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Abstract
This paper studies the best-k-arm identification problem in a stochastic multi-arm bandit with K ≥
k arms in the fixed-confidence setting. The goal is to confidently identify the (sub)set of k arms
with the largest mean rewards by sequentially allocating measurement effort.

We focus on the popular top-two algorithm design principle (Russo, 2020), originally mainly
proposed for best-arm identification (BAI). It first identifies a pair of top-two candidates and then
randomizes to select one from this pair. Various top-two algorithms (Russo, 2020; Qin et al., 2017;
Shang et al., 2020) have been proposed for BAI, while the literature predominately focuses on
the first step of determining the top-two candidates. The second step of selecting among the top-
two candidates is usually simplified by setting a tuning parameter β, serving as the probability of
selecting the top candidate. Despite enjoying great empirical performance, top-two algorithms’
theoretical analyses are usually tailored to a weaker notion named β-optimality. The literature
also proposes adaptive procedures of tuning β, but they require solving the instance complexity
optimization problem with plug-in mean estimators, which could be computationally inefficient.

Moreover, although we can extend the top-two algorithms (designed for BAI) to tackle best-k-
arm identification, we provide an example showing that for k > 1, top-two algorithms can fail to
achieve the optimality even if the value of β is set to the unknown optimal value, let alone with the
potential generalization of the aforementioned adaptive β-tuning procedures for k > 1. Indeed, we
present a structural analysis of best-k-arm identification and show that k > 1 is surprisingly much
more complicated than k = 1. Consequently, the optimality conditions widely used for designing
BAI algorithms, e.g., those in Garivier and Kaufmann (2016); Chen and Ryzhov (2023), are no
longer sufficient for k > 1, so how to optimally select among the top-two candidates remains open.

Our contributions. We reformulate KKT conditions of the instance complexity optimization
problem to characterize asymptotic optimality. The crucial feature of our approach is the inclu-
sion of dual variables in the optimality conditions, which allows us to overcome the challenges
due to the much more complex optimality conditions for k > 1. Based on the complementary
slackness conditions, we provide a novel interpretation of the top-two design principle, which leads
us to extending the existing top-two algorithms and designing new ones. We propose an adaptive
selection rule dubbed information-directed selection (IDS) that wisely selects among the top-two
candidates based on the stationarity conditions. We show that integrated with IDS, top-two Thomp-
son sampling is optimal for Gaussian BAI, which solves a glaring open problem in Russo (2020).
A key feature of IDS is its adaptivity to the proposed top-two candidates. This differs from adap-
tive β-tuning procedures, which uses the same value of β regardless of the proposed candidates,
even though it may be updated over time. As a by-product, we show that top-two algorithms with
adaptive β-tuning cannot achieve the notion of β-optimality for k > 1. Finally, we demonstrate the
superior performance of top-two algorithms with IDS in extensive numerical experiments.1
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