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Abstract
We revisit the canonical problem of learning a single neuron with ReLU activation under Gaussian
input with square loss. We particularly focus on the over-parameterization setting where the stu-
dent network has n ≥ 2 neurons. We prove the global convergence of randomly initialized gradient
descent with a O

(
T−3

)
rate. This is the first global convergence result for this problem beyond

the exact-parameterization setting (n = 1) in which the gradient descent enjoys an exp(−Ω(T ))
rate. Perhaps surprisingly, we further present an Ω

(
T−3

)
lower bound for randomly initialized

gradient flow in the over-parameterization setting. These two bounds jointly give an exact char-
acterization of the convergence rate and imply, for the first time, that over-parameterization can
exponentially slow down the convergence rate. To prove the global convergence, we need to tackle
the interactions among student neurons in the gradient descent dynamics, which are not present in
the exact-parameterization case. We use a three-phase structure to analyze GD’s dynamics. Along
the way, we prove gradient descent automatically balances student neurons, and use this property to
deal with the non-smoothness of the objective function. To prove the convergence rate lower bound,
we construct a novel potential function that characterizes the pairwise distances between the stu-
dent neurons (which cannot be done in the exact-parameterization case). We show this potential
function converges slowly, which implies the slow convergence rate of the loss function.
Keywords: over-parameterization, global convergence, non-convex optimization

1. Introduction

In recent years, theoretical explanations of the success of gradient descent (GD) on training deep
neural networks emerge as an important problem. A prominent line of work Allen-Zhu et al. (2018);
Du et al. (2018c); Jacot et al. (2018); Safran and Shamir (2018); Chizat et al. (2019) suggests that
over-parameterization plays a key role in the successful training of neural networks.

However, the drawback of over-parameterization is under-explored. In this paper, we consider
training two-layer ReLU networks, with a particular focus on learning a single neuron in the over-
parameterization setting. We give a rigorous proof for the following surprising phenomenon:

Over-parameterization exponentially slows down the convergence of gradient descent.

Specifically, we consider two-layer ReLU networks with n neurons and input dimension d:

x →
n∑

i=1

[w⊤
i x]+, (1)
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Figure 1: Setting: σ = 0.1, η = 0.05, ∥v∥ = 1. Left: The loss converges much slower when
n > 1, compared to the case of n = 1. Right: log(ηT ) L(w(T )) converges to −3,
with a small perturbation that converges extremely slow (note if we want log(ηT )

C
(ηT )3

∈
(−3− ϵ,−3 + ϵ), then T ≥ 1

ηC
1/ϵ is needed.)

where [x]+ = max{0, x} denotes the ReLU function, w1, . . . ,wn ∈ Rd are n neurons. The input
x ∼ N (0, I) follows a standard Gaussian distribution.

We consider the canonical teacher-student setting, where a student network is trained to learn
a ground truth teacher network. Following the architecture (1), the student network f : Rd → R
is given by f(x) =

∑n
i=1[w

⊤
i x]+, where w1, . . . ,wn ∈ Rd are n student neurons. Similarly,

the teacher network is given by f∗(x) =
∑m

i=1[v
⊤
i x]+, where v1, . . . ,vm ∈ Rd are m teacher

neurons. It is natural to study the square loss:

L(w) = Ex∼N (0,I)

1
2

(
n∑

i=1

[w⊤
i x]+ −

m∑
i=1

[v⊤
i x]+

)2
 , (2)

where w = (w⊤
1 ,w

⊤
2 , . . . ,w

⊤
n )

⊤ ∈ Rn×d denotes the parameter vector formed by student neurons.
In this paper, we focus on the special case where the teacher network consists of one single

neuron v1, i.e., m = 1. For simplicity, we omit the subscript and denote v1 with v. Then the loss
becomes

L(w) = Ex∼N (0,I)

1
2

(
n∑

i=1

[w⊤
i x]+ − [v⊤x]+

)2
 . (3)

The student network is initialized with a Gaussian distribution: ∀1 ≤ i ≤ n,wi(0) ∼ N (0, σ2I),
(σ ∈ R+ denotes the initialization scale), then trained by gradient descent with step size η.

In this widely-studied setting, we discover a new phenomenon: compared to the exact-parameterized
case (n = 1), the loss L(w(t)) converges much slower in the over-parameterized case. Empirically
(see Figure 1), the slow-down effect happens universally for all n ≥ 2. Moreover, log(ηT ) L(w(T ))
has a tendency of converging towards −3, which seems to suggest that the convergence rate should
be L(w(T )) = Θ(T−3). In this paper, we prove rigorously that this is indeed true.

For the exact-parameterized case (n = 1), Yehudai and Ohad (2020) proved that L(w(t)) con-
vergences with a linear rate: L(w(t)) ≤ exp (−Ω(t)), which is also validated in Figure 1. For the
over-parameterized case, an exact characterization of the convergence rate is given in this paper as

2
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L(w(t)) = Θ(t−3). As a result, we show that (even very mild) over-parameterization exponentially
slows down the convergence rate. Specifically, our main results are the following two theorems.

Theorem 1 (Global Convergence, Informal) For ∀δ > 0, suppose the dimension d = Ω(log(n/δ)),
the initialization scale 1 σ

√
d = poly(n−1)∥v∥, the learning rate η = poly(σ

√
d, n−1, ∥v∥−1).

Then with probability at least 1 − δ, gradient descent converges to a global minimum with rate
L(w(t)) ≤ poly(n, ∥v∥, η−1)t−3.

Theorem 2 (Convergence Rate Lower Bound, Informal) Suppose the student network is over-
parameterized, i.e., n ≥ 2. Consider gradient flow: ∂w(t)

∂t = −∂L(w(t))
∂w . If the requirements on

d and σ in Theorem 1 hold, then with high probability, there exist constants Γ1,Γ2 which do not
depend on time t, such that ∀t ≥ 0, L(w(t)) ≥ (Γ1t+ Γ2)

−3.

Theorem 1 shows the global convergence of GD, while Theorem 2 provides a convergence rate
lower bound. These two bounds together imply an exact characterization of the convergence rate
for GD. We further highlight the significance of our contributions below:
• To our knowledge, Theorem 1 is the first global convergence result of gradient descent for the
square loss beyond the special exact-parameterization cases of m = n = 1 (Tian, 2017; Brutzkus
and Globerson, 2017; Yehudai and Ohad, 2020; Du et al., 2017) and m = n = 2 (Wu et al., 2018).
• While over-parameterization is well-known for its benefit in establishing global convergence in
the finite-data regime, this is the first work proving it can slow down gradient-based methods.

1.1. Related Works

The problem of learning a single neuron is actually well-understood and can be solved with minimal
assumptions by classical single index models algorithms (Kakade et al., 2011). For learning a single-
neuron, Brutzkus and Globerson (2017); Tian (2017); Soltanolkotabi (2017) proved convergence for
GD assuming Gaussian input distribution, which was later improved by Yehudai and Ohad (2020)
who proved linear convergence of GD for learning one single neuron properly. These results are
also generalized to learning a convolutional filter (Goel et al., 2018; Du et al., 2017, 2018a; Zhou
et al., 2019; Liu et al., 2019). These works only focus on the exact-parameterization setting, while
we focus on the over-parameterization setting.

Another direction focuses on the optimization landscape. Safran and Shamir (2018) showed
spurious local minima exists for large m in the exact-parameterization setting. Safran et al. (2020)
studied problem (2) with orthogonal teacher neurons. They showed that neither one-point strong
convexity nor Polyak-Łojasiewicz (PL) condition hold locally near the global minimum. Wu et al.
(2018) showed that problem (2) has no spurious local minima for m = n = 2. Zhong et al. (2017);
Zhang et al. (2019) studied the exact-parameterization setting and showed the local strong convexity
of loss and therefore with tensor initialization, GD can converge to a global minimum. Arjevani and
Field (2022) proved that over-parameterization annihilates certain types of spurious local minima.

A popular line of works, known as neural tangent kernel (NTK) (Jacot et al., 2018; Chizat
et al., 2019; Du et al., 2018c, 2019; Cao and Gu, 2019; Allen-Zhu et al., 2019; Arora et al., 2019;
Oymak and Soltanolkotabi, 2020; Zou et al., 2020; Li and Liang, 2018) connects the training of
ultra-wide neural networks with kernel methods. Another line of works uses the mean-field analysis

1. Note that ∥wi(0)∥ scales with σ
√
d rather than σ.
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to study the training of infinite-width neural networks (Nitanda and Suzuki, 2017; Chizat and Bach,
2018; Wei et al., 2019; Nguyen and Pham, 2020; Fang et al., 2021; Lu et al., 2020). All of these
works considered the finite-data regime and require the neural network to be ultra-wide, sometimes
infinitely wide. Their techniques cannot explain the learnability of a single neuron, as pointed out
by Yehudai and Shamir (2019).

More related to our works are results on the dynamics of gradient descent in the teacher-student
setting. Li and Yuan (2017) studied the exact-parameterized setting and proved convergence for
SGD with initialization in a region near identity. Li et al. (2020) showed that GD can learn two-
layer networks better than any kernel methods, but their final upper bound of loss is constantly
large and no convergence is proven. Zhou et al. (2021) proved local convergence for mildly over-
parameterized two-layer networks. While our global convergence analysis uses their idea of es-
tablishing a gradient lower bound, we also propose new techniques to get rid of their architectural
modifications, and improved their gradient lower bound to yield a tight convergence rate upper
bound (see Section 2 for details). Also, Zhou et al. (2021) only provided a local convergence the-
ory, while we prove convergence globally. On the other hand, their results hold for general m ≥ 1
whereas we only study m = 1.

The first phase of our analysis is similar to the initial alignment phenomenon in Boursier et al.
(2022). Their analysis also relies on the finite-data regime and the orthogonality of inputs, hence
does not apply to our setting.

Similar slow-down effects of over-parameterization on the convergence rate have been observed
in other scenarios. Richert et al. (2022) considered error function activation and empirically ob-
served an O(T−2) convergence rate. Going beyond neural network training, Dwivedi et al. (2018);
Wu and Zhou (2019) showed such a phenomenon for Expectation-Maximization (EM) algorithm
on Gaussian mixture models. Zhang et al. (2022) exhibited similar empirical behaviors of GD on
Burer–Monteiro factorization, but no rigorous proof was given.
Paper Organization. In Section 2 we describe the main technical challenges in our analysis, and
our ideas for addressing them. In section 3 we define some notations and preliminary notions. In
Section 4 we formalize the global convergence result (Theorem 1) and provide a proof sketch. In
Section 5 we formalize the convergence rate lower bound (Theorem 2) and provide a proof sketch.

2. Technical Overview

Three-Phase Convergence Analysis. Our global convergence analysis is divided into three phases.
We define θi as the angle between wi and v, and H := ∥v∥ −

∑
i⟨wi,v⟩. Intuitively, θi represents

the radial difference between teacher and students, while H represents the tangential difference
between teacher and students.

When the initialization σ
√
d is small enough, in phase 1, for every i ∈ [n], θi decreases to a

small value while ∥wi∥ remains small. In phase 2, ∀i ∈ [n], θi remains bounded by a small value
while H decreases with an exponential rate. Both θi and H being small at the end of phase 2 implies
that GD enters a local region near a global minimum. In phase 3, we establish the local convergence
by proving two properties: a lower bound of gradient, and a regularity condition of student neurons.
Non-Benign Optimization Landscape. Compared to the exact-parameterization setting, the opti-
mization landscape becomes significantly different and much harder to analyze when the network
is over-parameterized. Zhou et al. (2021) provided an intuitive illustration for this in their Section
4. For the general problem (2), Safran et al. (2020) showed that nice geometric properties that hold
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when m = n, including one-point strong convexity and PL condition, do not hold when m < n.
In this paper, we go further and show that the difference in geometric landscape leads to totally
different convergence rates.

Non-smoothness and Implicit Regularization. The loss function is not smooth when student
neurons are close to 0, which brings a major technical challenge for a local convergence analy-
sis. Zhou et al. (2021) reparameterized the student neural network architecture to make the loss
L smooth. We show this artificial change is not necessary. Our observation is that GD implicitly
regularizes the student neurons and keeps them away from the non-smooth regions near 0. To prove
this, we show that wi cannot move too far in phase 3, by applying an algebraic trick to upper-bound∑∞

t=T η∥∇wiL(w(t))∥ with L(w(T )) (Lemma 24). A similar regularization property for GD was
given in Du et al. (2018b), but it applies layer-wise rather than neuron-wise as in our paper.

Improving the Gradient Lower Bound. In our local convergence phase, we establish a local
gradient lower bound similar to Theorem 3 in Zhou et al. (2021). Moreover, we improve their
bound from ∥∇wL(w)∥ ≥ Ω(L(w)) to ∥∇wL(w)∥ ≥ Ω(L2/3(w)) (Theorem 7). The idea in
Zhou et al. (2021) is to pick an arbitrary global minimum {w∗

i }ni=1 and show
∑

i⟨∇wiL(w),wi −
w∗

i ⟩ ≥ L(w). We improve their proof technique by carefully choosing a specific {w∗
i }ni=1 such

that ∥wi−w∗
i ∥ is small, then applying Cauchy inequality to get a tighter bound. This improvement

is crucial since it improves the final bound of convergence rate from L = O(T−1) in Zhou et al.
(2021) to L = O(T−3), which matches the lower bound in Theorem 2. This also indicates the
optimality of the improved dependency L2/3.

Non-degeneracy Condition. While the lower bound for the convergence rate is straightforward
to prove in the worst-case (i.e., from a bad initialization), the average-case (i.e., with random ini-
tialization) lower bound is highly-nontrivial due to the existence of several counter-examples in the
benign cases (see Appendix A). To distinguish these counter-examples from general cases, we es-
tablish a new non-degeneracy condition and build our lower bound upon it. We define a potential
function Z(t) =

∑
i<j ∥zi(t) − zj(t)∥, where zi := wi − ⟨wi,v⟩v. As long as the initialization

is non-degenerate (See Definition 13), then Z(t) = Ω(t−1) and L(w(t)) ≥ Ω(Z3(t)n−5/∥v∥),
which imply L(w(t)) ≥ Ω(t−3). Intuitively, the slow convergence rate of L when n ≥ 2 is due to
the slow convergence of term zi − zj , (i ̸= j), and we define Z(t) to formalize this idea.

3. Preliminaries

Notations. In this paper, bold-faced letters denote vectors. We use [n] to denote {1, 2, . . . , n}. For
any nonzero vector v ∈ Rd, the corresponding normalized vector is denoted with v := v

∥v∥ . For
two nonzero vectors w,v ∈ Rd, θ(w,v) := arccos (⟨w,v⟩) denotes the angle between them.

For simplicity, we also adopt some notational conventions. Denote the gradient of the ith student
neuron with ∇i :=

∂L(w)
∂wi

. For any variable w that changes during the training process, w(t) denotes
its value at the tth iteration, e.g., wi(t) indicates the value of wi at the tth iteration. Sometimes we
omit the iteration index t when this causes no ambiguity. We abbreviate the expectation taken w.r.t
the standard Gaussian as Ex[·] := Ex∼N (0,I)[·].
Special Notations for Important Terms. There are several important terms in our analysis and
we give each of them a special notation. θi := θ(wi,v) denotes the angle between wi and v.
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θij := θ(wi,wj) denotes the angle between wi and wj . Define

r :=
n∑

i=1

wi − v, and R : Rd → R, R(x) :=
n∑

j=1

[w⊤
j x]+ − [v⊤x]+.

