
Proceedings of Machine Learning Research vol 195:1–56, 2023 36th Annual Conference on Learning Theory

Breaking the Curse of Multiagency: Provably Efficient Decentralized
Multi-Agent RL with Function Approximation

Yuanhao Wang⋆ YUANHAO@PRINCETON.EDU
Qinghua Liu⋆ QINGHUAL@PRINCETON.EDU
Princeton University

Yu Bai† YU.BAI@SALESFORCE.COM
Salesforce Research

Chi Jin† CHIJ@PRINCETON.EDU

Princeton University

Editors: Gergely Neu and Lorenzo Rosasco

Abstract

A unique challenge in Multi-Agent Reinforcement Learning (MARL) is the curse of multiagency,
where the description length of the game as well as the complexity of many existing learning
algorithms scale exponentially with the number of agents. While recent works successfully address
this challenge under the model of tabular Markov Games, their mechanisms critically rely on the
number of states being finite and small, and do not extend to practical scenarios with enormous state
spaces where function approximation must be used to approximate value functions or policies.

This paper presents the first line of MARL algorithms that provably resolve the curse of multia-
gency under function approximation. We design a new decentralized algorithm—V-Learning with
Policy Replay, which gives the first polynomial sample complexity results for learning approximate
Coarse Correlated Equilibria (CCEs) of Markov Games under decentralized linear function ap-
proximation. Our algorithm always outputs Markov CCEs, and achieves an optimal rate of Õ(ε−2)
for finding ε-optimal solutions. Also, when restricted to the tabular case, our result improves over
the current best decentralized result Õ(ε−3) for finding Markov CCEs. We further present an
alternative algorithm—Decentralized Optimistic Policy Mirror Descent, which finds policy-class-
restricted CCEs using a polynomial number of samples. In exchange for learning a weaker version
of CCEs, this algorithm applies to a wider range of problems under generic function approximation,
such as linear quadratic games and MARL problems with low “marginal” Eluder dimension.

1. Introduction

Multi-agent reinforcement learning (MARL) concerns problems in which agents learn to maximize
their own utility via interacting with unknown environments as well as other agents, who may
be strategic and adaptive. Modern MARL systems have achieved significant success on a wide
range of challenging tasks, including the game of Go (Silver et al., 2016, 2017), Poker (Brown and
Sandholm, 2018, 2019), strategic games (Vinyals et al., 2019; OpenAI, 2018; Bakhtin et al., 2022;
Wurman et al., 2022), decentralized controls (Brambilla et al., 2013), autonomous driving (Shalev-
Shwartz et al., 2016), as well as complex social scenarios such as hide-and-seek (Baker et al., 2020).

.⋆ and † denote equal contribution.

© 2023 Y. Wang, Q. Liu, Y. Bai & C. Jin.

WANG LIU BAI JIN

Compared to the single-agent RL with a rich literature of theoretical understandings, MARL brings
a set of new game-theoretic challenges, many of which remain open.

One unique challenge in MARL is the curse of multiagency, where the description length of the
game (in particular, the size of the joint action space) scales exponentially with the number of
agents. As a result, any learning algorithm that attempts to model the entire game (such as the
transition probabilities or joint Q-values) suffers from exponentially large sample or computational
complexities (Bai et al., 2020; Liu et al., 2021). These algorithms are prohibitive to run in practice
even for fairly small multi-agent applications. To handle this challenge, practitioners promote the
design of decentralized algorithms (see, e.g., Zhang et al. (2021a) for a review), where agents only
aim to learn the relevant pieces of the games from their own local perspectives, such as individual
policies, V-values or marginal Q-values (cf. definitions in Section 2). Decentralized algorithms
further allow each agent to learn almost independently, with minimal or even no communication
between the agents, which gives versatility and advantages to their implementation.

The curse of multiagency in MARL has been provably addressed by a recent line of theoretical
works (Song et al., 2021; Jin et al., 2021b; Mao and Başar, 2022) using the V-Learning algo-
rithm (Bai et al., 2020). However, their results only work for the basic setting of tabular Markov
games (Shapley, 1953) where the numbers of states and actions are finite and small. Further, their
mechanisms rely critically on the tabular setting that permits the synergy of (1) per-state no-regret
algorithms, (2) incremental value updates, and (3) optimism; this prohibits a direct extension to
practical scenarios with large state spaces. This is in contrast to modern MARL practice which
commonly engages problems with an enormous number of states, where function approximation—
typically in the form of deep neural networks—must be used to approximate either value functions
or policies (Sutton and Barto, 2018). This naturally raises the following open question:

Can we design decentralized MARL algorithms that breaks the curse of multiagency
even with function approximation?

In this paper, we answer the above question affirmatively by designing algorithms that finds approx-
imate Coarse Correlated Equilibria (CCEs) in the presence of general function approximation, with
polynomial sample complexity in problem parameters (including the number of agents). Concretely,

• We design a new decentralized meta-algorithm for MARL—V-Learning with Policy Replay
(VLPR), and its accelerated version AVLPR (Section 3.1). Both algorithms integrate the stan-
dard V-Learning algorithm (Bai et al., 2020; Jin et al., 2021b) with new policy replay mecha-
nisms to output Markov CCEs and facilitate learning under function approximation. VLPR is
fully decentralized (assuming shared randomness among players), and AVLPR requires minimal
communication (See Section 3.2). Both run in polynomial time given efficient subroutines.

• Our meta-algorithms VLPR and AVLPR calls for abstract subroutines to (1) estimate V-values
for each agent (instead of joint Q-values); (2) compute stage-wise CCE policies by no-regret
algorithms. We prove that under mild conditions on the subroutines, both meta-algorithms effi-
ciently find approximate CCEs within a polynomial number of samples (Section 3). These mild
conditions hold in both linear and tabular settings (Section 4).

• We instantiate AVLPR in the setting of decentralized linear function approximation, which gives
the first decentralized MARL algorithm that provably breaks the curse of multiagency in this set-

2

ting (Section 4.1). Our algorithm achieves an optimal rate of Õ(ε−2) for finding ε-optimal solu-
tions. For tabular Markov Games, the current best decentralized algorithm for finding Markov
CCEs requires Õ(ε−3) samples (Daskalakis et al., 2022). AVLPR improves over this result on
the dependency of 1/ε, the number of states, as well as the horizon (Section 4.2).

• We provide an alternative algorithm Decentralized Optimistic Policy Mirror Descent (DOPMD),
which finds policy-class-restricted CCEs—a weaker notion of CCEs than standard definition—
with sample complexity breaking the curse of multiagency (Section 5). In exchange for the
weaker CCE notion, DOPMD applies to a wider range of problems with general function
approximation that has bounded Bellman-Eluder dimension. These problems include linear
quadratic games, and games with low “marginal” Eluder dimension or Bellman rank.

1.1. Related work

In this section, we review previous theoretical works on MARL under the model of Markov Games
(Shapley, 1953; Littman, 1994). We acknowledge the abundant recent work on empirical MARL or
under alternative mathematical models, which are beyond the scope of this paper.

Centralized MARL Sample-efficient learning of Markov Games has been studied extensively in
a recent surge of work (Brafman and Tennenholtz, 2002; Wei et al., 2017; Jia et al., 2019; Sidford
et al., 2020; Bai and Jin, 2020; Xie et al., 2020; Bai et al., 2020; Zhang et al., 2020; Tian et al., 2021;
Liu et al., 2021; Bai et al., 2021; Huang et al., 2021; Jin et al., 2022; Chen et al., 2022b). Most of
those approaches are centralized in nature, in that they estimate quantities (such as transition models
or joint Q functions) whose number of parameters scales exponentially with respect to the number
of players, and thus suffer from the curse of multiagency in their sample complexities.

Decentralized MARL Decentralized approaches to break the curse of multiagency in Markov
Games are pioneered by the V-Learning algorithm, which is initially proposed in the zero-sum set-
ting by Bai et al. (2020), and subsequently extended to the general-sum setting (Song et al., 2021;
Jin et al., 2021b; Mao and Başar, 2022; Mao et al., 2022; Cui and Du, 2022; Zhang et al., 2022),
in which it can learn an approximate Correlated Equilibria (CE) or CCE of the game with sample
complexity that scales polynomially with respect to the number of agents. Later, the SPoCMAR
algorithm by Daskalakis et al. (2022) further learns approximate CCEs that are guaranteed to be
Markov1, with a slightly worse polynomial sample complexity. Both algorithms only work for tab-
ular Markov Games and do not handle function approximation. Our algorithms VLPR and AVLPR
can be seen as extensions of the V-Learning algorithm to the function approximation setting and
can further output a Markov policy. Furthermore, the specialization of our algorithm to the tabular
setting achieves improved sample complexity over Daskalakis et al. (2022) for learning Markov
CCEs.

Decentralized algorithms for learning CE/CCEs have also been well-established in other games such
as Normal-Form Games (NFGs) (Stoltz, 2005; Cesa-Bianchi and Lugosi, 2006) and Extensive-Form
Games (EFGs) (Kozuno et al., 2021; Bai et al., 2022b,a; Song et al., 2022; Fiegel et al., 2022), by
letting each agent run a no-regret algorithm that works even against adversarial opponents. However,
this success does not extend to Markov Games due to the fundamental hardness of learning against
adversarial opponents in Markov Games: there is a worst-case exponential-in-horizon regret lower

1. By contrast, the policies learned by V-Learning are non-Markov, history-dependent policies in general.

3

WANG LIU BAI JIN

bound (Liu et al., 2022). Finally, decentralized algorithms have also been established in Markov
Potential Games (Zhang et al., 2021b; Leonardos et al., 2021; Song et al., 2021; Ding et al., 2022)—
a subclass of Markov Games—which however relies critically on its special potential structure.

MARL with function approximation A few recent works consider learning Markov Games with
linear (Xie et al., 2020; Chen et al., 2022b) and general (Jin et al., 2022; Huang et al., 2021; Zhan
et al., 2022; Xiong et al., 2022; Chen et al., 2022a; Ni et al., 2022) function approximation, by
adapting techniques from the single-agent setting (Jiang et al., 2017; Jin et al., 2020; Zhou et al.,
2021; Du et al., 2021; Jin et al., 2021a; Foster et al., 2021). All these works require centralized
function classes and suffer from the curse of multiagency when specializing to the tabular setting.
Our DOPMD algorithm differs from the related algorithms of Liu et al. (2022); Zhan et al. (2022)
where our new inner loop admits decentralized function classes, which could be applied in much
broader scenarios.

Technically, the policy replay mechanism used in our algorithms (in particular the one in AVLPR
via doubling tricks) is similar to that of Zanette and Wainwright (2022), which is used there for de-
signing a Q-Learning style algorithm for linear function approximation in the single-agent setting.
However, our approaches are otherwise quite different, in particular in the way of updating val-
ues, where they use Q-Learning style incremental updates, whereas our algorithms use stage-wise
learning with batch updates (similar in spirit to Value Iteration).

Comparison with independent work (Cui et al., 2023) Concurrent to this work, Cui et al. (2023)
also consider the problem of breaking the curse of multiagency in the context of Markov games un-
der linear function approximation, and in addition achieves the same improved sample complexity
for finding Markov CCE in the basic tabular setting. Here we highlight a few key differences be-
tween the two works in the linear setting besides the apparent differences in the algorithm design:
(1) In terms of assumptions, both works assume Bellman completeness with respect to certain policy
classes (see, e.g., Assumption 3). We point out that it is crucial to restrict the expressiveness of the
policy class, otherwise the game becomes “essentially tabular” (see Appendix H). We only require
completeness with respect to linear argmax policies, while Cui et al. (2023) require completeness
with respect to a policy class Πestimate that is implicitly defined by their algorithm and the no-regret
learning oracle being used, which generally consists of policies that are more complex than linear
argmax policies.2 (2) In terms of sample complexity, this paper achieves Õ(ε−2) rate which has
the optimal statistical dependency on error ε, while Cui et al. (2023) achieve a rate of Õ(ε−4). We
remark that Cui et al. (2023) have better dependency in the number of actions A, while our results
have better dependency in dimension d and horizonH . The differences inA, d,H dependency come
from the differences in both algorithmic techniques and assumptions (where the minimax-optimal
rates can be potentially different).

In addition to the above differences, Cui et al. (2023) further provide results for learning under
certain amount of model misspecification, learning approximate Correlated Equilibria (CEs), and
learning linear Markov Potential Games, all of which have not been considered in this paper. On the

2. We remark that due to the several key differences between two papers in algorithm design and underlying mechanism,
this statement about their Πestimate holds true regardless of choosing the full-information no-regret learning oracle in
their algorithm as either the Exponential Weights algorithm (the choice in Cui et al. (2023)) or the Expected Follow-
The-Perturbed-Leader algorithm (Hazan and Minasyan, 2020) (the choice in our paper). Please see Appendix H.1
for more details.

4

other hand, this paper presents results beyond the linear function approximation setting: both VLPR
and AVLPR are generic meta-algorithms that provide guarantees for any function class as long as
the required conditions for the subroutines are fulfilled. We further design a new algorithm for
general function approximation that learns policy-class-restricted CCEs under weaker conditions
(Section 5).

2. Preliminaries

Markov Games We consider episodic general-sum Markov Games with m players, which can
be described as a tuple MG(H,S, {Ai}i∈[m],P, {ri}i∈[m]). Here H is the horizon length, S is the
state space, Ai is the action space of the i-th player with |Ai| = Ai

3; we use a = (a1, . . . , am) ∈∏m
i=1Ai =: A to denote a joint action for all players, P = (Ph)h∈[H] are the transition probabilities,

where Ph(·|s,a) ∈ ∆(S) is the probability distribution of the next state at current state-action (s,a)
at step h; ri = (ri,h)h∈[H] are the reward functions for player i, where each each ri,h : S × A →
[0, 1] is a function that maps any state-action (s,a) to a deterministic4 reward. In each episode, the
game starts at a fixed initial state s1. At step h ∈ [H] and state sh, each player takes their own
action ai,h ∈ Ai, receives their own reward ri,h = ri,h(sh,ah) where ah = (a1,h, . . . , am,h), and
the game transits to the next state sh+1 ∼ Ph(·|sh,ah) in a Markov fashion.

A Markov policy for the i-th player is denoted by πi = {πi,h(·|s) ∈ ∆(Ai)}(s,h)∈S×[H], which
prescribes a distribution πi,h(·|s) ∈ ∆(Ai) over the i-th player’s actions at any (s, h). Here,
we use ∆(Ai) to denote the probability simplex over the action set Ai. A Markov joint policy
π = {πh(·|s) ∈ ∆(A)}(s,h)∈S×[H] is a joint policy over all players that prescribes a distribu-
tion over the joint actions, where the randomness of different players can be correlated in gen-
eral. A special case of Markov joint policy is product policy π = {πi}i∈[m] where each agent
plays πi independently. For any joint policy π, we define its V-value function and (joint) Q-
value function for any (i, h) ∈ [m] × [H] as V π

i,h(s) := Eπ[
∑H

h′=h ri,h′(sh′ ,ah′) | sh = s] and
Qπ

i,h(s,a) := Eπ[
∑H

h′=h ri,h′(sh′ ,ah′) | (sh,ah) = (s,a)] respectively. Additionally, with a slight
overload in notations, we define the marginal Q-function for player i ∈ [m] and any h ∈ [H] as

Qπ
i,h(s, ai) := Eπ

[∑H
h′=h ri,h′(sh′ ,ah′) | (sh, ai,h) = (s, ai)

]
,

which measures the Q-value of player i conditioned at a state and their own action, while marginal-
izing over the opponents’ actions according policy π. For notational simplicity, we define operator
Ph and Dπ as [PhV](s,a) := Es′∼Ph(·|s,a)[V (s′)] and Dπ[Q](s) := Ea∼π(·|s)[Q(s,a)]. We also
use π−i to denote the joint policy of all but the i-th player specified by π. For any Markov product
policy π = πi × π−i, the Bellman operator T π

i,h for player i at step h is a self-map over the i-th
player’s marginal Q-function space (S ×Ai → R), defined as

[T π
i,hf](s, ai) := Ea−i∼π−i,h(·|s),s′∼Ph(·|s,a),a′i∼πi,h+1(s′)[ri,h(s,a) + f(s′, a′i)].

Coarse Correlated Equilibrium Our goal is to find an approximate equilibrium of the Markov
Game, i.e., a joint policy such that each player’s own policy is near-optimal against their opponents

3. Our results in Section 3, 5 do not require Ai to be finite.
4. Our results can generalize directly to the case of stochastic rewards.

5

WANG LIU BAI JIN

Algorithm 1 V-Learning with Policy Replay (VLPR)
1: Initialize π1 to be the uniform policy: π1

i,h(·|s)← Unif(Ai) for all (i, s, h).
2: for iteration t = 1, . . . , T do
3: Set replay policy πt ← Unif({πτ}τ∈[t]) and V

t+1

i,H+1 ← 0.
4: for h = H, . . . , 1 do
5: Compute πt+1

h ← CCE-APPROXh(π
t, {V t+1

i,h+1}i∈[m], t).

6: Compute {V t+1

i,h }i∈[m] ← V-APPROXh(π
t, πt+1

h , {V t+1

i,h+1}i∈[m], t).
Output: πout sampled uniformly at random from {πt}t∈[T].

in a certain sense. In our multi-player general-sum setting, the standard notion of Nash Equilib-
rium is both computationally PPAD-hard (Daskalakis, 2013) and statistically intractable, requir-
ing exp(Ω(m)) samples (Rubinstein, 2017). We focus on learning Coarse Correlated Equilibrium
(CCE), a common relaxed notion of equilibrium for general-sum Markov Games (Liu et al., 2021),
which does not exhibit such hardness and can indeed be learned with polynomial time and samples
in the basic tabular setting (Song et al., 2021; Jin et al., 2021b; Mao and Başar, 2022).

For any ε > 0, we say that a joint policy π is an ε-approximate CCE of the game if

CCEGap(π) := maxi∈[m](max
π†
i
V

π†
i ,π−i

1,i (s1)− V π
1,i(s1)) ≤ ε,

Here, the maximizer π†i is also known as the best response. We denote V †,π−i

i,h := max
π†
i
V

π†
i ,π−i

i,h .

We consider the standard setting of PAC learning from bandit feedback, where the agents repeat-
edly interact with the underlying Markov Game for many episodes, and observe the trajectory
(s1,a1, r1, . . . , sH ,aH , rH) (where rh := (ri,h)i∈[m]) within each episode. The goal is to find
an ε-approximate CCE π̂ of the game within as few episodes of play as possible.

2.1. Decentralized MARL with function approximation

To allow decentralized MARL with large state spaces, this paper considers function approximation,
where each player i ∈ [m] has her own marginal Q-value function class Fi. Formally, we let
each player i ∈ [m] be equipped with finite5 function class Fi = Fi,1 × · · · × Fi,H , where each
fi,h ∈ Fi,h ⊂ (S ×Ai → R) models a marginal Q-function at step h ∈ [H].6

With suitable assumptions about Fi and the game (presented in the sequel), we are interested in
finding an approximate CCE with sample complexity avoiding the curse-of-multiagent (Jin et al.,
2021b; Song et al., 2021), i.e. scaling polynomially in maxi∈[m] log |Fi|, the number of players m,
as well as all other problem parameters.

3. Decentralized MARL via policy replay: meta-algorithms and guarantees

5. Our results extend directly to the case of infinite function classes via standard covering arguments.
6. While we focus on Q-type function approximation, our meta-algorithms can also extend to V-type function approxi-

mation, though the two types may encompass fairly different problem structures; see Appendix G for a discussion.

6

Algorithm 2 CCE-APPROXh(π, {V i,h+1}i∈[m],K)

Require: Exploration policy mapping Γexplore; subroutine NO-REGRET-ALG.
1: Execute π for K episodes to collect {Di

init}i∈[m]. Initialize Dk,i
sample ← {} for all (i, k) ∈ [m]× [K].

