm, Kalhan et al.
(2021) introduce the following two assumptions.

Assumption 1 All loss functions are α-smooth, i.e., for any t ∈ [T ],x ∈ K,y ∈ K, it holds that
ft(y) ≤ ft(x) + ⟨∇ft(x),y − x⟩+ α

2 ∥x− y∥22.

Assumption 2 The diameter of the set K is bounded by D, i.e., for any x ∈ K,y ∈ K, it holds that
∥x− y∥2 ≤ D.

Under these assumptions, Kalhan et al. (2021) establish the following lemma.

Lemma 1 (Lemma 1 of Kalhan et al. (2021)) Under Assumptions 1 and 2, for t = 1, · · · , T − 1,
OFW ensures

ft+1(xt+1)− ft+1(x
∗
t+1) ≤max

x∈K
|ft+1(x)− ft(x)|+ (1− σ)(ft(xt)− ft(x

∗
t )) +

3ασ2D2

2

+ ft(x
∗
t )− ft+1(x

∗
t+1) + σD∥∇ft+1(xt+1)−∇ft(xt)∥2

(5)

for the given step size σ ∈ [0, 1].

By further utilizing the above lemma and setting σ = 1/
√
T , Kalhan et al. (2021) achieve a dynamic

regret bound of O(
√
T (VT +

√
DT + 1)) for smooth functions. It is not hard to verify that the

existence of DT in the bound is caused by the last term in the right side of (5).
In this paper, by analyzing OFW more carefully, we provide the following lemma for smooth

functions, which removes the last term in the right side of (5).

Lemma 2 Under Assumptions 1 and 2, for t = 1, · · · , T − 1, OFW ensures

ft+1(xt+1)− ft+1(x
∗
t+1) ≤max

x∈K
|ft+1(x)− ft(x)|+ (1− σ)(ft(xt)− ft(x

∗
t )) +

ασ2D2

2

+ ft(x
∗
t )− ft+1(x

∗
t+1)

(6)

for the given step size σ ∈ [0, 1].

Furthermore, based on Lemma 2, we can establish a simplified dynamic regret bound for OFW,
which is presented in the following theorem.

Theorem 1 Under Assumptions 1 and 2, OFW ensures

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤

f1(x1)− fT (x
∗
T ) + VT

σ
+

ασ(T − 1)D2

2

where VT =
∑T

t=2maxx∈K |ft(x)− ft−1(x)|.

Remark. From Theorem 1, OFW with σ = 1/
√
T actually enjoys a dynamic regret bound of

O(
√
T (VT + 1)) for smooth functions, which is better than the O(

√
T (VT +

√
DT + 1)) bound

achieved by Kalhan et al. (2021) without any modification on the algorithm, and partially reflects
the benefit of the smoothness of functions. More importantly, we notice that if VT is available
beforehand, the dynamic regret bound of OFW can be further improved to O(

√
T (VT + 1)) by

6
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Algorithm 1 Online Frank-Wolfe with Line Search
1: Initialization: x1 ∈ K
2: for t = 1, · · · , T do
3: Compute vt ∈ argminx∈K⟨∇ft(xt),x⟩
4: Compute σt = argminσ∈[0,1] σ⟨∇ft(xt),vt − xt⟩+ ασ2

2 ∥xt − vt∥22
5: Update xt+1 = (1− σt)xt + σtvt

6: end for

substituting σ = O(
√

VT /T ) into Theorem 1. However, VT is usually unknown in practical ap-
plications, which could also be the main reason why Kalhan et al. (2021) only utilize σ = 1/

√
T .

Inspired by previous studies (van Erven and Koolen, 2016; Zhang et al., 2018a), one may search
the unknown value of VT by maintaining multiple instances of OFW, each with a different step size
depending on an estimated VT , and combining them with an expert-tracking algorithm. However,
this way requires at least O(log T ) instances of OFW, which clearly increases the computational
complexity and is unacceptable for applications with a large T . In the following, we provide a more
elegant way to achieve the O(

√
T (VT + 1)) bound.

3.2. Online Frank-Wolfe with Line Search

Specifically, we utilize a line search rule to set the step size of OFW as follows

σt = argmin
σ∈[0,1]

σ⟨∇ft(xt),vt − xt⟩+
ασ2

2
∥xt − vt∥22 (7)

which is a common technique for setting the step size of FW in offline optimization (Jaggi, 2013;
Garber and Hazan, 2015), but usually is overlooked in OCO. By combining (4) with (7), we propose
an algorithm called online Frank-Wolfe with line search, and the detailed procedures are summa-
rized in Algorithm 1.

We would like to emphasize that Algorithm 1 can be implemented as efficient as the original
OFW because the line search rule in (7) actually has a closed-form solution as

σt = min

{
⟨∇ft(xt),xt − vt⟩

α∥xt − vt∥22
, 1

}
.

To bound its dynamic regret, we first establish the following lemma for smooth functions, which
generalizes Lemma 2 from a fixed σ to all possible σ∗.

