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Abstract
Recently, several studies (Zhou et al., 2021a; Zhang et al., 2021b; Kim et al., 2021; Zhou and

Gu, 2022) have provided variance-dependent regret bounds for linear contextual bandits, which
interpolates the regret for the worst-case regime and the deterministic reward regime. However,
these algorithms are either computationally intractable or unable to handle unknown variance of
the noise. In this paper, we present a novel solution to this open problem by proposing the first
computationally efficient algorithm for linear bandits with heteroscedastic noise. Our algorithm is

adaptive to the unknown variance of noise and achieves an Õ(d
√∑K

k=1 σ
2
k + d) regret, where σ2

k

is the variance of the noise at the round k, d is the dimension of the contexts and K is the total
number of rounds. Our results are based on an adaptive variance-aware confidence set enabled by
a new Freedman-type concentration inequality for self-normalized martingales and a multi-layer
structure to stratify the context vectors into different layers with different uniform upper bounds on
the uncertainty.

Furthermore, our approach can be extended to linear mixture Markov decision processes (MDPs)
in reinforcement learning. We propose a variance-adaptive algorithm for linear mixture MDPs,
which achieves a problem-dependent horizon-free regret bound that can gracefully reduce to a
nearly constant regret for deterministic MDPs. Unlike existing nearly minimax optimal algorithms
for linear mixture MDPs, our algorithm does not require explicit variance estimation of the tran-
sitional probabilities or the use of high-order moment estimators to attain horizon-free regret. We
believe the techniques developed in this paper can have independent value for general online deci-
sion making problems.
Keywords: Linear bandits, reinforcement learning, instance-dependent regret

© 2023 H. Zhao, J. He, D. Zhou, T. Zhang & Q. Gu.



ZHAO HE ZHOU ZHANG GU

1. Introduction
The Multi-Armed Bandits (MAB) problem has been persistently studied since 1933 (Thompson,
1933; Robbins, 1952; Cesa-Bianchi and Fischer, 1998; Auer et al., 2002). In the past decades, a
variety of bandit algorithms have been developed under different settings, emerging their practi-
cality in assorted real world tasks such as online advertising (Li et al., 2010), clinical experiments
(Villar et al., 2015) and resource allocations (Lattimore et al., 2015), to mention a few. For a thor-
ough review of bandit algorithms, please refer to Bubeck and Cesa-Bianchi (2012); Lattimore and
Szepesvári (2020).

To deal with a large number of arms, contextual linear bandits (Auer, 2002; Abe et al., 2003;
Li et al., 2010), where each arm is associated with a context vector and the expected reward is a
linear function of the context vector, have garnered a lot of attention. Numerous studies have at-
tempted to design algorithms to achieve the optimal regret bound for linear bandits (Chu et al., 2011;
Abbasi-Yadkori et al., 2011). Despite the achievement of minimax-optimal regret bounds in various
settings, they only quantify the performance of a specific algorithm under the worst-case scenario.
However, in the noiseless scenario (i.e., the variance of the noise equal 0), the learner only requires
Õ(d) regret to recover the underlying coefficients of the linear function. This motivates a series
of work on variance-dependent regret for linear bandits (Zhou et al., 2021a; Zhang et al., 2021b;
Zhou and Gu, 2022; Zhao et al., 2022), which bridges the gap between the worst-case constant-
variance regime (i.e., noisy case) and the deterministic regime (i.e., noiseless case). In these works,
the regret bounds depend on the variance of noise at each round, i.e., {σ2

i }Ki=1 where K is the total
number of rounds. Unfortunately, all these prior approaches are either computationally inefficient
or non-adaptive, meaning the agent must possess prior knowledge of the variance to learn the re-
ward function. As a result, none of the existing algorithms are practical enough for real-world use,
despite being designed for better performance in reality. Therefore, an open question arises:

Can we design computationally tractable algorithms for linear bandits with heteroscedastic noise
to obtain a variance-dependent regret bound without prior knowledge on the noise?

1.1. Our Contributions
In this paper, we answer this question affirmatively by proposing the first computationally efficient
algorithm for heteroscedastic linear bandits with unknown variance and attaining a regret bound

scales as Õ
(
d
√∑K

k=1σ
2
k + d

)
, where σ2

k is the variance of the noise at the round k, d is the
dimension of the contexts and K is the total number of rounds. Our result is significant in the
sense that it is minimax optimal in both the deterministic case and the worst case. When there is
no noise, the above regret degenerates to Õ(d), which corresponds to the benign regime. In the
worst case when the noise is R-sub-Gaussian, the above regret reduces to Õ(dR

√
K + d), which

matches the minimax regret bound proved in Abbasi-Yadkori et al. (2011). Please refer to Table 1
for a comparison between our result and the previous results in linear contextual bandits.

Our algorithm and its analysis rely on the following new techniques.

• We propose a new Freedman-type concentration inequality for vector-valued self-normalized mar-
tingales, which is applicable to the heteroscedastic random variables. This strictly generalizes the
previous Bernstein-type concentration inequality (Theorem 4.1, Zhou et al. 2021a) for vector-
valued self-normalized martingales with homoscedastic random variables.

1. For the deterministic-case, the variance at stage k ∈ [K] satisfies σk = 0. The regret guarantee is the same as the
general case for variance-unaware algorithms.
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Table 1: Comparison between different algorithms for stochastic linear contextual bandits. d, K,
{σk}k∈[K] are the dimension of context vectors, the number of rounds and the variance of noise
at round k ∈ [K]. The last column indicates whether the corresponding algorithm requires the
variance information to achieve variance-dependent regret.

Algorithm Regret (General-Case) Regret (Deterministic-Case)1 Efficiency Variances

ConfidenceBall2
(Dani et al., 2008)

Õ(d
√
K) Õ(d

√
K) Yes N/A

OFUL
(Abbasi-Yadkori et al., 2011)

Õ(d
√
K) Õ(d

√
K) Yes N/A

Weighted OFUL
(Zhou et al., 2021a) Õ

(
d
√∑K

k=1 σ
2
k +
√
dK
)

Õ(
√
dK) Yes Known

Weighted OFUL+
(Zhou and Gu, 2022) Õ

(
d
√∑K

k=1 σ
2
k + d

)
O(d · polylog(d,K)) Yes Known

VOFUL
(Zhang et al., 2021b) Õ

(
d4.5
√∑K

k=1 σ
2
k + d5

)
O(d5 · polylog(d,K)) No Unknown

VOFUL2
(Kim et al., 2021) Õ

(
d1.5
√∑K

k=1 σ
2
k + d2

)
O(d2 · polylog(d,K))) No Unknown

SAVE
(Theorem 2.3) Õ

(
d
√∑K

k=1 σ
2
k + d

)
O(d · polylog(d,K)) Yes Unknown

• We employ a multi-layer structure to partition the observed context vectors according to their el-
liptical norm. Different from the classic SupLinUCB algorithm (Chu et al., 2011), we use carefully
designed weights within each layer to ensure that all the reweighted context vectors in the same
layer have a uniform elliptical norm.

• Equipped with the new concentration inequality, we design a new adaptive variance-aware explo-
ration strategy. Specifically, we adopt a self-adaptive confidence set whose radius is updated at
each round based on the ‘square loss’ incurred by the online estimator.

Furthermore, we apply our novel techniques to episodic Markov decision processes, where the
agent interacts with the environment by taking actions and observing states and rewards generated
by the unknown dynamics over time. We focus on linear mixture MDPs (Jia et al., 2020; Ayoub
et al., 2020; Zhou et al., 2021b) in this paper, whose transition dynamic is assumed to be a linear
combination of d basic transition models. For linear mixture MDPs, both minimax optimal horizon-
dependent regret (Zhou et al., 2021a) and horizon-free regret Zhang et al. (2021b); Kim et al. (2021);
Zhou and Gu (2022) have been achieved. We propose an algorithm named UCRL-AVE and derive
a tight problem-dependent regret bound that has no explicit polynomial dependency on neither the
number of episodes K nor the planing horizon H . Our regret bound gracefully degrades to the
nearly minimax optimal horizon-free regret bound achieved by Zhou and Gu (2022) in the worst
case. See Table 2 for a comparison between our regret bound with the previous results regarding
linear mixture MDPs.