2: for k = 1, . . . ,K do
3: for (π̃, P) ∈ Γexplore(π, µ

k
h) do

4: Execute π̃ to collect a trajectory (s1,a1, r1, . . . , sH ,aH , rH).
5: Update Dk,i

sample ← D
k,i
sample ∪ {(sh, ai,h, ri,h + V i,h+1(sh+1))} for all i ∈ P .

6: Update µk+1
i,h ← NO-REGRET-ALG(µk

i,h,D
k,i
sample,Di

init) for all i ∈ [m].

Output: πout
h := 1

K

∑K
k=1 µ

k
h, where µk

h = µk
1,h × · · · × µk

m,h.

Algorithm Our first main algorithm, V-Learning with Policy Replay (VLPR; Algorithm 1), is
a meta-algorithm for decentralized MARL with function approximation. At a high level, VLPR
adopts a policy replay mechanism (Line 3), which in the t-th iteration sets the roll-in policy πt =
Unif({πτ}τ∈[t]) to be the uniform mixture of all previously learned policies. Using this roll-in
policy, it then learns a new approximate CCE-policy πt+1 by stage-wise learning which recursively
computes the approximate CCE policies and V-values from h = H to 1 using two subroutines:

• CCE-APPROXh (Algorithm 2) takes in value estimates {V t+1
i,h+1}i∈[m], and computes an approx-

imate CCE πt+1
h for the h-th step. It requires two ingredients: (1) An ordered set of exploration

policies and active players (π̃, P) ∈ Γexplore(π, µ
k
h) (P ⊆ [m] is an index set), where each

round executes each such π̃ to observe a trajectory, and adds the observation (sh, ai,h, ri,h +

V i,h+1(sh+1)) into the i-th player’s dataset Dk,i
sample iff i ∈ P . (2) Each player then runs a

no-regret algorithm NO-REGRET-ALG using the collected data. We require relatively strong
NO-REGRET-ALG, which achieves small per-state regret in the face of large state spaces (in a
proper sense) under bandit feedback (cf. Condition (1A)), which will be discussed momentarily.

• V-APPROXh (Algorithm 3) takes in the new policy πt+1
h and value estimates {V t+1

i,h+1}i∈[m], and

produces estimates {V t+1
i,h }i∈[m] for the h-th step by regression algorithm OPTIMISTIC-REGRESS,

which is required to achieve optimistic estimation with small errors (cf. Condition (1B)).

Notably, VLPR combines the policy replay mechanism and the V-APPROX subroutine which re-
learns a new value function at each iteration in a batch fashion. This mechanism is different from
the standard V-Learning algorithm which directly plays a newly learned policy in each iteration
without replay, but uses incremental value updates. That mechanism effectively learns the value
of an implicit “output policy” (the “certified policy”) which is different from the previously played
policies (Bai et al., 2020; Jin et al., 2021b; Song et al., 2021; Mao and Başar, 2022). However, in the
presence of function approximation, the batch learning in VLPR is preferred and precisely enabled
by the policy replay mechanism, as it is otherwise unclear how to generalize the incremental value
update approach to the case with general function classes.

Conditions and guarantee VLPR is a generic meta-algorithm. Once the subroutines satisfy spe-
cific requirements, the meta-algorithm will be guaranteed to learn an approximate CCE of the game.

Condition 1 (Required conditions for VLPR) There exists bonus function Gi,h(s, π,K, δ) for
every (i, h) ∈ [m]× [H] such that the followings hold when executing Algorithm 1.

7

WANG LIU BAI JIN

Algorithm 3 V-APPROXh(π, πh, {V i,h+1}i∈[m],K)

Require: Exploration policy mapping Γexplore; subroutine OPTIMISTIC-REGRESS.
1: Initialize Di

reg ← {} for all i ∈ [m].
2: for k = 1, . . . ,K do
3: for (π̃, P) ∈ Γexplore(π, πh) do
4: Execute π̃ to collect a trajectory (s1,a1, r1, . . . , sH ,aH , rH).
5: Add (sh, ai,h, ri,h + V i,h+1(sh+1)) into Di

reg for all i ∈ P .
6: V i,h ← OPTIMISTIC-REGRESS(πi,h,Di

reg) for all i ∈ [m].
Output: {V i,h}i∈[m].

(1A) Per-state no-regret: Subroutine π = CCE-APPROXh(π, {V i,h+1}i∈[m],K) (Algorithm 2)
satisfies that with probability at least 1− δ, for all (i, s) ∈ [m]× S:

maxµi,h∈∆(Ai)

(
Dµi,h×π−i,h

− Dπh

) [
ri,h + Ph+1V i,h+1

]
(s) ≤ Gi,h(s, π,K, δ).

(1B) Optimistic V-estimate: Subroutine V i,h = V-APPROXh(π, πh, {V i,h+1}i∈[m],K) (Algo-
rithm 3) satisfies that with probability at least 1− δ, for all (i, s) ∈ [m]× S:{

V i,h(s) ≥ min
{
Dπh

[
ri,h + Ph+1V i,h+1

]
(s) +Gi,h(s, π,K, δ), H − h+ 1

}
,

V i,h(s) ≤ Dπh

[
ri,h + Ph+1V i,h+1

]
(s) + 2Gi,h(s, π,K, δ).

(1C) Pigeon-hole condition: There exists an absolute complexity measure L ∈ R+ such that for
any (i, h) ∈ [m]× [H], (T, δ) ∈ N× (0, 1), and any policy sequence {π1, . . . , πT },∑T

t=1 Esh∼πt+1

[
Gi,h(sh,Unif({πτ}τ∈[t]), t, δ)

]
≤
√
LT log2(T/δ).

Condition (1A) requires that the subroutine CCE-APPROX (which calls NO-REGRET-ALG) achieves
per-state low-regret (recall in Algorithm 2 the output policy is a uniform mixture of polices that are
played). This is more stringent than regret bounds w.r.t. a fixed state distribution as in standard con-
textual bandit problems (Lattimore and Szepesvári, 2020), but is crucial for learning CCEs which
require the learned policies to extrapolate well to multiple roll-in distributions.

Condition (1B) requires the subroutine V-APPROX (which calls OPTIMISTIC-REGRESS) to produce
optimistic and accurate value estimates for policy πh, in a precise sense that the difference between
the estimate V i,h and the ground truth Dπh

[
ri,h + Ph+1V i,h+1

]
is sandwiched (modulo truncation)

within [1, 2] times the bonus function Gi,h.

Condition (1C) has a similar flavor to the pigeon-hole principle, and is used to ensure the expected
bonuses sum up to Õ(

√
T) as in UCB-style algorithms, e.g., Azar et al. (2017); Jin et al. (2020).

We are now ready to state our main guarantee for VLPR.

Theorem 1 (“Regret” guarantee for VLPR) Suppose Condition 1 holds for Algorithm 1. Then
with probability at least 1− 3δ, we have that

CCEReg(T) := maxi∈[m]

∑T
t=1

[
V

†,πt
−i

i,1 (s1)− V πt

i,1 (s1)

]
+

≤ Õ(
√
H2LT). (1)

8

Corollary 2 (Sample complexity) Choosing T = Õ(H2L/ε2) ensures that the output policy πout

of Algorithm 1 satisfies CCEGap(πout) ≤ ε further with probability at least7 0.99, and the total
number of episodes played is at most Õ

(
H5L2Γ/ε4

)
, where Γ := maxπ,π′ |Γexplore(π, π

′)|.

Theorem 1 and Corollary 2 assert that an ε-approximate CCE can be found within poly(H,L,Γ, 1/ε)
samples, as long as all the subroutines in Algorithm 1 satisfy Condition 1. The proof (given in Ap-
pendix B.1) is relatively straightforward given the conditions, which uses performance difference
arguments and combine Condition (1A) & (1B) to upper bound CCEReg(T) by the bonuses, and
uses Condition (1C) to further bound the summation of the bonuses over t ∈ [T].

3.1. Accelerated Õ(1/ε2) algorithm via infrequent policy updates

The Õ(1/ε4) rate obtained in Theorem 1 is slower than the standard 1/ε2 rate. This happens as
VLPR adopts the replay mechanism and updates the policy at every iteration t ∈ [T], which causes
the T × T = Õ(1/ε4) rate. However, such a frequent policy update may be unnecessary if the
roll-in distributions induced by the replay policies {πt}t≥1 do not change quickly over t.

To address this, we design an accelerated algorithm called AVLPR (Algorithm 5) that improves
this rate to 1/ε2 under an additional condition (Condition 2) that allows the algorithm to perform
well with infrequent policy updates—more precisely O(log T) updates—within T iterations (The-
orem 13). We will realize this condition by doubling tricks. See Appendix B.2 for details.

3.2. Decentralized execution

Our algorithms VLPR and AVLPR are thus far described in terms of all players jointly. Neverthe-
less, both algorithms can be implemented in a decentralized fashion. Rigorously, we consider the
setting that each player is only able to see the shared state and their own action and reward. That
is, they do not know other players’ actions or rewards if without communication. We show that
using certain simple protocols, VLPR can be executed in a fully decentralized fashion without any
communication (assuming shared randomness among players), and AVLPR can be executed with
O(log T) rounds of extremely small communication only for the checking the triggering condition
(Line 4 in Algorithm 5). We defer the detailed arguments to Appendix B.4.

4. Instantiation in linear and tabular settings

We now instantiate AVLPR concretely in two settings: decentralized linear function approximation
(a new setting), and learning Markov CCEs for tabular Markov Games. We focus on the sample
complexity here; both instantiations are also computationally efficient (cf. Appendix C.1 & E.1).

4.1. Decentralized linear function approximation

We consider Markov Games with decentralized linear function approximation, where each Fi,h =
{fi,h(·, ·) = ϕi(·, ·)⊤θh : ∥θh∥2 ≤ Bθ := H

√
d} is a linear function class with respect to a known

7. The success probability can be further improved to 1 − δ for any small δ > 0 with at most an additional log(1/δ)
factor in the sample complexity, using an optimistic evaluation of the CCEGap combined with boosting.

9

WANG LIU BAI JIN

d-dimensional feature map8 ϕi : S ×Ai → Rd. We consider the class of linear argmax policies

Πlin
i,h :=

{
πi,h(·|s) = argmaxai∈Ai ϕi(s, ai)

⊤wi,h, ∀ s ∈ S | wi,h ∈ Rd
}
. (2)

induced by the feature map ϕi, and denote Πlin
i =×h∈[H]Π

lin
i,h and Πlin :=×i∈[m]Π

lin
i . To ensure

that the feature map is informative enough, we make the following assumption.

Assumption 3 (Πlin-completeness) For any (i, h) ∈ [m] × [H], any fi,h+1 : S × Ai → [0, H],
any π ∈ Πlin, we have T π

i,hfi,h+1 ∈ Fi,h.

At m = 1 (the single-agent setting), Assumption 3 is strictly weaker than the linear MDP assump-
tion (Jin et al., 2020) but stronger than the linear completeness assumption (Zanette et al., 2020),
both common assumptions for RL with linear function approximation. For m ≥ 2, Assumption 3
can be seen as a decentralized multi-agent generalization of the linear MDP assumption, which re-
quires that for every player i ∈ [m] the Bellman backup of any V i,h+1 with respect to any linear
argmax policy π−i is contained in Fi,h (thus is linear in ϕi(s, ai)).

We remark that in Assumption 3, requiring completeness only for the restricted policy class Πlin is
crucial: if completeness is required for all Markov policies, then the game is “essentially tabular”
in the sense that the number of non-trivial states must be small (cf. Appendix H).

Main result For decentralized linear function approximation, we instantiate AVLPR to obtain the
following guarantee. The algorithmic details and the proof can be found in Appendix C.

Theorem 4 (AVLPR for decentralized linear function approximation) Suppose the decentral-
ized linear function approximation satisfies Assumption 3. Then a suitable instantiation of AVLPR
finds an ε-CCE within Õ

(
d4H6m2(maxi∈[m]A

5
i)/ε

2
)

episodes of play.

Theorem 4 achieves a Õ(1/ε2) sample complexity with polynomial dependence on (d,H,m,maxi∈[m]Ai),
avoiding the curse of multiagency. To our best knowledge, this is the first such result for learning
Markov Games with decentralized linear function approximation.

Overview of techniques Establishing Theorem 4 requires instantiating the NO-REGRET-ALG

and OPTIMISTIC-REGRESS subroutines in AVLPR for the linear function approximation setting
such that Conditions (1A)-(1C) & 2 are satisfied. We choose OPTIMISTIC-REGRESS to be the
standard ridge regression, which ensures Condition (1B) by Assumption 3.

The more challenging task is to choose NO-REGRET-ALG that satisfies Condition (1A), which,
roughly speaking, requires (1) per-state regret guarantees at all s ∈ S; (2) the policies

{
µkh
}
k∈[K]

to lie in Πlin. Perhaps counter-intuitively, this rules out either running a separate linear adversarial
bandit algorithm at each state, which violates (2), or adversarial contextual linear bandit algorithms
such as LINEXP3 (Neu and Olkhovskaya, 2020), which violates (1). We resolve this by converting
the problem into S parallel online linear optimization problems using the special structure of Πlin,
and applying the Expected Follow-the-Perturbed-Leader algorithm (Hazan and Minasyan, 2020) to
produce a single set of iterates within Πlin that solves all S problems simultaneously (without any
|S| dependence in rate), thereby fulfilling both requirements.

8. Without loss of generality, we assume bounded features: sup(s,ai)∈S×Ai
∥ϕi(s, ai)∥2 ≤ Bϕ := 1 for all i ∈ [m].

10

With these subroutines chosen, we show that Condition 1 is satisfied with bonus function

Gi,h(s, π,K, δ) := Θ̃
(
maxai∈Ai ∥ϕi(s, ai)∥(Σπ

i,h+λI)−1 × d(maxiA
1.5
i)H/

√
K +K−1

)
, (3)

where Σπ
i,h := Esh∼π Eai,h∼Unif(Ai)

[
ϕi(sh, ai,h)ϕi(sh, ai,h)

⊤] , λ = Θ̃(d(maxiAi)/K).

4.2. Learning Markov CCE in tabular Markov Games

We also instantiate AVLPR on tabular Markov Games (whereFi is the class of all possible marginal
Q functions), and obtain the following result (algorithm details and proof in Appendix E).

Theorem 5 (Tabular Markov Games) For tabular Markov Games with S states, a suitable in-
stantiation of AVLPR finds a Markov ε-CCE within Õ

(
H6S2(maxi∈[m]Ai)/ε

2
)

episodes of play.

The only existing algorithm for learning Markov CCEs avoiding the curse of multiagency is the
SPoCMAR algorithm of Daskalakis et al. (2022), which achieves a Õ

(
H10S3(maxiAi)/ε

3
)

sam-
ple complexity. Theorem 5 achieves both an improved (H,S) dependence and a near-optimal
Õ(1/ε2) rate. To establish Theorem 5, we instantiate NO-REGRET-ALG to be a separate EXP3
algorithm at every state s ∈ S, and OPTIMISTIC-REGRESS to be simply a state-wise optimistic
value estimate. We show that these ensure Conditions 1 with following bonus function:

Gi,h(s, π,K, δ) := Θ̃
(
η−1
i (Jh(s) + ι)−1 + ηiH

2Ai

)
,

where ηi is the learning rate for the i-th player’s NO-REGRET-ALG, Jh(s) is the expected visitation
count of state s at step h when running roll-in policy π for K episodes, and ι = Õ(1).

5. Learning CCE within restricted policy classes

In this section, we present an alternative approach for learning a CCE within a restricted policy class
Π (henceforth Π-CCE) under potentially much more relaxed assumptions on the function class.

Restricted policy class We let each player i ∈ [m] be equipped with a class Πi of Markov policies
(in addition to their marginal Q class Fi), and let Π :=

∏
i∈[m]Πi be the set of product policies over

{Πi}i∈[m]. For any joint policy Λ, we say Λ is an ε-approximate Π-CCE if

CCEGapΠ(Λ) := maxi∈[m]

(
max

π†
i∈Πi

V
π†
i×Λ−i

1,i (s1)− V Λ
1,i(s1)

)
≤ ε.

In words, Λ is an approximate Π-CCE as long as no player gains much by deviating to some other
policy within Πi. Note that we always have CCEGapΠ(Λ) ≤ CCEGap(Λ), and the inequality is
in general strict even when Πi is the set of all possible Markov policies for player i (the largest class
allowed here)9, so that the Π-CCE is in general a more restricted notion.

Assumptions Our first assumption requires each function class Fi to be complete with respect to
Bellman operators {T π

i,h}π,h, a standard assumption to ensure accurate value estimation via square-
loss regression (Jin et al., 2021a). This assumption relaxes Assumption 3 since this assumption only
holds for fi,h+1 ∈ Fi,h+1 (while Assumption 3 holds for arbitrary fi,h+1).

9. Concretely, there exists a Markov Game in which there exists a Λ ∈ ∆(ΠMar) such that CCEGapΠMar

(Λ) = 0 but
CCEGap(Λ) ≥ H/4 for any H ≥ 2; see Appendix I for the construction.

11

WANG LIU BAI JIN

Algorithm 4 DOPMD: Decentralized Optimistic Policy Mirror Descent
Require: Learning rate {ηi}i∈[m], function class {Fi}i∈[m], policy class {Πi}i∈[m], {(Ki, βi)}i∈[m].

1: Initialize Λ1
i ← Unif(Πi) for all i ∈ [m].

2: for round t = 1, . . . , T do
3: Sample a policy πt

i ∼ Λt
i for each i ∈ [m], and set πt = πt

1 × . . .× πt
m.

4: for i ∈ [m] do
5: Obtain i-th player’s optimistic estimates {V (t),πi×πt

−i

i }πi∈Πi
← APEi(Fi,Πi, π

t
−i,Ki, βi).

6: Update Λt+1
i (πi) ∝πi

Λt
i(πi) · exp(ηi · V

(t),πi×πt
−i

i).
Output: Average policy Λ := 1

T

∑
t∈[T] Λ

t
1 × · · · × Λt

m.

Assumption 6 (Π-completeness) For every i ∈ [m], the function class Fi satisfies completeness
with respect to Π, that is, for any h ∈ [H] and (fi,h+1, π) ∈ Fi,h+1×Π, we have T π

i,hfi,h+1 ∈ Fi,h.

We also require each Fi ⊂ ((S × Ai) → [0, H]) to have bounded Bellman-Eluder (BE) dimen-
sion (Jin et al., 2021a) to ensure sample-efficient RL. For any i ∈ [m], we define

di(Fi,Π, ε) := max
π−i∈Π−i

dBE
π−i

(Fi,Πi, ε), (4)

where dBE
π−i

(Fi,Πi, ε) denotes the Bellman-Eluder dimension of Fi with respect to the Bellman
operators {T πi×π−i

i,h }
πi∈Πi

(cf. Definition 12). The Bellman-Eluder dimension is a standard com-
plexity measure in single-agent RL for controlling the complexity of exploration. We assume such
Bellman-Eluder dimension of the marginal value functions to be bounded for all players i ∈ [m].

Assumption 7 (Bounded BE dimension) There exist scalars {di}i∈[m] such that for all i ∈ [m]
and ε ∈ (0, 1), we have di(Fi,Π, ε) ≤ di log(1/ε).

Note that Assumption 6 & 7 are both decentralized in nature, as they only require properties about
(Fi,Πi) in the single-agent MDP induced by a fixed π−i ∈ Π−i. These are in contrast to previous
approaches for learning Markov Games with general function approximation, which require similar
structural conditions on their centralized function classes (Jin et al., 2022; Huang et al., 2021; Chen
et al., 2022a).

