Information-Directed Selection for Top-Two Algorithms

Wei You

The Hong Kong University of Science and Technology

Chao Qin

Columbia University

Zihao Wang

Shuoguang Yang

The Hong Kong University of Science and Technology

Abstract

This paper studies the best-k-arm identification problem in a stochastic multi-arm bandit with $K \geq k$ arms in the fixed-confidence setting. The goal is to confidently identify the (sub)set of k arms with the largest mean rewards by sequentially allocating measurement effort.

We focus on the popular top-two algorithm design principle (Russo, 2020), originally mainly proposed for best-arm identification (BAI). It first identifies a pair of top-two candidates and then randomizes to select one from this pair. Various top-two algorithms (Russo, 2020; Qin et al., 2017; Shang et al., 2020) have been proposed for BAI, while the literature predominately focuses on the first step of determining the top-two candidates. The second step of selecting among the top-two candidates is usually simplified by setting a tuning parameter β, serving as the probability of selecting the top candidate. Despite enjoying great empirical performance, top-two algorithms’ theoretical analyses are usually tailored to a weaker notion named β-optimality. The literature also proposes adaptive procedures of tuning β, but they require solving the instance complexity optimization problem with plug-in mean estimators, which could be computationally inefficient.

Moreover, although we can extend the top-two algorithms (designed for BAI) to tackle best-k-arm identification, we provide an example showing that for $k > 1$, top-two algorithms can fail to achieve the optimality even if the value of β is set to the unknown optimal value, let alone with the potential generalization of the aforementioned adaptive β-tuning procedures for $k > 1$. Indeed, we present a structural analysis of best-k-arm identification and show that $k > 1$ is surprisingly much more complicated than $k = 1$. Consequently, the optimality conditions widely used for designing BAI algorithms, e.g., those in Garivier and Kaufmann (2016); Chen and Ryzhov (2023), are no longer sufficient for $k > 1$, so how to optimally select among the top-two candidates remains open.

Our contributions. We reformulate KKT conditions of the instance complexity optimization problem to characterize asymptotic optimality. The crucial feature of our approach is the inclusion of dual variables in the optimality conditions, which allows us to overcome the challenges due to the much more complex optimality conditions for $k > 1$. Based on the complementary slackness conditions, we provide a novel interpretation of the top-two design principle, which leads us to extending the existing top-two algorithms and designing new ones. We propose an adaptive selection rule dubbed information-directed selection (IDS) that wisely selects among the top-two candidates based on the stationarity conditions. We show that integrated with IDS, top-two Thompson sampling is optimal for Gaussian BAI, which solves a glaring open problem in Russo (2020).

A key feature of IDS is its adaptivity to the proposed top-two candidates. This differs from adaptive β-tuning procedures, which uses the same value of β regardless of the proposed candidates, even though it may be updated over time. As a by-product, we show that top-two algorithms with adaptive β-tuning cannot achieve the notion of β-optimality for $k > 1$. Finally, we demonstrate the superior performance of top-two algorithms with IDS in extensive numerical experiments.
Acknowledgments

Wei You received support from the Hong Kong Research Grants Council [ECS Grant 26212320 and GRF Grant 16212823]. Shuoguang Yang was partially supported by the Early Career Scheme from the Research Grants Council of the Hong Kong SAR, China (Project No. 26209422).

References