1.2. Other Related Work

Here we discuss the related work on problem-dependent regret in RL. For additional related work,
please refer to Appendix A. Most of the performance guarantees for episodic MDPs have been
focused on worst-case regret bounds. However, some works have achieved problem-dependent
regret, which holds in various scenarios, as demonstrated by studies such as Zanette and Brunskill
(2019); Simchowitz and Jamieson (2019); Jin et al. (2020a); Dann et al. (2021); Xu et al. (2021);
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Table 2: Comparison of our variance-dependent regret with existing regret bounds for linear mixture
MDPs. H , d, K, are the horizon of the underlying MDP, the dimension of the feature vectors and
the number of episodes. Var∗K is defined in Section 3 to characterize the randomness of MDPs. It is
shown later in Section 3 that our variance-dependent regret degrades to Õ(d

√
K + d2) in the worst

case, which matches the nearly minimax optimal horizon-free regret in linear mixture MDPs.

Algorithm Regret (General-Case) Variance-Dependent Assumption Efficiency

UCRL-VTR Homogeneous
(Ayoub et al., 2020; Jia et al., 2020)

Õ(d
√
H3K) No ∑H

h=1 rh ≤ H
Yes

UCRL-VTR+ Õ(
√
d2H3 + dH4

√
K Inhomogeneous

(Zhou et al., 2021a) +d2H3 + d3H2)
No ∑H

h=1 rh ≤ H
Yes

VarLin Homogeneous
(Zhang et al., 2021b)

Õ
(
d4.5
√
K + d9

)
No ∑H

h=1 rh ≤ 1
No

VarLin2 Homogeneous
(Kim et al., 2021)

Õ(d
√
K + d2) No ∑H

h=1 rh ≤ 1
No

HF-UCRL-VTR+ Homogeneous
(Zhou and Gu, 2022)

Õ(d
√
K + d2) No ∑H

h=1 rh ≤ 1
Yes

UCRL-AVE Homogeneous
(Theorem 2.3)

Õ
(
d
√
Var∗K + d2

)
Yes ∑H

h=1 rh ≤ 1
Yes

Wagenmaker et al. (2022); He et al. (2021a). These results can be broadly categorized into two
groups. The first group is first-order regret in RL, which was originally proposed by Zanette and
Brunskill (2019) and later extended to the linear MDP setting by Wagenmaker et al. (2022). The
second group is gap-dependent regret guarantees, which have been studied for both tabular MDPs
(Simchowitz and Jamieson, 2019; Xu et al., 2021; Dann et al., 2021) and linear MDPs/linear mixture
MDPs (He et al., 2021a). We also notice that a concurrent work by Zhou et al. (2023) considers
variance-dependent bound in tabular MDPs. Our paper utilizes the same definition of trajectory-
based total variance as Zhou et al. (2023), which characterizes the randomness of an episodic MDP.

Notation We use lower case letters to denote scalars, and use lower and upper case bold face
letters to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector
x ∈ Rd and a positive semi-definite matrix Σ ∈ Rd×d, we denote by ∥x∥2 the vector’s Euclidean
norm and define ∥x∥Σ =

√
x⊤Σx. For x,y ∈ Rd, let x ⊙ y be the Hadamard (componentwise)

product of x and y. For two positive sequences {an} and {bn} with n = 1, 2, . . . , we write
an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn holds for all n ≥ 1
and write an = Ω(bn) if there exists an absolute constant C > 0 such that an ≥ Cbn holds for
all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use 1{·} to denote the
indicator function. For a, b ∈ R satisfying a ≤ b, we use [x][a,b] to denote the truncation function
x · 1{a ≤ x ≤ b}+ a · 1{x < a}+ b · 1{x > b}.

2. Variance-Aware Learning for Heteroscedastic Linear Bandits

In this section, we propose a computationally efficient variance-aware algorithm, dubbed SAVE
(Suplin + Adaptive Variance-aware Exploration), for stochastic linear contextual bandits and present
its theoretical guarantees. SAVE does not require the knowledge of the noise variance (or its upper
bound), making it adaptable to varying levels of noise variance.
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2.1. Problem Setup

We consider a heteroscedastic variant of the classic linear contextual bandit problem (Zhou et al.,
2021a; Zhang et al., 2021b). Let K be the total number of rounds. At each round k ∈ [K], the
interaction between the agent and the environment is as follows: (1) the environment generates an
arbitrary decision set Dk ⊆ Rd where each element represents a feasible action that can be selected
by the agent; (2) the agent observes Dk and selects ak ∈ Dk; and (3) the environment generates the
stochastic noise ϵk at round k and reveal the stochastic reward rk = ⟨θ∗,ak⟩+ ϵk to the agent. We
assume that there exists a uniform bound A > 0 for the ℓ2 norm of the feasible actions, i.e., for all
k ∈ [K], a ∈ Dk, it holds that ∥a∥2 ≤ A. Following Zhou et al. (2021a), we assume the following
condition on the random noise ϵk at each round k:

P (|ϵk| ≤ R) = 1, E[ϵk|a1:k, ϵ1:k−1] = 0, E[ϵ2k|a1:k, ϵ1:k−1] = σ2
k. (2.1)

Without loss of generality, we assume that the size of Dk is finite and is bounded by |D| for all
k ∈ [K]. If the size of Dk is infinite, we can use standard covering argument to convert it to be
finite.

The goal of the agent is to minimize the cumulative regret defined as follows:

Regret(K) =
∑
k∈[K]

(
⟨a∗k,θ∗⟩ − ⟨ak,θ∗⟩

)
, where a∗k = argmax

a∈Dk

⟨a,θ∗⟩. (2.2)

2.2. Technical Challenges

The key technical challenge we face is to provide a tight upper bound of ⟨a∗k,θ∗⟩ − ⟨ak,θ∗⟩. The
classical approach is to use the optimism-in-the-face-of-uncertainty principle (Abbasi-Yadkori et al.,
2011), and construct a confidence set Ck which includes θ∗ w.h.p., then upper bound ⟨a∗k,θ∗⟩ with
⟨ak,θk⟩, where θk ∈ Ck. Starting from here, there are two main approaches to bound ⟨ak,θk−θ∗⟩
for heteroscedastic linear bandits.

The first approach bounds ⟨ak,θk − θ∗⟩ with ∥ak∥Σ̂−1
k
∥θk − θ∗∥

Σ̂k
by Cauchy-Schwarz in-

equality. Zhou et al. (2021a); Zhou and Gu (2022) constructed Ck as an ellipsoid centering at θ̂k,
which is the solution to a weighted linear regression problem over the past contexts ai, and their
weight is based on the upper bound of the variance of heteroscedastic noise σ2

k. Then they bound
∥θk−θ∗∥

Σ̂k
by ∥θk− θ̂k∥Σ̂k

and ∥θ∗− θ̂k∥Σ̂k
separately, each of which can be bounded properly

by using the self-normalized concentration inequalities proposed in Zhou et al. (2021a); Zhou and
Gu (2022). However, as we have mentioned before, their approach is limited to the case where an
upper bound of σ2

k is known.
The second approach (Zhang et al., 2021b; Kim et al., 2021) follows the test-based framework.

Instead of constructing Ck as an ellipsoid centering at a least square estimator θ̂k for each round
k, Zhang et al. (2021b); Kim et al. (2021) constructed Ck as the intersection of a series of sub-
confidence sets denoted by different tests, where each test represents a constraint over a potential
direction of the action ak. The limitation of their approach is that, in order to have a uniform upper
bound on ⟨ak,θk − θ∗⟩, they have to cover all possible directions of ak, which leads to an exp(d)
number of test sets by the standard covering argument. This makes the computational time of their
test-based algorithms depend on d exponentially, which is computationally inefficient.
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2.3. A New Freedman-Type Concentration Inequality for Vector-Valued Martingales
To tackle the above technical challenges posed by both weighted linear regression and test-based
approach, we seek to develop a new Freedman-type concentration inequality for vector-valued self-
normalized martingales with heteroscedastic noise (i.e., non-uniform variance).

Theorem 2.1 Let {Gk}∞k=1 be a filtration, and {xk, ηk}k≥1 be a stochastic process such that xk ∈
Rd is Gk-measurable and ηk ∈ R is Gk+1-measurable. Let L, σ, λ, ϵ > 0, µ∗ ∈ Rd. For k ≥ 1, let
yk = ⟨µ∗,xk⟩+ ηk, where ηk,xk satisfy

E[ηk|Gk] = 0, |ηk| ≤ R,

k∑
i=1

E[η2i |Gi] ≤ vk, for ∀ k ≥ 1

For k ≥ 1, let Zk = λI+
∑k

i=1 xix
⊤
i , bk =

∑k
i=1 yixi, µk = Z−1

k bk, and

βk = 16ρ
√
vk log(4k2/δ) + 6ρR log(4k2/δ),

where ρ ≥ supk≥1 ∥xk∥Z−1
k−1

. Then, for any 0 < δ < 1, we have with probability at least 1− δ that,

∀k ≥ 1,
∥∥∑k

i=1xiηi
∥∥
Z−1
k
≤ βk, ∥µk − µ∗∥Zk

≤ βk +
√
λ∥µ∗∥2.