5.1. Algorithm and guarantee

Our algorithm Decentralized Optimistic Policy Mirror Descent (DOPMD, Algorithm 4) is a double-
loop algorithm. Its outer loop is similar to the policy mirror descent algorithms of (Liu et al., 2022;
Zhan et al., 2022), where each player i ∈ [m] maintains Λt

i—a distribution over polices in Πi. The
player then samples a policy πti ∼ Λt

i (Line 3), obtains optimistic value estimates (Line 5), and
performs Mirror Descent/Hedge (Line 6) in the policy space with these optimistic value estimates
to obtain the update Λt+1

i ∈ ∆(Πi).

The key new ingredient in our algorithm is the subroutine APE (Explorative All-Policy Evaluation;
full description in Algorithm 6) for obtaining optimistic value estimates. For each player i ∈ [m],
subroutine APEi(Fi,Πi, π

t
−i,Ki, βi) plays Ki episodes and obtains accurate value estimations for

all πi ∈ Πi, in the MDP induced by the (fixed) opponent’s policy πt−i. At a high level, APE modifies

12

the GOLF algorithm of Jin et al. (2021a) by playing the policy that maximizes the uncertainty:

πki := argmaxπi∈Πi

{
maxf :(f,πi)∈Bk f1(s1, πi,1(s1))−minf :(f,πi)∈Bk f1(s1, πi,1(s1))

}
,

specified by the square-loss confidence set Bk, instead of maximizing the optimistic value estimate
as in GOLF.

Theoretical guarantee We are now ready to state the guarantee for the DOPMD algorithm. The
proof can be found in Appendix F.2.

Theorem 8 (Guarantee for DOPMD) Under Assumption 6 & 7, for any ε > 0, Algorithm 4 with
ηi =

√
log |Πi|/(H2T),Ki = Õ(H4di log(

∑
i∈[m] |Πi||Fi|/ε2), βi = Õ(H2 log(

∑
i∈[m] |Πi||Fi|))

outputs an ε-approximate Π-CCE within at most T ≤ Õ(H2 log(
∑

i∈[m] |Πi|)/ε2) rounds.

The total number of episodes played is at most

T ×
(∑

i∈[m]Ki

)
= Õ

(
H6
(∑

i∈[m] di

)
log2(

∑
i |Πi||Fi|)/ε4

)
.

where Õ(·) hides polylogarithmic factors in H, di, ε, δ, log |Fi|, log |Πi|,m.

The sample complexity asserted in Theorem 8 for learning an ε-approximate Π-CCE is polynomial
in the (summation of the) BE dimensions, the log-cardinality of the function classes and policy
classes, as well as 1/ε. While the Π-CCE guarantee is weaker than the VLPR or AVLPR algorithm
(Theorem 1 & 13), in return, Theorem 8 only requires BE dimension and completeness assumptions,
which are standard for general function approximation and potentially much more relaxed than
Condition 1 required in Section 3.

Decentralized execution Note that the i-th player’s APE only uses their own marginal Q class
Fi and local observations for estimating the values for all πi ∈ Πi, and thus Algorithm 4 can be
executed in a decentralized fashion by letting each player execute APE in lexicographic order in
each round. As a result, neither communication nor shared randomness is required among players.
This is different from the centralized algorithms of Liu et al. (2022); Zhan et al. (2022) that operate
with joint Q classes.

5.2. Examples

We first show that Assumption 6 & 7 hold for learning Π-CCE in linear quadratic games (Zhang
et al., 2019)—a special type of Markov Games with continuous states/actions and linear transitions—
with linear policy classes and linear value classes.

Example 1 (Linear quadratic games (LQGs)) We consider m-player finite-horizon LQGs spec-
ified by a state space S ⊂ RdS and action spaces {Ai ⊂ RdA,i}i∈[m]. The initial state s1 ∈ Rds is
fixed, and the state transition at the h-th step is given by

sh+1 = Ahsh +
∑m

i=1Bi,hai,h + zh, (5)

where Ah ∈ RdS×dS , Bi,h ∈ RdS×dA,i are parameters of the game, and zh are independent mean-
zero noises. The reward is given by ri,h(s,a) = s⊤hK

i
hsh +

∑m
j=1 a

⊤
j,hK

i
j,haj,h for all (i, h) ∈

[m]× [H], where Ki
h ∈ RdS×dS , Ki

j,h ∈ RdA,j×dA,j are parameters of the game.

13

WANG LIU BAI JIN

An important policy class for LQGs is the class of linear policies (denoted as Π) of the form
πi,h(s) =Mi,hs, which for instance contains the CCE of the game under standard assumptions (Başar
and Bernhard, 2008). In Appendix F.5, we show that such LQGs with properly chosen linear policy
classes and linear value classes satisfy Assumption 6 and 7 with di = O((ds + dA,i)

2), and admits
sample-efficient learning of a Π-CCE with Õ(poly(H,

∑
i∈[m] di)/ε

4) samples by DOPMD.

By contrast, VLPR/AVLPR are unlikely to be instantiated on Example 1—Condition (1B) there
typically requires Π-completeness of optimistic values (i.e., linear function plus bonus); a sufficient
condition is Π-completeness of all values at step h+ 1 as in Assumption 3. Such optimistic values
are no longer linear here and thus unlikely to be contained in our linear function class at step h.

Next and more generally, as Assumption 7 only requires bounded Bellman-Eluder dimension (cf.
Definition 12) in a decentralized sense for each player, this contains rich subclasses such as low
Eluder dimension or low Bellman rank for each player’s induced marginal MDPs, by similar argu-
ments as (Jin et al., 2021a, Proposition 11 & 12).

Example 2 (Low Eluder dimension) Suppose that for all i ∈ [m], Fi has low Eluder dimension
(Wang et al. (2020); cf. Definition 10) in the sense that maxh∈[H] dE(Fi,h, ε) ≤ di log(1/ε), and
satisfies Π-completeness (Assumption 6). Then, Assumption 7 also holds with the same {di}i∈[m].

In particular, the class of functions with low Eluder dimension subsumes certain non-linear function
classes such as generalized linear models (Russo and Van Roy, 2013) , which are of the form Fi,h =
{Qi,h(·, ·) = σ(ϕi(·, ·)⊤θi,h) : θi,h ∈ Rdi}, where ϕi : S×Ai → Rdi is a feature map, and σ : R→
R is a link function with σ′(·) ∈ [c1, c2] for some 0 < c1 < c2.

Example 3 (Low Bellman rank) Suppose for all i ∈ [m], the single-agent MDP induced by any
π−i ∈ Π−i has low Bellman rank (Jiang et al., 2017) in the following sense: For any fixed π−i ∈
Π−i, there exist maps ψπ−i

i,h : Πi → Rdi , ϕπ−i

i,h : Fi×Πi → Rdi such that for any f ∈ Fi, πi, π′i ∈ Πi

E(sh,ai,h)∼π′
i×π−i

[
(fh − T

πi×π−i

h fh+1)(sh, ai,h)
]
=
〈
ϕ
π−i

i,h (f, πi), ψ
π−i

i,h (π′i)
〉
.

Then, Assumption 7 holds with the same {di}i∈[m].

6. Conclusion

This paper provides the first line of results for provably efficient decentralized MARL under function
approximation which avoids the curse of multiagency. We present two complementary approaches:
The first one via policy replay and stage-wise no-regret learning, which we instantiate concretely in
the linear and tabular setting and achieve a near-optimal Õ(ε−2) rate for learning an ε-approximate
CCE in both settings; The second one via policy mirror descent with decentralized exploration,
which learns a restricted version of CCE but applies to broader classes of problems. We believe
our work opens up many interesting directions for future works, such as (1) deriving sharper sam-
ple complexities for both approaches, in particular improving the (d,maxi∈[m]Ai) dependence for
AVLPR in the linear setting and the S dependence in the tabular setting; (2) improving the compu-
tational efficiency for the policy mirror descent approach; and (3) identifying new problem classes
amenable to the policy replay approach.

14

References

Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming
the monster: A fast and simple algorithm for contextual bandits. In International Conference on
Machine Learning, pages 1638–1646. PMLR, 2014.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
forcement learning. In International Conference on Machine Learning, pages 263–272. PMLR,
2017.

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In
International conference on machine learning, pages 551–560. PMLR, 2020.

Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play. Advances
in neural information processing systems, 33:2159–2170, 2020.

Yu Bai, Chi Jin, Huan Wang, and Caiming Xiong. Sample-efficient learning of stackelberg equilibria
in general-sum games. Advances in Neural Information Processing Systems, 34:25799–25811,
2021.

Yu Bai, Chi Jin, Song Mei, Ziang Song, and Tiancheng Yu. Efficient Φ-regret minimization in
extensive-form games via online mirror descent. arXiv preprint arXiv:2205.15294, 2022a.

Yu Bai, Chi Jin, Song Mei, and Tiancheng Yu. Near-optimal learning of extensive-form games with
imperfect information. arXiv preprint arXiv:2202.01752, 2022b.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch. Emergent tool use from multi-agent autocurricula. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
SkxpxJBKwS.

Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew
Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, et al. Human-level play in the game of
diplomacy by combining language models with strategic reasoning. Science, 378(6624):1067–
1074, 2022.

Tamer Başar and Pierre Bernhard. H-infinity optimal control and related minimax design problems:
a dynamic game approach. Springer Science & Business Media, 2008.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo. Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence, 7(1):1–41, 2013.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, 359(6374):418–424, 2018.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):
885–890, 2019.

15

https://openreview.net/forum?id=SkxpxJBKwS
https://openreview.net/forum?id=SkxpxJBKwS

WANG LIU BAI JIN

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Fan Chen, Song Mei, and Yu Bai. Unified algorithms for rl with decision-estimation coefficients:
No-regret, pac, and reward-free learning. arXiv preprint arXiv:2209.11745, 2022a.

Zixiang Chen, Dongruo Zhou, and Quanquan Gu. Almost optimal algorithms for two-player zero-
sum linear mixture markov games. In International Conference on Algorithmic Learning Theory,
pages 227–261. PMLR, 2022b.

Qiwen Cui and Simon S Du. Provably efficient offline multi-agent reinforcement learning via
strategy-wise bonus. arXiv preprint arXiv:2206.00159, 2022.

Qiwen Cui, Kaiqing Zhang, and Simon S Du. Breaking the curse of multiagents in a large state
space: Rl in markov games with independent linear function approximation. arXiv preprint
arXiv:2302.03673, 2023.

Constantinos Daskalakis. On the complexity of approximating a nash equilibrium. ACM Transac-
tions on Algorithms (TALG), 9(3):1–35, 2013.

Constantinos Daskalakis, Noah Golowich, and Kaiqing Zhang. The complexity of markov equilib-
rium in stochastic games. arXiv preprint arXiv:2204.03991, 2022.

Dongsheng Ding, Chen-Yu Wei, Kaiqing Zhang, and Mihailo Jovanovic. Independent policy gra-
dient for large-scale markov potential games: Sharper rates, function approximation, and game-
agnostic convergence. In International Conference on Machine Learning, pages 5166–5220.
PMLR, 2022.

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in rl. In International
Conference on Machine Learning, pages 2826–2836. PMLR, 2021.

Côme Fiegel, Pierre Ménard, Tadashi Kozuno, Rémi Munos, Vianney Perchet, and Michal
Valko. Adapting to game trees in zero-sum imperfect information games. arXiv preprint
arXiv:2212.12567, 2022.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

Elad Hazan and Edgar Minasyan. Faster projection-free online learning. In Conference on Learning
Theory, pages 1877–1893. PMLR, 2020.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Baihe Huang, Jason D Lee, Zhaoran Wang, and Zhuoran Yang. Towards general function approxi-
mation in zero-sum markov games. arXiv preprint arXiv:2107.14702, 2021.

Zeyu Jia, Lin F Yang, and Mengdi Wang. Feature-based q-learning for two-player stochastic games.
arXiv preprint arXiv:1906.00423, 2019.

16

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Con-
textual decision processes with low bellman rank are pac-learnable. In International Conference
on Machine Learning, pages 1704–1713. PMLR, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
problems, and sample-efficient algorithms. Advances in neural information processing systems,
34:13406–13418, 2021a.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning–a simple, efficient, decentral-
ized algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021b.

Chi Jin, Qinghua Liu, and Tiancheng Yu. The power of exploiter: Provable multi-agent rl in large
state spaces. In International Conference on Machine Learning, pages 10251–10279. PMLR,
2022.

Tadashi Kozuno, Pierre Ménard, Rémi Munos, and Michal Valko. Model-free learning for
two-player zero-sum partially observable markov games with perfect recall. arXiv preprint
arXiv:2106.06279, 2021.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Stefanos Leonardos, Will Overman, Ioannis Panageas, and Georgios Piliouras. Global convergence
of multi-agent policy gradient in markov potential games. arXiv preprint arXiv:2106.01969,
2021.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier, 1994.

Qinghua Liu, Tiancheng Yu, Yu Bai, and Chi Jin. A sharp analysis of model-based reinforcement
learning with self-play. In International Conference on Machine Learning, pages 7001–7010.
PMLR, 2021.

Qinghua Liu, Yuanhao Wang, and Chi Jin. Learning markov games with adversarial opponents:
Efficient algorithms and fundamental limits. arXiv preprint arXiv:2203.06803, 2022.

Weichao Mao and Tamer Başar. Provably efficient reinforcement learning in decentralized general-
sum markov games. Dynamic Games and Applications, pages 1–22, 2022.

Weichao Mao, Lin Yang, Kaiqing Zhang, and Tamer Basar. On improving model-free algorithms
for decentralized multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 15007–15049. PMLR, 2022.

Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic bandits.
Advances in Neural Information Processing Systems, 28, 2015.

Gergely Neu and Julia Olkhovskaya. Efficient and robust algorithms for adversarial linear contex-
tual bandits. In Conference on Learning Theory, pages 3049–3068. PMLR, 2020.

17

WANG LIU BAI JIN

Chengzhuo Ni, Yuda Song, Xuezhou Zhang, Chi Jin, and Mengdi Wang. Representation learning
for general-sum low-rank markov games. arXiv preprint arXiv:2210.16976, 2022.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Aviad Rubinstein. Settling the complexity of computing approximate two-player nash equilibria.
ACM SIGecom Exchanges, 15(2):45–49, 2017.

Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
exploration. Advances in Neural Information Processing Systems, 26, 2013.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):
1095–1100, 1953.

Aaron Sidford, Mengdi Wang, Lin Yang, and Yinyu Ye. Solving discounted stochastic two-player
games with near-optimal time and sample complexity. In International Conference on Artificial
Intelligence and Statistics, pages 2992–3002. PMLR, 2020.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Ziang Song, Song Mei, and Yu Bai. When can we learn general-sum markov games with a large
number of players sample-efficiently? arXiv preprint arXiv:2110.04184, 2021.

Ziang Song, Song Mei, and Yu Bai. Sample-efficient learning of correlated equilibria in extensive-
form games. arXiv preprint arXiv:2205.07223, 2022.

Gilles Stoltz. Incomplete information and internal regret in prediction of individual sequences. PhD
thesis, Université Paris Sud-Paris XI, 2005.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yi Tian, Yuanhao Wang, Tiancheng Yu, and Suvrit Sra. Online learning in unknown markov games.
arXiv preprint arXiv:2010.15020, 2021.

Roman Vershynin. High-dimensional probability: An introduction with applications in data sci-
ence, volume 47. Cambridge university press, 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michael Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

18

https://blog.openai.com/openai-five/

Ruosong Wang, Russ R Salakhutdinov, and Lin Yang. Reinforcement learning with general value
function approximation: Provably efficient approach via bounded eluder dimension. Advances in
Neural Information Processing Systems, 33:6123–6135, 2020.

Chen-Yu Wei, Yi-Te Hong, and Chi-Jen Lu. Online reinforcement learning in stochastic games. In
Advances in Neural Information Processing Systems, pages 4987–4997, 2017.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, et al. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):
223–228, 2022.

Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. Learning zero-sum simultaneous-
move markov games using function approximation and correlated equilibrium. In Conference on
learning theory, pages 3674–3682. PMLR, 2020.

Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, and Tong Zhang. A self-play posterior sam-
pling algorithm for zero-sum markov games. In International Conference on Machine Learning,
pages 24496–24523. PMLR, 2022.

Andrea Zanette and Martin Wainwright. Stabilizing q-learning with linear architectures for prov-
able efficient learning. In International Conference on Machine Learning, pages 25920–25954.
PMLR, 2022.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near op-
timal policies with low inherent bellman error. In International Conference on Machine Learning,
pages 10978–10989. PMLR, 2020.

Wenhao Zhan, Jason D Lee, and Zhuoran Yang. Decentralized optimistic hyperpolicy mirror de-
scent: Provably no-regret learning in markov games. arXiv preprint arXiv:2206.01588, 2022.

Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. Policy optimization provably converges to nash
equilibria in zero-sum linear quadratic games. Advances in Neural Information Processing Sys-
tems, 32, 2019.

Kaiqing Zhang, Sham M Kakade, Tamer Başar, and Lin F Yang. Model-based multi-agent rl in
zero-sum markov games with near-optimal sample complexity. arXiv preprint arXiv:2007.07461,
2020.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pages
321–384, 2021a.

Runyu Zhang, Zhaolin Ren, and Na Li. Gradient play in stochastic games: stationary points, con-
vergence, and sample complexity. arXiv preprint arXiv:2106.00198, 2021b.

Runyu Zhang, Qinghua Liu, Huan Wang, Caiming Xiong, Na Li, and Yu Bai. Policy optimization
for markov games: Unified framework and faster convergence. arXiv preprint arXiv:2206.02640,
2022.

19

WANG LIU BAI JIN

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari. Nearly minimax optimal reinforcement learn-
ing for linear mixture markov decision processes. In Conference on Learning Theory, pages
4532–4576. PMLR, 2021.

20

Contents

1 Introduction 1
1.1 Related work . 3

2 Preliminaries 5
2.1 Decentralized MARL with function approximation 6

3 Decentralized MARL via policy replay: meta-algorithms and guarantees 6
3.1 Accelerated Õ(1/ε2) algorithm via infrequent policy updates 9
3.2 Decentralized execution . 9

4 Instantiation in linear and tabular settings 9
4.1 Decentralized linear function approximation . 9
4.2 Learning Markov CCE in tabular Markov Games 11

5 Learning CCE within restricted policy classes 11
5.1 Algorithm and guarantee . 12
5.2 Examples . 13

6 Conclusion 14

A Technical tools 22
A.1 Concentration . 22
A.2 Eluder & Bellman-Eluder dimension . 22

B Proofs and additional details for Section 3 23
B.1 Proof of Theorem 1 . 23
B.2 Accelerated algorithm . 24
B.3 Proof of Theorem 13 . 25
B.4 Decentralized execution protocol for VLPR and AVLPR 27

C Proofs for Section 4.1 28
C.1 Details of the linear AVLPR Algorithm . 28
C.2 Proof of Condition (1A) . 30
C.3 Proof of Condition (1B) . 30
C.4 Proof of Condition (1C) . 31
C.5 Proof of Condition 2 . 32
C.6 Sample complexity for linear function approximation 33

D Proofs for Appendix C.2 33
D.1 Relative concentration . 33
D.2 Controlling Term (A) in Condition (1A) . 34
D.3 Controlling Term (B) in Condition (1A) . 36
D.4 Controlling Term (C) in Condition (1A) . 38

E Proofs for Section 4.2 42

21

WANG LIU BAI JIN

E.1 Details of the tabular AVLPR algorithm . 42
E.2 Proof of Condition (1A) . 43
E.3 Proof of Condition (1B) . 44
E.4 Proof of Condition (1C) . 45
E.5 Proof of Condition 2 . 45
E.6 Sample complexity for tabular MG . 45

F Proofs for Section 5 46
F.1 Explorative All-Policy Evaluation (APE) . 46
F.2 Proof of Theorem 8 . 46
F.3 Proof of Proposition 25 . 48
F.4 Proof of Proposition 24 . 49

F.4.1 Proof of Lemma 26 . 51
F.5 Details for Linear Quadratic Games . 52

G Discussions about V-type function approximation 53

H All-policy completeness implies “essentially tabular” games 53
H.1 Explicit forms of the policy class in Cui et al. (2023) 54

I Difference between ΠMar-CCE and CCE 55

Appendix A. Technical tools

A.1. Concentration

The following Freedman’s inequality can be found in (Agarwal et al., 2014, Lemma 9).