Then L(w) = Ex[
1
2R

2(x)]. Define the length of the projection of wi onto v as

hi = ⟨wi,v⟩.

Lastly, define

H := ∥v∥ −
∑
i∈[n]

hi = ⟨v,−r⟩.

Closed Form Expressions of Loss and Gradient. When the input distribution is standard Gaus-
sian, closed form expressions of L(w) and ∇L(w) can be obtained (Safran and Shamir, 2018). The
complete form is deferred to Appendix B. Here we only present the closed form of gradient as it is
used extensively in our analysis: Safran and Shamir (2018) showed that when wi ̸= 0, ∀i ∈ [n], the
loss function is differentiable with gradient given by:

∇i =
1

2

∑
j

wj − v

+
1

2π

∑
j ̸=i

∥wj∥ sin θij − ∥v∥ sin θi

wi −
∑
j ̸=i

θijwj + θiv

 . (4)

Big-O notation. In this paper, we slightly abuse the use of big-O notation. We say for ∀ϵ = O(p),
proposition A holds, if there exists an absolute constant C ∈ R+ such that for ∀ϵ ≤ Cp, proposition
A holds. (See Theorem 4, 5, 6, 9, 14 for details.)

4. Proof Overview: Global Convergence

In this section we provide a proof sketch for Theorem 1. Full proofs for all theorems and lemmas
can be found in the Appendix. We start with the initialization.

4.1. Initialization

We need the following conditions, which hold with high probability by random initialization.

Lemma 3 Let s1 := 1
2σ

√
d, s2 := 2σ

√
d. When d = Ω(log(n/δ)), with probability at least 1− δ,

the following properties hold at the initialization:

∀i ∈ [n], s1 ≤ ∥wi(0)∥ ≤ s2, and
π

3
≤ θi(0) ≤

2π

3
. (5)

Condition (5) gives upper bound s2 and lower bound s1 for the norms of wi(0), and states θi will
fall in the interval [π3 ,

2π
3 ] initially. These are standard facts in high-dimensional probability. See

Appendix F.1 for proof details. The rest of our analysis will proceed deterministically.
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4.2. Phase 1

We present the main theorem of Phase 1, which starts at time 0 and ends at time T1.

Theorem 4 (Phase 1) Suppose the initial condition in Lemma 3 holds. For any ϵ1 = O(1), (ϵ1 >

0), there exists C = O
(
ϵ21
n

)
such that for any σ = O

(
Cϵ481 d−1/2∥v∥

)
and η = O

(
nCσ

√
d

∥v∥

)
, by

setting T1 :=
C
η , the following holds for ∀1 ≤ i ≤ n, 0 ≤ t ≤ T1:

s1 ≤ ∥wi(t)∥ ≤ s2 + 2η∥v∥t, (6)

and sin2
(
θi(t)

2

)
− ϵ21 ≤

(
1 +

ηt

s2/∥v∥

)−1/24(
sin2

(
θi(0)

2

)
− ϵ21

)
. (7)

Consequently, at the end of Phase 1, we have

∀i ∈ [n], θi(T1) ≤ 4ϵ1, (8)

and hi(T1) ≤ 2hj(T1), ∀i, j ∈ [n]. (9)

(6) gives upper and lower bounds for ∥wi∥. (7) is used to bound the dynamics of θi. (8) shows that
θi is small at the end of Phase 1, so the student neurons are approximately aligned with the teacher
neuron. (9) states that the student neurons’ projections on the teacher neuron are balanced.

Now we briefly describe our proof ideas.
Proof of (6). Proving the upper bound of ∥wi∥ is straightforward, since the triangle inequality
implies an upper bound of gradient norm ∥∇i∥ = O(∥v∥ +

∑
i ∥wi∥), and the increasing rate of

∥wi∥ is bounded by η∥∇i∥. Note that we use ∥wi∥ to upper bound ∥∇i∥, and use ∥∇i∥ to upper
bound ∥wi∥, so the argument can proceed inductively.

Given with the upper bound, we know that ∥wi∥ = O(η∥v∥t) = O(ϵ21∥v∥/n) is a small term.
Then the gradient (4) can be rewritten as:

∇i = − 1

2π
(∥v∥ sin θiwi + (π − θi)v) +O(ϵ21∥v∥2). (10)

With (10), we prove the lower bound ∥wi∥ ≥ s1 by showing that ∥wi∥ monotonically increases.
Proof of (7). The condition (7) aims to show that θi would decrease. Our intuition is clear: Since
in each GD iteration, the update of wi (the inverse of gradient (10)) is approximately a linear
combination of wi and v, the angle between wi and v is going to decrease.

However, there is a technical difficulty when converting the above intuition into a rigorous proof,
which is caused by the small perturbation term O(ϵ21∥v∥2) in (10). When θi is large, showing θi
would decrease is easy since this term is negligible. But when θi is too small, the effects of this
perturbation term on the dynamics of θi is no longer negligible. As a result, we cannot directly
show that θi decreases monotonically. Instead, we prove a weaker condition on the dynamics of θi
and perform an algebraic trick (See (33) (34) in Appendix C):

χi(t)− χi(t+ 1) ≥ η∥v∥
12∥wi(t+ 1)∥

(
χi(t)− ϵ21

)
⇒χi(t+ 1)− ϵ21 ≤

(
1− η∥v∥

12∥wi(t+ 1)∥

)(
χi(t)− ϵ21

)
.

(11)
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Here χi(t) := sin2
(
θi(t)
2

)
. Note that (11) holds regardless of the sign of χi(t) − ϵ21, hence both

cases of θi being large and θi being small are gracefully handled. Therefore we can apply (11)
iteratively to get χi(t+1)− ϵ21 ≤ Πt+1

t′=1

(
1− η∥v∥

12∥wi(t′)∥

) (
χi(0)− ϵ21

)
(even if χi(t)− ϵ21 might be

negative for some t). This bound, combined with algebraic calculations, yields (7).
Proof of (8). Applying (7) with t = T1 and some basic algebraic calculations yields (8).
Proof of (9). To prove (9), we divide Phase 1 into two intervals: [0, T1/50] and [T1/50, T1]. We
first show that θi remains small in the second interval: [T1/50, T1]. Given with θi being small,
nice properties of the gradient implies that hi monotonically increases, and its increasing rate ap-
proximately equals η

2H (see (36)), which is identical for all i. Therefore, the increases of hi in the
second interval: hi(T1)−hi(T1/50) are balanced. Then we show that hi(T1/50) is small compared
to hi(T1)− hi(T1/50). These two properties together shows that hi(T1) are balanced.

4.3. Phase 2

Our second phase starts at time T1 + 1 and ends at time T2. The main theorem is as follows.

Theorem 5 (Phase 2) Suppose the initial condition in Lemma 3 holds. For ∀ϵ2 = O(1), set ϵ1 =

O
(
ϵ62n

−1/2
)

in Theorem 4, η = O
(
ϵ21σ

2d
∥v∥2

)
and T2 = T1 +

⌈
1
nη ln

(
1

36ϵ2

)⌉
, then ∀T1 ≤ t ≤ T2,

hi(t) ≤ 2hj(t),∀i, j, (12)(
1− nη

2

)t−T1

∥v∥+ 6ϵ2∥v∥ ≥ H(t) ≥ 2

3

(
1− nη

2

)t−T1

∥v∥ − 6ϵ2∥v∥ ≥ 18ϵ2∥v∥, (13)

2∥v∥
n

≥ hi(t) ≥
s1
2
,∀i. (14)

θi(t) ≤ ϵ2, ∀i. (15)

(12) is the continuation of (6), which shows that the projections hi remain balanced in Phase 2.
(13) bounds the dynamics of H(t). It shows that H(t) exponentially decreases and gives upper and
lower bounds. (14) gives upper and lower bounds for hi. (15) shows that θi remains upper bounded
by a small term ϵ2 in Phase 2. Below we prove (12) (13) (14) (15) together inductively.
Proof of (12). Similar to (9), note that (15) guarantees that θi is small, so we still have that, for ∀i,
hi monotonically increases with rate approximately η

2H . Therefore, hi will remain balanced.
Proof of (13). To understand why we need the bound (13), note that the gradient (4) has the
following property:

∇i =
1

2
r +O((nmax

i
∥wi∥+ ∥v∥)max

i
θi). (16)

By (14) and (15), maxi θi ≤ ϵ2, and maxi ∥wi∥ = O(∥v∥/n). So the second term in (16) can be
bounded as O((nmaxi ∥wi∥+ ∥v∥)maxi θi) ≤ O(ϵ2∥v∥). When O(ϵ2∥v∥) is much smaller than
the first term r/2 in (16), we have ∇i ≈ r/2. Consequently, r and H = ⟨v,−r⟩ will decrease
with an exponential rate. But this will end when r becomes no larger than O(ϵ2∥v∥) and the
approximation ∇i ≈ r/2 no longer holds, and that is the end of Phase 2.

So H should decrease (with exponential rate) to a small value, and it also should not be too small
to ensure that ∥r/2∥ ≫ O(ϵ2∥v∥) (since H = ⟨v,−r⟩). So we need to use (13) to simultaneously
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upper and lower bound H . With the above intuition, proving (13) is straightforward as: ∇i ≈
r/2 ⇒ H(t+ 1) ≈ (1− nη/2)H(t) ≈ · · · ≈ (1− nη/2)t−T1H(T1).

It is worth noting that, we also need to handle a perturbation term when bounding the dynamics
of H(t), and we used the same trick as in proving (7).
Proof of (14). The left inequality can be derived from (12) and (13). The right inequality can be
derived from the monotonicity of hi, (15) and (6).
Proof of (15). This is the most difficult part in Theorem 5. Recall that in Phase 1 we used the
gradient approximation (10) to bound θi, but (10) relies on ∥wi∥ being a small term, which only
holds in phase 1. So this time we use a totally different method to bound θi.

First we calculate the dynamics of cos θi and get (see the proof in Appendix D for details):
cos(θi(t+1))−cos(θi(t)) = I1+I2, where term I1 ≥ −η

2

∑
j ̸=i sin θi(t) sin(θi(t)+θj(t))

∥wj(t)∥
∥wi(t+1)∥ ,

and term I2 is a small perturbation term. The next step is to establish the condition (12), then use it
to bound the term ∥wj(t)∥

∥wi(t+1)∥ in I1. Consequently, we have

cos(θi(t+ 1))− cos(θi(t)) = I1 + I2 ≥ −2η
∑
j ̸=i

sin θi(t)(sin θi(t) + sin θj(t)) + I2. (17)

However, this is still not enough to prove the bound. The lower bound of the dynamics of cos θi
in (17) depends on θj where j ̸= i. Since θj might be much larger then θi, the increasing rate of θi
still cannot be upper-bounded.

To solve this problem, our key idea is to consider all θi’s together. Define a potential function
V (t) :=

∑
i sin

2 (θi(t)/2), then we can sum the bound in (17) over all i’s to get an upper bound
for the increasing rate of V . Although the bound for θi depends on other θj’s, the bound for V only
depends on V itself. Consequently, the dynamics of the potential function V can be upper bounded,
which yields the final upper bound (15).

4.4. Phase 3

Theorem 6 (Phase 3) Suppose the initial condition in Lemma 3 holds. If we set ϵ2 = O(n−14) in
Theorem 5, η = O

(
1
n2

)
, then ∀T ∈ N we have

4∥v∥
n

≥ ∥wi(T + T2)∥ ≥ ∥v∥
4n

and L(T + T2) ≤ O

(
n4∥v∥2

(ηT )3

)
. (18)

This is the desired 1/T 3 convergence rate. Our analysis consists of two steps:
1. Prove a gradient lower bound ∥∇L(w)∥ ≥ poly(n−1, ∥v∥−1)L2/3(w).
2. Prove that the loss function is smooth and Lipschitz on the gradient trajectory.
Given these two properties, the convergence can be established via the standard analysis for GD.

4.4.1. STEP 1: GRADIENT LOWER BOUND.

Theorem 7 (Gradient Lower Bound) If for every student neuron we have 4∥v∥
n ≥ ∥wi∥ ≥ ∥v∥

4n ,

and L(w) = O
(
∥v∥2
n14

)
, then ∥∇wL(w)∥ ≥ Ω

(
L2/3(w)

n2/3∥v∥1/3

)
.

As stated in Section 2, this theorem is an improved version of Theorem 3 in Zhou et al. (2021),
improving the dependency of L from ∥∇wL(w)∥ ≥ Ω(L(w)) to ∥∇wL(w)∥ ≥ Ω(L2/3(w)).
Below we introduce our idea of improving the bound.

9



XU DU

Lemma 8 (Gradient Projection Bound) Suppose w∗
1,w

∗
2, . . . ,w

∗
n is a global minimum of loss

function L. Define θmax := maxi∈[n] θi, then

n∑
i=1

〈
∂

∂wi
L(w),wi −w∗

i

〉
≥ 2L(w)−O

(
θ2max∥r∥ · ∥v∥

)
. (19)

Lemma 8 uses the idea of “descent direction” from Lemma C.1 in Zhou et al. (2021). The
idea is to pick a global minimum w∗

1,w
∗
2, . . . ,w

∗
n and lower bound the projection of gradient on

the direction wi −w∗
i . Recall that Zhou et al. (2021) made artificial modifications of the network

architecture for technical reasons, e.g., they used the absolute value activation x → |x| instead of
ReLU. Therefore, their proof cannot be directly applied to our lemma. However, we show that their
idea still works in our setting, and modified their proof to prove Lemma 8 in Appendix E.2.

With Lemma 8 and several technical lemmas (Lemma 20, 21 in Appendix E.2), it is easy show
that the last term O

(
θ2max∥r∥ · ∥v∥

)
in (19) is small, so

∑n
i=1

〈
∂

∂wi
L(w),wi −w∗

i

〉
≥ L(w).

Then we need to upper bound ∥wi − w∗
i ∥, and that is the step where we make the improvement.

In Zhou et al. (2021), they picked an arbitrary global minimum {w∗
i }ni=1 and treated the term

∥wi −w∗
i ∥ as constantly large. Consequently, their gradient lower bound scale with L−1, yielding

a final convergence rate of L(w(T )) ≤ O(T−1). In contrast, our key observation is that we can
pick a specific global minimum {w∗

i }ni=1 that depends on {wi}ni=1. Specifically, we define

∀i ∈ [n],w∗
i :=

hi∑
j hj

v.

Then Lemma 22 shows that ∥wi −w∗
i ∥ ≤ O(L1/3(w)) is a small term rather than a constant term.

Finally, direct application of Cauchy inequality yields the improved bound Theorem 7.