Lemma 3 Under Assumptions 1 and 2, for t = 1, · · · , T − 1, Algorithm 1 ensures

ft+1(xt+1)− ft+1(x
∗
t+1) ≤max

x∈K
|ft+1(x)− ft(x)|+ (1− σ∗)(ft(xt)− ft(x

∗
t )) +

ασ2
∗D

2

2

+ ft(x
∗
t )− ft+1(x

∗
t+1)

(8)

for all possible σ∗ ∈ [0, 1].

Based on the above lemma, we establish the following theorem.
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Theorem 2 Under Assumptions 1 and 2, Algorithm 1 ensures
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤

√
MT (VT +M) +

αD2

2

√
(VT +M)T

M

where VT =
∑T

t=2maxx∈K |ft(x)− ft−1(x)| and M = maxt∈[T ],x∈K{2|ft(x)|}.

Remark. Theorem 2 implies that by utilizing the line search rule, OFW can attain a dynamic regret
bound of O(

√
T (VT + 1)) for smooth functions without the prior information of VT . Compared

with the O(
√
T (VT +

√
DT + 1)) bound achieved by Kalhan et al. (2021), this bound removes the

dependence on DT and reduces the dependence on VT .
Additionally, during the analysis of Lemma 3 and Theorem 2, we realize that the convergence

property of one FW iteration is critical for upper bounding ft+1(xt+1) − ft+1(x
∗
t+1), and then

affects the dynamic regret. This motivates us to further investigate the dynamic regret of Algorithm
1 in the following two special cases, in which the FW algorithm has been proved to converge faster
(Garber and Hazan, 2015).

3.2.1. STRONGLY CONVEX FUNCTIONS AND SETS

To be precise, in the first case, we assume that these smooth functions are also strongly convex, and
the decision set is strongly convex.

Assumption 3 All loss functions are βf -strongly convex, i.e., for any t ∈ [T ],x ∈ K,y ∈ K, it
holds that

ft(y) ≥ ft(x) + ⟨∇ft(x),y − x⟩+
βf
2
∥x− y∥22.

Assumption 4 The decision set is βK-strongly convex, i.e., for any x ∈ K,y ∈ K, γ ∈ [0, 1] and
z ∈ Rd such that ∥z∥2 = 1, it holds that

γx+ (1− γ)y + γ(1− γ)
βK
2

∥x− y∥22z ∈ K.

By further incorporating these two assumptions, we establish the following lemma, which signifi-
cantly improves Lemma 3 by removing the ασ2

∗D
2

2 term in the right side of (8).

Lemma 4 Under Assumptions 1, 2, 4, for t = 1, · · · , T − 1, Algorithm 1 ensures

ft+1(xt+1)− ft+1(x
∗
t+1) ≤ max

x∈K
|ft+1(x)− ft(x)|+Ct(ft(xt)− ft(x

∗
t )) + ft(x

∗
t )− ft+1(x

∗
t+1)

where Ct = max
{
1− βK∥∇ft(xt)∥2

8α , 12

}
.

Based on Lemma 4, we establish the following lemma.

Theorem 3 Under Assumptions 1, 2, 3, and 4, Algorithm 1 ensures

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤

(
8
√
2α√

βfβK
(M + VT )

)2/3

T 1/3 + 2(M + VT )

where VT =
∑T

t=2maxx∈K |ft(x)− ft−1(x)| and M = maxt∈[T ],x∈K{2|ft(x)|}.

Remark. From Theorem 3, Algorithm 1 can further exploit the strong convexity of functions
and the set to achieve a dynamic regret bound of O(T 1/3(VT + 1)2/3), which is better than the
O(
√
T (VT + 1)) bound derived by only utilizing the smoothness of functions.

8
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3.2.2. STRONGLY CONVEX FUNCTIONS WITH SPECIAL MINIMIZERS

Then, we proceed to consider the second case, in which all functions are strongly convex and their
minimizers lie in the interior of the decision set. To this end, we further introduce the following
assumption.

Assumption 5 There exists a minimizer x∗
t ∈ argminx∈K ft(x) that lies in the interior of K for

any t ∈ [T ], i.e., there exists a parameter r > 0 such that if any x satisfies ∥x − x∗
t ∥2 ≤ r, then

x ∈ K.

By replacing Assumption 4 in Lemma 4 with Assumptions 3 and 5, we establish the following
lemma.

Lemma 5 Under Assumptions 1, 2, 3, and 5, for t = 1, · · · , T − 1, Algorithm 1 ensures

ft+1(xt+1)− ft+1(x
∗
t+1) ≤ max

x∈K
|ft+1(x)− ft(x)|+ C(ft(xt)− ft(x

∗
t )) + ft(x

∗
t )− ft+1(x

∗
t+1)

where C = 1− βf r̃
2

4αD2 , r̃ = min

{
r,

√
2αD2√
βfM

}
, and M = maxt∈[T ],x∈K{2|ft(x)|}.

Lemma 5 improves Lemma 4 by replacing the variable Ct with a constant C. Moreover, we derive
the following theorem.

Theorem 4 Under Assumptions 1, 2, 3, and 5, Algorithm 1 ensures

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤

4α(M + VT )D
2

βf r̃2

where M = maxt∈[T ],x∈K{2|ft(x)|}, r̃ = min

{
r,

√
2αD2√
βfM

}
, and VT =

∑T
t=2maxx∈K |ft(x) −

ft−1(x)|.