Lemma 9 (Freedman’s inequality) Suppose random variables {Xt}Tt=1 is a martingale differ-
ence sequence, i.e. Xt ∈ Ft where {Ft}t≥1 is a filtration, and E[Xt|Ft−1] = 0. Suppose Xt ≤ R
almost surely for some (non-random) R > 0. Then for any λ ∈ (0, 1/R], we have with probability
at least 1− δ that

T∑
t=1

Xt ≤ λ ·
T∑
t=1

E
[
X2

t |Ft−1

]
+

log(1/δ)

λ
.

A.2. Eluder & Bellman-Eluder dimension

We begin by presenting the standard definition of the Eluder dimension of a function class (Russo
and Van Roy, 2013; Wang et al., 2020).

Definition 10 (Eluder dimension) For any function class F ⊂ (X → R), its Eluder dimension
dE(F , ε) is defined as the length of the longest sequence {x1, x2, . . . , xn} ⊂ D such that there
exists ε′ ≥ ε so that for all i ∈ [n], xi is ε′-independent of its prefix sequence {x1, . . . , xi−1}, in the
sense that there exists some fi, gi ∈ F such that√√√√ i−1∑

j=1

[(fi − gi)(xj)]2 ≤ ε′ but |(fi − gi)(xi)| ≥ ε′.

22

Definition 11 (Distributional Eluder dimension) For any function class F ⊂ (X → R), its
distributional Eluder dimension dE(F ,D, ε) with respect to a class of distributions Π ⊂ ∆(X) and
ε > 0 is defined as the length of the longest sequence {µ1, µ2, . . . , µn} ⊂ D such that there exists
ε′ ≥ ε so that for all i ∈ [n], µi is ε′-independent of its prefix sequence {µ1, . . . , µi−1}, in the sense
that there exists some fi ∈ F such that√√√√ i−1∑

j=1

(
EX∼µj [fi(X)]

)2 ≤ ε′ but |EX∼µi [fi(X)]| ≥ ε′.

For decentralized MARL, we consider the following definition of the Bellman-Eluder dimension,
which is similar to the original definition of Jin et al. (2021a) applied to the single-agent MDPs for
player i when facing a fixed Markov opponent π−i, except that here we consider Bellman operators
with respect to all policies πi ∈ Πi instead of the Bellman optimality operator.

Definition 12 (Bellman-Eluder dimension) For any player i ∈ [m], any Markov policy class Πi

for the i-th player, any Markov policy π−i for all but the i-th player, and any ε > 0, define

dBE
π−i

(Fi,Πi, ε) := min
D∈{DΠi×π−i

,D∆}
max
h∈[H]

dE

({
fh − T

πi×π−i

i,h fh+1 : (f, πi) ∈ F ×Πi

}
,D, ε

)
,

where dE(·, ·, ε) denotes the distributional Eluder dimension (Definition 11), and

DΠi×π−i
:=
{
d
πi×π−i

h (·, ·) : πi ∈ Πi

}
⊂ ∆(S ×Ai),

D∆ :=
{
δ(s,ai) : (s, ai) ∈ S ×Ai

}
⊂ ∆(S ×Ai),

where dπi×π−i

h (·, ·) ∈ ∆(S×Ai) denotes the distribution of (sh, ai,h) when playing policy πi×π−i

in the game, and δ(s,ai) ∈ ∆(S ×Ai) denotes the point mass at (s, ai).

Appendix B. Proofs and additional details for Section 3

B.1. Proof of Theorem 1

By the Bellman optimality equation, we have that for all (t, i, h, s) ∈ [T]× [m]× [H]× S

max
µi,h∈∆(Ai)

Dµi,h×πt
−i,h

[
ri,h + Ph+1V

†,πt
−i

i,h+1

]
(s) = V

†,πt
−i

i,h (s). (6)

On the other hand, by using Condition (1A) and the first inequality in Condition (1B), we have that
with probability 1− 2THδ, for all (t, i, h, s) ∈ [T]× [m]× [H]× S

max
µi,h∈∆(Ai)

Dµi,h×πt
−i,h

[
ri,h + Ph+1V

t
i,h+1

]
(s)

≤ Dπt
h

[
ri,h + Ph+1V

t
i,h+1

]
(s) +Gi,h(s, π

t−1, t− 1, δ) ≤ V t
i,h(s).

(7)

Therefore, by backward induction with the above two relations, we have that for all (t, i, h, s) ∈
[T]× [m]× [H]× S

V
t
i,h(s) ≥ V

†,πt
−i

i,h (s). (8)

23

WANG LIU BAI JIN

Similarly, by backward induction with the second inequality in Condition (1B), we can show that
for all (t, i, h, s) ∈ [T]× [m]× [H]× S

V
t
i,h(s) ≤ V πt

i,h (s) + 2
H∑

h′=h

Eπt

[
Gi,h′(sh′ , πt−1, t− 1, δ)

]
. (9)

As a result, we can upper bound the CCE-regret by

T∑
t=1

[V
†,πt

−i

i,1 − V πt

i,1] ≤ 2
T∑
t=1

H∑
h=1

Eπt

[
Gi,h(sh, π

t−1, t− 1, δ)
]
≤ Õ

(√
H2LT

)
,

where the final inequality follows from Condition (1C).

Finally the CCEGap of the output policy πout can be bounded with Markov’s inequality and the
choice of T = Õ

(
H2L/ε2

)
. ■

B.2. Accelerated algorithm

Algorithm 5 Accelerated V-Learning with Policy Replay (AVLPR)
1: Initialize π1 to be the uniform policy: π1

i,h(·|s)← Unif(Ai) for all (i, s, h), B0h ← ∅, I1 ← 0.
2: for iteration t = 1, . . . , T do
3: Execute πt to sample an episode, and update Bth = Bt−1

h

⋃
{sh}.

4: if ∃(i, h) ∈ [m]× [H] s.t. Ψi,h(Bth) ≥ Ψi,h(BIth) + 1 or t = 1 then
5: Set replay policy πt ← Unif({πτ}τ∈[t]) and V

t+1

i,H+1 ← 0.
6: for h = H, . . . , 1 do
7: Compute πt+1

h ← CCE-APPROX(πt, {V t+1

i,h+1}i∈[m], t).

8: Compute {V t+1

i,h }i∈[m] ← V-APPROX(πt, {V t+1

i,h+1}i∈[m], π
t+1
h , {Fi}i∈[m], t).

9: set It+1 ← t
10: else
11: set It+1 ← It and πt+1 ← πt

Output: πout sampled uniformly at random from {πt}t∈[T].

Algorithm We present our accelerated algorithm AVLPR in Algorithm 5. The main new ingredi-
ent in AVLPR is an infrequent update mechanism: The algorithm only performs the policy replay
and learns a new policy πt+1 if a certain triggering condition (Line 4) is satisfied, in which case the
learning procedure is the same as in VLPR. Otherwise, it simply executes the current policy πt for
one episode, adds the state sh into dataset Bth, and sets πt+1 ← πt (Line 3).

Intuitively, the triggering condition requires that the dataset to have accumulated significantly since
the last replay iteration It < t. This design is motivated by a doubling-trick type of observation:
The state visitation induced by πt (and thus the sample complexity) does not differ significantly
regardless of whether πt are updated or not, until some summary statistic (for example the visitation
count of any state in the tabular case) is found to have increased to at least two times (or any constant
factor > 1) since the last replay. We use Ψi,h(·) denote the logarithm of such a summary statistic,
so that a new replay is triggered only if Ψi,h(Bth) ≥ Ψi,h(BIth) + 1.

24

Condition and guarantee Concretely, AVLPR requires the following additional condition to en-
sure the validity of the infrequent update mechanism, which intuitively requires the bonus function
can increase at most by a constant factor between consecutive policy updates.

Condition 2 (Validity of infrequent policy update) The triggering criterion {Ψi,h}(i,h)∈[m]×[H]
in Algorithm 5 satisfies the following:

(a) With probability at least 1 − δ, for all (t, i, h), if Ψi,h(Bth) ≤ Ψi,h(BIth) + 1, then we must
have Gi,h(s, π

It , It, δ) ≤ 8×Gi,h(s, π
t, t, δ) for all s ∈ S;

(b) The number of replays triggered (i.e. Line 4) in Algorithm 5 within T iterations is upper
bounded by dreplay log T iterations with probability one, for some constant dreplay > 0.

We now state our meta-guarantee for AVLPR; the proof can be found in Appendix B.3.

Theorem 13 (Meta-guarantee for AVLPR) Suppose the subroutines in Algorithm 5 can be in-
stantiated such that Condition (1A)-(1C) & 2 holds with the same bonus functions {Gi,h}(i,h)∈[m]×[H]

and the deployed triggering functions {Ψi,h}(i,h)∈[m]×[H]. Then we have with probability at least
1− δ that

CCEReg(T) := maxi∈[m]

∑T
t=1

[
V

†,πt
−i

i,1 (s1)− V πt

i,1 (s1)

]
+

≤ Õ(
√
H2LT).

As a corollary, choosing T = Õ(H2L/ε2) ensures that the output policy πout of Algorithm 1
satisfies CCEGap(πout) ≤ ε further with probability at least10 0.99, and the total number of
episodes played is at most (with Γ := maxπ,π′ |Γexplore(π, π

′)|)

O
(
T +HT × dreplay log T × Γ

)
= Õ

(
H3LΓ · dreplay/ε2

)
.

B.3. Proof of Theorem 13

Let I denote the subset of [T] where Line 4 is triggered. By Condition 2, |I| ≤ dreplay log T .

By the Bellman optimality equation, we have that for all (t, i, h, s) ∈ [T]× [m]× [H]× S

max
µi,h∈∆(Ai)

Dµi,h×πt
−i,h

[
ri,h + Ph+1V

†,πt
−i

i,h+1

]
(s) = V

†,πt
−i

i,h (s). (10)

On the other hand, by using Condition (1A) and the first inequality in Condition (1B), we have that
with probability 1− 2THδ, for all (t, i, h, s) ∈ I × [m]× [H]× S

max
µi,h∈∆(Ai)

Dµi,h×πt+1
−i,h

[
ri,h + Ph+1V

t+1
i,h+1

]
(s)

≤ Dπt+1
h

[
ri,h + Ph+1V

t+1
i,h+1

]
(s) +Gi,h(s, π

t, t, δ) ≤ V t+1
i,h (s).

(11)

Therefore, by backward induction with the above two relations, we have that for all (t, i, h, s) ∈
I × [m]× [H]× S

V
t+1
i,h (s) ≥ V †,πt+1

−i

i,h (s), (12)

10. The success probability can be further boosted to any 1− δ by a similar argument as in Theorem 1.

25

WANG LIU BAI JIN

which implies that for all for all (t, i, h, s) ∈ [T]× [m]× [H]× S:

V
It+1
i,h (s) ≥ V †,πIt+1

−i

i,h (s).

Similarly, by backward induction with the second inequality in Condition (1B), we can show that
for all (t, i, h, s) ∈ I × [m]× [H]× S

V
t+1
i,h (s) ≤ V πt+1

i,h (s) + 2

H∑
h′=h

Eπt+1

[
Gi,h′(sh′ , πt, t, δ)

]
,

which implies that for all (t, i, h, s) ∈ [T]× [m]× [H]× S:

V
It+1
i,h (s) ≤ V πIt+1

i,h (s) + 2
H∑

h′=h

EπIt+1

[
Gi,h′(sh′ , πIt , It, δ)

]
.

As a result, we can upper bound the CCE-regret by
T∑
t=1

[V
†,πt

−i

i,1 − V πt

i,1]
(i)
=

T∑
t=1

[V
†,πIt+1

−i

i,1 − V πIt+1

i,1]

≤ 2
T∑
t=1

H∑
h=1

EπIt+1

[
Gi,h(sh, π

It , It, δ)
]

(ii)

≤ 16
T∑
t=1

H∑
h=1

EπIt+1

[
Gi,h(sh, π

t−1, t− 1, δ)
]

(iii)
= 16

T∑
t=1

H∑
h=1

Eπt

[
Gi,h(sh, π

t−1, t− 1, δ)
]

(iv)

≤ Õ
(√

H2LT
)
,

where (i) and (iii) uses the fact that πt = πIt+1, (iv) follows from Condition (1C), and (ii) follows
from Lemma 14.

Finally the CCEGap of the output policy πout can be bounded with Markov’s inequality and the
choice of T = Õ

(
H2L/ε2

)
. The total sample complexity would be bounded by

T + |I| ×H ×

 O
(
Γ · T

)︸ ︷︷ ︸
cost of CCE-APPROX

+ O
(
Γ · T

)︸ ︷︷ ︸
cost of V-APPROX

 = Õ
(
H3LΓdreplay/ε

2
)
.

Lemma 14 Suppose Condition 2 holds, then with probability at least 1 − δ, for all (t, i, h),
Gi,h(s, π

It , It, δ) ≤ 8×Gi,h(sh, π
t−1, t− 1, δ) for all s ∈ S.

Proof If Line 4 is triggered in the (t−1)th iteration, then It = t−1 and the result holds. Otherwise,
It = It−1 and for all (i, h), Ψi,h(Bt−1

h) ≤ Ψi,h(B
It−1

h) + 1, which, by Condition 2, implies

Gi,h(s, π
It , It, δ) = Gi,h(s, π

It−1 , It−1, δ) ≤ 8×Gi,h(sh, π
t−1, t− 1, δ)

for all s ∈ S.

26

B.4. Decentralized execution protocol for VLPR and AVLPR

In this section, we first describe our protocols, then argue that both VLPR and AVLPR can be made
decentralized (with minimal communication for AVLPR) under these protocols.

We consider the following protocol: Before the game starts, the players sample a sequence of ran-
dom bits with length polynomial in the number of episodes played, and all players can observe this
(shared) sequence of random bits. Using this sequence, the players can then implement shared ran-
domness in a decentralized fashion. For example, executing Unif({πτ}τ∈[T]) where each πτ is a
product policy can be done by using the shared random bits (with the same pre-determined protocol)
to sample a shared τ ∼ Unif(T), then executing πτ = πτ1 × · · · × πτm, which can be done in a fully
decentralized fashion.

We further assume that exploration policy mapping Γexplore(π, π
′) (which we recall is an ordered

set of tuples (π̃, P)) is marginally executable in the following sense: The ordering is known to all
the players, and for each (π̃, P) ∈ Γexplore(π, π

′) in an ordered fashion, P is known to all players,
and the marginal policy π̃i (conditioning on the shared random bits) is known to the i-th player as
long as the marginal policies πi and π′i (conditioning on the shared random bits) are known to the
i-th player.

We remark that this assumption is satisfied with typical choices of Γexplore, such as our instan-
tiations in both the tabular case and the linear case. In particular, our tabular setting chooses
Γexplore(π, π

′) = [(π1:h−1 ◦ π′h, [m])], which directly satisfies marginal executability. For the linear
setting, recall by (14) that we have chosen

Γexplore(π, π
′) =

[
(π̃, P) =

(
π1:h−1 × (Unif(Ai)× π′−i,h), {i}

)]m
i=1
.

It is straightforward to let all players know and abide by the schedule of the P (just round-robin
over {i} for i ∈ [m] in lexicographic order). Further the marginal policy π̃i of each π̃ in this list
is fully determined by πi and one of {Unif(Ai), π

′
i} (depending on whether i ∈ P), which verifies

the marginal executability assumption.

VLPR Observe that for the VLPR algorithm described in Algorithm 1-3, most of the steps (such
as NO-REGRET-ALG and OPTIMISTIC-REGRESS) are by nature decentralized and can be executed
by each player independently. The only coordinations involved are executing either the replay policy
πt = Unif({πτ}τ∈[T]) (Line 1 in Algorithm 2), or the exploration policies (π̃, P) ∈ Γexplore(π

t, µkh)

within Algorithm 2 and (π̃, P) ∈ Γexplore(π
t, πt+1

h) within Algorithm 3. Executing πt can be done
by using the shared randomness described above. Further, as both µki,h and πt+1

i,h are known to the i-
th player, and by the marginal executability assumption, all the exploration policies can be executed
in a decentralized fashion. This verified the claim for VLPR.

AVLPR The only difference in AVLPR over VLPR is to check the triggering condition in Line 4
of Algorithm 5, which in each iteration t ∈ [T] requires one communication of m bits, one for each
player (indicator of whether the condition holds for player i ∈ [m]). The players will enter the replay
part if the triggering condition holds for at least one player, and start the next episode otherwise.
Since all players know whether they have entered the replay part in each iteration, the replay index
It is a common knowledge that can be maintained by all players simultaneously. Further, we can let
this communication can be triggered only when the triggering condition holds, which by Condition 2
happens for at most Õ(dreplay log T) times within T iterations of play.

27

WANG LIU BAI JIN

Appendix C. Proofs for Section 4.1

C.1. Details of the linear AVLPR Algorithm

Understanding Assumption 3 Assumption 3 has the following implication, which is used through-
out the design and analysis of the linear function approximation case.

Remark 15 Assumption 3 implies the following statement. For any (i, h) ∈ [m]×[H], any function
V = V i,h+1 : S → [0, H] and any policy π ∈ Πlin, there exists θh,π−i,V ∈ Rd such that

Dδai×π−i,h

[
ri,h + PhV i,h+1

]
(s) = ϕi(s, ai)

⊤θh,π−i,V for all (s, ai) ∈ S ×Ai. (13)

This can be seen by picking fi,h+1(s, ai) = V (s) and applying Assumption 3.

Choice of Ψi,h The switching condition in Algorithm 5 is chosen as

Ψi,h(B) := log det

I + 1

Ai

∑
s∈B

∑
ai∈Ai

ϕi(s, ai)ϕi(s, ai)
⊤

 .

Processing Dinit and Dsample For linear function approximation, the dataset Di
init will then be

used to compute H feature covariance matrices {Σ̂π
i,h}h∈[H] that measures the coverage of the ex-

ploration policy π, defined as

Σ̂π
i,h :=

1

|Di
init| ·Ai

∑
sh∈Di

init

∑
ai∈Ai

ϕi(sh, ai)ϕi(sh, ai)
⊤.

Additionally we define the population version

Σπ
i,h = Esh∼π Ea∼Unif(Ai)

[
ϕi(sh, ai)ϕi(sh, ai)

⊤
]
.

For linear function approximation we choose the exploration scheme Γexplore(π, µh) in Algorithm 2
and 3 as the ordered set

[(π1:h−1 ◦ (Unif(A1)× µ−1,h), {1}) , · · · , (π1:h−1 ◦ (Unif(Am)× µ−m,h), {m})]. (14)

As a result, Dk,i
sample will contain exactly one element, denoted as (skh, a

k
i,h, y

k
i,h).

NO-REGRET-ALG Condition (1A) can be understood as a state-wise regret bound with respect
to the loss function ℓki,h(s, ai) := Dδai×µk

−i,h
[ri,h + Ph+1V i,h+1](s). As per Assumption 3, ℓki,h

can be written as a linear function ℓki,h(s, ai) = ⟨θki,h, ϕi(s, ai)⟩. In order to guarantee a state-wise
regret, we first construct a linear estimator of ℓki,h for all (s, ai) ∈ S ×Ai:

ℓ̂ki,h(s, ai) = ⟨θ̂ki,h, ϕi(s, ai)⟩,

where
θ̂ki,h :=

(
Σ̂π
i,h + λI

)−1
ϕi(s

k
i,h, a

k
i,h)y

k
i,h.