4.4.2. STEP 2: SMOOTHNESS AND LIPSCHITZNESS

The aim of step 2 is to show the smoothness and Lipschitzness of L. However, one can see from (4)
that L is neither Lipschitz nor smooth. The problem of non-Lipschitzness is easy to address, since
(4) implies that ∥∇L∥ is upper bounded by ∥wi∥, and ∥wi∥ is upper bounded by L(w). However,
the non-smoothness property of L is hard to handle. By the closed form expression of ∇2L (see
(51)), one can see that ∥∇2L∥ scales with ∥v∥

∥wi∥ . Then ∥∇2L∥ → ∞ as ∥wi∥ → 0.
As stated in Section 2, our idea of solving this problem is to show that GD implicitly regularizes

wi such that ∥wi∥ is always lower and upper bounded, namely (18) in Theorem 6. This property
ensures the smoothness of L on GD trajectory (see Lemma 23 for details).
Implicit Regularization of Student Neurons. Next we describe our idea of proving the implicit
regularization condition (18). It is not hard to give ∥wi(T2)∥ lower and upper bounds (see Lemma
19). Therefore, we only need to show that the student neurons do not move very far in phase 3. In
other words, we wish to bound

∑T
t=T2

η∥∇L(w(t))∥ for ∀T > T2. The intuition is very clear: in
phase 3, the loss being small implies that the decrease of loss is small. Since the move of student
neurons results in the decrease of loss, the change of ∥wi∥ should also be small. However, the
following subtlety emerges when constructing a rigorous proof.
The Importance of the Improved Gradient Lower Bound. We want to emphasize that our im-
proved gradient lower bound (Theorem 7) is crucial for bounding the movement of student neurons∑T

t=T2
η∥∇L(w(t))∥. There is an intuitive explanation for this: The weaker bound ∥∇L(w(t))∥ ∼

10
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L(w(t)) implies the rate L(w(T )) ∼ 1
T (i.e., the rate in Zhou et al. (2021)). Then ∥∇L(w(t))∥ ∼

L(w(t)) ∼ 1
T and

∑T
t=T2

η∥∇L(w(t))∥ ∼
∑T

t=T2

1
t . But the infinite sum

∑∞
t=T2

1
t diverges, so

we cannot derive any meaningful bound.
On the other hand, the improved gradient lower bound ∥∇L(w(t))∥ ∼ L2/3(w(t)) implies the

convergence rate L(w(T )) ∼ 1
T 3 ⇒ ∥∇L(w(t))∥ ∼ L2/3(w(t)) ∼ 1

T 2 ⇒
∑T

t=T2
η∥∇L(w(t))∥ ∼∑T

t=T2

1
t2

, which is finite. See Lemma 24 for the rigorous argument.

4.5. Main Theorem

Now we are ready to state and prove the formal version of Theorem 1.

Theorem 9 (Global Convergence) For ∀δ > 0, if d = Ω(log(n/δ)), σ = O
(
n−4226d−1/2∥v∥

)
,

η = O
(

σ2d
n169∥v∥2

)
, then there exists T2 = O

(
logn
nη

)
such that with probability at least 1 − δ over

the initialization, for any T ∈ N, L(w(T + T2)) ≤ O
(
n4∥v∥2
(ηT )3

)
.

To combine three phases of our analysis together, the last step is to assign values to the parame-
ters in Theorem 4, 5, 6 (ϵ2, ϵ1, C, σ, η, T1, T2) such that the previous phase satisfies the requirements
of the next phase. For a complete list of the values, we refer the readers to Appendix F.2. With the
parameter valuations in Appendix F.2, combining the initialization condition (Lemma 3) and three
phases of our analysis (Theorem 4, 5, 6) together proves Theorem 9 immediately.

Remark 10 Careful readers might notice that, if there exists i such that wi = 0, then L is not
differentiable and gradient descent is not well-defined. However, such a corner case has been
naturally excluded in our previous analysis. (See Appendix F.3 for a detailed discussion.)

Remark 11 Some readers might think that the polynomial dependencies of σ = O
(
n−4226d−1/2∥v∥

)
,

η = O
(

σ2d
n169∥v∥2

)
in Theorem 9 is too large. Here we would like to stress that these dependencies

are not optimized, and we leave fine-grained optimization of them as a future direction.

Taking η → 0 in Theorem 9 (more rigorously, replacing our discrete analysis for GD with its
continuous counterpart), we can obtain a corresponding global convergence theorem for gradient
flow.

Corollary 12 (Global Convergence, Gradient Flow Version) For ∀δ > 0, if d = Ω(log(n/δ)),
σ = O(n−4226d−1/2∥v∥), then there exists T2 = O(log n/n) such that with probability at least
1− δ over the initialization, for any T > 0, randomly initialized gradient flow has convergence rate
upper bound L(w(T + T2)) ≤ O(n4∥v∥2/T 3).

5. Proof Overview: Convergence Rate Lower Bound

In this section, we provide a general overview for the convergence rate lower bound. Full proofs
of all theorems can be found in Appendix G. We consider the gradient flow (gradient descent with
infinitesimal step size):

∂w(t)

∂t
= −∂L(w(t))

∂w
,∀t ≥ 0,

11
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while keeping other settings (network architecture, initialization scheme, etc.) unchanged.
Our goal is to prove an Ω

(
1/T 3

)
bound. We note there exist fast-converging initialization

points that break this lower bound. In Appendix A, we list several examples. Therefore, we need to
utilize the property of random initialization to show our lower bound of Ω

(
1/T 3

)
.

We first define a few important terms. For ∀i ∈ [n], define zi := wi−⟨wi,v⟩v as the projection
of wi onto the orthogonal complement of v. Define Z(t) =

∑
1≤i<j≤n ∥zi(t) − zj(t)∥. Define

Q+(t) := {i ∈ [n]|zi(t) ̸= 0} as the index set containing all i with zi nonzero at time t. For i, j ∈
Q+, define κij := θ(zi, zj) as the angle between zi and zj . Define κmax(t) := maxi,j∈Q+(t) κij(t)
as the maximum angle between zi and zj .

Our idea is to show the lower bound holds as long as the initialization is “non-degenerate”,
formalized by the following definition.

Definition 13 (Non-degeneracy) When n ≥ 2, we say the initialization is non-degenerate if the
following two conditions are satisfied. (1) All zi’s are nonzero: ∀i ∈ [n], zi(0) ̸= 0. (2) zi’s are
not parallel: κmax(0) > 0.

Since zi’s are initialized with a Gaussian distribution, the initialization is only degenerate on a set
with Lebesgue measure zero, so the probability of the initialization being non-degenerate is 1. Now
we are ready to state the formal version of Theorem 2 whose proof is in Appendix G.3.

Theorem 14 (Convergence Rate Lower Bound) Suppose the network is over-parameterized, i.e.,
n ≥ 2. Consider gradient flow: ∂w(t)

∂t = −∂L(w(t))
∂w . For ∀δ > 0, if the initialization is non-

degenerate, d = Ω(log(n/δ)), σ = O
(
n−4226d−1/2∥v∥

)
, then there exists T2 = O

(
logn
n

)
such

that with probability at least 1− δ, for ∀t ≥ T2 we have

L(w(t))−1/3 ≤ O

(
n17/3

κ2max(0)∥v∥2/3

)
(t− T2) + γ,

where γ ∈ R+ is a constant that does not depend on t.

Remark 15 The bound in Theorem 14 depends on 1/κ−2
max(0). Such a dependence is reasonable

since we have shown that there would be counter-examples if κmax(0) = 0 (See toy case 3 in
Appendix A).

5.1. Proof Sketch

Our key idea of proving Theorem 14 is to consider the potential function

Z(t) =
∑
i<j

∥zi(t)− zj(t)∥ where zi(t) := wi(t)− ⟨wi(t),v⟩v.

With Z(t), our proof consists of three steps:
1. Show that with the non-degeneracy condition, κmax(t) is lower bounded. (Lemma 30)
2. Show that when κmax is lower bounded by a positive constant, ∂

∂tZ(t) can be lower bounded by
Z2(t) (See (66) in Appendix G.3), so the convergence rate of Z(t) is at most Z(t) ∼ t−1.
3. Use Z(t) to lower bound L(w(t)): L(w(t)) ≥ Ω

(
Z3(t)
n5∥v∥

)
. ((68) in Appendix G.3).

12
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Remark 16 The potential function Z(t) provides two implications.
• It explains why the convergence rate is different for n = 1 and n ≥ 2. For n ≥ 2, our analysis
implies that the slow convergence rate of Z (Z(t) ∼ t−1) induces the slow convergence rate of
L(t) ∼ t−3. When n = 1, Z is always zero, so L converges with linear rate. Intuitively, this is
because optimizing the difference between student neurons is hard, which is a phenomenon that only
exists in the over-parameterized case.
• It explains why the convergence rates in the two counter-examples (toy case 2 and 3 in Appendix A)
are linear. In these two cases, the potential function Z degenerates to 0.

We need several technical properties of the gradient flow trajectory. The first one is the implicit
regularization condition: (18) in Theorem 6, and we use its gradient flow version (see Theorem 27
for details). We also need Corollary 28 and Lemma 29 to exclude the corner cases when wi = 0
and zi(t) = 0, where κmax is not well-defined. The proofs are deferred to Appendix G.1.

Lower bounding κmax is the most non-trivial step. We need to use the following lemma.

Lemma 17 (Automatic Separation of zi) If there exists i, j such that κij(t) = κmax(t) <
π
2 , then

cosκij(t) is well-defined in an open neighborhood of t, differentiable at t, and

∂

∂t
cosκij(t) ≤ −π − θij(t)

π
(1− cosκ2ij(t)). (20)

Lemma 17 states that, when the vectors zi are too close in direction, gradient flow will auto-
matically separate them, which immediately implies a lower bound of κmax (See Theorem 30). Its
proof idea is also interesting: we can easily compute the dynamics of cosκij , which splits into two
terms I1 and I2 (see (61) for them). I1 is a simple term that can be handled easily, but the second
term I2 is very complicated and seems intractable. Our key observation is that, although I2 is hard
to bound for general i, j, it is always non-positive if we pick the pair of i, j such that κij = κmax,
and that property implies Lemma 17 via some routine computations.

Remark 18 We note that in toy case 3 in Appendix A, all zi’s remain parallel and will not be sep-
arated. This is because the bound (20) in Lemma 17 implies that the initial condition κij = 0, ∀i, j
is unstable. To see this, consider the ordinary differential equation ẋ = −C̃(1− x2) where C̃ > 0
is a constant. The initial condition x(0) = 1 induces the solution x(t) ≡ 1, which corresponds
to toy case 3. But this initial condition is unstable since any perturbation of x(0) results in solu-

tion x(t) = 1−exp(2C̃t+c0)

1+exp(2C̃t+c0)
, which implies an exponential increase of the perturbation, hence the

separation of zi.

Given with a lower bound of κmax(t), and the implicit regularization property in Theorem 27,
step 2 and step 3 can be proved with some geometric lemmas See Lemma 33, Lemma 31 and the
proof of Theorem 14 in Appendix G. Combining three steps together finishes our proof.
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Appendix A. Case study

It is a known result that under the case of exact-parameterization where n = 1, the loss converges
exponentially fast [Yehudai and Ohad (2020)]. To understand why the convergence rate becomes
much slower when n ≥ 2, we investigate several toy cases.
Toy Case 1. Set n = 2, w1(0) = λ1(0)v + λ2(0)v

⊥,w2(0) = λ1(0)v − λ2(0)v
⊥, where

λ1(0), λ2(0) > 0, v⊥ is a vector orthogonal with v such that ∥v⊥∥ = ∥v∥. Then w1(0) and w2(0)
are reflection symmetric with respect to v (See Figure 2). Consider gradient descent with step size η
initialized from (w1(0),w2(0)). It is easy to see that the symmetry of w1 and w2 is preserved in GD
update, so for t = 0, 1, 2, . . . there exists λ1(t), λ2(t) such that w1(t) = λ1(t)v+λ2(t)v

⊥,w2(t) =
λ1(t)v − λ2(t)v

⊥. Since θ1(t) = θ2(t),∀t ∈ N, we denote θ := θ1 = θ2. Then gradient (4) has
the form

∇1 =

(
λ1 −

1

2

)
v +

1

2π
[(∥w2∥ sin(2θ)− ∥v∥ sin θ)w1 − 2θw2 + θv]

=

(
λ1 −

1

2
+

1

2π

((
sin(2θ)− ∥v∥

∥w1∥
sin θ

)
λ1 − θ(2λ1 − 1)

))
v

+
1

2π

(
2θ + sin(2θ)− ∥v∥

∥w1∥
sin θ

)
λ2v

⊥

=

(
λ1 −

1

2

)(
1− θ

π
+

sin(2θ)

λ1

)
v +

1

2π

(
2θ +

λ1 − 1/2

λ1
sin(2θ)

)
λ2v

⊥,

where the last equality is because sin(2θ)− ∥v∥
∥w1∥ sin θ = sin(2θ)− ∥v∥

λ1∥v∥/ cos θ sin θ = sin(2θ)
λ1

(
λ1 − 1

2

)
.

A similar expression can be computed for ∇2.
Then we can write out the dynamics of λ1 and λ2 as

λ1(t+ 1)− 1

2
=

(
λ1(t)−

1

2

)(
1− η

(
1− θ(t)

π
+

sin(2θ(t))

λ1(t)

))
, (21)

λ2(t+ 1) = λ2(t)

(
1− η

2π

(
2θ +

λ1 − 1/2

λ1
sin(2θ)

))
. (22)

Since θ = o(1), λ1 is a constant term, 1− θ(t)
π + sin(2θ(t))

λ1(t)
≈ 1, then (21) implies 2 λ1(t+1)− 1

2 ≈(
λ1(t)− 1

2

)
(1 − η). This indicates that λ1 converges to 1

2 exponentially fast. So λ1 − 1/2 =

o(1) ⇒ 2θ + λ1−1/2
λ1

sin(2θ) ≈ 2θ ≈ 2 tan θ = 2λ2
λ1

≈ 4λ2. Then (22) can be rewritten as

λ2(t+ 1) ≈ λ2(t)
(
1− 2η

π λ2(t)
)
. This indicates that λ2 converges to 0 with rate λ2(t) ∼ t−1.

Finally, we can compute the loss with (23) as L(w) = Θ
(
(2λ1 − 1)2 + (sin θ − θ cos θ)

)
∥v∥2.

Since (sin θ − θ cos θ) ∼ θ3 ∼ λ3
2 ∼ t−3, we know that the convergence rate is L(w(t)) ∼ t−3.

From the above toy case, we already know that the convergence rate given by Theorem 9 is
worst case optimal. However, our ultimate goal is to prove an average case lower bound for the
convergence rate: Theorem 14. We would like to point out that there is a huge gap between the
worst case optimality and the average case optimality: proving the latter is much more difficult. To
see this, we present two more toy cases.

2. Here we use the ≈ sign to omit higher order terms.
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v

w1

w2

θ
θ

Figure 2: Toy Case 1

Toy Case 2. Let n ≥ 2. We consider the case where all student neurons are parallel with the
teacher neuron: w1 = λ1v, . . . ,wn = λnv, where λ1, . . . , λn ∈ R+. Then the gradient (4)
becomes ∇i =

1
2(
∑

j wj − v). One can easily see that
∑

i∈[n] λi converges exponentially fast to 0,
which means that the convergence rate in this toy case is actually linear.
Toy Case 3. Let n ≥ 2. We consider the case where all student neurons are equal: w1 = w2 =
. . . = wn. Then the gradient (4) becomes ∇i = 1

2(nwi − v) + 1
2π [−∥v∥ sin θiwi + θiv]. One

can see that the gradient in this case is just n times the gradient in the single student neuron case
where the student neuron is wi and the teacher neuron is v/n. So the training process is actually
equivalent with learning one teacher neuron ∥v∥/n with one student neuron, with the step size η
being multiplied by a factor of n. So in this toy case, the loss also have linear convergence.