Theorem 2.1 can be viewed as an extension of Freedman’s inequality (Freedman, 1975) from
scalar-valued martingales to vector-valued self-normalized martingales. Though Zhou et al. (2021a)
proposed Bernstein-type concentration inequalities for vector-valued martingales (Theorem 4.1,
Zhou et al. 2021a), their inequality relies on a uniform upper bound on the variance of random
variables, i.e., ∥µk − µ∗∥Zk

≤ Õ(σ
√
d + R), where σ2 ≥ supk≥1 E[η2i |Gi]. In contrast, the up-

per bound provided by Theorem 2.1 depends on the maximum of ∥xk∥Z−1
k−1

, which is of the order

Õ(
√
d/k) under certain conditions (Carpentier et al., 2020). For these cases, our upper bound for

∥µk − µ∗∥Zk
scales as Õ(

√
d · vk/k + R ·

√
d/k), which is more fine-grained and strictly tighter

than the previous upper bounds when k ≥ d.

2.4. The Proposed Algorithm
Equipped with the new Freedman-type concentration inequality, we will design a new algorithm
that is adaptive to the unknown variance of noise.

2.4.1. SUPLIN WITH ADAPTIVE VARIANCE-AWARE EXPLORATION

As discussed in the last subsection, in order to exploit Theorem 2.1 effectively in the heteroscedastic
linear bandits setting, we need the uncertainty/bonus term ∥ak∥Σ̂−1

k−1
to be small, where Σ̂k−1 is

the covariance matrix of ak. However, such a term is in the order of O(1) in the worst case.
Our algorithm partition the observed contexts into different layers such that the uncertainty of the
contexts within each layer is small. Our algorithm is displayed in Algorithm 1, namely SAVE.
Overall algorithm structure In general, Algorithm 1 shares a similar multi-layer structure as
SupLinUCB in Chu et al. (2011). Algorithm 1 maintains L context sets Ψk,ℓ, ℓ ∈ [L] at the k-th
round. The goal of Algorithm 1 at the k-th round is to select ak which maximizes ⟨a,θ∗⟩. Since
θ∗ is unknown, the selection process is based on L number of estimates of θ∗, which we denote
them by θ̂k,ℓ, ℓ ∈ [L]. θ̂k,ℓ is the solution to some regression problem over contexts in Ψk,ℓ and
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Algorithm 1 SupLin + Adaptive Variance-aware Exploration (SAVE)

Require: α > 0, and the upper bound on the ℓ2-norm of a in Dk(k ≥ 1), i.e., A.
1: Initialize L← ⌈log2(1/α)⌉.
2: Initialize the estimators for all layers: Σ̂1,ℓ ← 2−2ℓ · I, b̂1,ℓ ← 0, θ̂1,ℓ ← 0, Ψk,ℓ ← ∅,

β̂1,ℓ ← 2−ℓ+1 for all ℓ ∈ [L].
3: for k = 1, . . . ,K do
4: Observe Dk.
5: Let Ak,1 ← Dk, ℓ← 1.
6: while ak is not specified do
7: if ∥a∥

Σ̂−1
k,ℓ
≤ α for all a ∈ Ak,ℓ then

8: Choose ak ← argmaxa∈Ak,ℓ
⟨a, θ̂k,ℓ⟩+ β̂k,ℓ∥a∥Σ̂−1

k,ℓ
and observe rk.

9: Keep the same index sets at all layers: Ψk+1,ℓ′ ← Ψk,ℓ′ for all ℓ′ ∈ [L].
10: else if ∥a∥

Σ̂−1
k,ℓ
≤ 2−ℓ for all a ∈ Ak,ℓ then

11: Ak,ℓ+1 ←
{
a ∈ Ak,ℓ

∣∣⟨a, θ̂k,ℓ⟩ ≥ maxa′∈Ak,ℓ
⟨a′, θ̂k,ℓ⟩ − 2 · 2−ℓβ̂k,ℓ

}
.

12: else
13: Choose ak such that ∥ak∥Σ̂−1

k,ℓ
> 2−ℓ and observe rk.

14: Compute the weight: wk ← 2−ℓ/∥ak∥Σ̂−1
k,ℓ

.

15: Update the index sets: Ψk+1,ℓ ← Ψk,ℓ ∪ {k} and Ψk+1,ℓ′ ← Ψk,ℓ′ for ℓ′ ∈ [L]\{ℓ}.
16: end if
17: ℓ← ℓ+ 1.
18: end while
19: For ℓ ∈ [L] such that Ψk+1,ℓ ̸= Ψk,ℓ, update the estimators as follows:

Σ̂k+1,ℓ ← Σ̂k,ℓ + w2
kaka

⊤
k , b̂k+1,ℓ ← b̂k,ℓ + w2

k · rkak, θ̂k+1,ℓ ← Σ̂−1
k+1,ℓb̂k+1,ℓ.

Compute the adaptive confidence radius β̂k+1,lfor the next round according to (2.3).
20: For ℓ ∈ [L] such that Ψk+1,ℓ = Ψk,ℓ, let Σ̂k+1,ℓ ← Σ̂k,ℓ, b̂k+1,ℓ ← b̂k,ℓ, θ̂k+1,ℓ ←

θ̂k,ℓ, β̂k+1,ℓ ← β̂k,ℓ.
21: end for

their corresponding rewards. Starting from ℓ = 1, the decision set Ak,ℓ will keep ‘shrinking’ by
eliminating all a ∈ Ak,ℓ which are unlikely to be the maximizer of ⟨a,θ∗⟩ (notably, since θ∗ is un-
known, here θ∗ needs to be replaced by θ̂k,ℓ, as displayed in Line 11). The elimination process will
not stop until some action a with large uncertainty ∥a∥

Σ̂−1
k,ℓ

emerges. Then Algorithm 1 will either
select the action a with a large uncertainty (Line 13 to Line 15), or the action which maximizes the
upper confidence bound of estimated reward if there is no action with a large uncertainty (Line 8
to Line 9). The context set Ψk,ℓ will be updated by appending k to it only when ak enjoys a large
uncertainty.

Construction of the estimate θ̂k,ℓ The first difference between our algorithm and SupLinUCB is
the construction of the estimate θ̂k,ℓ. Unlike the unweighted ridge regression estimator applied in

7
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SupLinUCB, we employ a weighted ridge-regression estimator as follows

∀k ∈ [K] and ℓ ∈ [L], θ̂k,ℓ = argmin
θ∈Rd

∑
i∈Ψk,ℓ

w2
i

(
ri − ⟨θ,ai⟩

)2
+ 2−2ℓλ∥θ∥22,

where the weight wi is chosen such that for ∀ℓ ∈ [L] and i ∈ Ψk,ℓ, ∥wiai∥Σ̂−1
i,ℓ

= 2−ℓ. We
explain here why we want to adopt such a weighted regression scheme. In particular, the estimate
θ̂k,ℓ can be regarded as µk in Theorem 2.1. By our construction of wi, we can ensure that the
context xi in Theorem 2.1, which is wiai here, enjoys a uniform upper bound on the uncertainty,
i.e., ∥xi∥Z−1

i
≤ 2−ℓ. Such a result can further imply that ∥θ̂k,ℓ − θ∗∥

Σ̂k,ℓ
is in the order of O(2−ℓ),

which is tighter than the vanilla bound O(1) deduced by previous works.

Remark 2.2 It is worth noting that weighted ridge-regression technique has been used in het-
eroscedastic bandit setting (Kirschner and Krause, 2018; Zhou et al., 2021a; Zhou and Gu, 2022)
for the known variance case. The most related work to ours is Zhou et al. (2021a), which applies the
following weighted ridge-regression estimator θk = argminθ∈Rd

∑k−1
i=1

1
σ2
i

(
ri−⟨θ,ai⟩

)2
+λ∥θ∥22,

where the 1/σ2
i weight is introduced to normalize the variance of noise. Our weight wi, in con-

trast, is set to reweight the feature vectors such that they have the same elliptical norm ∥ai∥Σ̂−1
i,ℓ

.