28

This estimator is also used in adversarial linear bandits (Neu and Olkhovskaya, 2020). However,
directly running an exponential weights algorithm with this estimator would not work in our setting
because Assumption 3 requires µkh to lie in (the convex hull of) Πlin; otherwise under µk−i the
resulting action-value function cannot be approximated with a linear function. To that end, we
first make the observation that the per-state bandit regret (with the comparator in ∆(Ai)) can be
equivalently viewed as the regret of an online linear optimization problem (with the comparator in
the convex hull of the action feature vectors)

max
µi,h∈∆Ai

K∑
k=1

(
Dµi,h×µk

−i,h
− Dµk

h

)
(ri,h + PhV i,h+1)(s)

= max
µi,h∈∆Ai

K∑
k=1

⟨µi,h − µki,h(· | s), ℓki,h(s, ·)⟩ = max
ϕ∈CH(Φi(s))

K∑
k=1

⟨ϕ− Φi(s)
⊤µki,h, θ

k
i,h⟩.

Here Φi(s) ∈ RAi×d is a matrix that stacks all feature vectors {ϕi(s, ·)}, while we slightly abuse
notation to use CH(·) to denote the convex hull of the rows of the matrix.

We will then apply the Expected Follow-the-Perturbed-Leader algorithm (Hazan and Minasyan
(2020, Algorithm 3); see also Hazan et al. (2016)) to the online linear optimization problem, namely
choosing

Φi(s)
⊤µki,h = Ev∼V

 argmax
ϕ∈CH(Φi(s))

⟨ϕ,
∑
k′≤k

θ̂k
′

i,h + v/η⟩

 ,
where V is chosen as the uniform distribution over the ellipse {u | u⊤(Σ̂π

i,h + λI)u ≤ 1}, and η is
a parameter that plays a role similar to learning rate. This induces the following policy

µk+1
i,h (ai|s) := Pr

v∼V

ai = argmax
a′i∈Ai

⟨ϕi(s, a′i),
∑
k′≤k

θ̂k
′

i,h + v/η⟩

 , (15)

which lies in the convex hull of Πlin and therefore satisfies the requirement of Assumption 3.

OPTIMISTIC-REGRESS The optimistic regression is implemented using ridge regression on the
dataset Di

reg, which contains samples of (sh, ai,h, yi,h) where yi,h = ri,h + V i,h+1(sh+1). More
specifically,

θ̂i,h ← argmin
θ

1

K

∑
(sh,ai,h,yi,h)∈Di

reg

[
ϕi(sh, ai,h)

⊤θ − yi,h
]2

+ λ∥θ∥22,

Qi,h(s, ai)←
(
ϕi(s, ai)

⊤θ̂i,h +
3

2
Gi,h(s, π,K, δ)

)
∧ (H − h+ 1),

V i,h(s)← ⟨πi,h(· | s), Qi,h(s, ·)⟩.

Computational efficiency We remark here that V i,h(s) does not need to be computed for every
s but only for states in the dataset, which can be done in polynomial time. Also, the policy in (15)
does not need to be fully computed either, because executing the algorithm only requires an efficient
sampling from the policy µk+1

i,h , which can in turn easily achieved by sampling v ∼ V .

29

WANG LIU BAI JIN

C.2. Proof of Condition (1A)

As outlined in Section 4.1, we will first decompose the the per-state regret in Condition (1A) as the
per-state regret measured on the loss estimator and statistical error terms:

max
µi,h∈∆Ai

K∑
k=1

(
Dµi,h×µk

−i,h
− Dµk

h

)
(ri,h + PhV i,h+1)(s)

= max
ϕ∈CH(Φi(s))

K∑
k=1

⟨ϕ− Φi(s)µ
k
i,h(· | s), θ̂ki,h⟩︸ ︷︷ ︸

(A)

+ max
ϕ∈CH(Φi(s))

K∑
k=1

⟨ϕ, θki,h − θ̂ki,h⟩︸ ︷︷ ︸
(B)

+
K∑
k=1

⟨Φi(s)µ
k
i,h(· | s), θ̂ki,h − θki,h⟩︸ ︷︷ ︸

(C)

.

In Appendix D, we prove that under the choice of η = 1/(dH
√
K log δ−1) and λ = Θ̃(dmaxiAi/K),

the above three terms can be respectively controlled as following: with probability at least 1 − δ,
for all s ∈ S

Term (A) ≤ sup
ai∈Ai

∥ϕi(s, ai)∥(Σπ
i,h+λI)−1 · Õ

(
dH
√
K(max

i
Ai)

)
,

Term (B) ≤ sup
ai∈Ai

∥ϕi(s, ai)∥(Σπ
i,h+λI)−1 × Õ

(
dH
√
K(max

i
Ai)

)
,

Term (C) ≤ sup
ai∈Ai

∥ϕi(s, ai)∥(Σπ
i,h+λI)−1 × Õ

(
dH
√
K(max

i
Ai)3

)
+O(1).

As a result, we can pick

Gi,h(s, π,K, δ) = sup
ai∈Ai

∥ϕi(s, ai)∥(Σπ
i,h+λI)−1 × Θ̃

(
dHA1.5

i√
K

)
+Θ

(
1

K

)
.

C.3. Proof of Condition (1B)

Consider a fixed (i, h) ∈ [m]× [H]. Denote Di
reg as{

(sjh, a
j
i,h, y

j
i,h)
}
j∈[K]

.

By Assumption 3, there exists θ∗i,h such that for all j,

E[yji,h|s
j
h, a

j
i,h] = Dδ

a
j
i,h

×π−i,h
[ri,h + Ph+1V i,h+1](s

j
h) = ⟨ϕi(s

j
h, a

j
i,h), θ

∗
i,h⟩.

Define Σ̂reg,h = 1
K

∑K
j=1 ϕi(s

j
h, a

j
i,h)ϕi(s

j
h, a

j
i,h)

⊤+λI and ζj = yji,h−Ph

[
(V i,h+1 + ri,h)

] (
sjh, a

j
i,h

)
.

Here ζj is mean-zero and H-bounded. It follows that ∀(s, ai) ∈ S ×Ai∣∣∣ϕi(s, ai)⊤θ̂i,h − Dδai×π−i,h
[ri,h + Ph+1V i,h+1](s)

∣∣∣
30

=
∣∣∣ϕi(s, ai)⊤θ̂i,h − ϕi(s, ai)⊤θ⋆i,h∣∣∣

=

∣∣∣∣∣∣ϕi(s, ai)⊤Σ̂−1
reg,h

1

K

K∑
j=1

ϕi(s
j
h, a

j
i,h)
(
ϕi(s

j
h, a

j
i,h)

⊤θ⋆i,h + ζj

)
− ϕi(s, ai,h)⊤θ⋆i,h

∣∣∣∣∣∣
≤∥ϕi(s, ai,h)∥Σ̂−1

reg,h
×


∥∥∥∥∥∥ 1

K

K∑
j=1

ϕi(s
j
h, a

j
i,h)ζj

∥∥∥∥∥∥
Σ̂−1

reg,h

+
√
λBθ

 .

Lemma 16 Suppose we pick λ = Θ(d log(dK/δ)/K), then with probability 1− δ∥∥∥∥∥∥
K∑
j=1

ϕi(s
j
h, a

j
i,h)ζj

∥∥∥∥∥∥
Σ−1

reg,h

≤ O
(√

KdH2 log(KdH/δ)
)
.

The proof of this lemma is identical to that of Lemma 19. Finally note that by Lemma 17, with
probability 1− δ,

Σ̂reg,h ≽
1

2
Σπ
i,h + λI −O

(
d log(dK/δ)

K

)
I ≽

1

2

(
Σπ
i,h + λI

)
.

Therefore ∣∣∣ϕi(s, ai)⊤θ̂i,h − [Pπt

h (V i,h+1 + ri,h)
]
(s, ai)

∣∣∣
≤ ∥ϕi(s, ai)∥Σ̂−1

reg,h
· O
(
dH
√
1/K log(dK/δ)

)
≤ ∥ϕi(s, ai)∥(Σπ

i,h+λI)−1 · O
(
dH
√
1/K log(dK/δ)

)
≤ 1

2
Gi,h(s, π,K, δ).

We conclude that ∀(s, ai)([
Pπt

h (V i,h+1 + ri,h)
]
(s, a) +Gi,h(s, π,K, δ)

)
∧ (H − h+ 1) ≤ Qi,h(s, a)

≤
(
Pπt

h (V i,h+1 + ri,h) (s, a) + 2Gi,h(s, π,K, δ)
)
∧ (H − h+ 1).

It follows that

min
{
Dπh

[
ri,h + Ph+1V i,h+1

]
(s) +Gi,h(s, π,K, δ), H − h+ 1

}
≤ V i,h(s),

V i,h(s) ≤ Dπh

[
ri,h + Ph+1V i,h+1

]
(s) + 2Gi,h(s, π,K, δ).

C.4. Proof of Condition (1C)

Denote

Xt := E
[
ϕi(sh, ai,h)ϕi(sh, ai,h)

⊤ | sh ∼ πt1:h−1, ai,h ∼ Unif(Ai)
]
, St :=

t∑
τ=1

Xτ+λ0Id×d,

31

WANG LIU BAI JIN

where λ0 = Õ(d). Then using the definition of Gi,h in Equation (3),

T∑
t=1

Eπt+1

[
Gi,h(s, π

t, t, δ)
]

≤Õ

(
d(maxiAi)

1.5H√
t

·
T∑
t=1

E
[√

t max
ai,h∈Ai

∥ϕ(sh, ai,h)∥S−1
t
| sh ∼ πt+1

1:h−1

])
+ Õ (1)

≤Õ

(
d(max

i
Ai)

2.5H ·
T∑
t=1

E
[
∥ϕ(sh, ai,h)∥S−1

t
| sh ∼ πt+1

1:h−1, ai,h ∼ Unif(Ai)
])

+ Õ (1)

≤Õ

d(max
i
Ai)

2.5H ·

√√√√T ·
T∑
t=1

E
[
∥ϕ(sh, ai,h)∥2S−1

t

| sh ∼ πt+1
1:h−1, ai,h ∼ Unif(Ai)

]+ Õ (1)

≤Õ

d(max
i
Ai)

2.5H ·

√√√√T ·
T∑
t=1

E
[
tr(Xt+1S

−1
t)
]+ Õ (1) = Õ

(√
d3(max

i
Ai)5H2T

)
.

C.5. Proof of Condition 2

Let us fix (i, h, t) ∈ [m] × [H] × [T]. Define Ŝt := I + 1
Ai

∑
s∈Bt

h

∑
ai∈Ai

ϕi(s, ai)ϕi(s, ai)
⊤.

Then
Ψi,h(Bth)−Ψi,h(BIth) = log det

(
ŜtŜ

−1
It

)
.

Therefore that Ψi,h(Bth)−Ψi,h(BIth) ≤ 1 implies

∥Ŝ
1
2
t Ŝ

−1
It
Ŝ

1
2
t ∥2 ≤ 2,

which further implies
Ŝt ≼ 2ŜIt .

In other words, to prove Condition 2 it suffices to show that Ŝt ≼ 2ŜIt implies

t(Σπt

i,h + λtI) ≤ 8It

(
ΣπIt

i,h + λItI
)
,

where λt = Θ̃(dmaxiAi/t). This is equivalent to showing that

t(Σπt

i,h + λtI) ≥ 8It

(
ΣπIt

i,h + λItI
)
,

implies Ŝt ≽ 2ŜIt . By Lemma 17, with probability 1− δ,

Ŝt ≽
t

2
Σπt

i,h − Θ̃(d)I ≽ 4ItΣ
πIt

i,h + Θ̃(d)I ≽ 2ŜIt .

Finally taking a union bound w.r.t. i, h and t proves part (a) of the condition.

As for the second part, we make the observation that Ψi,h(∅) = log det I = 1, and

Ψi,h(Dt
h) ≤ log det ŜT ≤ d log (∥ST ∥2) ≤ d log T.

Therefore the total number of switches is at most dmH log T , i.e. part (b) is satisfied with dreplay =
dmH .

32

C.6. Sample complexity for linear function approximation

Sections C.2 through C.3 show that Conditions (1A) through (1C) are satisfied with

Gi,h(s, π,K, δ) = sup
ai∈Ai

∥ϕi(s, ai)∥(Σπ
i,h+λI)−1 × Θ̃

(
dH(maxiAi)

1.5

√
K

)
+Θ

(
1

K

)
.

and

L = Õ
(
max
i∈[m]

d3(max
i
Ai)

5H2

)
.

Finally Section C.5 verified that Condition 2 is satisfied with dreplay = dmH . By (14), Γ = m.
Therefore by applying Theorem 13, we obtain following the sample complexity bound for finding
an ε-CCE

Õ
(
H3LΓdreplay

ε2

)
= Õ

(
d4m2H6maxi∈[m]A

5
i

ε2

)
.

Appendix D. Proofs for Appendix C.2

D.1. Relative concentration

Consider the following random process: at time step t, we (randomly) picks a distribution Dt over
the d-dimensional unit ball based on {xτ}τ∈[t−1], and then sample xt ∼ Dt. Denote by Σt the co-
variance matrix of Dt. We have the following relative concentration lemma regarding the closeness
between the empirical temporal-average covariance and the population one in the multiplicative
sense.

Lemma 17 With probability at least 1− δ, for all t ∈ [T]

1

2

∑
τ∈[t]

Στ − βI ⪯
∑
τ∈[t]

xτx
⊤
τ ⪯ 2

∑
τ∈[t]

Στ + βI

where β = Θ(d log(dT/δ)).

Proof Let us first fix t ∈ [T]. Fix any w ∈ Rd with ∥w∥2 = 1. Define Wτ = ⟨xτ , w⟩2. It follows
that E[Wτ] = w⊤Στw, and 0 ≤Wτ ≤ 1. By Bernstein’s inequality, with probability 1− δ′∣∣∣∣∣∣

∑
τ∈[t]

(Wτ − E[Wτ])

∣∣∣∣∣∣ ≤
√
4 log(1/δ′)

∑
τ∈[t]

E[W 2
τ] +O(log 1/δ′) (16)

≤
√
4 log(1/δ′)

∑
τ∈[t]

E[Wτ] +O(log 1/δ′) (17)

≤ 1

2

∑
τ∈[t]

E[Wτ] +O(log 1/δ′). (18)

Therefore with probability 1− δ′

∑
τ≤t

Wτ ≤ 2E

∑
τ≤t

Wτ

+O

(
log

(
1

δ′

))
,

33

WANG LIU BAI JIN

∑
τ≤t

Wτ ≥
1

2
E

∑
τ≤t

Wτ

−O(log(1

δ′

))

It remains to construct an ε′-cover Wε′ of the d-sphere, where we choose ε′ = 0.01/T . It follows
that with probability 1− δ, for all w in the unit sphere,∑

τ≤t

⟨w, xτ ⟩2 ≤ 2E[
∑
τ≤t

⟨w, xτ ⟩2] +O(log(|Wε′ |/δ),

∑
τ≤t

⟨w, xτ ⟩2 ≥
1

2
E[
∑
τ≤t

⟨w, xτ ⟩2]−O(log(|Wε′ |/δ).

This implies

1

2

∑
τ∈[t]

Στ −O(log(|Wε′ |/δ)I ⪯
∑
τ∈[t]

xτx
⊤
τ ⪯ 2

∑
τ∈[t]

Στ +O(log(|Wε′ |/δ))I

Replacing δ by δ/T and plugging in |Wε′ | ≤
(
3
ε′

)d (Vershynin, 2018, Corollary 4.2.13) proves the
lemma.

D.2. Controlling Term (A) in Condition (1A)

In order to evoke the analysis of Expected FPL, we make the observation that

Term (A) = max
µi∈∆Ai

K∑
k=1

⟨µi − µki,h(· | s), ℓ̂ki,h(s, ·)⟩

= max
µi∈∆Ai

K∑
k=1

⟨µi − µki,h(· | s),Φi(s, ·)⊤θ̂ki,h⟩

= max
x∈CH({ϕi(s,·)})

K∑
k=1

⟨x− Φi(s, ·)µki,h(·|s), θ̂ki,h⟩.

Note that in our algorithm,

µki,h(ai|s) := Pr
v∼V

[
ai = argmax

〈
ϕi(s, ·),

∑
k′<k

θ̂k
′

i,h +
1

η
(Σ̂π

i,h + λI)−1/2v

〉]
,

which implies

Φi(s, ·)µki,h(·|s) = Ev∼V argmax
x∈CH({ϕi(s,·)})

〈
(Σ̂π

i,h + λI)−1/2x, (Σ̂π
i,h + λI)1/2

∑
k′<k

θ̂k
′

i,h +
1

η
v

〉
.

This is identical to the Expected Follow-the-Perturbed-Leader algorithm (see e.g. (Hazan et al.,
2016, Algorithm 17)) on a sequence of linear loss vectors

(Σ̂π
i,h + λI)1/2θ̂1i,h, · · · , (Σ̂π

i,h + λI)1/2θ̂Ki,h.

34

Therefore it follows from the regret of Expected FPL (Hazan and Minasyan, 2020, Theorem 10)
that, by choosing V to be the uniform distribution over the d-dimensional unit ball,

Term(A) ≤ sup
ai∈Ai

∥ϕi(s, ai)∥(Σ̂π
i,h+λI)−1 ·

[
1

η
+ ηd

K∑
k=1

∥θ̂ki,h∥2(Σ̂π
i,h+λI)

]
.

By Lemma 18, with probability at least 1− δ
K∑
k=1

∥θ̂ki,h∥2Σ̂π
i,h+λI

= O
(
dK +

log δ−1

λ

)
.

Therefore, by plugging in η = 1/(dH
√
(maxiAi)K log δ−1) and λ = Θ̃(d(maxiAi)/K), we

have

Term(A) ≤ sup
a∈Ai

∥ϕi(s, ai)∥(Σ̂π
i,h+λI)−1 · O

(
dH
√
K(max

i
Ai) log δ−1

)
= sup

a∈Ai

∥ϕi(s, ai)∥(Σπ
i,h+λI)−1 · O

(
dH
√
K(max

i
Ai) log δ−1

)
,

where the equality follows from Lemma 17.

Lemma 18 With probability 1− δ,
K∑
k=1

∥θ̂ki,h∥2(Σ̂π
i,h+λI)−1 = O

(
dKH2 +

H2 log δ−1

λ

)
.

Proof Define
xk := ϕi(s

k
i,h, a

k
i,h), zk := x⊤k (Σ̂

π
i,h + λI)−1xk.

By definition
K∑
k=1

∥θ̂ki,h∥2(Σ̂π
i,h+λI)−1 ≤ H2

K∑
k=1

zk.

Moreover, {zk}k∈[K] are i.i.d. samples satisfying that

E[zk] = Tr

(
Σπ
i,h

(
Σ̂π
i,h + λI

)−1
)
≤ O(d),

where the inequality follows from Lemma 17 and the choice of λ, and

E[z2k] ≤
1

λ
· E [zk] ≤ O

(
d

λ

)
,

and
|zk| ≤

1

λ
.

Therefore by Bernstein’s inequality, with high probability∑
k

zk ≤ O

(
dK +

√
dK log δ−1

λ
+

log δ−1

λ

)
= O

(
dK +

log δ−1

λ

)
.

35

WANG LIU BAI JIN

D.3. Controlling Term (B) in Condition (1A)

Consider a fixed player i ∈ [m] and step h ∈ [H]. To simplify notations, denote

xk := ϕi(s
k
i,h, a

k
i,h), yk := rki,h + Vi,h+1(s

k
h+1), ζk := yk − x⊤k θki,h.