Appendix B. Closed Form Expressions for L and ∇L

In this section, we present closed forms of L and ∇L, as computed in Safran and Shamir (2018).
Closed Form of L(w).

L(w) =
1

2

n∑
i,j=1

Υ(wi,wj)−
n∑

i=1

Υ(wi,v) +
1

2
Υ(v,v),

where

Υ(w,v) = Ex∼N (0,I))

[[
w⊤x

]
+

[
v⊤x

]
+

]
=

1

2π
∥w∥ ∥v∥(sin(θw,v) + (π − θw,v) cos(θw,v)).

Rearranging terms yields

L(w) =
1

4
∥
∑
i

wi−v∥2+ 1

2π

∑
i<j

(sin θij − θij cos θij)∥wi∥ ∥wj∥ −
∑
i

(sin θi − θi cos θi)∥wi∥ ∥v∥

 .

(23)
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Closed Form of ∇L(w). When wi ̸= 0, ∀i ∈ [n], Safran and Shamir (2018) showed that the loss
function is differentiable and the gradient is given by

∇i = Ex∼N (0,I)

 n∑
j=1

[
w⊤

j x
]
+
−
[
v⊤x

]
+

 1
{
w⊤

i x ≥ 0
}
x


=

1

2

∑
j

wj − v

+
1

2π

∑
j ̸=i

∥wj∥ sin θij − ∥v∥ sin θi

wi −
∑
j ̸=i

θijwj + θiv

 .

Appendix C. Global Convergence: phase 1

Theorem 4 Suppose the initial condition in Lemma 3 holds. For any ϵ1 = O(1), (ϵ1 > 0), there
exists C = O

(
ϵ21
n

)
such that for any σ = O

(
Cϵ481 d−1/2∥v∥

)
and η = O

(
nCσ

√
d

∥v∥

)
, by setting

T1 :=
C
η ,

3 the following holds for ∀1 ≤ i ≤ n, 0 ≤ t ≤ T1:

s1 ≤ ∥wi(t)∥ ≤ s2 + 2η∥v∥t, (24)

sin2
(
θi(t)

2

)
− ϵ21 ≤

(
1 +

ηt

s2/∥v∥

)−1/24(
sin2

(
θi(0)

2

)
− ϵ21

)
. (25)

Consequently, at the end of Phase 1, we have

∀i ∈ [n], θi(T1) ≤ 4ϵ1, (26)

and
hi(T1) ≤ 2hj(T1),∀i, j ∈ [n]. (27)

Proof By Lemma 3, (24) and (25) holds for t = 0, and we have s1 ≤ ∥wi(0)∥ ≤ s2, ∀i.
Now we show with induction that (24) and (25) holds for ∀t ≤ T1.
For t < T1, assume (24) and (25) holds for 0, 1, . . . , t, we prove the case of t+ 1.
First note that (25) holds for 0, 1, . . . , t implies that ∀t′ ≤ t, sin2(θi(t′)/2) ≤ max{sin2(θi(0)/2), ϵ21} ≤

sin2(π/3) ⇒ θi(t
′) ≤ 2π/3.

Proof of the right inequality of (24).
Consider ∀0 ≤ t′ ≤ t, note that ∥wi(t

′)∥ ≥ s1 > 0, ∀i implies that, for any i, j, the gradient
∇i(t

′) and the angles θi(t′), θij(t′) are well-defined.
Note that s2 = 2σ

√
d = O

(
(ηT1)ϵ

48
1 ∥v∥

)
≤ ηT1∥v∥, so ∀0 ≤ t′ ≤ t we have

∥wi(t
′)∥ ≤ s2 + 2η∥v∥t′ ≤ s2 + 2η∥v∥T1 ≤ 3C∥v∥ = O

(
ϵ21/n

)
∥v∥ ≤ ∥v∥

3n
. (28)

By triangle inequality, for ∀i ∈ [n], 0 ≤ t′ ≤ t,

∥∇i(t
′)∥ ≤ 1

2

∑
j

∥∥wj(t
′)
∥∥+ ∥v∥

+
1

2π

∑
j ̸=i

∥wj(t
′)∥+ ∥v∥+

∑
j ̸=i

π∥wj(t
′)∥+ π∥v∥


≤ 1

2

(
1

3
+ 1

)
∥v∥+ 1

2π

(
1

3
+ 1 +

π

3
+ π

)
∥v∥ ≤ 2∥v∥.

(29)

3. Here we set η such that T1 = C/η ∈ N.
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Then ∥wi(t+ 1)∥ can be upper-bounded as

∥wi(t+ 1)∥ = ∥wi(0)−
t∑

t′=0

η∇i(t
′)∥ ≤ ∥wi(0)∥+

t∑
t′=0

η∥∇i(t
′)∥ ≤ s2 + 2η(t+ 1)∥v∥.

Proof of the left inequality of (24).

Next we show that ∥wi(t+ 1)∥ ≥ ∥wi(t)∥ ≥ s1.

Note that

∥wi(t+ 1)∥2 − ∥wi(t)∥2 = ∥wi(t)− η∇i(t)∥2 − ∥wi(t)∥2 = −2η⟨wi(t),∇i(t)⟩+ η2∥∇i(t)∥2,

so to show ∥wi(t+1)∥ ≥ ∥wi(t)∥, we only need to prove that ⟨wi(t),∇i(t)⟩ < 0 (note that by the
induction hypothesis we have ∥wi(t)∥ > 0, therefore wi(t) is well-defined):

⟨wi(t),∇i(t)⟩

=− (π − θi(t)) ⟨wi(t),v⟩+ ⟨wi(t), ∥v∥ sin θi(t)wi(t)⟩
2π

+
∑
j

⟨wi(t), (π − θij(t))wj(t)⟩
2π

+

〈
wi(t),

(∑
j ̸=i ∥wj(t)∥ sin θij(t)

)
wi(t)

〉
2π

=− (π − θi(t)) cos θi(t) + sin θi(t)

2π
∥v∥+

∑
j

(π − θij(t)) cos θij(t) + sin θij(t)

2π
∥wj(t)∥

(28)
≤ − (π − θi(t)) cos θi(t) + sin θi(t)

2π
∥v∥+O

(
ϵ21
)
∥v∥

≤ − 1/12

2π
∥v∥+O

(
ϵ21
)
∥v∥

<0.

The reason for the second to last inequality is that, it is easy to verify by taking derivatives
that the expression (π − θ) cos θ + sin θ monotonically decreases on the interval [0, π], and the
induction hypothesis implies θi(t) ≤ 2π/3, therefore (π − θi(t)) cos θi(t) + sin θi(t) ≥ (π −
2π/3) cos(2π/3) + sin(2π/3) > 1/12.

Then we have ∥wi(t+ 1)∥ ≥ ∥wi(t)∥ ≥ s1.

Proof of (25).
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First we calculate the dynamics of cos θi.

cos(θi(t+ 1))− cos(θi(t))

= ⟨wi(t+ 1),v⟩ − ⟨wi(t),v⟩

=
∥wi(t)∥ ⟨wi(t+ 1),v⟩ − ∥wi(t+ 1)∥ ⟨wi(t),v⟩

∥wi(t+ 1)∥ · ∥wi(t)∥

=
⟨wi(t),v⟩ (∥wi(t)∥ − ∥wi(t+ 1)∥)− η∥wi(t)∥ ⟨∇i(t),v⟩

∥wi(t+ 1)∥ · ∥wi(t)∥

=
⟨wi(t),v⟩ ∥wi(t)∥2−∥wi(t)−η∇i(t)∥2

∥wi(t)∥+∥wi(t+1)∥ − η∥wi(t)∥ ⟨∇i(t),v⟩
∥wi(t+ 1)∥ · ∥wi(t)∥

=
1

∥wi(t+ 1)∥

[
⟨wi(t),v⟩

2η ⟨wi(t),∇i(t)⟩ − η2∥∇i(t)∥2

∥wi(t)∥+ ∥wi(t+ 1)∥
− η ⟨∇i(t),v⟩

]
=

1

∥wi(t+ 1)∥

[
η ⟨wi(t),v⟩ ⟨wi(t),∇i(t)⟩+ ⟨wi(t),v⟩

(
2η ⟨wi(t),∇i(t)⟩

∥wi(t)∥+ ∥wi(t+ 1)∥
− 2η ⟨wi(t),∇i(t)⟩

2∥wi(t)∥

)
− η2 ⟨wi(t),v⟩

∥∇i(t)∥2

∥wi(t)∥+ ∥wi(t+ 1)∥
− η ⟨∇i(t),v⟩

]
=

η

∥wi(t+ 1)∥
⟨⟨wi(t),v⟩wi(t)− v,∇i(t)⟩︸ ︷︷ ︸

I1

+
η ⟨wi(t),v⟩
∥wi(t+ 1)∥

[
⟨wi(t),∇i(t)⟩ (∥wi(t)∥ − ∥wi(t+ 1)∥)

∥wi(t)∥+ ∥wi(t+ 1)∥
− η

∥∇i(t)∥2

∥wi(t)∥+ ∥wi(t+ 1)∥

]
︸ ︷︷ ︸

I2

.

(30)

For the first term I1, note that the vector ⟨wi(t),v⟩wi(t)− v is orthogonal with wi, therefore,

I1 =
η

∥wi(t+ 1)∥

〈
⟨wi(t),v⟩wi(t)− v,

1

2π

∑
j ̸=i

(π − θij(t))wj(t)− (π − θi(t))v

〉

=
η

2π∥wi(t+ 1)∥

(π − θi(t)) sin
2 θi(t)∥v∥ −

∑
j ̸=i

(π − θij(t)) (cos θj(t)− cos θi(t) cos θij(t)) ∥wj(t)∥


≥ η

2π∥wi(t+ 1)∥
[
(π − θi(t)) sin

2 θi(t)∥v∥ − nπ · 2∥wj(t)∥
]

(28)
≥ η

2π∥wi(t+ 1)∥
[
(π − θi(t)) sin

2 θi(t)∥v∥ − nπ · 2O(C)∥v∥
]

≥ η∥v∥
2π∥wi(t+ 1)∥

[π
3
sin2 θi(t)−O (nC)

]
,

(31)

where the last inequality is because θi(t) ≤ π/3.
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The second term I2 is a small perturbation term, which can be lower bounded as:

I2 ≥ − η

∥wi(t+ 1)∥

[
∥∇i(t)∥ · ∥η∇i(t)∥

2s1
+ η

∥∇i(t)∥2

2s1

]
= − η2

s1∥wi(t+ 1)∥
∥∇i(t)∥2

(29)
≥ − 4η2

s1∥wi(t+ 1)∥
∥v∥2.

(32)

Combining both terms together, we get

cos(θi(t+ 1))− cos(θi(t)) = I1 + I2 ≥
η∥v∥

2π∥wi(t+ 1)∥

[
π

3
sin2 θi(t)−O (nC)− 8πη

∥v∥
s1

]
≥ η∥v∥

6∥wi(t+ 1)∥
[
sin2 θi(t)−O (nC)

]
,

where the last inequality is because η = O
(
nCσ

√
d

∥v∥

)
⇒ 8πη ∥v∥

s1
= O (nC).

Therefore,

sin2
(
θi(t)

2

)
− sin2

(
θi(t+ 1)

2

)
=

cos(θi(t+ 1))− cos(θi(t))

2

≥ η∥v∥
12∥wi(t+ 1)∥

[
sin2 θi(t)−O (nC)

]
≥ η∥v∥

12∥wi(t+ 1)∥

[
sin2

(
θi(t)

2

)
− ϵ21

]
,

(33)

where the last inequality is because cos(θi(t)/2) ≥ cos(π/3) = 1/2 ⇒ sin θi(t) = 2 sin(θi(t)/2) cos(θi(t)/2) ≥
sin(θi(t)/2), and C = O(ϵ21/n) ⇒ O(nC) ≤ ϵ21.

Then we have

sin2
(
θi(t+ 1)

2

)
− ϵ21 ≤ sin2

(
θi(t)

2

)
− η∥v∥

12∥wi(t+ 1)∥

[
sin2

(
θi(t)

2

)
− ϵ21

]
− ϵ21

=

(
1− η∥v∥

12∥wi(t+ 1)∥

)(
sin2

(
θi(t)

2

)
− ϵ21

)
≤
(
1− η

12 (s2/∥v∥+ 2η(t+ 1))

)(
sin2

(
θi(t)

2

)
− ϵ21

)
.

For the same reason, for any t′ ∈ {0, 1, . . . , t} we have

sin2
(
θi(t

′ + 1)

2

)
− ϵ21 ≤

(
1− η

12 (s2/∥v∥+ 2η(t′ + 1))

)(
sin2

(
θi(t

′)

2

)
− ϵ21

)
. (34)

sin2
(
θi(t

′)
2

)
− ϵ21 can both be positive or negative, but (34) always holds regardless of its sign.

Since 1 − η
12(s2/∥v∥+2η(t′+1)) is always positive, and multiplying both sides of an inequality by a

positive number does not change the direction of the inequality, we can iteratively apply (34) and
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get

sin2
(
θi(t+ 1)

2

)
− ϵ21 ≤

t+1∏
u=1

(
1− η

12 (s2/∥v∥+ 2ηu)

)(
sin2

(
θi(0)

2

)
− ϵ21

)

≤
t+1∏
u=1

exp

(
− η

12 (s2/∥v∥+ 2ηu)

)(
sin2

(
θi(0)

2

)
− ϵ21

)
≤ exp

(∫ t+2

u=1
− η

12 (s2/∥v∥+ 2ηu)
du

)(
sin2

(
θi(0)

2

)
− ϵ21

)
=exp

(
− 1

24
ln

(
s2 + (t+ 2)2η∥v∥

s2 + 2η∥v∥

))(
sin2

(
θi(0)

2

)
− ϵ21

)
≤
(
1 +

η(t+ 1)

s2/∥v∥

)−1/24(
sin2

(
θi(0)

2

)
− ϵ21

)
,

where the last inequality is because 2η∥v∥ ≤ s1 ≤ s2. (Note that, by Lemma 3, sin2
(
θi(0)
2

)
− ϵ21

is always positive.)
Proof of (26). W.L.O.G., suppose T1/50 ∈ N. By (25), for ∀t ∈ [T1/50, T1] we have that

sin2
(
θi(t)

2

)
−ϵ21 ≤

(
1 +

ηt

s2/∥v∥

)−1/24(
sin2

(
θi(0)

2

)
− ϵ21

)
≤

(
ηT1/50

O
(
(ηT1)ϵ481

))−1/24

≤ ϵ21.

(35)
Since ϵ1 = O(1) is a sufficiently small constant, we have

∀t ∈ [T1/50, T1], sin

(
θi(t)

2

)
≤

√
2ϵ1 ⇒ ∀t ∈ [T1/50, T1], θi(t) ≤ 4ϵ1.

This implies (26) immediately.
Proof of (27). Consider ∀t ∈ [T1/50, T1]. The dynamics of hi is given by

hi(t+ 1)− hi(t) = −η⟨∇i(t),v⟩

=
η

2

∥v∥ −
∑
j

hj(t)


︸ ︷︷ ︸

η
2
H(t)

− η

2π

∑
j ̸=i

∥wj(t)∥ sin θij(t)− ∥v∥ sin θi(t)

 cos θi(t)−
∑
j ̸=i

θij(t)hj(t) + θi(t)∥v∥


︸ ︷︷ ︸

Qi(t)

.