Weighted ridge-regression technique has also been applied to other bandit settings such as linear
multi-resource allocation (Lattimore et al., 2015) and corruption-robust linear bandits (He et al.,
2022b). In particular, He et al. (2022b) adopts a similar weight wi = O

(
1/∥ai∥1/2

Σ̂−1
i

)
to balance

the effect of adversarial corruption and stochastic noise. Nevertheless, the specific bandit problems
they are solving are quite different from ours.

Adaptive variance-aware exploration According to previous discussion, we can bound the esti-
mation error of θ̂k,ℓ following Theorem 2.1, which leads to a confidence bound of θ∗, i.e., {θ :

∥θ − θ̂k,ℓ∥Σ̂k,ℓ
≤ Õ(2−ℓ ·

√∑
i∈Ψk,ℓ

w2
i σ

2
i + 2−ℓR)}. This can be used in the arm selection

step (Line 8 and Line 11). However, such a confidence set requires the knowledge of variances
σ2
i apriori. To address this issue, we need to replace σ2

i with their empirical estimator. In de-
tail, since σ2

i = E[(ri − ⟨θ∗,ai⟩)2|a1:i−1, ϵ1:i−1], we simply use an one-point plug-in estimator
(ri − ⟨θ̂k,ℓ,ai⟩)2. With such an estimator, we define the confidence radius βk+1,ℓ at round k + 1
and layer ℓ as

β̂k+1,ℓ := 16 · 2−ℓ

√(
8V̂ark+1,ℓ + 6R2 log(4(k + 1)2L/δ) + 2−2ℓ+4

)
log(4k2L/δ)

+ 6 · 2−ℓR log(4k2L/δ) + 2−ℓ+1, (2.3)

where V̂ark+1,ℓ :=

{∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
, 2ℓ ≥ 64

√
log (4(k + 1)2L/δ)

R2 |Ψk+1,ℓ| , otherwise.

We would like to emphasize that although our used one-point estimator (ri − ⟨θ̂k,l,ai⟩)2 might
be an inaccurate estimator of the target σ2

i for some round i, the weighted summation of the one-
point estimators

∑
w2
i (ri − ⟨θk,l,ai⟩)2 actually serves as a sufficiently accurate estimator of the

total variance
∑

w2
i σ

2
i . That is because our employed weight can effectively ‘calibrate’ the term

(ri−⟨θk,l,ai⟩)2 and reduce its error, leading to an accurate estimate when these terms are summed.

8
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2.4.2. COMPUTATIONAL COMPLEXITY

At each round k ∈ [K], the learner executes the arm elimination step (Line 11 in Algorithm 1) for
O(L) times, and then applies Sherman-Morrison formula (Golub and Van Loan, 2013) and matrix
multiplication to update the estimator in O(d2) time (Line 19). Note that we need to compute the
confidence radius at each round in Line 19, which will take O(k) time if we compute it directly.
However, we can compute V̂ark+1,ℓ by V̂ark+1,ℓ =

∑
i∈Ψk+1,ℓ

w2
i r

2
i −2θ̂⊤

k+1,ℓ ·
∑

i∈Ψk+1,ℓ
wiriai+

θ̂⊤
k+1,ℓ

(∑
i∈Ψk+1,ℓ

w2
i aia

⊤
i

)
θ̂k+1,ℓ, where the first term can be computed in O(1) time at each

round, the second term can be computed in O(d) time by maintaining the prefix sum of wiri ·ai and
the third term can be computed in O(d2) time by maintaining the value of the weighted covariance
matrix. By adding these steps together, we can conclude that the time complexity of Algorithm 1 is
O(K|D|Ld2), where L is actually a logarithmic term according to the choice of α in Theorem 2.3.

2.5. Regret Bounds
We provide the regret guarantee of Algorithm 1 in the following theorem.

Theorem 2.3 Suppose that for all k ≥ 1 and all a ∈ Dk, ∥a∥2 ≤ A, ∥θ∗∥2 ≤ 1, ⟨a,θ∗⟩ ∈ [−1, 1].
If {βk,ℓ}k≥1,ℓ∈[L] is defined in (2.3) and α = 1/(R·K3/2), then the cumulative regret of Algorithm 1
is bounded as follows with probability at least 1− 3δ:

Regret(K) = Õ

(
d

√√√√ K∑
k=1

σ2
k + dR+ d

)
.

Remark 2.4 If we treat R as a constant, the regret can be simplified as Õ
(
d
√∑K

k=1 σ
2
k + d

)
.

Compared with Weighted OFUL+ (Zhou and Gu, 2022), our algorithm achieves the same order of
regret guarantee and does not require any prior knowledge about the variance σk. Compared with

VOFUL2 (Kim et al., 2021), our SAVE algorithm improves the regret from Õ
(
d1.5
√∑K

k=1 σ
2
k+d2

)
to Õ

(
d
√∑K

k=1 σ
2
k + d

)
. Furthermore, VOFUL2 needs to perform the arm elimination for each

possible direction µ in the d-dimension unit ball, which requires an exponential computational time
(See the discussion in Section 2.2).

Remark 2.5 Consider the deterministic reward setting where σk = 0 holds for all round k ∈ [K].
If we treat R as a constant, then Theorem 2.3 suggests an Õ(d) regret guarantee, which matches
the Ω(d) lower bound up to logarithmic factors (Chu et al., 2011).

3. Variance-Aware Learning for Linear Mixture MDPs
In this section, we apply the techniques developed in Section 2 to reinforcement learning, and
propose a variance-aware algorithm for linear mixture MDPs.

3.1. Problem Setup
Episodic MDPs. A time-homogenous episodic MDP (Puterman, 2014) is denoted by a tuple M =
M(S,A, H, r,P). Here, S is the state space, A is a finite action space, H is the planning horizon
(i.e., length of each episode), r : S ×A → [0, 1] is a deterministic reward function, P(s′|s, a) is the
transition probability function denoting the probability of transition from state s to state s′ under

9
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Algorithm 2 UCRL-AVE

Require: Regularization parameter λ > 0, α > 0, B, an upper bound on the ℓ2-norm of θ∗.
1: Set L = ⌈log2(1/α)⌉.
2: Initialize: Σ̂0,H+1,ℓ ← 2−2ℓλ · I, b̂0,H+1,ℓ ← 0, θ̂1,ℓ ← 0 for all ℓ ∈ [L].
3: for k = 1, . . . ,K do
4: Vk,H+1(·)← 0.
5: Update the current estimators: Σ̂k,1,ℓ ← Σ̂k−1,H+1,ℓ, b̂k,1,ℓ ← b̂k−1,H+1,ℓ, θ̂k,ℓ ←

Σ̂−1
k,1,ℓb̂k,1,ℓ for all ℓ ∈ [L].

6: Compute β̂k,ℓ according to (3.4).
7: for h = H, . . . , 1 do
8: Qk,h(·, ·)← min

{
1,minℓ∈[L]

[
r(·, ·) +

〈
θ̂k,ℓ,ϕVk,h+1

(·, ·)
〉
+ β̂k,ℓ

∥∥ϕVk,h+1
(·, ·)

∥∥
Σ̂−1

k,1,ℓ

]}
.

9: πk(·, h)← argmaxa∈AQk,h(·, a), Vk,h(·)← maxa∈AQk,h(·, a).
10: end for
11: Observe sk1 .
12: for h = 1, . . . H do
13: Take action akh ← πk(s

k
h, h) and observe skh+1.

14: Lk,h ←
{
ℓ ∈ [L]

∣∣∣ ∥∥ϕVk,h+1
(skh, a

k
h)
∥∥
Σ−1

k,h,ℓ

≥ 2−ℓ
}

.

15: Set ℓk,h ←

{
L+ 1, Lk,h = ∅
min (Lk,h) , otherwise

.

16: if ℓk,h ̸= L+ 1 then
17: wk,h ← 2−ℓk,h/

∥∥ϕVk,h+1
(skh, a

k
h)
∥∥
Σ−1

k,h,ℓk,h

.

18: Σ̂k,h+1,ℓk,h ← Σ̂k,h,ℓk,h + w2
k,hϕVk,h+1

(skh, a
k
h)ϕVk,h+1

(skh, a
k
h)

⊤.

19: b̂k,h+1,ℓk,h ← b̂k,h,ℓk,h + w2
k,hVk,h+1(s

k
h+1)ϕVk,h+1

(skh, a
k
h).