For any (s, ai) ∈ S ×Ai:

K∑
k=1

⟨ϕi(s, ai), θ̂ki,h − θki,h⟩

=

〈
ϕi(s, ai),

K∑
k=1

(
θ̂ki,h − θki,h

)〉

=

〈
ϕi(s, ai),

K∑
k=1

((
Σ̂π
i,h + λI

)−1
xkyk − θki,h

)〉

=ϕi(s, a)
⊤
(
Σ̂π
i,h + λI

)−1
[

K∑
k=1

xk

(
x⊤k θ

k
i,h + ζk

)
−
(
Σ̂π
i,h + λI

) K∑
k=1

θki,h

]

≤∥ϕi(s, ai)∥(Σ̂π
i,h+λI)

−1

[√
λBθK +

∥∥∥∥∥
K∑
k=1

xkζk

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1︸ ︷︷ ︸

Term (B1)

+

∥∥∥∥∥
K∑
k=1

(
xkx

⊤
k − Σ̂π

i,h

)
θki,h

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1︸ ︷︷ ︸

Term (B2)

]
.

By Lemma 19, 20, the choice of λ = Õ(d(maxiAi)/K) and relative concentration (Lemma 17),

Term (B) ≤ Õ
(
∥ϕi(s, ai)∥(Σπ

i,h+λI)
−1 ×Hd

√
K(max

i
Ai)

)
.

Lemma 19 (Term (B1)) With probability at least 1− δ, we have∥∥∥∥∥
K∑
k=1

xkζk

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1

= O
(√

KdH2 log(KdH/δ) +
dH log(KdH/δ)√

λ

)
.

Proof Consider a fixed v ∈ Rd with ∥v∥2 = 1. Define

zk := v⊤
(
Σ̂π
i,h + λI

)−1/2
xkζk.

Note that {zk}Kk=1 is a martingale with conditional variance and range bounded by

|zk| ≤ Hλ−1/2,

36

and

Var(zk | z1:k−1) = E
[
ζ2kv

⊤
(
Σ̂π
i,h + λI

)−1/2
xkx

⊤
k

(
Σ̂π
i,h + λI

)−1/2
v

]
≤ H2

∥∥∥∥(Σ̂π
i,h + λI

)−1/2
Σπ
i,h

(
Σ̂π
i,h + λI

)−1/2
∥∥∥∥
2

≤ O(H2),

where the second inequality uses Lemma 17, the definition of Σ̂π
i,h and the choice of λ.

By Freedman inequality, ∣∣∣∣∣
K∑
k=1

zk

∣∣∣∣∣ ≤ O
(√

KH2 log δ−1 +
H log δ−1

√
λ

)
.

Finally, by taking a union bound for all v from a (
√
λ/(HK))-cover of the d-dimensional unit ball,

we conclude that∥∥∥∥∥
K∑
k=1

xkζk

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1

= max
v: ∥v∥2=1

∣∣∣∣∣v⊤(Σ̂π
i,h + λI

)−1/2
K∑
k=1

xkζk

∣∣∣∣∣
≤ O

(√
KdH2 log(KdH/δ) +

dH log(KdH/δ)√
λ

)
.

Lemma 20 (Term (B2)) With probability at least 1− δ, we have∥∥∥∥∥
K∑
k=1

(
xkx

⊤
k − Σ̂π

i,h

)
θki,h

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1

= O
(√

KdB2
θ log(KdBθ/δ) +

dBθ log(KdBθ/δ)√
λ

)
.

Proof By triangle inequality and relative concentration (Lemma 17), we have∥∥∥∥∥
K∑
k=1

(
xkx

⊤
k − Σ̂π

i,h

)
θki,h

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1

≤

∥∥∥∥∥
K∑
k=1

(
xkx

⊤
k − Σπ

i,h

)
θki,h

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1

+

∥∥∥∥∥(Σπ
i,h − Σ̂π

i,h

) K∑
k=1

θki,h

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1

≤O

∥∥∥∥∥
K∑
k=1

(
xkx

⊤
k − Σπ

i,h

)
θki,h

∥∥∥∥∥
(Σπ

i,h+λI)
−1

+

∥∥∥∥∥(Σπ
i,h − Σ̂π

i,h

) K∑
k=1

θki,h

∥∥∥∥∥
(Σπ

i,h+λI)
−1

.
Consider an arbitrary v ∈ Rd with ∥v∥2 = 1. Define

zk := v⊤
(
Σπ
i,h + λI

)−1/2
(
xkx

⊤
k − Σπ

i,h

)
θki,h.

37

WANG LIU BAI JIN

Notice that {zk}Kk=1 is a martingale with conditional variance and range bounded by

|zk| ≤ Bθλ
−1/2,

and

Var(zk | z1:k−1) ≤ E
[(
v⊤
(
Σπ
i,h + λI

)−1/2
xkx

⊤
k θ

k
i,h

)2]
≤ B2

θE
[(
v⊤
(
Σπ
i,h + λI

)−1/2
xk

)2]
= B2

θE
[
v⊤
(
Σπ
i,h + λI

)−1/2
xkx

⊤
k

(
Σπ
i,h + λI

)−1/2
v
]

= B2
θv

⊤(Σπ
i,h + λI

)−1/2
(Σπ

i,h)
(
Σπ
i,h + λI

)−1/2
v ≤ O(B2

θ),

where the second equality uses the fact that E[xkx⊤k] = Σπ
i,h and the last inequality uses Lemma 17.

By Freedman inequality, ∣∣∣∣∣
K∑
k=1

zk

∣∣∣∣∣ ≤ O
(√

KB2
θ log δ

−1 +
Bθ log δ

−1

√
λ

)
.

Finally, by taking a union bound for all v from a (
√
λ/(BθK))-cover of the d-dimensional unit ball,

we conclude that ∥∥∥∥∥
K∑
k=1

(
xkx

⊤
k − Σπ

i,h

)
θki,h

∥∥∥∥∥
(Σπ

i,h+λI)
−1

≤O
(√

KdB2
θ log(KdBθ/δ) +

dBθ log(KdBθ/δ)√
λ

)
.

Now recall that Σ̂π
i,h is estimated by using K samples i.i.d. sampled from πt, so we can simply

repeat the above concentration arguments for controlling
∥∥∥∑K

k=1

(
xkx

⊤
k − Σπ

i,h

)
θki,h

∥∥∥
(Σπ

i,h+λI)
−1

to upper bound
∥∥∥(Σπ

i,h − Σ̂π
i,h

)∑K
k=1 θ

k
i,h

∥∥∥
(Σπ

i,h+λI)
−1 , which results in the same bound as above.

D.4. Controlling Term (C) in Condition (1A)

Consider a fixed player i ∈ [m] and step h ∈ [H]. To simplify notations, denote

xk := ϕi(s
k
i,h, a

k
i,h), yk := rki,h + Vi,h+1(s

k
h+1), ζk := yk − x⊤k θki,h.

38

We have the following error decomposition similar to the one in controlling Term (B): for any s ∈ S,

Term (C) =
K∑
k=1

⟨Φsµ
k
i,h(· | s), θki,h − θ̂ki,h⟩

=
∑
ai∈Ai

ϕi(s, ai)
⊤

(
K∑
k=1

µki,h(ai | s)θki,h −
K∑
k=1

µki,h(ai | s)θ̂ki,h

)

=
∑
ai∈Ai

ϕi(s, ai)
⊤
(
Σ̂π
i,h + λI

)−1
[(

Σ̂π
i,h + λI

) K∑
k=1

µki,h(ai | s)θki,h

−
K∑
k=1

µki,h(ai | s)xk
(
x⊤k θ

k
i,h + ζk

)]

≤
∑
ai∈Ai

∥ϕi(s, ai)∥(Σ̂π
i,h+λI)

−1

[√
λBθK +

∥∥∥∥∥
K∑
k=1

µki,h(ai | s)xkζk

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1︸ ︷︷ ︸

(C1)

+

∥∥∥∥∥
K∑
k=1

µki,h(ai | s)
(
xkx

⊤
k − Σ̂π

i,h

)
θki,h

∥∥∥∥∥
(Σ̂π

i,h+λI)
−1︸ ︷︷ ︸

(C2)

]
.

(19)

It is easy to verify that the same arguments for bounding Term (B1) and (B2) can be used to bound
Term (C1) and (C2), respectively. Formally, we have the following counterparts of Lemma 19 and
20 for bounding Term (C1) and (C2).

Lemma 21 (Term (C1)) Consider a fixed pair of state and action (s, ai) ∈ S × Ai and a unit
vector v ∈ Rd. With probability at least 1− δ, we have∣∣∣∣∣v⊤(Σ̂π

i,h + λI
)−1/2

K∑
k=1

µki,h(ai | s)xkζk

∣∣∣∣∣
=O

(√
KH2 log(1/δ) +

H log(1/δ)√
λ

)
.

Lemma 22 (Term (C2)) Consider a fixed pair of state and action (s, ai) ∈ S × Ai and a unit
vector v ∈ Rd. With probability at least 1− δ, we have∣∣∣∣∣v⊤(Σ̂π

i,h + λI
)−1/2

K∑
k=1

µki,h(ai | s)
(
xkx

⊤
k − Σ̂π

i,h

)
θki,h

∣∣∣∣∣
=O

(√
KB2

θ log(1/δ) +
Bθ log(1/δ)√

λ

)
.

The proofs of Lemma 21 and 22 follow almost the same as the first half of Lemma 19 and 20 (before
taking the union bound) respectively, so we omit them here.

39

WANG LIU BAI JIN

To control Term (C) with Lemma 21 and 22, we needs to take a union bound for all state and action
(s, ai) ∈ S × Ai and unit vector v ∈ Rd. The following lemma essentially says that such union
bound will only incur an additional factor of Õ(dAi) in the upper bound.

Lemma 23 Consider a policy π defined as

πi,h(ai|s) := Pr
v∼V

[ai = argmax⟨ϕi(s, ·), w +Wv⟩] ,

where w ∈ Rd s.t. ∥w∥2 ≤ γ , αId×d ⪯W ⪯ βId×d, V denotes the uniform distribution over the d-
dimensional unit ball. Then for any states s, s′ ∈ S satisfying maxai∈Ai ∥ϕi(s, ai)−ϕi(s′, ai)∥2 ≤
ε, we have ∥∥∥Ea∼πi,h(·|s)[ϕi(s, ai)]− Ea∼πi,h(·|s′)[ϕi(s

′, ai)]
∥∥∥
2
= Õ

(
dβγ
√
ε

α2

)
.

We defer the proof of Lemma 23 to the end of this subsection.

By standard discretization argument, there exists a subset Sε of S (i.e., a discrete cover of S w.r.t.
metric d(s, s′) = maxai∈Ai ∥ϕi(s, ai)− ϕi(s′, ai)∥2) such that

• for any s ∈ S, there exists s′ ∈ Sε satisfying

max
ai∈Ai

∥ϕi(s, ai)− ϕi(s′, ai)∥2 ≤
1

poly(Bθ,K, d,H,Ai, λ−1, η−1, δ−1)
,

• and
log |Sε| ≤ Õ(dAi).

For all s ∈ S: denote by s′ the closest neighbour of s in Sε w.r.t. metric d(s, s′) = maxai∈Ai ∥ϕi(s, ai)−
ϕi(s

′, ai)∥2,

K∑
k=1

⟨Φsµ
k
i,h(· | s), θ̂ki,h − θki,h⟩

(i)

≤
K∑
k=1

⟨Φs′µ
k
i,h(· | s′), θ̂ki,h − θki,h⟩+ 1

(ii)

≤
∑
ai∈Ai

∥ϕi(s′, ai)∥(Σ̂π
i,h+λI)

−1

[√
λBθK

+ max
v: ∥v∥2=1

∣∣∣∣∣v⊤(Σ̂π
i,h + λI

)−1/2
K∑
k=1

µki,h(ai | s′)
(
xkx

⊤
k − Σ̂π

i,h

)
θki,h

∣∣∣∣∣
+ max

v: ∥v∥2=1

∣∣∣∣∣v⊤(Σ̂π
i,h + λI

)−1/2
K∑
k=1

µki,h(ai | s′)
(
xkx

⊤
k − Σ̂π

i,h

)
θki,h

∣∣∣∣∣
]
+ 1

(iii)

≤ max
ai∈Ai

∥ϕi(s′, ai)∥(Σπ
i,h+λI)

−1 × Õ
(
dH
√
K(max

i
Ai)3

)
+ 1

40

(iv)

≤ max
ai∈Ai

∥ϕi(s, ai)∥(Σπ
i,h+λI)

−1 × Õ
(
dH
√
K(max

i
Ai)3

)
+ 1,

where (i) uses the definition of µki,h, Sε and Lemma 23, (ii) uses Equation (19), (iii) uses Lemma
21 and 22 along with a union bound for all s′ ∈ Sε and all v from a

1/poly(Bθ,K, d,H,Ai, λ
−1, η−1, δ−1)-cover

of the d-dimensional unit ball, and (iv) uses the fact that s′ is the closest neighbour of s in Sε.

As a result,

Term (C) ≤ max
ai∈Ai

∥ϕi(s, ai)∥(Σπ
i,h+λI)

−1 × Õ
(
dH
√
K(max

i
Ai)3

)
+ 1.

Proof [Proof of Lemma 23] To simplify notations, denote xai = ϕi(s, ai) and xai = ϕi(s
′, ai),

ai ∈ Ai. We cluster the actions in Ai into {Cv}nv=1 according to the following rule: action ai and
a′i are in the same cluster if and only if ∥xai − xa′i∥2 ≤ ∆, where ∆ > 10ε is a parameter to be
specified later. Denote yv := 1

|Cv |
∑

ai∈Cv xai . We further denote by c(ai) the cluster that ai ∈ Ai

belongs to.

It is simple to verify that∥∥∥Ea∼πi,h(·|s)[ϕi(s, ai)]− Ea∼πi,h(·|s)[yc(ai)]
∥∥∥
2
≤ ∆,

and ∥∥∥Ea∼πi,h(·|s′)[ϕi(s
′, ai)]− Ea∼πi,h(·|s′)[yc(ai)]

∥∥∥
2
≤ 2∆.

As a result, to prove Lemma 23, it suffices to upper bound

max
v∈[n]

∣∣πi,h(Cv | s)− πi,h(Cv | s′)∣∣ .
For any (ai, a

′
i, θ) ∈ A2

i × Rd, define event

Eai,a′i
(v) = {(xai − xa′i)

⊤(w +Wv) > 0}, Eai(v) =
⋂

a′i∈(Ai/Cc(ai))

Eai,a′i
(v).

Similarly, we define Eai,a′i
(v) and Eai(v) by replacing x with x in the above definition. We have∣∣πi,h(Cv | s)− πi,h(Cv | s′)∣∣

=

∣∣∣∣∣∣P
 ⋃

ai∈Cv

Eai(v)

− P

 ⋃
ai∈Cv

Eai(v)

∣∣∣∣∣∣
=

∣∣∣∣∣∣P
 ⋃

ai∈Cv

⋂
a′i∈(Ai/Cv)

Eai,a′i
(v)

− P

 ⋃
ai∈Cv

⋂
a′i∈(Ai/Cv)

Eai,a′i
(v)

∣∣∣∣∣∣
41

WANG LIU BAI JIN

≤
∑
ai∈Cv

∑
a′i∈(Ai/Cv)

∣∣∣P(Eai,a′i
(v))− P(Eai,a′i

(v))
∣∣∣ .

By the definition of Eai,a′i
(v),

P(Eai,a′i
(v)) = P

(
(xai − xa′i)

⊤(w +Wv) > 0
)

= P
(
(xai − xa′i)

⊤Wv > (xa′i − xai)
⊤w
)

= P

(
v1 >

(xa′i − xai)
⊤w

∥(xai − xa′i)
⊤W∥2

)
,

where the last equality uses the symmetry of distribution V . By simple algebra, one can show the
density function of v1 is upper bounded by Õ(d). As a result, we have∣∣∣P(Eai,a′i

(v))− P(Eai,a′i
(v))

∣∣∣
≤ Õ(d)×

∣∣∣∣∣ (xa′i − xai)
⊤w

∥(xai − xa′i)
⊤W∥2

−
(xa′i − xai)

⊤w

∥(xai − xa′i)
⊤W∥2

∣∣∣∣∣
≤ Õ(d)×

∣∣∣∣∣(xa′i − xai)⊤w × ∥(xai − xa′i)⊤W∥2 − (xa′i − xai)
⊤w × ∥(xai − xa′i)

⊤W∥2
∥(xai − xa′i)

⊤W∥2 × ∥(xai − xa′i)
⊤W∥2

∣∣∣∣∣
≤ Õ

(
d

α2∆2

)
×
∣∣∣(xa′i − xai)⊤w × ∥(xai − xa′i)⊤W∥2 − (xa′i − xai)

⊤w × ∥(xai − xa′i)
⊤W∥2

∣∣∣
≤ Õ

(
d

α2∆2

)
×O(βγε) = Õ

(
dβγε

α2∆2

)
where: (i) the third inequality uses the fact that ai and ai′ are from different clusters, W ⪰ αI , and
∥xai − xai∥2 ≤ ε ≤ 0.1∆; (ii) the last inequality uses triangle inequality, ∥w∥2 ≤ γ, W ⪯ βI and
∥xai − xai∥2 ≤ ε. We complete the proof by choosing ∆ = 20ε1/4.

Appendix E. Proofs for Section 4.2

E.1. Details of the tabular AVLPR algorithm

The tabular MG case is a special case of the linear function approximation setting with finite number
of states, i.e. |S| ≤ S. For the tabular setting, we choose the switching criterion function Ψh as

Ψh(Bh) := ln
∏
s∈S

max

 ∑
sh∈Bh

1(sh = s), 1

 ,

while the exploration scheme is chosen as Γexplore(π, µh) := {(π1:h−1⊙µh, [m])}. In other words,
in Line 4 of Algorithm 2 and Line 3 of Algorithm 3, all players jointly play µkh (or πh) once.

42

NO-REGRET-ALG Notice that Dk,i
sample = {(s

k
h, a

k
i,h, r

k
i,h + Vi,h+1(s

k
h+1))} always consists of a

single sample. We will use it to perform an EXP3-IX style update (Neu, 2015), that is

ℓ̂ki,h(s, ai) =
H − rki,h − Vi,h+1(s

k
h+1)

µki,h(ai | s) + γi
× 1((s, ai) = (skh, a

k
i,h)),

µk+1
i,h (· | s) ∝ exp

−ηi ∑
k′≤k

ℓ̂k
′

i,h(s, ·)

 ,

where ηi =
√

S log T
H2AiT

and γi = η
2 .

OPTIMISTIC-REGRESS Denote the data tuple in Di
reg by {(skh, aki,h, rki,h + Vi,h+1(s

k
h+1))}k∈[K].

Define Nh(s) :=
∑K

k=1 1(s
k
h = s) and

βi(n) := Θ

(
ι

ηi(n+ ι)
+ ηiH

2Ai

)
,

where ι = log(KSAiHm/δ). The optimistic regression is performed by an empirical averaging
step with bonus: if Nh(s) > 0, set Vi,h(s) = H − h+ 1, otherwise,

Vi,h(s) = min

{
1

Nh(s)

K∑
k=1

(rki,h + Vi,h+1(s
k
h+1))× 1(skh = s) + βi(Nh(s)), H − h+ 1

}
.

Computational efficiency It is straightforward to see that, as our instantiation only involves stan-
dard EXP3 algorithm with exponential weights updates, bouns computations, and simple averaging,
the entire algorithm runs in polynomial time in (T,H, S, {Ai}i∈[m]).

The rest of this section is devoted to proving Theorem 5, by checking Conditions (1A) through 2
and then applying Theorem 13.