Remark. Theorem 4 implies that Algorithm 1 can achieve an O(VT + 1) dynamic regret bound
over convex sets by further exploiting the strong convexity of functions and the special location of
minimizers. This bound is better than the O(T 1/3(VT + 1)2/3) bound given by Theorem 3, which
implies that the special location of minimizers is more useful for OFW than the strong convexity of
sets.

3.3. Online Frank-Wolfe with Multiple Updates

Furthermore, we note that under the same assumptions as in our Theorem 4, previous studies (Zhao
and Zhang, 2021) have achieved an O(min{P ∗

T , S
∗
T , VT }+1) dynamic regret bound, which is tighter

than the O(VT + 1) bound achieved by Algorithm 1. To fill this gap, we strengthen Algorithm 1 by
performing a small number of FW iterations per round. Intuitively, more FW iterations will result in
smaller ft+1(xt+1)−ft+1(x

∗
t+1), and thus reduce the dynamic regret. Specifically, the detailed pro-

cedures are outlined in Algorithm 2, which is named as online Frank-Wolfe with multiple updates
and enjoys the following theoretical guarantee.

9
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Algorithm 2 Online Frank-Wolfe with Multiple Updates
1: Input: the iteration number K per round
2: Initialization: x1 ∈ K
3: for t = 1, · · · , T do
4: z0t+1 = xt

5: for i = 0, · · · ,K − 1 do
6: Compute vi

t ∈ argminx∈K⟨∇ft(z
i
t+1),x⟩

7: Compute σi
t = argminσ∈[0,1] σ⟨∇ft(z

i
t+1),v

i
t − zit+1⟩+ ασ2

2 ∥zit+1 − vi
t∥22

8: Update zi+1
t+1 = (1− σi

t)z
i
t+1 + σi

tv
i
t

9: end for
10: xt+1 = zKt+1

11: end for

Theorem 5 Under Assumptions 1, 2, 3, and 5, by setting K =
⌈
ln(βf/4α)

lnC

⌉
where C = 1− βf r̃

2

4αD2 ,

r̃ = min

{
r,

√
2αD2√
βfM

}
, and M = maxt∈[T ],x∈K{2|ft(x)|}, Algorithm 2 ensures

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤min

{
4α(M + VT )

4α− βf
, 2GD + 2GP ∗

T , αD
2 + 2αS∗

T

}
where G = maxt∈[T ],x∈K ∥∇ft(xt)∥2, VT =

∑T
t=2maxx∈K |ft(x)− ft−1(x)|, P ∗

T =
∑T

t=2 ∥x∗
t −

x∗
t−1∥2, and S∗

T =
∑T

t=2 ∥x∗
t − x∗

t−1∥22.

Remark. From Theorem 5, for smooth and strongly convex functions with minimizers in the inte-
rior of the set, our Algorithm 2 can also achieve the O(min{P ∗

T , S
∗
T , VT }+1) dynamic regret bound

by using a constant number of FW iterations per round, which strengthens the O(VT + 1) bound
achieved by only using one FW iteration per round.

4. Theoretical Analysis

In this section, we only prove Lemma 3, Theorem 2, and Theorem 4. The omitted proofs are
provided in the appendix. Compared with the existing analysis of OFW (Kalhan et al., 2021), the
main novelty of our analysis is based on an appropriate way to incorporate the convergence property
of one FW iteration (Garber and Hazan, 2015).

4.1. Proof of Lemma 3

We first decompose ft+1(xt+1)− ft+1(x
∗
t+1) as follows

ft+1(xt+1)− ft+1(x
∗
t+1) =ft+1(xt+1)− ft(xt+1) + ft(xt+1)− ft(x

∗
t ) + ft(x

∗
t )− ft+1(x

∗
t+1)

≤max
x∈K

|ft+1(x)− ft(x)|+ ft(xt+1)− ft(x
∗
t ) + ft(x

∗
t )− ft+1(x

∗
t+1).

(9)

Then, we only need to analyze ft(xt+1)−ft(x
∗
t ). Moreover, because xt+1 is generated by applying

one FW iteration on ft(xt), it is natural to bound ft(xt+1)− ft(x
∗
t ) by exploiting the convergence

property of one FW iteration.

10
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Specifically, by using the smoothness of ft(x), we have

ft(xt+1)− ft(x
∗
t ) ≤ft(xt)− ft(x

∗
t ) + ⟨∇ft(xt),xt+1 − xt⟩+

α

2
∥xt+1 − xt∥22.

Moreover, according to Algorithm 1, we have

xt+1 − xt = σt(vt − xt).