(36)

The first term is just η
2H(t). Denote the second term with Qi(t). Then hi(t+1) = hi(t)+

η
2H(t)−

Qi(t).
H(t) can be lower bounded as

H(t) = ∥v∥ −
∑
j

hj(t) ≥ ∥v∥ −
∑
j

∥wj(t)∥
(28)
≥ ∥v∥ − n · ∥v∥

3n
=

2∥v∥
3

. (37)
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On the other hand, the second term Qi(t) is a small perturbation term, whose norm can be upper
bounded by

|Qi(t)| ≤
η

2π

[
n · ∥v∥

3n
θij(t) + ∥v∥θi(t) + n · ∥v∥

3n
θij(t) + θi(t)∥v∥

]
≤ η

2π

[
∥v∥
3

8ϵ1 + ∥v∥4ϵ1 +
∥v∥
3

8ϵ1 + 4ϵ1∥v∥
]

≤3η∥v∥ϵ1 ≤ 9ϵ1
η

2
H(t) ≤ 0.1

η

2
H(t),

(38)

where the second inequality is because θij(t) ≤ θi(t) + θj(t) ≤ 8ϵ1.
Therefore

0.3η∥v∥ ≤ 0.9
η

2
H(t) ≤ hi(t+ 1)− hi(t) =

η

2
H(t)−Qi(t) ≤ 1.1

η

2
H(t),∀t ∈ [T1/50, T1].

Then we have the following bound, which shows that, ∀i, hi(T1)−hi(T1/50) approximately equals
to
∑T1−1

t=T1/50
η
2H(t):

0.9

 T1−1∑
t=T1/50

η

2
H(t)

 ≤ hi(T1)−hi (T1/50) =

T1−1∑
t=T1/50

(hi(t+ 1)− hi(t)) ≤ 1.1

 T1−1∑
t=T1/50

η

2
H(t)

 .

(39)
The next bounds shows that, ∀i, |hi(T1/50)| is small comparing to

∑T1−1
t=T1/50

η
2H(t):

|hi(T1/50)| ≤ ∥wi(T1/50)∥
(24)
≤ s2 + 2η∥v∥T1

50
≤ 1

20
η∥v∥T1

(37)
≤ 0.2

 T1−1∑
t=T1/50

η

2
H(t)

 . (40)

(39) and (40) jointly yields

0 < 0.7

 T1−1∑
t=T1/50

η

2
H(t)

 ≤ hi(T1) ≤ 1.3

 T1−1∑
t=T1/50

η

2
H(t)

 ,∀i,

which implies (27) immediately.

Appendix D. Global Convergence: phase 2

Theorem 5 Suppose the initial condition in Lemma 3 holds. For ∀ϵ2 = O(1), set ϵ1 = O
(
ϵ62n

−1/2
)

in Theorem 4, η = O
(
ϵ21σ

2d
∥v∥2

)
and T2 = T1 +

⌈
1
nη ln

(
1

36ϵ2

)⌉
, then ∀T1 ≤ t ≤ T2,

hi(t) ≤ 2hj(t),∀i, j, (41)(
1− nη

2

)t−T1

∥v∥+ 6ϵ2∥v∥ ≥ H(t) ≥ 2

3

(
1− nη

2

)t−T1

∥v∥ − 6ϵ2∥v∥ ≥ 18ϵ2∥v∥, (42)

2∥v∥
n

≥ hi(t) ≥
s1
2
,∀i. (43)

θi(t) ≤ ϵ2, ∀i. (44)
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Proof
We prove (41), (42), (43) and (44) together inductively. First we show the induction base holds.
Note that Theorem 4 directly implies (41) and (44) for t = T1. For (43), by (28) we have

hi(T1) ≤ ∥wi(T1)∥ ≤ 2∥v∥
n , and by (24) we have hi(T1) = ∥wi(T1)∥ cos θi(T1) ≥ ∥wi(T1)∥/2 ≥

s1/2. For (42), note that 0 ≤ hi(T1) ≤ ∥wi∥
(28)
≤ ∥v∥/(3n) ⇒ ∥v∥ ≥ H(T1) ≥ 2∥v∥/3.

Now suppose (41), (42) (43) and (44) holds for T1, T1+1, . . . , t, next we show the case of t+1.
Proof of (41).
First note that due to θi(t) ≤ ϵ2 and 2∥v∥

n ≥ hi(t) ≥ s1
2 we have

3∥v∥
n

≥ hi(t)

cos ϵ2
≥ hi(t)

cos θi(t)
= ∥wi(t)∥ ≥ hi ≥

s1
2
, ∀i. (45)

As computed in (36), hi(t+ 1) = hi(t) +
η
2H(t)−Qi(t),∀i.

Note that θij(t) ≤ θi(t) + θj(t)
(44)
≤ 2ϵ2,∀i, j. Similar to (38), we have

|Qi(t)| ≤
η

2π
14ϵ2∥v∥ ≤ 3ϵ2η∥v∥

(42)
≤ η

2
· 1
3
H(t), (46)

which implies

0 <
η

2
· 2
3
H(t) ≤ η

2
H(t)−Qi(t) ≤

η

2
· 4
3
H(t), ∀i. (47)

Then η
2H(t)−Qi(t) ≤ 2

(η
2H(t)−Qj(t)

)
,∀i, j.

Finally, ∀i, j we have hi(t + 1) = hi(t) +
η
2H(t) − Qi(t) ≤ 2hj(t) + 2

(η
2H(t)−Qj(t)

)
=

2hj(t+ 1).
Proof of (42).
The dynamics of H(t) is given by H(t + 1) = H(t) −

∑
i(hi(t + 1) − hi(t)) = H(t) −∑

i
η
2H(t) +

∑
iQi(t) = (1− nη/2)H(t) +

∑
iQi(t).

Note that (46) implies |
∑

iQi(t)| ≤ 3nϵ2∥v∥η, therefore

H(t+ 1)− 6ϵ2∥v∥ ≤
(
1− nη

2

)
H(t) + 3nϵ2∥v∥η − 6ϵ2∥v∥ =

(
1− nη

2

)
(H(t)− 6ϵ2∥v∥) .

Iterative application of the above bound yields H(t+1)−6ϵ2∥v∥ ≤
(
1− nη

2

)t+1−T1 (H(T1)− 6ϵ2∥v∥).

For the same reason, we also have H(t+ 1) + 6ϵ2∥v∥ ≥
(
1− nη

2

)t+1−T1 (H(T1) + 6ϵ2∥v∥).

On the other hand, ∀i, ∥v∥/(3n)
(28)
≥ ∥wi(T1)∥ ≥ hi(T1) = ∥wi(T1)∥ cos θi(T1) ≥ 0 implies

∥v∥ ≥ H(T1) ≥ 2∥v∥/3. Combining three aforementioned bounds yields the first and second
inequality in (42).
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Now we prove the rightmost inequality in (42). Note that nη = o(1) ⇒ 1 − nη/2 ≥
exp(−2nη/3). Then

2

3

(
1− nη

2

)t−T1

∥v∥ − 6ϵ2∥v∥

≥ 2

3
exp(−2nη(T2 − T1)/3)∥v∥ − 6ϵ2∥v∥

≥ 2

3
exp

(
−2nη

3
· 3
2

1

nη
ln

(
1

36ϵ2

))
∥v∥ − 6ϵ2∥v∥

=
2

3
· 36ϵ2∥v∥ − 6ϵ2∥v∥

= 18ϵ2∥v∥,

where the second inequality is because T2 − T1 =
⌈

1
nη ln

(
1

36ϵ2

)⌉
≤ 3

2
1
nη ln

(
1

36ϵ2

)
.

Proof of (43).
Since we have already shown (41) and (42) for t+ 1, H(t+ 1) ≥ 18ϵ2∥v∥ > 0 implies

n

2
hi(t+ 1)

(41)
≤
∑
j

hj(t+ 1) ≤ ∥v∥, ∀i ⇒ hi(t+ 1) ≤ 2

n
∥v∥,∀i.

For the lower bound, by (36) and (47) we have

hi(t+ 1) = hi(t) +
η

2
H(t)−Qi(t) ≥ hi(t) ≥

s1
2
. (48)

Proof of (44).
Recall that the dynamics of cos(θi) is given by (30) as cos(θi(t+ 1))− cos(θi(t)) = I1 + I2.
Then we have

I1 =
η

2π∥wi(t+ 1)∥

(π − θi(t)) sin
2 θi(t)∥v∥ −

∑
j ̸=i

(π − θij(t)) (cos θj(t)− cos θi(t) cos θij(t)) ∥wj(t)∥


≥− η

2

∑
j ̸=i

(cos θj(t)− cos θi(t) cos θij(t))
∥wj(t)∥

∥wi(t+ 1)∥

≥ − η

2

∑
j ̸=i

sin θi(t) sin(θi(t) + θj(t))
∥wj(t)∥

∥wi(t+ 1)∥
,

where the last inequality is because θij(t) ≤ θi(t)+θj(t) ≤ 2ϵ2 < π ⇒ cos θj(t)−cos θi(t) cos θij(t) ≤
cos θj(t)− cos θi(t) cos(θi(t) + θj(t)) = sin θi(t) sin(θi(t) + θj(t)).

Since we have already shown (43) for t+ 1, ∥wi(t+ 1)∥ ≥ hi(t+ 1)
(48)
≥ hi(t) holds. Also we

have ∥wj(t)∥ = hj(t)/ cos θj(t) ≤ 2hj(t). Then

I1 ≥ −η

2

∑
j ̸=i

sin θi(t)(sin θi(t) + sin θj(t))
2hj(t)

hi(t)

(41)
≥ −2η

∑
j ̸=i

sin θi(t)(sin θi(t) + sin θj(t)).
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To bound I2, first note that ∥wi(t)∥ ≤ 3∥v∥/n,∀i. Then by applying elementary triangle
inequality in a similar manner as (29), we have ∥∇i(t)∥ ≤ 5∥v∥,∀i. Since ∥wi(t + 1)∥ ≥ hi(t +
1) ≥ s1/2, for similar reasons as (32), I2 could be lower bounded as

I2 ≥ − η

s1/2
· ∥∇i(t)∥ · η∥∇i(t)∥+ η∥∇i(t)∥2

s1
≥ −100

η2∥v∥2

s21
.

So we have

cos(θi(t+ 1))− cos θi(t) ≥ −2η
∑
j ̸=i

sin θi(t)(sin θi(t) + sin θj(t))− 100
η2∥v∥2

s21
. (49)

Define a potential function V (t) :=
∑

i sin
2 (θi(t)/2), we consider the dynamics of V (t):

V (t+ 1)− V (t) =
1

2

∑
i

(cos θi(t)− cos θi(t+ 1))

≤1

2

∑
i

2η
∑
j ̸=i

sin θi(t)(sin θi(t) + sin θj(t)) + 100
η2∥v∥2

s21


≤η
∑
i

3

2
n sin2 θi(t) +

∑
j

sin2 θj(t)

+ 50
nη2∥v∥2

s21

≤10nη
∑
i

sin2
(
θi(t)

2

)
+ 50

nη2∥v∥2

s21
,

(50)

where the last inequality is because sin2 θi(t) = 4 sin2(θi(t)/2) cos
2(θi(t)/2) ≤ 4 sin2(θi(t)/2).

Then we have

V (t+1)+
5η∥v∥2

s21
≤ (1 + 10nη)

(
V (t) +

5η∥v∥2

s21

)
≤ · · · ≤ (1 + 10nη)t+1−T1

(
V (T1) +

5η∥v∥2

s21

)
.

Note that by (35) we have V (T1) ≤ 2nϵ21, and by setting η = O
(
ϵ21σ

2d
∥v∥2

)
= O

(
ϵ21s

2
1

∥v∥2

)
we have

5η∥v∥2
s21

≤ nϵ21. Then V (t+ 1) ≤ (1 + 10nη)t+1−T1 3nϵ21 ≤ exp(10nη(T2 − T1))3nϵ
2
1 ≤ ϵ22/16.

Appendix E. Global Convergence: phase 3

E.1. Initial Condition of Phase 3

First we prove some initial conditions that are satisfied at time T2, i.e., the start of Phase 3.

Lemma 19 Suppose the conditions (41) (42) (43) (44) in Theorem 5 holds, then at the start of
Phase 3 we have

∀i ∈ [n], ∥v∥/(3n) ≤ ∥wi(T2)∥ ≤ 3∥v∥/n,

and
L(w(T2)) ≤ 20ϵ2∥v∥2.
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Proof
Proof of the First Condition.

By Theorem 5 we have θi(T2) ≤ ϵ2,∀i, and H(T2) ≤
(
1− nη

2

)T2−T1 ∥v∥ + 6ϵ2∥v∥ ≤
exp(−nη

2 (T2 − T1))∥v∥+ 6ϵ2∥v∥ = (36ϵ2)
1/2∥v∥+ 6ϵ2∥v∥ ≤ 7ϵ

1/2
2 ∥v∥.

Then for ∀i ∈ [n], 2
3∥v∥ ≤ ∥v∥ −H(T2) =

∑
j hj(T2) ≤ 2nhi(T2) ⇒ ∥wi(T2)∥ ≥ hi(T2) ≥

∥v∥/(3n).
Similarly, for ∀i ∈ [n], H(T2) ≥ 0 ⇒ ∥v∥ ≥

∑
j hj(T2) ≥ nhi(T2)/2 ⇒ hi(T2) ≤

2∥v∥/n ⇒ ∥wi(T2)∥ = hi(T2)/ cos(θi(T2)) ≤ 3
2hi(T2) ≤ 3∥v∥/n.

Proof of the Second Condition.
Since ∥v∥/(3n) ≤ hi(T2) ≤ 2∥v∥/n,∀i, we have∥∥∥∥∥∑

i

wi(T2)− v

∥∥∥∥∥ ≤
∑
i

∥wi(T2)− hi(T2)v∥+

∥∥∥∥∥∑
i

hi(T2)v − v

∥∥∥∥∥
=
∑
i

hi(T2) tan θi(T2) +H(T2) ≤ 8ϵ
1/2
2 ∥v∥,

where the last inequality is because ∀i, θi(T2) ≤ ϵ2 = o(1) ⇒ tan θi(T2) ≤ 2ϵ2 ≤ o(ϵ
1/2
2 ).

So according to (23) we have

L(w(T2)) ≤
1

4

(
8ϵ

1/2
2 ∥v∥

)2
+

1

2π

(
n2 · 2ϵ2 ·

(
2

n
∥v∥

)2

+ nϵ2
2

n
∥v∥2

)
≤ 20ϵ2∥v∥2.

E.2. Proofs for Gradient Lower Bound

Before proving Theorem 7, we need some auxiliary lemmas.

E.2.1. AUXILIARY LEMMAS

Lemma 8 Recall the global minimum w∗
1,w

∗
2, . . . ,w

∗
n defined as w∗

i = hi∑
j∈[n] hj

v. Define

θmax := maxi∈[n] θi, then

n∑
i=1

〈
∂

∂wi
L(w),wi −w∗

i

〉
≥ 2L(w)−O

(
θ2max∥r∥ · ∥v∥

)
.