20: end if
21: Σ̂k,h+1,ℓ ← Σ̂k,h,ℓ, b̂k,h+1,ℓ ← b̂k,h,ℓ for all ℓ ∈ [L] and ℓ ̸= ℓk,h.
22: end for
23: end for

action a. A policy π : S × [H] → A is a function which maps a state s and the stage number h
to an action a. For any policy π and stage h ∈ [H], we define the following action-value function
Qπ

h(s, a) and value function V π
h (s) as follows

Qπ
h(s, a) = r(s, a) + E

[ H∑
h′=h+1

r
(
sh′ , π(sh′ , h′)

)∣∣∣∣sh = s, ah = a

]
, V π

h (s) = Qπ
h(s, π(s, h)),

where sh′+1 ∼ P(·|sh′ , ah′). We further define the optimal value function V ∗
h and the optimal

action-value function Q∗
h as V ∗

h (s) = maxπ V
π
h (s) and Q∗

h(s, a) = maxπ Q
π
h(s, a). In addition,

for any function V : S → R, we denote [PV ](s, a) = Es′∼P(·|s,a)V (s′). Therefore, for each stage
h ∈ [H] and policy π, we have the following Bellman equation, as well as the Bellman optimality
equation:

Qπ
h(s, a) = r(s, a) + [PV π

h+1](s, a), Q∗(s, a) = r(s, a) + [PV ∗
h+1](s, a),

10
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where V π
H+1(·) = V ∗

H+1(·) = 0. At the beginning of episode k, the agent chooses a policy π to
guide its actions throughout the episode. At each stage h ∈ [H], the agent observes the state skh,
chooses an action by the policy π and observes the next state with skh+1 ∼ P(·|skh, akh).

Following previous work on horizon-free regret in linear mixture MDPs (Zhang et al., 2021b;
Kim et al., 2021; Zhou and Gu, 2022), we consider the setting where the total reward (i.e., return of
an episode) is bounded by 1.

Assumption 3.1 For any policy π, let (sh, ah)Hh=1 be one trajectory following π, then
∑

h∈[H] r(sh, ah) ≤
1 almost surely.

For simplicity, let [VV ] (s, a) =
[
PV 2

]
(s, a)− ([PV ] (s, a))2 denote the conditional variance of V

conditioned on (s, a). We define the following instance-dependent quantity:

Var∗K =
K∑
k=1

H∑
h=1

[VV ∗
h+1](s

k
h, a

k
h). (3.1)

The quantity (3.1) characterizes the stochasticity of the MDP under the optimal policy. For a deter-
ministic MDP where the transition function is deterministic , we have Var∗K = 0. Similar quantities
have been considered in Maillard et al. (2014); Zanette and Brunskill (2019), and the same quantity
has been proposed by a concurrent work (Zhou et al., 2023) on tabular RL.
Linear Mixture MDPs. We consider a special MDP class called linear mixture MDPs.

Definition 3.2 (Episodic linear mixture MDPs, Jia et al. 2020; Ayoub et al. 2020) An episodic
MDPM(S,A, H, r,P) is a homogeneous, episodic B-bounded linear mixture MDP if there exists
vectors θ∗ ∈ Rd with ∥θ∗∥2 ≤ B and ϕ(·|·, ·) satisfying (3.2), such that for each (s, a) ∈ S × A,
s′ ∈ S and stage h ∈ [H], P(s′|s, a) =

〈
ϕ(s′|s, a),θ∗〉. Moreover, ϕ satisfies that for any bounded

function V : S → [0, 1] and any tuple (s, a) ∈ S ×A,

∥ϕV (s, a)∥2 ≤ 1,where ϕV (s, a) :=
∑
s′∈S

ϕ(s′|s, a)V (s′). (3.2)

The goal of the agent is to minimize the following cumulative regret at the first K rounds:

Regret(K) =
∑
k∈[K]

[
V ∗
1 (s

k
1)− V πk

1 (sk1)
]
.

3.2. The Proposed Algorithm
We present an adaptive variance-aware algorithm named UCRL with Adaptive Variance-Aware
Exploration (UCRL-AVE) in Algorithm 2. The backbone of our algorithm is the value-targeted-
regression scheme proposed by UCRL-VTR (Jia et al., 2020; Ayoub et al., 2020). In detail, Al-
gorithm 2 aims to estimate the optimal value function Q∗

h by Qk,h, utilizing the Bellman op-
timal equation. Since PVk,h+1 is not tractable (P is unknown), Algorithm 2 uses the fact that
PVk,h+1(s, a) = ⟨ϕVk,h+1

(s, a),θ∗⟩ is a linear function of the feature ϕVk,h+1
(s, a), and estimates

PVk,h+1(s, a) by a plug-in estimator ⟨ϕVk,h+1
(s, a), θ̂k⟩, where θ̂k is the estimate of θ∗. Then

UCRL-VTR computes Qk,h by the upper confidence bound of the empirical estimator with truncation
(Line 8).

The main difference between Algorithm 2 and UCRL-VTR is the construction of θ̂k: instead
of using a single estimate, Algorithm 2 maintains L estimates θ̂k,ℓ, constructed on a multi-layer
structure of feature vectors. We highlight several important technical innovations here.

11
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Multi-layer structure of feature vectors. We first demonstrate how Algorithm 2 utilizes L num-
ber of estimates θ̂k,ℓ to build the value function estimate Qk,h, then we show how Algorithm 2 up-
dates θ̂k,ℓ accordingly. Algorithm 2 constructs Qk,h as the minimum of L optimistic estimates com-
puted by ⟨θ̂k,ℓ,ϕVk,h+1

⟩. The minimum step makes the estimate Qk,h tighter than that in UCRL-VTR.
Similar to Algorithm 1, θ̂k,l is the solution to some regression problem over the features ϕV (s, a)

and their corresponding target values. For simplicity, we define the following subsets of [K]× [H]:

Ψk,ℓ = {(i, h) ∈ [k − 1]× [H]|ℓi,h = ℓ} , for k ∈ [K + 1], ℓ ∈ [L+ 1], (3.3)

which represents the indices of feature vectors in layer ℓ at the beginning of round k. Note that θ̂k,ℓ
will be updated if the feature ϕV k

h+1
(skh, a

k
h) is added to the feature set Ψk,ℓ. The rule that whether

to add such a feature or not is based on the uncertainty of ϕV k
h+1

(skh, a
k
h) within the feature set Ψk,ℓ,

which is similar to the multi-layer structure adopted by He et al. (2021b) for uniform-PAC bounds
in linear MDPs. Finally, θ̂k,ℓ is computed as the solution to the weighted regression problem over the
feature set Ψk,ℓ, where the weight wk,h is selected to guarantee that

∥∥wk,hϕVk,h+1
(skh, a

k
h)
∥∥
Σ−1

k,h,ℓk,h

=

2−ℓk,h , similar to that in Algorithm 1.

Adaptive variance-aware exploration. Similar to Algorithm 1, we will also face the problem to
construct a confidence set of θ∗ without knowing the variance of value functions Vk,h+1. Here we
take the same approach: to replace the variance of Vk,h+1, P[Vk,h+1 − PVk,h+1]

2 with its one-point
empirical estimate (Vi,h+1(s

i
h+1)− ⟨θ̂k,l,ϕVi,h+1

(sih, a
i
h)⟩)2. In detail, the confidence radius is:

β̂k,ℓ := 16 · 2−ℓ
√(

8V̂ark,ℓ + 8 log(4k2H2L/δ) + 2−2ℓ+5 · λB2
)
log(4k2H2L/δ)

+ 6 · 2−ℓ log(4k2H2L/δ) + 2−ℓ
√
λ ·B, (3.4)

where V̂ark,ℓ =

{
8
∑

(i,h)∈Ψk,ℓ
w2

i,h

(
Vi,h+1(s

i
h+1)− ⟨θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)⟩
)2
, 2ℓ ≥ 64

√
log(4k2H2L/δ),

|Ψk,ℓ|, otherwise.

We can adopt the method discussed in Subsection 2.4.2 to compute V̂ark,ℓ in an efficient way.
We call the construction of the confidence set along with its radius β̂k,ℓ as adaptive variance-aware
exploration.