Combining the above two equations, we have

ft(xt+1)− ft(x
∗
t ) ≤ft(xt)− ft(x

∗
t ) + σt⟨∇ft(xt),vt − xt⟩+

ασ2
t

2
∥vt − xt∥22

(7)

≤ft(xt)− ft(x
∗
t ) + σ∗⟨∇ft(xt),vt − xt⟩+

ασ2
∗

2
∥vt − xt∥22

(10)

for all possible σ∗ ∈ [0, 1].
Because of vt ∈ argminx∈K⟨∇ft(xt),x⟩ in Algorithm 1, we also have

⟨∇ft(xt),vt − xt⟩ ≤⟨∇ft(xt),x
∗
t − xt⟩

≤ft(x
∗
t )− ft(xt)

(11)

where the last inequality is due to the convexity of ft(x).
Then, combining (10) with (11), we have

ft(xt+1)− ft(x
∗
t ) ≤(1− σ∗)(ft(xt)− ft(x

∗
t )) +

ασ2
∗

2
∥vt − xt∥22

≤(1− σ∗)(ft(xt)− ft(x
∗
t )) +

ασ2
∗D

2

2

(12)

where the last inequality is due to Assumption 2.
Finally, we complete this proof by substituting (12) into (9).

4.2. Proof of Theorem 2

Let RD
T =

∑T
t=1 ft(xt)−

∑T
t=1 ft(x

∗
t ). We first have

RD
T =

T∑
t=2

ft(xt)−
T∑
t=2

ft(x
∗
t ) + f1(x1)− f1(x

∗
1) (13)

By using Lemma 3, for any σ∗ ∈ [0, 1], we have

RD
T ≤f1(x1)− f1(x

∗
1) +

T∑
t=2

max
x∈K

|ft(x)− ft−1(x)|+
T∑
t=2

(1− σ∗)(ft−1(xt−1)− ft−1(x
∗
t−1))

+
T∑
t=2

(
ft−1(x

∗
t−1)− ft(x

∗
t ) +

ασ2
∗D

2

2

)
=f1(x1)− f1(x

∗
1) + VT − (1− σ∗)(fT (xT )− fT (x

∗
T )) + (1− σ∗)R

D
T

+ f1(x
∗
1)− fT (x

∗
T ) +

α(T − 1)σ2
∗D

2

2

≤f1(x1)− fT (x
∗
T ) + VT +

α(T − 1)σ2
∗D

2

2
+ (1− σ∗)R

D
T

11
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where the last inequality is due to fT (xT )− fT (x
∗
T ) ≥ 0 and σ∗ ∈ [0, 1].

Then, we have

σ∗R
D
T ≤f1(x1)− fT (x

∗
T ) + VT +

α(T − 1)σ2
∗D

2

2

≤M + VT +
α(T − 1)σ2

∗D
2

2

where the last inequality is due to the definition of M .

By dividing both sides of the above inequality with σ∗ and setting σ∗ =
√

VT+M
MT , we have

RD
T ≤M + VT

σ∗
+

α(T − 1)σ∗D
2

2

≤
√
MT (VT +M) +

αD2

2

√
(VT +M)T

M
.

4.3. Proof of Theorem 4

Let RD
T =

∑T
t=1 ft(xt)−

∑T
t=1 ft(x

∗
t ). Combining (13) with Lemma 5, we have

RD
T ≤f1(x1)− f1(x

∗
1) +

T∑
t=2

max
x∈K

|ft(x)− ft−1(x)|+
T∑
t=2

C(ft−1(xt−1)− ft−1(x
∗
t−1))

+
T∑
t=2

(
ft−1(x

∗
t−1)− ft(x

∗
t )
)

=f1(x1)− f1(x
∗
1) + VT − C(fT (xT )− fT (x

∗
T )) + CRD

T + f1(x
∗
1)− fT (x

∗
T )

≤f1(x1)− fT (x
∗
T ) + VT + CRD

T

where the last inequality is due to fT (xT )− fT (x
∗
T ) ≥ 0 and C ≥ 0.

From the above inequality, it is easy to verify that

RD
T ≤

f1(x1)− fT (x
∗
T ) + VT

1− C
=

4αD2(f1(x1)− fT (x
∗
T ) + VT )

βf r̃2
≤ 4αD2(M + VT )

βf r̃2

where the equality is due to the definition of C and the last inequality is due to the definition of M .

5. Conclusion and Future Work

In this paper, we first improve the dynamic regret bound of the OFW algorithm for smooth functions
from O(

√
T (VT +

√
DT + 1)) to O(

√
T (VT + 1)). Second, if functions are smooth and strongly

convex, we establish a tighter bound of O(T 1/3(VT + 1)2/3) for OFW over strongly convex sets.
Finally, for smooth and strongly convex functions with minimizers in the interior of the constraint
set, we show that the dynamic regret of OFW reduces to O(VT +1), and can be further strengthened
to O(min{P ∗

T , S
∗
T , VT }+ 1) by utilizing a constant number of FW iterations per round.

Note that all our results of OFW require the smoothness of functions. A natural open problem is
whether our results can be extended into the non-smooth case. From our current analysis, the con-
vergence of FW is critical for the dynamic regret of OFW. However, for non-smooth functions, FW

12
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is not guaranteed to converge in general. Thus, it seems highly non-trivial to control the dynamic re-
gret of OFW or its variants in the non-smooth case. Moreover, the line search rule in (7) is only valid
for smooth functions. Although one may replace it with σt = argminσ∈[0,1] ft((1− σ)xt + σvt) in
the non-smooth case, the time complexity is unclear and could be much higher than that of (7). For
these reasons, we leave this problem as a future work.