Proof First we introduce the idea of residual decomposition in Zhou et al. (2021), which decom-
poses the residual function R(x) in two terms :

R(x) =

n∑
j=1

[
w⊤

j x
]
+
−
[
v⊤x

]
+
= r⊤x·1{v⊤x ≥ 0}+

n∑
j=1

w⊤
j x
(

1{w⊤
j x ≥ 0} − 1{v⊤x ≥ 0}

)
.

Define R1(x) = r⊤x·1{v⊤x ≥ 0} and R2(x) =
∑n

j=1w
⊤
j x
(

1{w⊤
j x ≥ 0} − 1{v⊤x ≥ 0}

)
,

then R(x) = R1(x) +R2(x).
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Back to the lemma, first we have the following algebraic calculations:

n∑
i=1

〈
∂

∂wi
L(w),wi −w∗

i

〉

=
n∑

i=1

Ex

[
R(x)1

{
w⊤

i x ≥ 0
}
x⊤(wi −w∗

i )
]

= Ex

[
R(x)

n∑
i=1

([
w⊤

i x
]
+
− 1

{
w⊤

i x ≥ 0
}
x⊤w∗

i

)]

= 2L(w) + Ex

[
R(x)

n∑
i=1

(
1
{
w∗

i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
})

x⊤w∗
i

]

With the residual decomposition, the last term above can be decomposed into two terms I1, I2
as

Ex

[
R(x)

n∑
i=1

(
1
{
w∗

i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
})

x⊤w∗
i

]

=Ex

[
R1(x)

n∑
i=1

(
1
{
w∗

i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
})

x⊤w∗
i

]
︸ ︷︷ ︸

I1

+ Ex

[
R2(x)

n∑
i=1

(
1
{
w∗

i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
})

x⊤w∗
i

]
︸ ︷︷ ︸

I2

.

For the second term I2, note that

∀j,w⊤
j x
(

1{w⊤
j x ≥ 0} − 1{v⊤x ≥ 0}

)
≥ 0 ⇒ R2(x) ≥ 0

and ∀w∗
i ,wi, (

1
{
w∗

i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
})

x⊤w∗
i ≥ 0,

so I2 is always non-negative.

For the first term I1 =
∑

i∈[n] Ex

[
r⊤x1(v⊤x ≥ 0)

(
1
{
w∗

i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
})

x⊤w∗
i

]
,

we bound each term in the summation as

Ex

[
r⊤x1(v⊤x ≥ 0)

(
1
{
w∗

i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
})

x⊤w∗
i

]
≥ −Ex

[
|r⊤x| ·

∣∣∣1{w∗
i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
}∣∣∣ · ∥x̃∥ · ∥w∗

i ∥θi
]

= −∥r∥θi∥w∗
i ∥ · Ex̃

[
∥x̃∥2

∣∣∣1{w∗
i
⊤x̃ ≥ 0

}
− 1

{
w⊤

i x̃ ≥ 0
}∣∣∣]

≥ −O
(
∥r∥θ2i ∥w∗

i ∥
)
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where x̃ is the projection of x onto span(w∗
i ,wi, r) and follows a three-dimensional Gaussian.

Here the first inequality is because 1
{
w∗

i
⊤x ≥ 0

}
− 1

{
w⊤

i x ≥ 0
}
̸= 0 ⇒ θ(w∗

i ,x) ∈ [π/2 −
θi, π/2 + θi] ⇒ |x⊤w∗

i | = |x̃⊤w∗
i | ≤ ∥x̃∥ · ∥w∗

i ∥θi, and the last inequality is because

Ex̃

[
∥x̃∥2

∣∣∣1{w∗
i
⊤x̃ ≥ 0

}
− 1

{
w⊤

i x̃ ≥ 0
}∣∣∣] = O(θi).

(See Lemma C.5 in Zhou et al. (2021) for detailed calculations.)
Note that

∑
i ∥w∗

i ∥ = ∥v∥, so we have

n∑
i=1

〈
∂

∂wi
L(w),wi −w∗

i

〉
= 2L(w)+I1+I2 ≥ 2L(w)−

∑
i∈[n]

O
(
∥r∥θ2i ∥w∗

i ∥
)
≥ 2L(w)−O

(
θ2max∥r∥ · ∥v∥

)
.

Lemma 20 (Bound of θi)
∥wi∥2θ3i ≤ 30πL(w),∀i.

Proof W.L.O.G., suppose v = (∥v∥|, 0, . . . , 0)⊤ and wi = (cos θi, sin θi, 0, . . . , 0)
⊤∥wi∥.

Define Si := {x : x ∈ Rd,x⊤wi ≥ 0 ∧ x⊤v < 0}. One can see that Si = {x : θ(x,wi) ≤
π/2, θ(x,v) ≥ π/2}. On the other hand, ∀x ∈ Si, R(x) =

∑n
j=1

[
w⊤

j x
]
+
−
[
v⊤x

]
+

≥[
w⊤

i x
]
+
≥ 0. Therefore,

L(w) = Ex∼N (0,I))

1
2

(
n∑

i=1

[
w⊤

i x
]
+
−
[
v⊤x

]
+

)2


≥
∫
x∈Si

1

2
(w⊤

i x)
2 e

− ∥x∥2
2

(2π)d/2
dx

=

∫ +∞

ρ=0

∫ θi+π/2

ω=π/2

1

4π
(∥wi∥ρ cos(ω − θi))

2ρe−ρ2/2dωdρ

=
∥wi∥2

2π

∫ θi+π/2

ω=π/2
cos2(ω − θi)dω

=
∥wi∥2

8π
(2θi − sin(2θi))

≥ ∥wi∥2

8π
· (2θi)

3

30
.

Rearranging terms yields the result.

Lemma 21 (Bound of ∥r∥) Given that 4∥v∥
n ≥ ∥wi∥ ≥ ∥v∥

4n for all i ∈ [n] and L(w) = O(n−2∥v∥2),
then

∥r∥ = O
(
nL1/2(w)

)
.

31



XU DU

Proof Lemma 20 and ∥wi∥ = Θ(∥v∥/n) implies θi = O

(
n2/3

(
L(w)
∥v∥2

)1/3)
= o(1). For all

i ∈ [n], by Taylor expansion we have |(sin θi − θi cos θi)| = O(θ3i ), then |(sin θi − θi cos θi)∥wi∥ ·
∥v∥| = O(θ3i )∥wi∥ · ∥v∥ = O (nL(w)). Similarly, ∀i, j ∈ [n] we have θij ≤ θi + θj ≤

O

(
n2/3

(
L(w)
∥v∥2

)1/3)
⇒ |(sin θij − θij cos θij)∥wi∥ · ∥wj∥| = O(θ3ij)∥wi∥ · ∥wj∥ = O (L(w)).

Then by (23),

∥r∥2 = 4L(w)− 2

π

∑
i<j

(sin θij − θij cos θij)∥wi∥ · ∥wj∥ −
∑
i

(sin θi − θi cos θi)∥wi∥ · ∥v∥


≤ 4L(w) + n2O(L(w)) + nO(nL(w)) ≤ O(n2L(w)),

which implies ∥r∥ = O
(
nL1/2(w)

)
.

Lemma 22 (Bound of ∥wi −w∗
i ∥) Suppose 4∥v∥

n ≥ ∥wi∥ ≥ ∥v∥
4n , ∀i ∈ [n] and L(w) = O(∥v∥2/n2).

Then ∥wi −w∗
i ∥ ≤ O

(
n2/3

(
L(w)
∥v∥2

)1/3)
∥wi∥.

Proof Lemma 20 and ∥wi∥ = Θ(∥v∥/n) implies θi = O

(
n2/3

(
L(w)
∥v∥2

)1/3)
. Lemma 21 implies

|H| = |⟨r,v⟩| = O(nL1/2(w)).
We first decompose ∥wi −w∗

i ∥ into two parts as ∥wi −w∗
i ∥ ≤ ∥wi − hiv∥+ ∥hiv −w∗

i ∥.

The first part can be bounded as ∥wi − hiv∥ = ∥wi∥ sin θi ≤ O

(
n2/3

(
L(w)
∥v∥2

)1/3)
∥wi∥.

The second part can be bounded as ∥hiv−w∗
i ∥ =

∣∣∣hi (1− ∥v∥∑
j hj

)∣∣∣ = hi
|H|

∥v∥−H ≤ ∥wi∥ |H|
∥v∥−H .

Note that |H| = |⟨r,v⟩| ≤ ∥r∥ = O(nL1/2(w)) ≤ O(∥v∥) ⇒ ∥v∥ − |H| ≥ ∥v∥/2. So we have

∥hiv −w∗
i ∥ ≤ ∥wi∥ |H|

∥v∥−H ≤ ∥wi∥ · 1
∥v∥/2O(nL1/2(w)) ≤ O

(
n2/3

(
L(w)
∥v∥2

)1/3)
∥wi∥.

Combining two parts together yields the bound.

E.2.2. PROOF OF THEOREM 7

Now we are ready to prove Theorem 7.

Theorem 7 If for every student neuron we have 4∥v∥
n ≥ ∥wi∥ ≥ ∥v∥

4n , and

L(w) = O

(
∥v∥2

n14

)
,

then ∥∇wL(w)∥ ≥ Ω
(

L2/3(w)

n2/3∥v∥1/3

)
.

Proof Lemma 20 and ∥wi∥ = Θ(∥v∥/n) implies θi = O

(
n2/3

(
L(w)
∥v∥2

)1/3)
. Lemma 21 implies

∥r∥ = O(nL1/2(w)).

32



OVER-PARAMETERIZATION EXPONENTIALLY SLOWS DOWN GRADIENT DESCENT

Combined with lemma 8 and L(w) = O
(
∥v∥2
n14

)
we have

n∑
i=1

〈
∂

∂wi
L(w),wi −w∗

i

〉
≥ 2L(w)−O

(
θ2max∥r∥ · ∥v∥

)
≥ 2L(w)−O(n7/3L7/6(w)∥v∥−1/3) ≥ L(w).

Then

L(w) ≤
n∑

i=1

〈
∂

∂wi
L(w),wi −w∗

i

〉
≤

n∑
i=1

∥∥∥∥ ∂

∂wi
L(w)

∥∥∥∥ · ∥wi −w∗
i ∥ ≤

∥∥∥∥∂L(w)

∂w

∥∥∥∥∑
i∈[n]

∥wi −w∗
i ∥

Lemma 22
≤

∥∥∥∥∂L(w)

∂w

∥∥∥∥O
(
n2/3

(
L(w)

∥v∥2

)1/3
)∑

i∈[n]

∥w∗
i ∥ = O

(
n2/3L(w)1/3∥v∥1/3

)∥∥∥∥∂L(w)

∂w

∥∥∥∥ .
So
∥∥∥∂L(w)

∂w

∥∥∥ ≥ Ω
(

L2/3(w)

n2/3∥v∥1/3

)
.

E.3. Handling Non-smoothness

In this section, we establish two lemmas needed for handling the non-smoothness of L.
Define the Hessian matrix of L as Λ := ∂2L(w)

∂w2 . The next lemma ensures the smoothness of L
when the student neurons are regularized, i.e, their norms are upper and lower bounded.

Lemma 23 (Conditional Smoothness of L) If for every student neuron we have 4∥v∥
n ≥ ∥wi∥ ≥

∥v∥
4n , then ∥Λ∥2 ≤ O(n2).

Proof When wi ̸= 0, ∀i, Safran et al. (2020) has shown that L(w) is twice differentiable and
computed the closed form expression of Hessian Λ = ∂2L

∂w2 ∈ Rnd×nd:

Λ =

Λ1,1 · · · Λ1,n
...

...
Λn,1 · · · Λn,n

 , (51)

where Λi,j ∈ Rd×d, i, j ∈ [n] are d× d matrices with the following forms:
The ith diagonal block matrix of Λ is

Λi,i =
1

2
I +

∑
j ̸=i

ζ(wi,wj)− ζ(wi,v),

where

ζ(w,v) =
sin θ(w,v)∥v∥

2π∥w∥
(I −ww⊤ + nv,wn

⊤
v,w),

and nv,w = v − cos θ(w,v)w.
For i ̸= j, the off-diagonal entry is

Λi,j =
1

2π

[
(π − θ(wi,wj))I + nwi,wj

w⊤
j + nwj ,wi

w⊤
i

]
.
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Note that ∥wi∥ = Θ(∥v∥n ),∀i implies ∥wj∥
∥wi∥ = O(1),∀i, j and ∥v∥

∥wi∥ = O(n), ∀i. Then ∥ζ(wi,wj)∥ ≤
∥wj∥

2π∥wi∥ = O(1) and ∥ζ(wi,v)∥ ≤ O(1) ∥v∥
∥wi∥ ≤ O(n), so ∥Λi,i∥ ≤ ∥1

2I∥ +
∑

j ̸=i ∥ζ(wi,wj)∥ +
∥ζ(wi,v)∥ ≤ O(n).

Also note that ∥Λi,j∥ ≤ 1
2π (π + 1 + 1) ≤ 1 for all i ̸= j.

Then ∥Λ(w)∥ ≤
∑

i,j ∥Λi,j∥ ≤ nO(n) + (n2 − n) ≤ O(n2).

The following lemma shows that each student neuron wi will not move too far in the third phase.

Lemma 24 (Bound of the Change of Neurons) If the initial loss at phase 3 is upper bounded
by L(w(T2)) ≤ Cl, and there exists constant Cs > 0 such that L(w(t + 1)) ≤ L(w(t)) −
η
2∥∇W (t)∥2 ≤ L(w(t))− CsηL

4/3(w(t)), ∀T + T2 − 1 ≥ t ≥ T2, then

L(T + T2) ≤
1

(L(w(T2))−1/3 + CsηT/3)3
,

and
T−1∑
t=0

η∥∇W (t+ T2)∥ ≤ 8C−1/2
s C

1/3
l .

Proof We bound the loss as

1

L1/3(w(t+ 1))

≥ 1(
L(w(t))− CsηL4/3(w(t))

)1/3
=

1

L1/3(w(t))

(
1 +

1−
(
1− CsηL

1/3(w(t))
)1/3(

1− CsηL1/3(w(t))
)1/3

)

=
1

L1/3(w(t))

1 +
CsηL

1/3(w(t))(
1− CsηL1/3(w(t))

)1/3 (
1 +

(
1− CsηL1/3(w(t))

)1/3
+
(
1− CsηL1/3(w(t))

)2/3)


=
1

L1/3(w(t))
+ Csη

1(
1− CsηL1/3(w(t))

)1/3
+
(
1− CsηL1/3(w(t))

)2/3
+
(
1− CsηL1/3(w(t))

)
≥ 1

L1/3(w(t))
+

Csη

3
.