E.2. Proof of Condition (1A)

Denote by Nh(s) the number of times state s is visited at step h during the K episodes of executing
π in CCE-APPROX. Let ι = log(mSKmaxiAi/δ) and ps := Pπ(sh = s). By invoking the
theoretical guarantee of Exp3-IX (e.g., Theorem 12.1 in Lattimore and Szepesvári (2020)) and
taking a union bound for all (i, s) ∈ [m] × S, we have that with probability at least 1 − δ: for all
(i, s) ∈ [m]× S:

max
µi,h∈∆Ai

K∑
k=1

(
Dµi,h×µk

−i,h
− Dµk

h

)
[ri,h + Ph+1Vi,h+1] (s)× 1(skh = s)

≤ O
(
ι

ηi
+ ηH2AiNh(s)

)
.

By Freedman’s inequality and taking a union bound for all (i, s, µi,h) ∈ [m] × S × {ei}i∈[Ai], we
have that with probability at least 1− δ: for all (i, s) ∈ [m]× S:

max
µi,h∈∆Ai

K∑
k=1

(
Dµi,h×µk

−i,h
− Dµk

h

)
[ri,h + Ph+1Vi,h+1] (s)× 1(skh = s)

43

WANG LIU BAI JIN

≥ps × max
µi,h∈∆Ai

K∑
k=1

(
Dµi,h×µk

−i,h
− Dµk

h

)
[ri,h + Ph+1Vi,h+1] (s)−O(H

√
psKι+Hι),

and

Nh(s) ≤ O(psK + ι).

Combining all above relations gives that

1

K
max

µi,h∈∆Ai

K∑
k=1

(
Dµi,h×µk

−i,h
− Dµk

h

)
[ri,h + Ph+1Vi,h+1] (s)

≤min

{
O
(

ι

ηipsK
+ ηiH

2Ai

(
1 +

ι

psK

))
, H

}
≤O

(
ι

ηi(psK + ι)
+ ηiH

2Ai

)
,

where the last inequality uses the fact that η−2
i ≥ Ai. As a result, we can pick

Gi,h(s, π,K, δ) = O
(

ι

ηi(KPπ(sh = s) + ι)
+ ηiH

2Ai

)
.

E.3. Proof of Condition (1B)

Denote byNh(s) the number of times state s is visited at step h during theK episodes of executing π
in V-APPROX. Let ι = log(mSKmaxiAi/δ) and ps := Pπ(sh = s). Since the case of Nh(s) = 0
is trivial, below we only consider those state s such that Nh(s) > 0.

By Azuma-Hoeffding inequality and taking a union bound for all (i, s, µi,h) ∈ [m]×S×{ei}i∈[Ai],
we have that with probability at least 1− δ: for all (i, s) ∈ [m]× S:∣∣∣∣∣ 1

Nh(s)

K∑
k=1

(
rki,h + Vi,h+1(s

k+1
h)

)
× 1(skh = s)− Dπh

[ri,h + Ph+1Vi,h+1] (s)

∣∣∣∣∣
≤ O

(
H

√
ι

Nh(s)

)
≤ O

(
ι

ηi(Nh(s) + ι)
+ ηiH

2Ai

)
,

where the second inequality uses the fact that η−1
i ≥ ι. As a result, to prove both relations in

Condition (1B), it suffices to show for all (i, s) ∈ [m]× S:

Gi,h(s, π,K, δ) = Θ

(
ι

ηi(Nh(s) + ι)
+ ηiH

2Ai

)
.

By Bernstein inequality and taking a union bound for all s ∈ S, we have that with probability at
least 1− δ: for all s ∈ S:

1

2
psK −

1

2
ι ≤ Nh(s) ≤ 2psK +

1

2
ι.

We complete the proof by plugging the above sandwich relation back into the definition ofGi,h(s, π,K, δ).

44

E.4. Proof of Condition (1C)

Let ι = log(mSKmaxiAi/δ), wt
s := Pπt

(sh = s) and W t
s :=

∑
τ≤t Pπτ

(sh = s). By plugging
in the definition of Gi,h, we have

T∑
t=1

Eπt+1

[
Gi,h(s, π

t, t, δ)
]

=O

(
T∑
t=1

Eπt+1

[
ι

ηi(W t
s + ι)

+ ηiH
2Ai

])

=O

(∑
s∈S

T∑
t=1

wt+1
s

[
ι

ηi(W t
s + ι)

+ ηiH
2Ai

])
= O

(
Sι log(T)

ηi
+ ηiH

2AiT

)
.

E.5. Proof of Condition 2

Denote by Nh(s,Bh) the number of times state s occurs in dataset Bh. By Bernstein inequality and
taking a union bound for all (t, s) ∈ [T] × S, we have that with probability at least 1 − δ: for all
(t, s) ∈ [T]× S:

1

2

t∑
τ=1

Pπτ
(sh = s)− 1

2
ι ≤ Nh(s,Bth) ≤ 2

t∑
τ=1

Pπτ
(sh = s) +

1

2
ι.

Since Ψi,h(Bth) ≤ Ψi,h(BIth) + 1, we have Nh(s,Bth) ≤ 2Nh(s,BIth). Using the above relative
concentration result, we obtain

t∑
τ=1

Pπτ
(sh = s) + ι ≤ 2(Nh(s,Bth) + ι) ≤ 4Nh(s,BIth) + 2ι ≤ 8

It∑
τ=1

Pπτ
(sh = s) + 4ι.

Finally, we complete the proof of Condition 2(a) by recalling

Gi,h(s, π
t, t, δ) =

ι

ηi(
∑t

τ=1 Pπτ (sh = s) + ι)
+ ηiH

2Ai.

As for Condition 2(b), simply observe that: (1) Ψi,h does not depend on i; (2) Ψi,h(Dt
h) ≤ S log t.

Therefore the total number of switches up to iteration T is bounded by SH log T . In other words
Condition 2(b) is satisfied with dreplay = SH .

E.6. Sample complexity for tabular MG

Sections E.2 and E.3 shows that Condition (1A) and (1B) are satisfied with

Gi,h(s, π, t, δ) = O
(

ι

ηi(KPπ(sh = s) + ι)
+ ηiH

2Ai

)
.

Meanwhile Section E.4 shows that this choice of G satisfies Condition (1C) with

L = Õ
(
SH2max

i
Ai

)
.

45

WANG LIU BAI JIN

Finally Section E.5 shows that Condition 2 is satisfied with dreplay = SH . It remains to apply
Theorem 13, which gives the sample complexity bound of

Õ
(
H3Ldreplay

ε2

)
= Õ

(
S2H6maxiAi

ε2

)
.

Note that in the tabular algorithm, Γexplore contains a single element, so Γ = 1.

Appendix F. Proofs for Section 5

F.1. Explorative All-Policy Evaluation (APE)

We provide the full description of the APE algorithm in Algorithm 6.

Algorithm 6 APEi(Fi,Πi, π−i,K, β): Explorative All-Policy Evaluation (i-th player)
1: Initialize confidence set B1 ← Fi ×Πi, Dh ← {}.
2: for k = 1, . . . ,K do
3: Compute upper and lower value estimates for all πi ∈ Πi:

(V
k,πi×π−i

, V k,πi×π−i)←
(

max
f :(f,πi)∈Bk

f1(s1, πi,1(s1)), min
f :(f,πi)∈Bk

f1(s1, πi,1(s1))

)
.

4: Choose πk
i ← argmaxπi∈Πi

(V
k,πi×π−i − V k,πi×π−i).

5: Execute πk
i × π−i, and collect the trajectory (sk1 , a

k
i,1, r

k
i,1, . . . , s

k
H , a

k
i,H , r

k
i,H) for the i-th player.

6: Update Dh ← Dh ∪ {(skh, aki,h, rki,h, skh+1)} for all h ∈ [H].
7: Update confidence set

Bk+1 =

{
(f, πi) ∈ Fi ×Πi : LDh

h (fh, fh+1, πi) ≤ min
f ′
h∈Fi,h

LDh

h (f ′h, fh+1, πi) + β, ∀ h ∈ [H]

}⋂
Bk,

where LDh

h (fh, fh+1, πi) :=
∑

(s,ai,r,s′)∈Dh

[fh(s, ai)− r − fh+1(s
′, πi,h(s

′))]
2
.

Output: Optimistic value estimates {V K,πi×π−i}πi∈Πi
.

F.2. Proof of Theorem 8

In this section we prove Theorem 8. We first present the guarantee for the APE subroutine in the
following proposition, whose proof can be found in Appendix F.4.

Proposition 24 (Learning accurate Q-functions for all policies by APE) Under Assumption 6 & 7,
there exists an absolute constant c > 0 so that for any player i ∈ [m], if we choose β =
cH2 log(|Πi||Fi|KH/δ) in Algorithm 6, then with probability at least 1− δ we have

(a) V K,πi×π−i ≤ V πi,π−i

i,1 (s1) ≤ V
K,πi×π−i for all πi ∈ Πi.

(b) maxπi∈Πi

(
V

K,πi×π−i − V K,πi×π−i

)
≤ O

(
H
√

di logK·β
K

)
.

46

Since Algorithm 4 calls the APE subroutine for T round with m players per round with parameters
(β,K)← (βi,Ki), applying Proposition 24 with a union bound yields that, with probability at least

1− δ/2, the optimistic value estimates {V (t),πi×πt
−i

i }πi∈Πi
satisfy that

V
πi,π−i

i,1 (s1)
(i)

≤ V
πi,π−i

i,1 (s1) +O

H2

√
di log(Ki) · log(

∑
i |Πi||Fi|TKiH/δ)

Ki


(ii)

≤ V
πi,π−i

i,1 (s1) + ε/2

(20)

for all i ∈ [m], πi ∈ Πi, and t ∈ [T] simultaneously. Above, (i) used our choice of βi, and (ii) can
be satisfied by choosing

Ki = Õ
(
H4di · log(

∑
i |Πi||Fi|)

ε2

)
. (21)

We next show that DOPMD achieves small regret for any optimistic value estimate satisfying (20).
The proof can be found in Appendix F.3.

Proposition 25 (Regret guarantee of DOPMD) Suppose the optimistic value estimates in Algo-
rithm 4 achieve valid optimism and uniformly small error, i.e.

V
πi×πt

−i

i,1 (s1) ≤ V
(t),πi×πt

−i

i ≤ V πi×πt
−i

i,1 (s1) + ε (22)

for all t ∈ [T], i ∈ [m], and πi ∈ Πi. Then, Algorithm 4 with ηi =
√

log |Πi|/(H2T) achieves with
probability at least 1− δ that

max
i∈[m]

max
πi∈Πi

T∑
t=1

[
V

πi×Λt
−i

i,1 (s1)− V Λt

i,1 (s1)

]
≤ εT +O

H√T log
(∑

i∈[m]

|Πi|/δ
) . (23)

By (20) and Proposition 25, we have that with probability at least 1 − δ, the output policy Λ of
Algorithm 4 achieves

CCEGapΠ(Λ) = max
i∈[m]

max
πi∈Πi

(
V

πi×Λ−i

i,1 − V Λ
i,1

)
=

1

T
max
i∈[m]

max
πi∈Πi

T∑
t=1

[
V

πi×Λt
−i

i,1 (s1)− V Λt

i,1 (s1)

]

≤ ε/2 +O

H√log
(∑

i∈[m]

|Πi|/δ
)
/T

 ≤ ε,
where the last inequality requires choosing

T = Õ

(
H2 log(

∑
i∈[m] |Πi|)
ε2

)
. (24)

Combining (21) with (24), the total number of episodes played is at most

T ×

∑
i∈[m]

Ki

 = Õ

H6
(∑

i∈[m] di

)
· log2(

∑
i |Πi||Fi|)

ε4

.
This completes the proof of Theorem 8. ■

47

WANG LIU BAI JIN

F.3. Proof of Proposition 25

Fix any player i ∈ [m]. We have

RegiT := max
πi∈Πi

T∑
t=1

[
V

πi×Λt
−i

i,1 (s1)− V Λt

i,1 (s1)

]

≤ max
πi∈Πi

T∑
t=1

[
V

πi×πt
−i

i,1 (s1)− V
Λt
i×πt

−i

i,1 (s1)

]
︸ ︷︷ ︸

I

+O

H√T log
(∑

i∈[m]

|Πi|/δ
)

with probability at least 1− δ, where the inequality uses the fact that

max
Λi∈∆(Πi)

∣∣∣∣∣
T∑
t=1

[
V

Λi×πt
−i

i,1 (s1)− V
Λi×Λt

−i

i,1 (s1)

]∣∣∣∣∣
= max

Λi∈∆(Πi)

∣∣∣∣∣∣
∑
πi∈Πi

Λi(πi)
T∑
t=1

[
V

πi×πt
−i

i,1 (s1)− V
πi×Λt

−i

i,1 (s1)

]∣∣∣∣∣∣
= max

πi∈Πi

∣∣∣∣∣
T∑
t=1

[
V

πi×πt
−i

i,1 (s1)− V
πi×Λt

−i

i,1 (s1)

]∣∣∣∣∣ ≤ O(H
√
T log

(∑
i∈[m]

|Πi|/δ
)
),

following by applying Azuma-Hoeffding’s inequality for all i ∈ [m] and all πi ∈ Πi simultaneously.

Next, to bound term I, we have

I = max
πi∈Πi

(
T∑
t=1

[
V

πi×πt
−i

i,1 (s1)− V
Λt
i×πt

−i

i,1 (s1)

])

= max
πi∈Πi

T∑
t=1

[
V

(t),πi×πt
−i

i − V (t),Λt
i×πt

−i

i

]
︸ ︷︷ ︸

(a)

+ max
πi∈Πi

T∑
t=1

[
V

πi×πt
−i

i,1 (s1)− V
(t),πi×πt

−i

i

]
︸ ︷︷ ︸

(b)

+
T∑
t=1

[
V

(t),Λt
i×πt

−i

i − V Λt
i×πt

−i

i,1 (s1)

]
︸ ︷︷ ︸

(c)

.

By (22), we have (b) ≤ 0 and (c) ≤ ε1·T . To bound (a), note that by Algorithm 4, Λt
i has the follow-

ing equivalent Follow-The-Regularized-Leader (FTRL) form: Λt
i(πi) ∝πi exp

(
ηi
∑t−1

τ=1 V
(t),πi×πt

−i

i

)
,

where each V
(t),πi×πt

−i

i ∈ [0, H]. Therefore, by standard FTRL analysis (Orabona, 2019, Section
6.6),

max
πi∈Πi

T∑
t=1

[
V

(t),πi×πt
−i

i − V (t),Λt
i×πt

−i

i

]
≤ log |Πi|

ηi
+
ηi
2
H2T ≤ O

(
H
√

log |Πi| · T
)
,

48

where in the last inequality we have picked ηi =
√
log |Πi|/(H2T). This gives that I ≤ εT +

O
(
H
√

log |Πi| · T
)

, which when plugged back into the regret bound yields that, with probability
at least 1− δ, we have for all i ∈ [m] simultaneously

RegiT ≤ εT +O
(
H
√
log |Πi| · T

)
+O

H√T log
(∑

i∈[m]

|Πi|/δ
)

≤ εT +O

H√T log
(∑

i∈[m]

|Πi|/δ
) .

This proves the desired result. ■

F.4. Proof of Proposition 24

We begin by providing the following lemma, which shows that the confidence sets at every iteration
contain the true value function of any policy πi, and achieves small estimation errors with respect
to the visited state-actions. The proof relies on the Π-completeness assumption (Assumption 6) and
standard fast-rate concentration arguments for the square loss, and can be found in Appendix F.4.1.

Lemma 26 (Properties of Bk) Under Assumption 6, there exists an absolute constant c > 0 so
that if we choose β = cH2 log(|Πi||Fi|KH/δ) in Algorithm 6, then with probability at least 1− δ,

(a) (Q
πi,π−i

i , πi) ∈ Bk for all (πi, k) ∈ Πi × [K],

(b)
∑k−1

t=1

[
(fh − T

πi×π−i

i,h fh+1)(s
t
h, a

t
i,h)
]2
≤ O(β) for all (k, h) ∈ [K]×[H] and (f, πi) ∈ Bk,

(c)
∑k−1

t=1 E(sh,ai,h)∼πt
i×π−i

[
(fh − T

πi×π−i

i,h fh+1)(sh, ai,h)
2
]
≤ O(β) for all (k, h) ∈ [K]× [H]

and (f, πi) ∈ Bk.

By Lemma 26(a), on the good event it ensures (with probability at least 1−δ/2) and by the definition
of V K,πi×π−i and V K,πi×π−i in Algorithm 6, we immediately have V K,πi×π−i ≤ V

πi,π−i

i,1 (s1) ≤
V

K,πi×π−i for all (πi, k) ∈ Πi × [K], which proves part (a).

To prove part (b), for any k ∈ [K], denote the optimistic and pessimistic Q estimates of the “explo-
ration policy” πki by

f
k
= arg max

f :(f,πk
i)∈Bk

f1(s1, π
k
i,1(s1)) and fk = arg min

f :(f,πk
i)∈Bk

f1(s1, π
k
i,1(s1)),

where we recall that πki is chosen to maximize the difference between the above two values over all
πi ∈ Πi. This combined with the monotonicity of Bk gives that, for any fixed πi ∈ Πi,

K ×
(
V

K,πi×π−i − V K,πi×π−i

)
≤

K∑
k=1

(
max

f :(f,πi)∈Bk
f1(s1, πi,1(s1))− min

f :(f,πi)∈Bk
f1(s1, πi,1(s1))

)

49

WANG LIU BAI JIN

≤
K∑
k=1

(
f
k
1(s1, π

k
i,1(s1))− fk1(s1, π

k
i,1(s1))

)
=

K∑
k=1

(
f
k
1(s1, π

k
i,1(s1))− V

πk
i ×π−i

i,1 (s1, π
k
i,1(s1))

)
+

K∑
k=1

(
V

πk
i ×π−i

i,1 (s1, π
k
i,1(s1))− fk1(s1, π

k
i,1(s1))

)
.

The above two terms can be bounded by the same arguments. WLOG, below we focus on the first
term.

Recall that the BE dimension assumption (Assumption 7) asserts that either the DΠi×π−i-type or
the D∆-type distributional Eluder dimension is bounded (cf. Definition 12). We first consider the
case for the D∆-type distributional Eluder dimension, where we have for any ε > 0,

di(ε) := max
h∈[H]

dE

({
fh − T

πi×π−i

i,h fh+1 : (f, πi) ∈ F ×Πi

}
,D, ε

)
≤ di log(1/ε).

In this case, we have

K∑
k=1

(
f
k
1(s1, π

k
i,1(s1))− V

πk
i ×π−i

1 (s1, π
k
i,1(s1))

)
=

H∑
h=1

K∑
k=1

Eπk
i ×π−i

[
f
k
h(sh, π

k
i,h(sh))− rh − f

k
h+1(sh+1, π

k
i,h+1(sh+1))

]
(i)

≤
H∑

h=1

K∑
k=1

[(
f
k
h − T

πk
i ×π−i

i,h f
k
h+1)(s

k
h, a

k
i,h)
)]

+O
(
H
√
K log(H/δ)

)
(ii)

≤ O
(
H
√
di(K−1/2)Kβ

)
+O

(
H
√
K log(H/δ)

)
≤ O

(
H
√
diK logK · β

)
.

(25)

Above, (i) follows by Azuma-Hoeffding’s inequality; (ii) follows by combining Lemma 26(b) ap-
plied on (f

k
, πki) with an Eluder dimension argument (Jin et al., 2021a, Lemma 41), which gives

that for all h ∈ [H],

k−1∑
t=1

[
(f

k
h − T

πk
i ×π−i

i,h f
k
h+1)(s

t
h, a

t
i,h)
]2
≤ O(β) for all k ∈ [K]

=⇒
K∑
k=1

[(
f
k
h − T

πk
i ×π−i

i,h f
k
h+1)(s

k
h, a

k
i,h)
)]
≤ O

(√
di(K−1/2)Kβ

)
≤ O

(√
di logK ·Kβ

)
.