Another potential limitation of this paper is that the dynamic regret defined in (2) could be too
pessimistic as it compares the player against the minimizer of each round. To address this limitation,
very recently, we have proposed an algorithm with an O(T 3/4(PT + 1)1/4) upper bound on the
general dynamic regret defined in (3) for convex functions, by utilizing O(log T ) FW iterations
per round (Wang et al., 2023). However, it is still unclear whether the upper bound can be further
improved without or with additional assumptions on functions and sets, which will be investigated
in the future.
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Appendix A. Proof of Theorem 1

Let RD
T =

∑T
t=1 ft(xt) −

∑T
t=1 ft(x

∗
t ). We first notice that (13) in the proof of Theorem 2 still

holds for OFW. Combining it with Lemma 2, we have

RD
T ≤f1(x1)− f1(x

∗
1) +

T∑
t=2

max
x∈K

|ft(x)− ft−1(x)|+
T∑
t=2

(1− σ)(ft−1(xt−1)− ft−1(x
∗
t−1))

+
T∑
t=2

(
ft−1(x

∗
t−1)− ft(x

∗
t ) +

ασ2D2

2

)
=f1(x1)− fT (x

∗
T ) + VT − (1− σ)(fT (xT )− fT (x

∗
T )) + (1− σ)RD

T +
α(T − 1)σ2D2

2

≤f1(x1)− fT (x
∗
T ) + VT +

α(T − 1)σ2D2

2
+ (1− σ)RD

T

where the last inequality is due to fT (xT )− fT (x
∗
T ) ≥ 0 and σ ∈ [0, 1].

From the above inequality, it is easy to verify that

σRD
T ≤f1(x1)− fT (x

∗
T ) + VT +

α(T − 1)σ2D2

2
.

Finally, we complete this proof by dividing both sides of the above inequality with σ.

Appendix B. Proof of Theorem 3

Combining (13) with Lemma 4, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )

≤f1(x1)− f1(x
∗
1) +

T∑
t=2

max
x∈K

|ft(x)− ft−1(x)|+
T∑
t=2

Ct−1(ft−1(xt−1)− ft−1(x
∗
t−1))

+

T∑
t=2

(
ft−1(x

∗
t−1)− ft(x

∗
t )
)

=f1(x1)− fT (x
∗
T ) + VT +

T−1∑
t=1

Ct(ft(xt)− ft(x
∗
t ))

≤f1(x1)− fT (x
∗
T ) + VT +

T∑
t=1

Ct(ft(xt)− ft(x
∗
t ))

where the second inequality is due to fT (xT )− fT (x
∗
T ) ≥ 0 and CT ≥ 0.

Then, for brevity, we define

ST =

{
t ∈ [T ]

∣∣∣∣12 ≤ 1− βK∥∇ft(xt)∥2
8α

}
. (14)
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From the above two equations, we have∑
t∈ST

βK∥∇ft(xt)∥2
8α

(ft(xt)− ft(x
∗
t )) +

∑
t∈[T ]\ST

1

2
(ft(xt)− ft(x

∗
t ))

≤f1(x1)− fT (x
∗
T ) + VT ≤ M + VT

(15)

where the last inequality is due to the definition of M .
To analyze the first term in the left side of (15), we further note that as proved by Garber and

Hazan (2015), if a function f(x) : K 7→ R is βf -strongly convex, we have

∥∇f(x)∥2 ≥
√

βf
2

√
f(x)− f(x∗) (16)

for any x ∈ K and x∗ = argminx∈K f(x).
Because of Assumption 3, we have

∑
t∈ST

(ft(xt)− ft(x
∗
t ))

3/2
(16)

≤
∑
t∈ST

√
2

βf
∥∇ft(xt)∥2(ft(xt)− ft(x

∗
t ))

(15)

≤ 8
√
2α√

βfβK
(M + VT ).

(17)

Finally, it is not hard to verify that

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )

(14)
=
∑
t∈ST

(ft(xt)− ft(x
∗
t )) +

∑
t∈[T ]\ST

(ft(xt)− ft(x
∗
t ))

(15)

≤
∑
t∈ST

(ft(xt)− ft(x
∗
t )) + 2(M + VT )

≤

∑
t∈ST

(ft(xt)− ft(x
∗
t ))

3/2

2/3

T 1/3 + 2(M + VT )

(17)

≤

(
8
√
2α√

βfβK
(M + VT )

)2/3

T 1/3 + 2(M + VT )

where the second inequality is due to Hölder’s inequality and |ST | ≤ T .

Appendix C. Proof of Theorem 5

We introduce the following lemma

Lemma 6 Under Assumptions 1, 2, 3, and 5, for any t ∈ [T ], Algorithm 2 ensures

ft(xt+1)− ft(x
∗
t ) ≤ CK(ft(xt)− ft(x

∗
t ))

where C = 1− βf r̃
2

4αD2 and r̃ = min

{
r,

√
2αD2√
βfM

}
.
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Combining (9) with Lemma 6, for t = 1, · · · , T − 1, we have

ft+1(xt+1)− ft+1(x
∗
t+1) ≤max

x∈K
|ft+1(x)− ft(x)|+ CK(ft(xt)− ft(x

∗
t ))

+ ft(x
∗
t )− ft+1(x

∗
t+1).