Compared with UCRL-VTR+ (Zhou et al., 2021a) and HF-UCRL-VTR+ (Zhou and Gu, 2022), our
algorithm does not need to estimate the conditional variance using another ridge regression esti-
mator on the second-order moment of value functions. Furthermore, in contrast to HF-UCRL-VTR+
(Zhou and Gu, 2022), our algorithm does not explicitly estimate the high-order moments of value
functions. Thus, our algorithm is much simpler. It is also worth noting that the multi-layer structure
in Algorithm 2 is an alternative of the SupLinUCB-type design in Algorithm 1. Since linear bandits
can be seen as a special case of linear mixture MDPs, Algorithm 2 implies another algorithm for
heteroscedastic linear bandits, which enjoys the same regret guarantee as Algorithm 1.

3.3. Regret Bounds
We provide the regret guarantee of Algorithm 2 in the following theorem.

Theorem 3.3 Set β̂k,ℓ as in (3.4), α = 1/(KH)3/2 and λ = 1/B2 in Algorithm 2. Then with
probability at least 1− (4⌈log2 2HK⌉+ 9)δ , the regret of Algorithm 2 is bounded by:

Regret(K) = Õ
(
d
√

Var∗K + d2
)
.
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Corollary 3.4 Under the same conditions as Theorem 3.3, with probability at least 1−(4⌈log2 2HK⌉+
10)δ, the regret of Algorithm 2 is bounded by: Regret(K) = Õ

(
d
√
K + d2

)
.

Remark 3.5 Our regret given by Theorem 3.3 is variance-dependent, which means that the regret
of UCRL-AVE is smaller when the conditional variance of the optimistic value function is smaller. In
the deterministic case where all the transitions in the MDP is deterministic, our regret reduces to
Õ(d2), with only a logarithmic dependence on K. Additionally, the regret in Corollary 3.4 matches
the regret of HF-UCRL-VTR+ proposed by Zhou and Gu (2022), which is the worst-case regret and
matches the minimax lower bound (Zhou and Gu, 2022).

4. Conclusion and Future Work
In this paper, we consider variance-aware learning in linear bandits and linear mixture MDPs.
We propose a computationally efficient algorithm SAVE for heteroscedastic linear bandits, which
achieves a variance-dependent regret, matching the minimax regret bounds in both the worst case
and the deterministic reward case. For linear mixture MDPs, we further extend our techniques and
propose an algorithm dubbed UCRL-AVE, attaining a tighter problem-dependent horizon-free regret
bound. We leave for future work the generalization of our work to RL with nonlinear function
approximation.
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Appendix A. Additional Related Work
Horizon-free regret in tabular RL. RL is considered to be more challenging than contextual ban-
dits due to the non-trivial planning horizon and uncertain state transitions. Jiang and Agarwal (2018)
conjectured that any algorithm seeking an ϵ-optimal policy for tabular RL, where the total reward
is bounded by 1, would require a sample complexity with a polynomial dependence on the plan-
ning horizon H . However, this conjecture was disproven by Wang et al. (2020a), who introduced
a horizon-free algorithm with a sample complexity of Õ(|S|5|A|4ϵ−2polylog(H)) that only has a
polylogarithmic dependence on H . Zhang et al. (2021a) then proposed a near-optimal algorithm
with a regret of O((

√
|S||A|K + |S|2|A|)polylog(H)) and a similar sample complexity. Later, Li

et al. (2022) and Zhang et al. (2022) presented algorithms with sample complexity guarantees that
are independent of H .
Heteroscedastic linear bandits. The worst-case regret of linear bandits has been extensively
studied (Auer, 2002; Dani et al., 2008; Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011;
Li et al., 2019). Recently, there is a series of works considering a heteroscedastic variant of the
classic linear bandit problem where the noise distribution is assumed to vary over time. Kirschner
and Krause (2018) is the first to formally propose linear bandit model with heteroscedastic noise.
In their setting, the noise at round k ∈ [K] is assumed to be σk-sub-Gaussian. Some recent works
relaxed the sub-Gaussian assumption in the sense that the noise at the k-th round is assumed to be of
variance σ2

k instead of σk-sub-Gaussian (Zhou et al., 2021a; Zhang et al., 2021b; Kim et al., 2021;
Zhou and Gu, 2022; Dai et al., 2022). Among these works, Zhou et al. (2021a) and Zhou and Gu
(2022) considered known-variance case where σk is observed by the learner after the k-th round,
while Zhang et al. (2021b); Kim et al. (2021) proposed statistically efficient but computationally
inefficient algorithm for the unknown-variance case. Dai et al. (2022) considered a more specific
model, heteroscedastic sparse linear bandits, and proposed a general framework which converts any
heteroscedastic linear bandit algorithm to an algorithm for heteroscedastic sparse linear bandits.
RL with linear function approximation. There is a huge body of literature on RL with linear
function approximation (Jiang et al., 2017; Dann et al., 2018; Yang and Wang, 2019; Jin et al.,
2020b; Wang et al., 2020b; Du et al., 2019; Sun et al., 2019; Zanette et al., 2020a,b; Weisz et al.,
2021; Yang and Wang, 2020; Modi et al., 2020; Ayoub et al., 2020; Zhou et al., 2021a; He et al.,
2021a; Zhou and Gu, 2022). Several types of assumption on the linear structure of the underlying
MDPs have been made in these works, including the linear MDP assumption (Yang and Wang,
2019; Jin et al., 2020b; Hu et al., 2022; He et al., 2022a; Agarwal et al., 2022), the low Bellman-
rank assumption (Jiang et al., 2017), the low inherent Bellman error assumption (Zanette et al.,
2020b), and the linear mixture MDP assumption (Jia et al., 2020; Ayoub et al., 2020; Zhou et al.,
2021a). In this paper, we focus on linear mixture MDPs, where the transition probability function is
assumed to be a linear function of a known feature mapping over the state-action-next-state triplet.
Recently, there is a line of works aiming for attaining horizon-free regret bounds (Zhang et al.,
2021b; Kim et al., 2021; Zhou and Gu, 2022), which are most related to our work.

Appendix B. Proof of Theorem 2.1
Proof For simplicity, we introduce the following definitions:

d0 = 0,dk =

k∑
i=1

xiηi, q0 = 0, qk = ∥dk∥Z−1
k
, Ik = 1{∀ 0 ≤ s ≤ k, qs ≤ βs},
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where k ≥ 1 and we further define β0 = 0, I0 = 1. According to these definitions, the term qk can
be upper bounded by the following decomposition:

q2k = (dk−1 + xkηk)
⊤Z−1

k (dk−1 + xkηk)

= d⊤
k−1Z

−1
k dk−1 + 2ηkx

⊤
k Z

−1
k dk−1︸ ︷︷ ︸

I1,k

+ η2kx
⊤
k Z

−1
k xk︸ ︷︷ ︸

I2,k

≤ q2k−1 + I1,k + I2,k, (B.1)

where the inequality holds since Zk = Zk−1 + xkx
⊤
k ⪰ Zk−1. For the term I1,k, by the matrix

inversion lemma, we have the following equation:

I1,k = 2ηk

(
x⊤
k Z

−1
k−1dk−1 −

xkZ
−1
k−1xkx

⊤
k Z

−1
k−1dk−1

1 + ∥xk∥2Z−1
k−1

)

= 2ηk

(
x⊤
k Z

−1
k−1dk−1 −

∥xk∥2Z−1
k−1

x⊤
k Z

−1
k−1dk−1

1 + ∥xk∥2Z−1
k−1

)

= 2ηk ·
x⊤
k Z

−1
k−1dk−1

1 + ∥xk∥2Z−1
k−1

.

Taking a summation over the term I1,k with respect to the indicator function Ik−1, we have the
following equation:

k∑
i=1

I1,i · Ii−1 = 2

k∑
i=1

ηi ·
x⊤
i Z

−1
i−1di−1

1 + ∥xi∥2Z−1
i−1

Ii−1. (B.2)

Now, we can derive an upper bound for this summation by Freedman’s inequality. In detail, for each
round i ∈ [k], we have∣∣∣∣∣ηi · x⊤

i Z
−1
i−1di−1

1 + ∥xi∥2Z−1
i−1

Ii−1

∣∣∣∣∣ ≤ R

∣∣∣∣∣∥xi∥Z−1
i−1
∥di−1∥Z−1

i−1

1 + ∥xi∥2Z−1
i−1

∣∣∣∣∣Ii−1 ≤ R

∣∣∣∣∣∥xi∥Z−1
i−1

βi−1

1 + ∥xi∥2Z−1
i−1

∣∣∣∣∣ ≤ Rβkρ,

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due
to the definition of indicator function Ii−1 and the last inequality holds due to ρ ≥ ∥xi∥Z−1

i−1
. In

addition, for each round i ∈ [k], we have

E

[
ηi ·

x⊤
i Z

−1
i−1di−1

1 + ∥xi∥2Z−1
i−1

Ii−1

∣∣∣∣Gi
]
= 0,

and the summation of variance is upper bounded by

k∑
i=1

E

[(
ηi ·

x⊤
i Z

−1
i−1di−1

1 + ∥xi∥2Z−1
i−1

Ii−1

)2
∣∣∣∣∣Gi
]
=

k∑
i=1

(
x⊤
i Z

−1
i−1di−1

1 + ∥xi∥2Z−1
i−1

Ii−1

)2

E[η2i |Gi]
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≤
k∑

i=1

(∥xi∥Z−1
i−1
∥di−1∥Z−1

i−1
Ii−1

1 + ∥xi∥2Z−1
i−1

)2

E[η2i |Gi]

≤
k∑

i=1

(∥xi∥Z−1
i−1

βi−1

1 + ∥xi∥2Z−1
i−1

)2

E[η2i |Gi]

≤ β2
kρ

2
k∑

i=1

E[η2i |Gi]

≤ β2
kρ

2vk.