Therefore, L−1/3(w(t+ T2)) ≥ L−1/3(w(T2)) +
Csη
3 t,∀T ≥ t ≥ 0. Let l1 := L−1/3(w(T2)),

then 1/l31 ≤ Cl and

L(w(T2 + t)) ≤ 1

(l1 + Csηt/3)3
,∀t ≤ T,

this proves the first inequality.
For the second inequality, note that

L(w(t+ 1)) ≤ L(w(t))− η

2
∥∇W (t)∥2 ⇒ ∥∇W (t)∥2 ≤ 2

η
(L(w(t))− L(w(t+ 1))) .
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By Cauchy inequality, ∀T > 0,(
T−1∑
t=0

∥∇W (T2 + t)∥

)2

≤

(
T−1∑
t=0

1

(l1 + Csηt/3)2

)(
T−1∑
t=0

(l1 + Csηt/3)
2∥∇W (T2 + t)∥2

)

≤

(
T−1∑
t=0

1

(l1 + Csηt/3)2

)(
T−1∑
t=0

(l1 + Csηt/3)
2 2

η
(L(w(T2 + t))− L(w(T2 + t+ 1)))

)

≤2

η

(
T−1∑
t=0

1

(l1 + Csηt/3)2

)(
l21L(w(T2 + T )) +

T−1∑
t=1

(
(l1 + Csηt/3)

2 − (l1 + Csη(t− 1)/3)2
)
L(w(T2 + t))

)

≤2

η

(
T−1∑
t=0

1

(l1 + Csηt/3)2

)(
l21L(w(T2 + T )) +

2Csη

3

T−1∑
t=1

(l1 + Csηt/3)L(w(T2 + t))

)

≤2

η

(
T−1∑
t=0

1

(l1 + Csηt/3)2

)(
1

l1
+

2Csη

3

T−1∑
t=1

1

(l1 + Csηt/3)2

)

Note that

T−1∑
t=0

1

(l1 + Csηt/3)2
≤

+∞∑
t=0

1

(l1 + Csηt/3)2
≤ 3

Csη

+∞∑
t=0

(
1

l1 + Csη(t− 1)/3
− 1

l1 + Csηt/3

)
≤ 6

Csηl1
.

Therefore,(
T−1∑
t=0

∥∇W (T2 + t)∥

)2

≤ 2

η

(
6

Csηl1

)(
1

l1
+

2Csη

3

6

Csηl1

)
≤ 2

η

6

Csηl1

5

l1
=

60

Csη2l21
.

So we get

η
T∑
t=0

∥∇(T2 + t)∥ ≤ η

√
60

Csη2l21
≤ 8C−1/2

s C
1/3
l .

E.4. Proof of Theorem 6

Theorem 6 Suppose the initial condition in Lemma 3 holds. If we set ϵ2 = O(n−14) in Theorem
5, η = O

(
1
n2

)
, then ∀T ∈ N we have

4∥v∥
n

≥ ∥wi(T + T2)∥ ≥ ∥v∥
4n

, (52)

and

L(T + T2) ≤ O

(
n4∥v∥2

(ηT )3

)
. (53)
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Proof Since we have set ϵ2 = O(n−14), by Lemma 19 we have 3∥v∥
n ≥ ∥wi(T2)∥ ≥ ∥v∥

3n ,∀i, and

L(w(T2)) ≤ 20ϵ2∥v∥2 = O
(
∥v∥2
n14

)
.

To prove the theorem, we just need to prove (52) and a stronger version of (53):

L(T + T2) ≤
1(

L(T2)−1/3 +Ω
(

1
n4/3∥v∥2/3

)
ηT
)3 . (54)

We prove (52) and (54) together inductively.
The induction base holds for T = 0 by Lemma 19.
Now suppose (52) (54) hold for 0, 1, . . . , T − 1, we show the case of T .
First note that (4) (52) and routine computation implies ∥∇i(t+ T2)∥ = O(∥v∥),∀0 ≤ t ≤

T − 1.
For ∀T2 ≤ t ≤ T +T2 − 1, since the induction condition together with lemma 23 guarantee the

smoothness of L, the classical analysis of gradient descent can be applied ([Nesterov et al. (2018)],
lemma 1.2.3) to bound the decrease of loss at time t as

L(w(t+ 1)) =L(w(t)) + ⟨∇W (t),−η∇W (t)⟩+∫ 1

τ=0
(1− τ)(−η∇W (t))⊤

∂2L

∂w2
(w(t)− τη∇W (t))(−η∇W (t))dτ.

(55)

For ∀τ ∈ [0, 1], ∥wi(t)− τη∇i(t)∥ ≥ ∥wi(t)∥−η∥∇i(t)∥ ≥ ∥v∥
4n −ηO(∥v∥) ≥ ∥v∥

5n , similarly
we have ∥wi(t)−τη∇i(t)∥ ≤ ∥wi(t)∥+η∥∇i(t)∥ ≤ 5∥v∥

n . Then lemma 23 implies the smoothness

of L at w(t) − τη∇W (t):
∥∥∥ ∂2L
∂w2 (w(t)− τη∇W (t))

∥∥∥ ≤ O
(
n2
)
. Combined with gradient lower

bound Theorem 7 (note that L(w(t)) = O(∥v∥2/n14)), the dynamic of loss can be bounded as

L(w(t))− L(w(t+ 1)) ≥ η∥∇W (t)∥2 −
∫ 1

τ=0
(1− τ)O

(
n2
)
∥ − η∇W (t)∥2dτ

≥ η

2
∥∇W (t)∥2

Theorem 7
≥ Ω

(
1

n4/3∥v∥2/3

)
ηL4/3(w(t)).

Set Cs in Lemma 24 as Cs = Ω
(

1
n4/3∥v∥2/3

)
. For ∀T + T2 − 1 ≥ t ≥ T2, the above inequality

implies that L(w(t + 1)) ≤ L(w(t)) − η
2∥∇W (t)∥2 ≤ L(w(t)) − CsηL

4/3(w(t)). So we can
apply Lemma 24 here, which immediately implies (54).

For (52), Lemma 24 yields

∥wi(T + T2)∥ ≥ ∥wi(T2)∥ −
T−1∑
t=0

η∥∇W (t+ T2)∥ ≥ ∥v∥
3n

− 8C−1/2
s L(w(T2))

1/3

=
∥v∥
3n

−O

(
n2/3∥v∥1/3 ·

(
∥v∥2

n14

)1/3
)

≥ ∥v∥
4n

,

similarly

∥wi(T+T2)∥ ≤ ∥wi(T2)∥+
T−1∑
t=0

η∥∇W (t+T2)∥ ≤ 3∥v∥
n

+O

(
n2/3∥v∥1/3 ·

(
∥v∥2

n14

)1/3
)

≤ 4∥v∥
n

.
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Appendix F. Supplementary Materials for Section 4

F.1. Proof of Lemma 3

Lemma 3 Let s1 := 1
2σ

√
d, s2 := 2σ

√
d. When d = Ω(log(n/δ)), with probability at least 1− δ,

the following properties holds:

∀i ∈ [n], s1 ≤ ∥wi(0)∥ ≤ s2, (56)

∀i ∈ [n],
π

3
≤ θi(0) ≤

2π

3
. (57)

Proof By concentration inequality of Gaussian (See Section 2 in Dasgupta and Schulman (2013)),
For ∀i we have Pr

[
∥wi(0)∥ < 1

2σ
√
d ∨ ∥wi(0)∥ > 2σ

√
d
]
≤ Pr

[
|∥wi(0)∥2 − σ2d| > 3

4σ
2d
]
≤

exp
(
−
(
3
4

)2
d/24

)
≤ exp(−Ω(log(n/δ))) ≤ δ

3n . By union bound, (56) holds with probability at
least 1− δ/3.

For (57), note that for ∀i ∈ [n],

|⟨wi(0),v⟩| ≤
1

4
σ
√
d ∧ ∥wi(0)∥ ≥ 1

2
σ
√
d ⇒ |⟨wi(0),v⟩|

∥wi(0)∥
≤ 1

2
⇒ π

3
≤ θi(0) ≤

2π

3
.

By concentration inequality of Gaussian, Pr
[
|⟨wi(0),v⟩| > 1

4σ
√
d
]
≤ 2 exp

(
− ( 1

4
σ
√
d)2

2σ2

)
≤

δ
3n . Then Pr

[
θi(0) <

π
3 ∨ θi(0) >

2π
3

]
≤ Pr

[
|⟨wi(0),v⟩| > 1

4σ
√
d
]
+Pr

[
∥wi(0)∥ < 1

2σ
√
d
]
≤

2δ
3n . By union bound, (57) holds with probability at least 1 − 2δ/3. Applying union bound again
finishes the proof.

F.2. Parameter Valuation

In this section, we assign values to all intermediate parameters appeared in Theorem 4, Theorem 5
and Theorem 6, according to the requirements of these theorems.

• First we set ϵ2 = O(n−14) in Theorem 5 as required by Theorem 6.

• Set ϵ1 = O(ϵ62n
−1/2) = O(n−84.5) in Theorem 4 as required by Theorem 5.

• Set C = O
(
ϵ21
n

)
= O(n−170) in Theorem 4.

• Set σ = O
(
Cϵ481 d−1/2∥v∥

)
= O

(
ϵ501 d−1/2∥v∥/n

)
= O

(
n−4226d−1/2∥v∥

)
in Theorem 4.

• Set η = O
(
ϵ21σ

2d
∥v∥2

)
= O

(
σ2d

n169∥v∥2

)
as required by Theorem 5. (Note that in Phase 1 and 3,

Theorem 4 and Theorem 6 also have requirements for η, but the bound in Theorem 5 is the
tightest one.)
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ϵ2ϵ1

C = ηT1 σ η

T1

T2

Figure 3: Parameter Dependency Graph

• Set T1 =
C
η = O

(
ϵ21
nη

)
in Theorem 4.

• Finally, set T2 = T1 +
⌈

1
nη ln

(
1

36ϵ2

)⌉
= O

(
ϵ21
nη

)
+ O

(
log(1/ϵ2)

nη

)
= O

(
log(1/ϵ2)

nη

)
=

O
(
logn
nη

)
in Theorem 5.

The dependence between these parameters is shown in Figure 3. (We use arrows to indicate
dependency, e.g., the arrow from ϵ1 to ϵ2 indicates that ϵ1 depends on ϵ2.)

F.3. Non-degeneracy of Student Neurons

There is a technical issue in the convergence analysis: if one of the student neuron wi is degenerate
and wi = 0, the loss function L(w) is not differentiable, hence gradient descent is not well-defined.

However, our proof shows that such case would not happen and the student neurons are always
non-degenerate. Note that the student neuron’s norm ∥wi∥ is always lower-bounded in all three
phases of our analysis (Phase 1: (24) in Theorem 4, Phase 2: (43) in Theorem 5, Phase 3: (52) in
Theorem 6). By these bounds we have the following corollary describing the non-degeneracy of
student neurons.

Corollary 25 If the initialization conditions in Lemma 3 hold, then for ∀i ∈ [n], t ∈ N, ∥wi(t)∥ >
0.

Remark 26 Note that an assumption on the initialization condition such as the one in Corollary 25
is necessary, otherwise there would be counter-examples where all student neurons are degenerate.
For example, ∀c > 0, if we set wi(0) = −cv,∀i and η = 2c

1+nc , then straightforward calculation
shows that ∀i,∇i(0) = −1+nc

2 v ⇒ ∀i,wi(1) = 0..

Appendix G. Lower Bound of the Convergence Rate

G.1. Preliminaries

In this section, we do some technical preparations for proving Theorem 14.
Taking η → 0, we get the gradient flow version of Theorem 6.
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Theorem 27 Suppose gradient flow is initialized from a point w(0) where the conditions in Lemma
3 hold. If σ = O

(
n−4226d−1/2∥v∥

)
, then there exists T2 = O

(
logn
n

)
such that ∀T ∈ R≥0 we

have
4∥v∥
n

≥ ∥wi(T + T2)∥ ≥ ∥v∥
4n

, (58)

and

L(T + T2) ≤ O

(
n4∥v∥2

T 3

)
. (59)

Similarly, we also have the gradient flow version of Corollary 25.

Corollary 28 Given that the initial condition in Lemma 3 holds, then for ∀i ∈ [n], t ∈ N,
∥wi(t)∥ > 0.

Lemma 29 Given that the initial condition in Lemma 3 holds, and the initialization is non-degenerate,
then ∀t,∃i ∈ [n], s.t. zi(t) ̸= 0.

Proof Assume for contradiction that ∃t ∈ R+ such that z1(t) = · · · = zn(t) = 0. Define

t := inf{t|z1(t) = · · · = zn(t) = 0}.

Then the continuity of zi implies z1(t) = · · · = zn(t) = 0, so t > 0. On the other hand,
Corollary 25 indicates that wi(t) ̸= 0, ∀i ∈ [n]. Since wi is continuous, there exists a neighborhood
of t such that for ∀i, j ∈ [n], ∥wi(t)∥/∥wj(t)∥ and ∥v∥/∥wi(t)∥ are bounded by a fixed constant
when t is in this neighborhood. Furthermore, since t > 0, ∃ϵ > 0 and constant C > 1 such that for
∀t ∈ [t− ϵ, t], ∀i ∈ [n] we have

∣∣∣∣∣∣π +
∑
j ̸=i

∥wj(t)∥
∥wi(t)∥

sin θij(t)−
∥v∥

∥wi(t)∥
sin θi(t)

∣∣∣∣∣∣ ≤ π +
∑
j ̸=i

∥wj(t)∥
∥wi(t)∥

|+ ∥v∥
∥wi(t)∥

≤ C.

Then in the interval [t− ϵ, t] we have∥∥∥∥∂zi∂t

∥∥∥∥ =

∥∥∥∥∥∥− 1

2π

π +
∑
j ̸=i

∥wj∥
∥wi∥

sin θij −
∥v∥
∥wi∥

sin θi

 zi −
∑
j ̸=i

π − θij
2π

zj

∥∥∥∥∥∥ ≤ C∥zi∥+
∑
j ̸=i

∥zj∥,

⇒ ∂∥zi∥2

∂t
= 2

〈
∂zi
∂t

, zi

〉
≥ −2C∥zi∥

∑
j∈[n]

∥zj∥


⇒ ∂

∂t

∑
j∈[n]

∥zj∥2 ≥ −2C

∑
j∈[n]

∥zj∥

2

≥ −2nC

∑
j∈[n]

∥zj∥2


⇒ ∂

∂t

e2nCt

∑
j∈[n]

∥zj∥2
 = e2nCt

2nC
∑

j∈[n]

∥zj∥2
+

∂

∂t

∑
j∈[n]

∥zj∥2
 ≥ 0

⇒
∑
j∈[n]

∥zj(t)∥2 ≥ e−2nCϵ

∑
j∈[n]

∥zj(t− ϵ)∥2
 .
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Here the (t) indicator is omitted for simplicity. Note that we bound ∂∥zi∥2
∂t instead of ∂∥zi∥

∂t here,
since ∥zi∥ might not be differentiable if zi = 0, while ∥zi∥2 is always differentiable.

Finally, due to the definition of t, there exists i ∈ [n] such that zi(t−ϵ) ̸= 0. Then
∑

j∈[n] ∥zj(t)∥2 ≥

e−2nCϵ
(∑

j∈[n] ∥zj(t− ϵ)∥2
)
> 0, a contradiction.

G.2. Proofs for Section 5

By the closed form formula of gradient (4), the dynamics of zi is given by

∂zi
∂t

= − 1

2π

π +
∑
j ̸=i

∥wj∥
∥wi∥

sin θij −
∥v∥
∥wi∥

sin θi

 zi −
∑
j ̸=i

π − θij
2π

zj . (60)

Lemma 17 If there exists i, j such that κij(t) = κmax(t) < π
2 , then cosκij(t) is well-defined in

an open neighborhood of t, differentiable at t, and

∂

∂t
cosκij(t) ≤ −π − θij(t)

π
(1− cosκ2ij(t)).