Then, similar to the proof of Theorem 4, by substituting the above inequality into (13), it is not hard
to verify that

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤f1(x1)− fT (x

∗
T ) + VT + CK

(
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )

)

which implies that

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤

f1(x1)− fT (x
∗
T ) + VT

1− CK
≤ 4α(M + VT )

4α− βf
(18)

where the last inequality is due to the definition of M and

CK ≤ C
ln(βf /4α)

lnC =
βf
4α

. (19)

To further derive dynamic regret bounds depending on P ∗
T and S∗

T , we introduce nice properties of
strongly convex functions and smooth functions. First, as proved by Garber and Hazan (2015), if a
function f(x) is βf -strongly convex over K, we have

f(x)− f(x∗) ≥
βf
2
∥x− x∗∥22 (20)

for any x ∈ K and x∗ = argminx∈K f(x).
Second, from Assumption 1, ft(x) is α-smooth over K, which satisfies that

ft(x)− ft(x
∗
t ) ≤⟨∇ft(x

∗
t ),x− x∗

t ⟩+
α

2
∥x∗

t − x∥22

=
α

2
∥x∗

t − x∥22
(21)

for any x ∈ K, where the last equality is due to the fact that Assumption 5 also implies ∇ft(x
∗
t ) = 0.

By using these two properties, for any t ∈ [T ], we have

∥xt+1 − x∗
t ∥22

(20)

≤ 2

βf
(ft(xt+1)− ft(x

∗
t )) ≤

2CK

βf
(ft(xt)− ft(x

∗
t ))

(21)

≤ αCK

βf
∥xt − x∗

t ∥22
(19)

≤ 1

4
∥xt − x∗

t ∥22

(22)

where the second inequality is due to Lemma 6.
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Then, because of Assumption 2, it is not hard to verify that

T∑
t=1

∥xt − x∗
t ∥2 ≤∥x1 − x∗

1∥2 +
T∑
t=2

∥xt − x∗
t ∥2

≤D +
T∑
t=2

∥xt − x∗
t−1∥2 +

T∑
t=2

∥x∗
t − x∗

t−1∥2

(22)

≤ D +
1

2

T∑
t=2

∥xt−1 − x∗
t−1∥2 + P ∗

T

(23)

which implies that

T∑
t=1

∥xt − x∗
t ∥2 ≤2D + 2P ∗

T . (24)

Now, we achieve the dynamic regret bound depending on P ∗
T as follows

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤

T∑
t=1

⟨∇ft(xt),xt − x∗
t ⟩ ≤

T∑
t=1

G∥x∗
t − x∗

t ∥2

(24)

≤ 2GD + 2GP ∗
T

(25)

where the second inequality is due to the definition of G.
Furthermore, similar to (23), we also have

T∑
t=1

∥xt − x∗
t ∥22 ≤∥x1 − x∗

1∥22 +
T∑
t=2

∥xt − x∗
t ∥22

≤D2 + 2
T∑
t=2

∥xt − x∗
t−1∥22 + 2

T∑
t=2

∥x∗
t − x∗

t−1∥22

(22)

≤ D2 +
1

2

T∑
t=2

∥xt−1 − x∗
t−1∥22 + 2S∗

T

which implies that

T∑
t=1

∥xt − x∗
t ∥22 ≤2D2 + 4S∗

T . (26)

Then, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )

(21)

≤ α

2

T∑
t=1

∥xt − x∗
t ∥22

(26)

≤ αD2 + 2αS∗
T . (27)

Finally, by combining (18), (25), and (27), we complete this proof.
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Appendix D. Proof of Lemma 2

We first note that (9) and (11) in the proof of Lemma 3 still hold for OFW. So, we only need to
analyze ft(xt+1)− ft(x

∗
t ). According to (4), we have

xt+1 − xt = σ(vt − xt).

Then, combining this equality with the smoothness of ft(x), we have

ft(xt+1)− ft(x
∗
t ) ≤ft(xt)− ft(x

∗
t ) + σ⟨∇ft(xt),vt − xt⟩+

ασ2

2
∥vt − xt∥22

≤ft(xt)− ft(x
∗
t ) + σ⟨∇ft(xt),vt − xt⟩+

ασ2D2

2
(11)

≤ (1− σ)(ft(xt)− ft(x
∗
t )) +

ασ2D2

2

(28)

where the second inequality is due to Assumption 2.
Finally, we complete this proof by substituting (28) into (9).

Appendix E. Proof of Lemma 4

Following the proof of Lemma 3, we still utilize (9) and (10). The main difference is to establish a
tighter bound for ft(xt+1)− ft(x

∗
t ) by further using Assumption 4. Specifically, we first define

ct =
1

2
(xt + vt),wt ∈ argmin

∥w∥2≤1
⟨∇ft(xt),w⟩, and v′

t = ct +
βK
8

∥xt − vt∥22wt.

According to Assumption 4, it is easy to verify that

v′
t ∈ K.