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds due
to the definition of indicator function Ii−1, the third inequality holds due to ρ ≥ ∥xi∥Z−1

i−1
and the

last inequality holds due to
∑k

i=1 E[η2i |Gi] ≤ vk.
Therefore, using Freedman’s inequality, for any k ≥ 1, with probability 1− δ/(4k2), we have

k∑
i=1

I1,i · Ii−1 ≤ 2
√
2β2

kρ
2vk log(4k2/δ) + 4/3 ·Rβkρ log(4k

2/δ)

≤ 1

4
β2
k + 8

(
ρ2vk log(4k

2/δ)
)
+

1

4
β2
k + (16/9) ·R2ρ2[log(4k2/δ)]2

≤ 3

4
β2
k,

where the first inequality holds due to Lemma E.4 and the second inequality holds due to Young’s
inequality. After taking a union bound for all k > 1, it can then be further deduced that with
probability 1− δ/2, for all k ≥ 1, we have

k∑
i=1

I1,i · Ii−1 ≤
3

4
β2
k. (B.3)

For simplicity, let EI1 be the events that (B.3) holds. Then we bound the summation of I2,k over k
through the following calculation:

k∑
i=1

I2,i ≤
k∑

i=1

η2i ρ
2 = ρ2vk + ρ2

k∑
i=1

[
η2i − E[η2i |Gi]

]
, (B.4)

where the first inequality holds due to ρ ≥ ∥xi∥Z−1
i−1

. Still, we can bound the second term in (B.4)
using Freedman’s inequality in Lemma E.4. Notice that, for each round i ∈ [k], we have∣∣E[η2i |Gi]]− η2i

∣∣ ≤ R2, E
[(
E[η2i |Gi]− η2i

)
|Gi
]
= 0,

E
[(
E[η2i |Gi]− η2i

)2|Gi] = (E[η2i |Gi])2−2E[η2i |Gi] · E[η2i |Gi] + E[η4i |Gi] ≤ R2E[η2i |Gi],

According to Freedman’s Inequality, for any k, with probability 1− δ/(4k2), we have

k∑
i=1

(
η2i − E[η2i |Gi]

)
≤
√
2R2 log(4k2/δ)vk + 2/3 ·R2 log(4k2/δ). (B.5)
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Taking a union bound over all round k ≥ 1, with probability at least 1− δ/2, for all k ≥ 1, we have

k∑
i=1

I2,k ≤ ρ2vk + ρ2
k∑

i=1

[
η2i − E[η2i |Gi]

]
≤ ρ2vk + ρ2R

√
2vk log(4k2/δ) +

2

3
· ρ2 ·R2 log(4k2/δ)

≤ 3
(
ρ2vk log(4k

2/δ)
)
+ 2R2ρ2[log(4k2/δ)]2

≤ 1

4
β2
k. (B.6)

where the first inequality holds due to (B.4), the second inequality holds due to (B.5) and the third
inequality holds due to Young’s inequality. For simplicity, let EI2 be the events that (B.6) holds.
In the remaining proof, we assume that events EI1 and EI2 holds, whose probability is no less than
1 − δ by the union bound. Under this situation, for any round k ≥ 0, if Ii−1 = 1 holds for all
i ∈ [k], then according to (B.1), we have

q2k+1 ≤
k+1∑
i=1

I1,i +
k+1∑
i=1

I2,i

=

k+1∑
i=1

I1,i · Ii−1 +

k+1∑
i=1

I2,i

≤ β2
k+1,

where the last inequality holds due to the definition of events EI1 and EI2 . This result indicates that
Ek+1 = 1. Therefore, by induction, we can deduce that with probability at least 1− δ, for all k ≥ 1,
we have ∥∥∥∥∥

k∑
i=1

xiηi

∥∥∥∥∥
Z−1
k

≤ βk.

Furthermore, the estimation error between underlying vector µ∗ and estimator µk can be upper
bounded by:

∥µk − µ∗∥Zk
= ∥Z−1

k bk − Z−1
k Zkµ

∗∥Zk

=

∥∥∥∥∥Z−1
k bk − Z−1

k

k∑
i=1

xix
⊤
i µ

∗ − λZ−1
k µ∗

∥∥∥∥∥
Zk

=

∥∥∥∥∥Z−1
k

k∑
i=1

xi(yi − x⊤
i µ

∗)− λZ−1
k µ∗

∥∥∥∥∥
Zk

≤

∥∥∥∥∥
k∑

i=1

xiηi

∥∥∥∥∥
Z−1
k

+
√
λ∥µ∗∥2

≤ βk +
√
λ∥µ∗∥2,
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where the first equality follows from the definition of µk, the second equality holds due to the
definition of Zk and the first inequality holds by triangle inequality with the fact that Zk ⪰ λI.
Thus, we complete the proof of Theorem 2.1.

Appendix C. Proofs from Section 2
C.1. Proof of Theorem 2.3
Lemma C.1 Suppose that ∥θ∗∥2 ≤ 1. In Algorithm 1, with probability at least 1−δ, the following
statement holds for all round k ≥ 1 and layer ℓ ∈ [L]:

∥θ̂k,ℓ − θ∗∥
Σ̂k,ℓ
≤ 16 · 2−ℓ

√ ∑
i∈Ψk,ℓ

w2
i σ

2
i log(4k

2L/δ) + 6 · 2−ℓR log(4k2L/δ) + 2−ℓ+1.

For simplicity, we denote Econf as the event such that the result in Lemma C.1 holds in the remaining
section.
Proof We first consider a fixed layer ℓ ∈ [L]. Suppose that k is an arbitrary round satisfying k ∈
Ψk+1,ℓ. Notice that in Line 14 (Algorithm 1), we introduce weight wk to guarantee ∥wkak∥Σ̂−1

k,ℓ
=

2−ℓ.
Then we can apply Theorem 2.1 for the layer ℓ. In detail, for each k ∈ ΨK+1,ℓ, we have

∥wkak∥Σ̂−1
k,ℓ

= 2−ℓ, E[w2
kϵ

2
k|Fk] ≤ w2

kE[ϵ2k|Fk] ≤ w2
kσ

2
k, |wkϵk| ≤ |ϵk| ≤ R,

where the last inequality holds due to the fact that wk = 2−ℓ/∥ak∥Σ̂−1
k,ℓ
≤ 1. According to Theorem

2.1, we can deduce that with probability at least 1− δ/L, for all round k ∈ ΨK+1,ℓ,

∥θ̂k,ℓ − θ∗∥
Σ̂k,ℓ
≤ 16 · 2−ℓ

√ ∑
i∈Ψk,ℓ

w2
i σ

2
i log(4k

2L/δ) + 6 · 2−ℓR log(4k2L/δ) + 2−ℓ+1.

Finally, after taking a union bound for all layer ℓ ∈ [L], we complete the proof of C.1.

Lemma C.2 Suppose that the event Econf defined in Lemma C.1 occurs. If {β̂k,ℓ}k≥1,ℓ∈[L] satisfies

β̂k,ℓ ≥ 16 · 2−ℓ
√ ∑

i∈Ψk,ℓ

w2
i σ

2
i log(4k

2L/δ) + 6 · 2−ℓR log(4k2L/δ) + 2−ℓ+1,

then for all k ≥ 1 and ℓ ∈ [L] such that Ak,ℓ exists, we have a∗k ∈ Ak,ℓ.