For the other case of the DΠi×π−i-type distributional-Eluder dimension, we conduct the same argu-
ments up to the point before inequality (i) in (25), and apply the same Eluder dimension argument

with respect to roll-in distributions {dπ
k
i ×π−i

h }
k≥1

combined with Lemma 26(c) to obtain the same
bound as the D∆ case.

Together with the same bound for the second term, we obtain

K ×
(
V

K,πi×π−i − V K,πi×π−i

)
≤ O

(
H
√
diK logK · β

)
.

Dividing by K on both sides proves the desired result. ■

50

F.4.1. PROOF OF LEMMA 26

The proof is similar to that of Jin et al. (2021a, Lemma 39(b) & 40). Recall that we consider a fixed
π−i, and let us use π = πi × π−i for shorthand. Define random variable

Xt
h(f, πi) := 2(fh − T π

i,hfh+1)(s
t
h, a

t
i,h)×

[
rti,h + fh+1(s

t
h+1, πi,h+1(s

t
h+1))− (T π

i,hfh+1)(s
t
h, a

t
i,h)
]

for all (f, πi, t, h) ∈ Fi ×Πi × [K]× [H].

Consider the filtration {Gth}t≥1 that includes all historical observations up to (sth, a
t
i,h) within iter-

ation t, but not (rti,h, s
t
h+1). Note that Xt

h(f, πi) is a martingale difference sequence with respect
to {Gth}t∈[K] (as the second term is mean-zero on Gth). Further, we have Xt

h(f, πi) ≤ 2H2 almost
surely as fh(·, ·) ∈ [0, H − h+ 1] for all h ∈ [H]. Therefore, by Freedman’s inequality (Lemma 9)
and a union bound, for any fixed λ ≤ 1/(2H2), we have with probability at least 1− δ that

k∑
t=1

Xt
h(f, πi) ≤ 4λH2

k∑
t=1

[
(fh − T π

i,hfh+1)(s
t
h, a

t
i,h)
]2

+
log(|Fi||Πi|KH/δ)

λ

=
1

2

k∑
t=1

[
(fh − T π

i,hfh+1)(s
t
h, a

t
i,h)
]2

+ 8H2 log(|Fi||Πi|KH/δ).

(26)

for all (f, πi, k, h) simultaneously, where in the second line we have picked λ = 1/(8H2).

Let Dk
h denote the dataset Dh maintained in Algorithm 6 before the start of the k-th iteration (i.e.

used in forming Bk). To prove part (b), take any (k, h) ∈ [K]× [H] and (f, πi) ∈ Bk. We have by
definition of Bk that

β ≥ LD
k
h

h (fh, fh+1, πi)− min
f ′
h∈Fi,h

LD
k
h

h (f ′h, fh+1, πi)

(i)

≥ LD
k
h

h (fh, fh+1, πi)− L
Dk

h
h (T π

i,hfh+1, fh+1, πi)

=
k−1∑
t=1

[
fh(s

t
h, a

t
i,h)− rti,h − fh+1(s

t
h+1, πi,h+1(s

t
h+1))

]2
−

k−1∑
t=1

[
(T π

i,hfh+1)(s
t
h, a

t
i,h)− rti,h − fh+1(s

t
h+1, πi,h+1(s

t
h+1))

]2
= −

k−1∑
t=1

Xt
h(f, πi) +

k−1∑
t=1

[
(fh − T π

i,hfh+1)(s
t
h, a

t
i,h)
]2

(ii)

≥ −8H2 log(|Fi||Πi|KH/δ) +
1

2

k−1∑
t=1

[
(fh − T π

i,hfh+1)(s
t
h, a

t
i,h)
]2
.

Above, (i) follows by Π-completeness (Assumption 6), and (ii) follows by (26). Therefore, choosing
β = 8H2 log(|Fi||Πi|KH/δ) ensures that

k−1∑
t=1

[
(fh − T π

i,hfh+1)(s
t
h, a

t
i,h)
]2 ≤ 4β,

51

WANG LIU BAI JIN

which proves part (b).

To prove part (a), first note that Qπ
i = Q

πi×π−i

i ∈ Fi, as we have Qπ
i,h ∈ Fi,h for h = H, . . . , 1 by

Assumption 6 repeatedly. Therefore, fix any (k, h) ∈ [K] × [H] and f ′h ∈ Fi,h, and let Q̃ ∈ F be
defined as Q̃h = f ′h and Q̃h′ = Qπ

i,h′ for all h′ ̸= h. Similar as above, we have

LD
k
h

h (Qπ
i,h, Q

π
i,h+1, πi)− L

Dk
h

h (f ′h, Q
π
i,h+1, πi)

= LD
k
h

h (T π
i,hQ̃h, Q̃h+1, πi)− L

Dk
h

h (Q̃h, Q̃h+1, πi)

=
k−1∑
t=1

Xt
h(Q̃, πi)−

k−1∑
t=1

[
(f ′h −Qπ

i,h)(s
t
h, a

t
i,h)
]2

(i)

≤ 8H2 log(|Fi||Πi|KH/δ)−
1

2

k−1∑
t=1

[
(f ′h −Qπ

i,h)(s
t
h, a

t
i,h)
]2 (ii)

≤ β,

where (i) follows by (26) and (ii) follows by our choice of β = 8H2 log(|Fi||Πi|KH/δ). As this
holds for any f ′h ∈ Fi,h, taking supremum over the left-hand side above gives that

LD
k
h

h (Qπ
i,h, Q

π
i,h+1, πi)− inf

f ′
h∈Fi,h

LD
k
h

h (f ′h, Q
π
i,h+1, πi) ≤ β.

As this holds for all h ∈ [H], by definition we have (Qπ
i,h, π) ∈ Bk for all k ∈ [K]. This proves

part (a).

Finally, part (c) can be proved by exactly the same arguments as part (b), except for redefining the
filtration {Gth}t≥1 to include all historical observations before episode t starts, so that (sth, a

t
i,h) ∼

d
πk
i ×π−i

h conditioned on Gth, and rescaling the tail probability δ → δ/2 in both (26) and its analog
with respect to the new filtration here. ■

F.5. Details for Linear Quadratic Games

Here we provide the details for the LQG example (Example 1). Define the following feature map
for all i ∈ [m] (with dϕ,i := dS + dA,i + 1):

ϕi(s, ai) =

 sai
1

 [s⊤ a⊤i 1
]
∈ Rdϕ,i×dϕ,i .

We consider the following linear value class and linear policy class for all i ∈ [m]:

• Fi,h := {fi,h(s, ai) = ⟨ϕi(s, ai), θh⟩ : θh ∈ Rdϕ,i×dϕ,i , ∥θh∥Fr ≤ Bθ,h}.

• Πi := {πi = {πi,h(s) =Mi,hs}h∈[H] :Mi,h ∈ RdA,i×dS , ∥Mi,h∥Fr ≤ BM,h}.

Fixing any linear policy π−i ∈ Π−i for the opponents, by the structure of the transition (5) and
the reward, the MDP faced by player i reduces to a Linear Quadratic Regulator (LQR), which we
denote for simplicity of notation as{

sh+1 = Chsh +Dhai,h + zh,

ri,h(s, ai) = ⟨Ji,h, ϕi(s, ai)⟩.

52

The aboveCh, Dh, Ji,h can be computed fromAh, {Bi,h}i, {K
i
h}i, {Ki

j,h}i,j , and π−i. It is straight-

forward to see that, with proper choice of Bθ,h = O(poly(dϕ,i, BM)H−h+1) (the final sample com-
plexity will only depend on its logarithm, by covering arguments), we have T πi×π−i

i,h fh+1 ∈ Fi,h

for any fh+1 ∈ Fi,h+1. This verifies Assumption 6.

Further, observe that the function class{
fh − T πi×π−i

h fh+1 | (f, πi) ∈ Fi ×Πi

}
is a linear function class with a d2ϕ,i-dimensional feature map ϕi(·, ·). By standard Eluder dimen-
sion bounds for linear function classes, the D∆-type BE dimension (Definition 12) is bounded
by Õ(d2ϕ,i), thus verifying Assumption 7 with di := O(d2ϕ,i) = O((dS + dA,i)

2). Further by
standard covering arguments, we can construct finite coverings of Fi,Πi both with log-cardinality
Õ(poly(H) · d2ϕ,i). Plugging these into Theorem 8, we obtain that DOPMD learns a Π-CCE for
LQGs within

Õ
(
poly(H,

∑
i∈[m] dϕ,i)/ε

4
)

episodes of play.

Appendix G. Discussions about V-type function approximation

Our meta-algorithms VLPR and AVLPR and their guarantees can extend directly to V-type function
approximation. Indeed, at their meta-algorithm level (Algorithm 1-3), VLPR and AVLPR do not
strictly speaking require Fi to be marginal Q classes—They directly apply as-is if {Fi}i∈[m] are
instead V classes, so long as the subroutines NO-REGRET-ALG and OPTIMISTIC-REGRESS can be
designed Conditions (1A)-(1C) (and Condition 2) can still be satisfied with some bonus functions
{Gi,h}(i,h)∈[m]×[H].

However, we remark that when instantiated concretely, V-type function approximation may encom-
pass problems with fairly different structures from Q-type function approximation. For instance,
imagine adapting the linear function approximation results in Section 4.1 to linear V classes. A sen-
sible choice of the V class would be Fi,h ⊂

{
fi,h(·) = ϕi(·)⊤θi,h : θi,h ∈ Rdi

}
, where ϕi : S →

Rdi are feature maps for the state. In this case, a suitable choice of the policy class is linear policies
of the form πi,h(·|s) = argmaxai∈Ai

ϕi,h(s)
⊤θaii,h where {θaii,h}ai∈Ai

⊂ Rdi is a collection of vec-
tors. However, such a policy class can be interpreted as requiring any action ai ∈ Ai to “have the
same meaning” across all states, which could be rather unnatural compared with the Q-type feature
map ϕi(s, ai) which allows ai ∈ Ai to be a general action index that could mean different things at
different states.

Appendix H. All-policy completeness implies “essentially tabular” games

Here we argue that the restriction to linear argmax policies in Assumption 3 (or some other kind of
restriction) is necessary, by showing that the unrestricted all-policy completeness assumption places
a strong implicit requirement on the game.

Consider the following all-policy completeness assumption for decentralized linear function ap-
proximation, which strengthens Assumption 3 by removing the Πlin restriction.

53

WANG LIU BAI JIN

Assumption 27 (All-policy completeness) For any (i, h) ∈ [m]× [H], any function V = V i,h+1 :

S → [0, H] and any policy π, there exists θh,π−i,V ∈ Rd with ∥θh,π−i,V ∥2 ≤ Bθ such that

Dδai×π−i

[
ri,h + PhV i,h+1

]
(s) = ϕi(s, ai)

⊤θh,π−i,V for all (s, ai) ∈ S ×Ai. (27)

Fix any (h, s⋆) ∈ [H]×S, fix any player i ∈ [m] and s′ ∈ S. Let π1 and π2 be any two joint policies
that are different only at (h, s⋆). By applying Assumption 27 with zero reward (i.e. ri,h = 0) and
function V (·) = 1{s′ = ·}, there exists θπ

{1,2}
such that for all (s, ai) ∈ S ×Ai,

ϕi(s, ai)
⊤θπ

1
= Ea−i∼π1

−i(·|a)
Pr[s′|s, ai, a−i],

ϕi(s, ai)
⊤θπ

2
= Ea−i∼π2

−i(·|a)
Pr[s′|s, ai, a−i].

As π1 = π2 at (h, s) with any s ̸= s⋆, we have for every s ̸= s⋆ ∈ S and ai ∈ Ai that

ϕi(s, ai)
⊤
(
θπ

1 − θπ2
)
= 0,

and for s = s⋆ that

ϕi(s
⋆, ai)

⊤
(
θπ

1 − θπ2
)
= Ea−i∼π1

−i(·|a)
Pr[s′|s⋆, ai, a−i]− Ea−i∼π2

−i(·|a)
Pr[s′|s⋆, ai, a−i].

We say that a state (s, h) ∈ S × [H] is irrelevant if the transition of this state can be affected by the
action of some players. If a state is s⋆ relevant, by definition ∃i ∈ [m], s′ ∈ S, ai ∈ Ai, and π1, π2

such that

ϕi(s
⋆, ai)

⊤
(
θπ

1 − θπ2
)
= Ea−i∼π1

−i(·|a)
Pr[s′|s⋆, ai, a−i]− Ea−i∼π2

−i(·|a)
Pr[s′|s⋆, ai, a−i] ̸= 0.

It follows that (1) v := θπ
1 − θπ2 ̸= 0; (2) v is orthogonal to ϕi(s, a′i) for all other s ̸= s⋆ and a′i ∈

Ai; (3) ϕi(s⋆, ai) is not orthogonal to v, and thus linearly independent from {ϕi(s, a′i)}s ̸=s⋆,a′i∈Ai
.

Since the features ϕi(s, ai) ∈ Rd, there could be at most d such feature vectors that are linearly
independent from everyone else, and therefore there are at most d relevant states for player i.

It follows that except for at most dm states, all other states are irrelevant: the transition probabilities
at such states are not a function of the players’ joint action. If we simply omit such states (and play
an arbitrary policy when visiting such states) from the trajectory, the resulting dynamics would be
a Markov game dynamics over a small (at most dm) number of states. In this sense such a Markov
game would be “essentially tabular”.

H.1. Explicit forms of the policy class in Cui et al. (2023)

If the no-regret-learning oracle in Cui et al. (2023) is chosen as the Exponential Weights algorithm,
then it will induce a policy class of the following form: Πestimate = Πestimate

1 ×· · ·×Πestimate
m with

Πestimate
i :=

{
πi(· | s) ∝ exp

(
η

K∑
i=1

[
ϕi(s, ·)⊤θk + β∥ϕi(s, ·)∥Σ−1

]
[0,H]

)
:

θk ∈ Rd, Σ ∈ Rd×d, Σ ⪰ λI
}
,

54

where [·][0,H] denotes a truncation operator s.t. [x][0,H] = min{max{x, 0}, H} and η, λ, β are some
tunable parameters in their algorithm. Note that linear argmax policies can be parameterized by a
single d-dimension vector, while policies in above class are specified by a much larger number of
parameters (K different d-dimension vectors, a d × d matrix, and a few additional scalars) and
involve K truncations that make the exponents potentially highly nonlinear. In this sense, the above
policy class is more complex than the linear argmax policy class Πlin considered in this paper. We
further note that Πestimate

i reduces to Πlin
i if we remove the truncation operator, choose β = 0 and

let η go to infinity in the above definition.

If the no-regret-learning oracle is instead chosen as Expected Follow the Perturbed Leader, then we
will have Πestimate = Πestimate

1 × · · · ×Πestimate
m with

Πestimate
i :=

{
πi(ai | s) = Pv∼Di

[
ai ∈ argmax

âi

(
K∑
i=1

[
ϕi(s, âi)

⊤θk + β∥ϕi(s, âi)∥Σ−1

]
[0,H]

+ η−1vâi

)]

: θk ∈ Rd, Σ ∈ Rd×d, Σ ⪰ λI
}
,

where vector v ∈ RAi is sampled from some distribution Di over RAi and vâi denotes the âi-th
coordinate of v. Similar to the argument above, this Πestimate

i is still more involved than Πlin
i . It can

again be reduced to Πlin
i by removing the truncation operator, choosing β = 0 and pickingD = δ→

0
:

the Dirac distribution at point
→
0 .

Appendix I. Difference between ΠMar-CCE and CCE

Here we provide an example of a toy Markov Game in which there exists a correlated policy Λ ∈
∆(ΠMar), where ΠMar is the set of all Markov product policies, such that CCEGapΠ

Mar
(Λ) = 0 but

CCEGap(Λ) ≥ H/4 for any H ≥ 2.

Consider the following “sequential rock-paper-scissors” game with horizon H ≥ 2. The game is
two-player zero-sum (with m = 2 and r2 ≡ 1 − r1). The state space is a singleton (S = {s0} and
S = 1), and each player has three actions corresponding to rock, paper, and scissors (A1 = A2 = 3).
The instantaneous reward r1(a1, a2) ∈ {0, 1/2, 1} for player 1 is determined by the standard rock-
paper-scissors rule (for example, r1(rock, scissors) = 1 and r1(rock, rock) = 1/2). Let ΠMar

1 ,
ΠMar

2 denote the set of all Markov policies for each player, and ΠMar = ΠMar
1 × ΠMar

2 . A Markov
policy in this game corresponds to running a memoryless (non history-dependent) policy at each
stage h ∈ [H].

Let Λ = Unif({πrock, πpaper, πscissors}), where for each a ∈ {rock,paper, scissors},

πa := πa1 × πa2, where πai,h(·|s0) = δa for all (i, h) ∈ [2]× [H]

specifies the policy where both players play action a deterministically within all H steps. Note that
πa ∈ ΠMar and thus Λ ∈ ∆(ΠMar).

By definition of Λ, we have V Λ
1 = H/2. Further, it is straightforward to see that max

π†
1∈ΠMar

1
V

π†
1,Λ−1

1 =

H/2, as this is achievable by picking π†1 = πrock1 , and no other Markov policy π†1 ∈ ΠMar
1 (which is

55

WANG LIU BAI JIN

memoryless) can achieve a reward greater than 1/2 at any step against Λ−1, which plays uniformly
within {rock, paper, scissors} at every step. This shows that CCEGapΠ

Mar
(Λ) = 0.

However, consider the non-Markov policy π̃1 that plays uniformly at random at h = 1, observes the
action played by the opponent (or infers the opponent’s played action from the received reward),
and henceforth plays the winning action against that action at step h ∈ {2, . . . ,H}. By definition
of Λ, such a non-Markov policy will deterministically achieve reward 1 at all steps h ≥ 2, and thus

V
π̃1,Λ−1

1 =
1

2
+H − 1 = H − 1

2
,

which gives

CCEGap(Λ) ≥ V π̃1,Λ−1

1 − V Λ
1 = H − 1

2
− H

2
≥ H

4

for any H ≥ 2.

56

	Introduction
	Related work

	Preliminaries
	Decentralized MARL with function approximation

	Decentralized MARL via policy replay: meta-algorithms and guarantees
	Accelerated O"0365O(1/2) algorithm via infrequent policy updates
	Decentralized execution

	Instantiation in linear and tabular settings
	Decentralized linear function approximation
	Learning Markov CCE in tabular Markov Games

	Learning CCE within restricted policy classes
	Algorithm and guarantee
	Examples

	Conclusion
	Technical tools
	Concentration
	Eluder & Bellman-Eluder dimension

	Proofs and additional details for Section 3
	Proof of Theorem 1
	Accelerated algorithm
	Proof of Theorem 13
	Decentralized execution protocol for VLPR and AVLPR

	Proofs for Section 4.1
	Details of the linear AVLPR Algorithm
	Proof of Condition (1A)
	Proof of Condition (1B)
	Proof of Condition (1C)
	Proof of Condition 2
	Sample complexity for linear function approximation

	Proofs for Appendix C.2
	Relative concentration
	Controlling Term (A) in Condition (1A)
	Controlling Term (B) in Condition (1A)
	Controlling Term (C) in Condition (1A)

	Proofs for Section 4.2
	Details of the tabular AVLPR algorithm
	Proof of Condition (1A)
	Proof of Condition (1B)
	Proof of Condition (1C)
	Proof of Condition 2
	Sample complexity for tabular MG

	Proofs for Section 5
	Explorative All-Policy Evaluation (APE)
	Proof of Theorem 8
	Proof of Proposition 25
	Proof of Proposition 24
	Proof of Lemma 26

	Details for Linear Quadratic Games

	Discussions about V-type function approximation
	All-policy completeness implies ``essentially tabular'' games
	Explicit forms of the policy class in cui2023breaking

	Difference between Mar-CCE and CCE