Moreover, because of vt ∈ argminx∈K⟨∇ft(xt),x⟩ in Algorithm 1, we have

⟨∇ft(xt),vt − xt⟩ ≤⟨∇ft(xt),v
′
t − xt⟩

=
1

2
⟨∇ft(xt),vt − xt⟩+

βK∥xt − vt∥22
8

⟨∇ft(xt),wt⟩
(11)

≤ − 1

2
(ft(xt)− ft(x

∗
t )) +

βK∥xt − vt∥22
8

⟨∇ft(xt),wt⟩

=− 1

2
(ft(xt)− ft(x

∗
t ))−

βK∥xt − vt∥22
8

∥∇ft(xt)∥2

(29)

where the last equality is due to

⟨∇ft(xt),wt⟩ = min
∥w∥2≤1

⟨∇ft(xt),w⟩ = −∥∇ft(xt)∥2. (30)

Substituting (29) into (10), for all possible σ∗ ∈ [0, 1], we have

ft(xt+1)− ft(x
∗
t )

≤
(
1− σ∗

2

)
(ft(xt)− ft(x

∗
t )) +

ασ2
∗

2
∥vt − xt∥22 −

σ∗βK∥xt − vt∥22
8

∥∇ft(xt)∥2

=
(
1− σ∗

2

)
(ft(xt)− ft(x

∗
t )) +

(
ασ2

∗ −
σ∗βK∥∇ft(xt)∥2

4

)
∥xt − vt∥22

2
.

(31)
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Then, if α ≤ βK∥∇ft(xt)∥2
4 , by combining σ∗ = 1 with (31), we have

ft(xt+1)− ft(x
∗
t ) ≤

1

2
(ft(xt)− ft(x

∗
t )). (32)

Otherwise, by combining σ∗ =
βK∥∇ft(xt)∥2

4α with (31), we have

ft(xt+1)− ft(x
∗
t ) ≤

(
1− βK∥∇ft(xt)∥2

8α

)
(ft(xt)− ft(x

∗
t )). (33)

Combining (32) and (33) with the definition of Ct, we have

ft(xt+1)− ft(x
∗
t ) ≤ Ct(ft(xt)− ft(x

∗
t )). (34)

Finally, we complete this proof by substituting (34) into (9).

Appendix F. Proof of Lemma 5

Note that Algorithm 2 with K = 1 reduces to Algorithm 1. Therefore, Lemma 6 with K = 1 also
holds for Algorithm 1, which implies that

ft(xt+1)− ft(x
∗
t ) ≤ C(ft(xt)− ft(x

∗
t )).

By substituting the above inequality into (9), we complete this proof.

Appendix G. Proof of Lemma 6

This lemma can be derived from the convergence rate of FW under Assumptions 1, 2, 3, and 5 (see
Section 4.2 of Garber and Hazan (2015) for the details). For the sake of completeness, we include
the detailed proof here.

We first define
wi

t ∈ argmin
∥w∥2≤1

⟨∇ft(z
i
t+1),w⟩ and ṽi

t = x∗
t + r̃wi

t

where ṽi
t also belongs to K since x∗

t lies in the interior of K and r̃ ≤ r.
Then, because of vi

t ∈ argminx∈K⟨∇ft(z
i
t+1),x⟩ in Algorithm 2, we have

⟨∇ft(z
i
t+1),v

i
t − zit+1⟩ ≤⟨∇ft(z

i
t+1), ṽ

i
t − zit+1⟩

=⟨∇ft(z
i
t+1),x

∗
t − zit+1⟩+ r̃⟨∇ft(z

i
t+1),w

i
t⟩

≤ − r̃∥∇ft(z
i
t+1)∥2

(35)

where the last inequality is due to

⟨∇ft(z
i
t+1),w

i
t⟩ = min

∥w∥2≤1
⟨∇ft(z

i
t+1),w⟩ = −∥∇ft(z

i
t+1)∥2

and
⟨∇ft(z

i
t+1),x

∗
t − zit+1⟩ ≤ ft(x

∗
t )− ft(z

i
t+1) ≤ 0.
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Combining the smoothness of ft(x) with zi+1
t+1 − zit+1 = σi

t(v
i
t − zit+1) in Algorithm 2, for all

possible σ∗ ∈ [0, 1], we have

ft(z
i+1
t+1)− ft(x

∗
t ) ≤ft(z

i
t+1)− ft(x

∗
t ) + σi

t⟨∇ft(z
i
t+1),v

i
t − zit+1⟩+

α(σi
t)

2

2
∥vi

t − zit+1∥22

≤ft(z
i
t+1)− ft(x

∗
t ) + σ∗⟨∇ft(z

i
t+1),v

i
t − zit+1⟩+

ασ2
∗

2
∥vi

t − zit+1∥22

≤ft(z
i
t+1)− ft(x

∗
t ) + σ∗⟨∇ft(z

i
t+1),v

i
t − zit+1⟩+

ασ2
∗D

2

2
(35)

≤ ft(z
i
t+1)− ft(x

∗
t )− σ∗r̃∥∇ft(z

i
t+1)∥2 +

ασ2
∗D

2

2

(16)

≤ ft(z
i
t+1)− ft(x

∗
t )− σ∗r̃

√
βf (ft(z

i
t+1)− ft(x∗

t ))

2
+

ασ2
∗D

2

2

(36)

where the second inequality is due to the line search rule in Algorithm 2 and the third inequality is
due to Assumption 2.