Proof First note that for ∀i ∈ Q+(t), ∥zi(t)∥ > 0 ⇒ zi(t) = zi(t)
∥zi(t)∥ is differentiable at t.

Therefore, for ∀i, j ∈ Q+(t), cosκij = ⟨zi(t), zj(t)⟩ is well-defined in an open neighborhood of t
and differentiable at t. According to the dynamics of zi (60), ∀i ∈ Q+(t) we have

∂

∂t
zi =

∥zi∥∂zi
∂t − ∂∥zi∥

∂t zi

∥zi∥2
=

∂zi
∂t − ⟨∂zi∂t , zi⟩zi

∥zi∥
= −

∑
k ̸=i

π − θik
2π

zk − ⟨zk, zi⟩zi
∥zi∥

.

Then

∂ cosκij
∂t

=
∂⟨zi, zj⟩

∂t

=

〈
∂

∂t
zi, zj

〉
+

〈
zi,

∂

∂t
zj

〉
=−

∑
k ̸=i,k∈Q+

π − θik
2π

∥zk∥
∥zi∥

(⟨zk, zj⟩ − ⟨zk, zi⟩⟨zi, zj⟩)−
∑

k ̸=j,k∈Q+

π − θjk
2π

∥zk∥
∥zj∥

(⟨zk, zi⟩ − ⟨zk, zj⟩⟨zi, zj⟩)

=−π − θij
2π

(
∥zi∥
∥zj∥

+
∥zj∥
∥zi∥

)
(1− cos2 κij)︸ ︷︷ ︸

I1

−
∑

k ̸=i,j∧k∈Q+

[
π − θik
2π

∥zk∥
∥zi∥

(cosκkj − cosκki cosκij) +
π − θjk

2π

∥zk∥
∥zj∥

(cosκik − cosκkj cosκij)

]
︸ ︷︷ ︸

I2

.

(61)

The expression above splits into two terms I1 and I2. The most important observation is that,
by setting zi, zj to be the pair of maximally separated vectors, i.e., κij = κmax, the second term I2
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is guaranteed to be nonpositive. This is because for ∀k,

κki ≤ κmax < π/2, κkj ≤ κmax = κij ⇒ cosκkj ≥ cosκij ≥ cosκki cosκij ⇒ cosκkj−cosκki cosκij ≥ 0,

similarly we have cosκik − cosκkj cosκij ≥ 0,∀k. So I2 ≤ 0 when κij = κmax. This implies that
when κij = κmax,

∂ cosκij
∂t

≤ I1 = −π − θij
2π

(
∥zi∥
∥zj∥

+
∥zj∥
∥zi∥

)
(1− cos2 κij) ≤ −π − θij

π
(1− cos2 κij).

Lemma 30 Given that the initial condition in Lemma 3 holds, suppose the network is over-
parameterized, i.e., n ≥ 2, and the initialization is non-degenerate, then for ∀t ∈ R≥0, at least
one of the following two conditions must hold:

∃i ∈ [n] s.t. zi(t) = 0, (62)

κmax(t) ≥
κmax(0)

3
. (63)

Proof Assume for contradiction that ∃t such that zi(t) ̸= 0,∀i and κmax(t) <
κmax(0)

2 . Then we
can define

t∗ = inf

{
t ∈ R|∀i, zi(t) ̸= 0 ∧ κmax(t) <

κmax(0)

3

}
.

Note that by lemma 29 we have Q+(t∗) ≥ 1. For ∀i, j ∈ Q+(t∗), if κij(t∗) > κmax(0)/3, due to
the continuity of κij , κij > κmax(0)/3 holds in an open neighborhood of t∗, which contradicts the
definition of t∗. So ∀i, j ∈ Q+(t∗) we have κij(t

∗) ≤ κmax(0)/3.
Step 1: First we prove ∀i, zi(t∗) ̸= 0.

If ∃i such that zi(t∗) = 0, then for such i we have ∂zi(t
∗)

∂t = −
∑

j ̸=i
π−θij(t

∗)
2π zj(t

∗). Since
Q+(t∗) ̸= ∅, pick k ∈ Q+(t∗) and we have〈

∂zi(t
∗)

∂t
, zk(t

∗)

〉
= −

∑
j ̸=i∧j∈Q+(t∗)

π − θij(t
∗)

2π
⟨zj(t∗), zk(t∗)⟩ < 0,

where the last inequality is because κjk(t
∗) ≤ κmax(0)/3 < π

2 .
On the other hand, the definition of ∂zi(t

∗)
∂t implies that ∃ϵ > 0, ∀t′ ∈ [t∗, t∗ + ϵ), zi(t′) =

zi(t
∗) + (t′ − t∗)∂zi(t

∗)
∂t + o(t′ − t∗) = (t′ − t∗)∂zi(t

∗)
∂t + o(t′ − t∗). Similarly, zk(t′) = zk(t

∗) +

(t′ − t∗)∂zk(t
∗)

∂t + o(t′ − t∗). Then

〈
zi(t

′), zk(t
′)
〉
= (t′ − t∗)

〈
∂zi(t

∗)

∂t
, zk(t

∗)

〉
+ o(t′ − t∗). (64)

Since
〈
∂zi(t

∗)
∂t , zk(t

∗)
〉
< 0 is a negative constant, there exists ϵ′ > 0 such that for ∀t′ ∈ [t∗, t∗+ϵ′),

(64) is negative, consequently κik(t
′) = arccos

(〈
zi(t′), zk(t′)

〉)
> π

2 . So ∀t′ ∈ [t∗, t∗ + ϵ′),

κmax(t
′) ≥ κik(t

′) > π/2 ≥ κmax(0)/3, this contradicts the definition of t∗.
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Step 2: After proving zi(t
∗) ̸= 0,∀i and κij(t

∗) ≤ κmax(0)/3 < κmax(0),∀i, j ∈ [n], we aim
to derive a contradiction.

Note that t∗ ̸= 0 due to the definition of κmax. By the continuity of zi, ∃ϵ1 > 0 such that for
∀t ∈ (t∗ − ϵ1, t

∗ + ϵ1), i ∈ [n], zi(t) ̸= 0. Then the definition of t∗ implies that ∀t ∈ (t∗ − ϵ1, t
∗),

κmax(t) ≥ κmax(0)/3. Since on the interval (t∗ − ϵ1, t
∗ + ϵ1), κmax = maxi,j∈[n] κij is continuous

4, we have that κmax(t
∗) ≥ κmax(0)/3. Then κmax(t

∗) = κmax(0)/3. Pick i, j such that κij(t∗) =
κmax(t

∗). Note that θij(t∗) < π, otherwise κij(t
∗) = π, a contradiction. Then by lemma 17 we

have
∂

∂t
cosκij(t

∗) ≤ −π − θij(t
∗)

π
(1− cosκ2ij(t

∗)) < 0.

So ∂
∂tκij(t

∗) > 0 ⇒ ∃ϵ2 > 0 s.t. ∀t ∈ (t∗, t∗ + ϵ2), κmax(t) ≥ κij(t) > κij(t
∗) = κmax(t

∗) =
κmax(0)/3, this contradicts the definition of t∗.

Lemma 31 Given that the initial condition in Lemma 3 holds, suppose the network is over-
parameterized, i.e., n ≥ 2, and the initialization is non-degenerate, then for ∀t ∈ R≥0 we have

Z(t) ≥ Ω(κmax(0)max
i∈[n]

∥zi(t)∥).

Proof We show that for ∀t ∈ R≥0,

max
i,j∈[n]

∥zi(t)− zj(t)∥ ≥ Ω(κmax(0)max
i∈[n]

∥zi(t)∥). (65)

W.L.O.G., suppose z1(t) = maxi∈[n] ∥zi(t)∥. By lemma 30, for ∀t one of the following two cases
must happen:

• ∃k s.t. zk(t) = 0.

By lemma 29, k ̸= 1. Then maxi,j∈[n] ∥zi(t) − zj(t)∥ ≥ ∥z1(t) − zk(t)∥ = ∥z1(t)∥ ≥
O(κmax(0)maxi∈[n] ∥zi(t)∥).

• κmax(t) ≥ κmax(0)/3.

Pick a pair i, j such that κij(t) = κmax(t). Then κ1i(t) + κ1j(t) ≥ κij(t) ≥ κmax(0)/3 ⇒
max{κ1i(t), κ1j(t)} ≥ κmax(0)/6. W.L.O.G., suppose κ1i(t) ≥ κmax(0)/6. If κ1i(t) ≤
π/2, then ∥z1(t)− zi(t)∥ ≥ ∥z1(t)∥ sinκ1i(t) ≥ Ω(κmax(0)maxi∈[n] ∥zi(t)∥). If κ1i(t) >
π/2, then ∥z1(t) − zi(t)∥ ≥ ∥z1(t)∥ ≥ Ω(κmax(0)maxi∈[n] ∥zi(t)∥). So no matter which
case happens, (65) always holds.

In conclusion, we have Z(t) ≥ maxi,j∈[n] ∥zi(t)− zj(t)∥ ≥ Ω(κmax(0)maxi∈[n] ∥zi(t)∥).

Combined with Lemma 29, Lemma 31 immediately implies the following corollary.

Corollary 32 Given that the initial condition in Lemma 3 holds, suppose zi(0) ̸= 0,∀i ∈ [n],
κmax(0) > 0 and n ≥ 2, then for ∀t ∈ R≥0 we have Z(t) > 0.

4. Generally κmax may not be continuous since the range of taking the max (i, j ∈ Q+) might change, but it is
continuous on (t∗ − ϵ1, t

∗ + ϵ1) since all zi’s are nonzero on this interval.
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Lemma 33 Suppose the conditions (58) (59) in Theorem 27 holds. Suppose the network is over-
parameterized, i.e., n ≥ 2, and the initialization is non-degenerate. Then ∀t ≥ T2 we have

∂

∂t
Z(t) ≥ −O(n2∥v∥θ2max(t)).

Proof
Recall the closed form expression of gradient (4), which can be decomposed into two terms,

∂L(w)

∂wi
=

1

2

∑
j

wj − v


︸ ︷︷ ︸

I1

+
1

2π

∑
j ̸=i

∥wj∥ sin θij − ∥v∥ sin θi

wi −
∑
j ̸=i

θijwj + θiv


︸ ︷︷ ︸

I2

.

The second term I2 can be rewritten as

I2 =
1

2π

∑
j ̸=i

∥wj∥(sin θij − θij)wi +
∑
j ̸=i

∥wj∥θij(wi −wj)− ∥v∥(sin θi − θi)wi − ∥v∥θi(wi − v)


By Theorem 27, for ∀t > T2, we have ∥wi(t)∥ = Θ(∥v∥/n). Note that sin θij(t) − θij(t) =

O(θ3ij(t)) = O(θ3max(t)), similarly sin θi(t)− θi(t) = O(θ3max(t)). Combined with ∥wi −wj∥ =
2 sin(θij/2) = O(θmax), we get

∥I2∥ ≤
∑
j ̸=i

Θ(∥v∥/n)O(θ3max) +
∑
j ̸=i

Θ(∥v∥/n)θmaxO(θmax)

+∥v∥O(θ3max) + ∥v∥θmaxO(θmax) = O(∥v∥θ2max).

Then ∀i, ∂wi
∂t = −∂L(w)

∂wi
= −1

2

(∑
j wj − v

)
+O(∥v∥θ2max). Note that the first term −1

2

(∑
j wj − v

)
is the same for all wi, so for ∀i, j ∈ [n] we have

∥∥∥∂wi−wj

∂t

∥∥∥ =
∥∥∥∂wi

∂t − ∂wj

∂t

∥∥∥ = O(∥v∥θ2max).

For ∀i, j ∈ [n], if zi(t) = zj(t) then ∂zi(t)
∂t =

∂zj(t)
∂t ⇒ ∂

∂t∥zi(t) − zj(t)∥ = 0. Otherwise
zi(t)− zj(t) ̸= 0 and

∂

∂t
(∥zi(t)− zj(t)∥) =

〈
∂

∂t
(zi(t)− zj(t)) , zi(t)− zj(t)

〉
≥ −

∥∥∥∥ ∂

∂t
(zi(t)− zj(t))

∥∥∥∥
≥ −

∥∥∥∥ ∂

∂t
(wi(t)−wj(t))

∥∥∥∥ ≥ −O(∥v∥θ2max(t)).

So for both cases we have ∂
∂t (∥zi(t)− zj(t)∥) ≥ −O(∥v∥θ2max(t)).

Then ∂
∂tZ(t) =

∑
1≤i<j≤n

∂
∂t (∥zi(t)− zj(t)∥) ≥ −O(n2∥v∥θ2max(t)).

43



XU DU

G.3. Proof of Main Theorem

Theorem 14 Suppose the network is over-parameterized, i.e., n ≥ 2. For ∀δ > 0, if the ini-
tialization is non-degenerate, d = Ω(log(n/δ)), σ = O

(
n−4226d−1/2∥v∥

)
, then there exists

T2 = O
(
logn
n

)
such that with probability at least 1− δ, for ∀t ≥ T2 we have

L(w(t))−1/3 ≤ O

(
n17/3

κ2max(0)∥v∥2/3

)
(t− T2) + γ,

where γ ∈ R+ is a constant that does not depend on t.

Proof For ∀t ≥ T2 we have maxi∈[n] ∥zi(t)∥ ≥ θmax(t)Θ(∥v∥/n). Then by lemma 31, for ∀t ≥
T2, Z(t) ≥ Ω(κmax(0)θmax(t)∥v∥/n) ⇒ θmax(t) = O

(
nZ(t)

κmax(0)∥v∥

)
. Combined with lemma 33

we have
∂

∂t
Z(t) ≥ −O(n2∥v∥θ2max(t)) ≥ −O

(
n4Z2(t)

κ2max(0)∥v∥

)
. (66)

By Corollary 32, Z(t) is always strictly positive. We can therefore calculate the dynamics of
1/Z(t) as: ∀t ≥ T2,

∂

∂t

1

Z(t)
= − 1

Z2(t)

∂

∂t
Z(t) ≤ O

(
n4

κ2max(0)∥v∥

)
⇒ 1

Z(t)
= O

(
n4

κ2max(0)∥v∥
(t− T2)

)
+

1

Z(T2)
.

(67)
On the other hand, by Theorem 27 we have

Z(t) ≤
∑

1≤i<j≤n

(∥zi(t)∥+ ∥zj(t)∥) ≤
∑

1≤i<j≤n

(θi(t)∥wi(t)∥+ θj(t)∥wj(t)∥) ≤ O(n∥v∥θmax).

By lemma 20 we have

∀t ≥ T2, θmax(t) = O

((
L(w(t))n2

∥v∥2

)1/3
)

⇒ L(w(t)) ≥ Ω

(
Z3(t)

n5∥v∥

)
. (68)

Combined with (67), we have

L(w(t))−1/3 ≤ O

(
n17/3

κ2max(0)∥v∥2/3

)
(t− T2) +

n5/3∥v∥1/3

Z(T2)
.

Finally, since Corollary 32 implies Z(T2) > 0, setting γ = n5/3∥v∥1/3
Z(T2)

finishes the proof.
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