Moreover, we set σ∗ as

0 ≤ σ∗ =
r̃
√
βf (ft(z

i
t+1)− ft(x∗

t ))
√
2αD2

≤
r̃
√
βfM√
2αD2

≤1

where the last inequality is due to the definition of r̃.
Combining this σ∗ with (36), we have

ft(z
i+1
t+1)− ft(x

∗
t ) ≤ft(z

i
t+1)− ft(x

∗
t )−

r̃2βf (ft(z
i
t+1)− ft(x

∗
t ))

4αD2
= C(ft(z

i
t+1)− ft(x

∗
t ))

where the last equality is due to the definition of C.
Finally, from the above inequality, it is easy to verify that

ft(xt+1)− ft(x
∗
t ) =ft(z

K
t+1)− ft(x

∗
t ) ≤ CK(ft(z

0
t+1)− ft(x

∗
t ))

=CK(ft(xt)− ft(x
∗
t )).

Appendix H. Dynamic Regret of OGD for Smooth Functions

As discussed in Section 2, our O(
√
T (VT + 1)) dynamic regret for smooth functions is not achieved

by previous studies even using projection-based algorithms. Here, we notice that OGD (Zinkevich,
2003) actually also enjoys this bound. Specifically, the detailed procedures of OGD are summarized
in Algorithm 3, where the step size is simply set as 1/α by following the common choice in offline
optimization (Bubeck, 2015). Then, we establish an O(

√
T (VT + 1)) dynamic regret bound for

Algorithm 3 in the following theorem.

Theorem 6 Under Assumptions 1 and 2, Algorithm 3 ensures

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ) ≤ M + VT +

√
2αD2(T − 1)(M + VT )

where VT =
∑T

t=2maxx∈K |ft(x)− ft−1(x)| and M = maxt∈[T ],x∈K{2|ft(x)|}.
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Algorithm 3 Online Gradient Descent
1: Initialization: x1 ∈ K
2: for t = 1, · · · , T do
3: Compute x′

t+1 = xt − 1
α∇ft(xt)

4: Compute xt+1 = argminx∈K ∥x− x′
t+1∥22

5: end for

Proof We start this proof by introducing the following lemma.

Lemma 7 (Lemma 3.6 of Bubeck (2015)) Let f(·) : K 7→ R be a convex and α-smooth function,
and x′ = argminx∈K

∥∥x− 1
α∇f(x)

∥∥2
2
. Then, for any x ∈ K,y ∈ K, we have

f(x′)− f(y) ≤ α⟨x− x′,x− y⟩ − α

2
∥x− x′∥22.

From Lemma 7, it is easy to verify that

ft(xt+1)− ft(xt) ≤ −α

2
∥xt+1 − xt∥22 (37)

and

ft(xt+1)− ft(x
∗
t ) ≤α∥xt − xt+1∥2∥xt − x∗

t ∥2. (38)

Then, combining with Assumption 2, we have

ft(xt+1)− ft(x
∗
t )

(37)

≤ ft(xt)− ft(x
∗
t )−

α

2
∥xt+1 − xt∥22

(38)

≤ ft(xt)− ft(x
∗
t )−

(ft(xt+1)− ft(x
∗
t ))

2

2α∥xt − x∗
t ∥22

≤ft(xt)− ft(x
∗
t )−

(ft(xt+1)− ft(x
∗
t ))

2

2αD2
.

(39)

Moreover, we notice that

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )

=f1(x1)− f1(x
∗
1) +

T−1∑
t=1

(
ft+1(xt+1)− ft+1(x

∗
t+1)

)
(9)

≤f1(x1)− fT (x
∗
T ) + VT +

T−1∑
t=1

(ft(xt+1)− ft(x
∗
t ))

(39)

≤ f1(x1)− fT (x
∗
T ) + VT +

T−1∑
t=1

(
ft(xt)− ft(x

∗
t )−

(ft(xt+1)− ft(x
∗
t ))

2

2αD2

)
.

(40)

From the above inequality, we first have

T−1∑
t=1

(ft(xt+1)− ft(x
∗
t ))

2 ≤ 2αD2(f1(x1)− fT (xT ) + VT ) ≤ 2αD2(M + VT ). (41)

23



WAN ZHANG SONG

Then, we further have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t )

(40)

≤ f1(x1)− fT (x
∗
T ) + VT +

T−1∑
t=1

(ft(xt+1)− ft(x
∗
t ))

≤f1(x1)− fT (x
∗
T ) + VT +

√√√√(T − 1)
T−1∑
t=1

(ft(xt+1)− ft(x∗
t ))

2

(41)

≤ f1(x1)− fT (x
∗
T ) + VT +

√
2αD2(T − 1)(M + VT )

≤M + VT +
√

2αD2(T − 1)(M + VT )

(42)

where the second inequality is due to Cauchy–Schwarz inequality.
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