Proof Fix an arbitrary round k. If layer ℓ = 1, then a∗k ∈ Dk = Ak,ℓ trivially holds. Then for layer
ℓ > 1, we prove lemma C.2 by induction. Assume that a∗k ∈ Ak,ℓ1 holds for some ℓ1 ∈ Z+ and
Ak,ℓ1+1 exists.

By Lemma C.1, for all a ∈ Ak,ℓ1 , we have∣∣∣⟨a, θ̂k,ℓ1⟩ − ⟨a,θ∗⟩
∣∣∣ ≤ ∥a∥Σ̂−1

k,ℓ1

∥∥∥θ̂k,ℓ1 − θ∗
∥∥∥
Σ̂k,ℓ1

≤ β̂k,ℓ∥a∥Σ̂−1
k,ℓ1

, (C.1)
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where the first inequality holds due to Cauchy-Schwarz inequality and the last inequality holds
due to the definition of events Econf . According to Line 10 of Algorithm 1, Ak,ℓ1+1 exists only if
∥a∥

Σ̂−1
k,ℓ1

≤ 2−ℓ1 holds for all a ∈ Ak,ℓ1 . Therefore, the sub-optimality gap in (C.1) can be further

bounded as follows: ∣∣∣⟨a, θ̂k,ℓ1⟩ − ⟨a,θ∗⟩
∣∣∣ ≤ β̂k,ℓ∥a∥Σ̂−1

k,ℓ1

≤ 2−ℓ1 · β̂k,ℓ1 . (C.2)

For short, let amax = argmaxa′∈Ak,ℓ1
⟨a′, θ̂k,ℓ1⟩. Then for the optimal action a∗k ∈ Ak,l1 , we have

⟨a∗k, θ̂k,ℓ1⟩ − max
a′∈Ak,ℓ1

⟨a′, θ̂k,ℓ1⟩

= ⟨a∗k, θ̂k,ℓ1⟩ − ⟨amax, θ̂k,ℓ1⟩

≥ ⟨a∗k,θ∗⟩ − ⟨amax,θ
∗⟩ −

∣∣∣⟨a∗k, θ̂k,ℓ1⟩ − ⟨a∗k,θ∗⟩
∣∣∣− ∣∣∣⟨amax, θ̂k,ℓ1⟩ − ⟨amax,θ

∗⟩
∣∣∣

≥ −2−ℓ1+1 · β̂k,ℓ1 ,

where the last inequality holds due to (C.2) with the fact that ⟨a∗k,θ∗⟩ ≥ ⟨amax,θ
∗⟩. Therefore,

according to the Line 11 (Algorithm 1), the optimal action a∗k ∈ Ak,ℓ1+1. Therefore, by induction,
we complete the proof of Lemma C.2

Lemma C.3 Suppose for all k ≥ 1 and all a ∈ Dk, we have ∥a∥2 ≤ A, ∥θ∗∥2 ≤ 1. If Econf
occurs and {βk,ℓ}k≥1,ℓ∈[L] satisfies the requirement in Lemma C.2, then for all ℓ ∈ [L]\{1}, the
regret incurred by the index set ΨK+1,ℓ is bounded as follows :∑

τ∈ΨK+1,ℓ

(
⟨a∗τ ,θ∗⟩ − ⟨aτ ,θ∗⟩

)
≤ Õ

(
d · 2ℓ · β̂K,ℓ−1

)
.

Proof For all round τ ∈ ΨK+1,ℓ, we can deduce that aτ ,a∗τ ∈ Aτ,ℓ by Lemma C.2. Also, according
to Line 11 of Algorithm 1, we have

⟨a∗τ , θ̂τ,ℓ−1⟩ − ⟨aτ , θ̂τ,ℓ−1⟩ ≤ 2−ℓ+2β̂τ,ℓ−1. (C.3)

Besides, from Line 10 and the round τ ∈ ΨK+1,ℓ, we have

∥aτ∥Σ̂−1
τ,ℓ−1

≤ 2−ℓ+1, ∥a∗τ∥Σ̂−1
τ,ℓ−1

≤ 2−ℓ+1. (C.4)

We further compute

⟨a∗τ ,θ∗⟩ − ⟨aτ ,θ∗⟩ ≤ ⟨a∗τ , θ̂τ,ℓ−1⟩+
∣∣∣⟨a∗τ , θ̂τ,ℓ−1 − θ∗⟩

∣∣∣− ⟨aτ , θ̂τ,ℓ−1⟩+
∣∣∣⟨aτ , θ̂τ,ℓ−1 − θ∗⟩

∣∣∣
≤ ⟨a∗τ , θ̂τ,ℓ−1⟩ − ⟨aτ , θ̂τ,ℓ−1⟩

+ ∥a∗τ∥Σ̂−1
τ,ℓ−1

∥∥∥θ̂τ,ℓ−1 − θ∗
∥∥∥
Σ̂τ,ℓ−1

+ ∥aτ∥Σ̂−1
τ,ℓ−1

∥∥∥θ̂τ,ℓ−1 − θ∗
∥∥∥
Σ̂τ,ℓ−1

≤ 2−ℓ+2 · β̂τ,ℓ−1 + 2−ℓ+1 · β̂τ,ℓ−1 + 2−ℓ+1 · β̂τ,ℓ−1

= 8 · 2−ℓ · β̂τ,ℓ−1, (C.5)
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where the second inequality holds due to Cauchy-Schwarz inequality and the last inequality holds
due to Lemma C.1, (C.3) and (C.4). Taking the summation over τ ∈ ΨK+1,ℓ, we have∑

τ∈ΨK+1,ℓ

(
⟨a∗τ ,θ∗⟩ − ⟨aτ ,θ∗⟩

)
≤ 8 · 2−ℓ · β̂K,ℓ−1 |ΨK+1,ℓ|

≤ 8 · 2ℓ · β̂K,ℓ−1 ·
∑

k∈ΨK+1,ℓ

∥wk · ak∥2Σ̂−1
k,ℓ

≤ 8 · 2ℓ · β̂K,ℓ−1 · 2d log
(
1 + 22ℓK ·A2/d

)
,

where the first inequality holds due to (C.5), the second inequality holds since for all round k ∈
Ψk+1,ℓ, the weight wk satisfies ∥wkak∥Σ̂−1

k,ℓ
= 2−ℓ, and the last inequality holds due to Lemma E.2.

Lemma C.4 Let weight wi be defined in Algorithm 1. With probability at least 1 − 2δ, for all
k ≥ 1, ℓ ∈ [L], the following two inequalities hold simultaneously:∑

i∈Ψk+1,ℓ

w2
i σ

2
i ≤ 2

∑
i∈Ψk+1,ℓ

w2
i ϵ

2
i +

14

3
R2 log(4k2L/δ),

∑
i∈Ψk+1,ℓ

w2
i ϵ

2
i ≤

3

2

∑
i∈Ψk+1,ℓ

w2
i σ

2
i +

7

3
R2 log(4k2L/δ).

For simplicity, we denote Evar as the event such that the two inequalities in Lemma C.4 holds.
Proof We first consider a fixed layer ℓ ∈ [L]. For the gap between

∑
i∈Ψk+1,ℓ

w2
i σ

2
i and

∑
i∈Ψk+1,ℓ

w2
i ϵ

2
i ,

according to the definition, we have

for ∀i ≥ 1, E
[
ϵ2i − σ2

i |a1:i, r1:i−1

]
= 0,∑

i∈Ψk+1,ℓ

E
[
w2
i (ϵ

2
i − σ2

i )
2|a1:i, r1:i−1

]
≤

∑
i∈Ψk+1,ℓ

E
[
w2
i ϵ

4
i |a1:i, r1:i−1

]
≤ R2

∑
i∈Ψk+1,ℓ

w2
i σ

2
i ,

where the first inequality holds due to Var[x] ≤ E[x2] and the second inequality holds due to |ϵi| ≤
R and E

[
ϵ2i |a1:i, r1:i−1

]
= σ2

i . Applying Freedman’s inequality (Lemma E.4) with {ϵ2i }i∈Ψk+1,ℓ

and taking a union bound for all k ≥ 1 , with probability at least 1 − 2δ/L, for all k ≥ 1, the
following inequality holds∣∣∣∣∣∣

∑
i∈Ψk+1,ℓ

w2
i (σ

2
i − ϵ2i )

∣∣∣∣∣∣ ≤
√

2R2
∑

i∈Ψk+1,ℓ

w2
i σ

2
i log(4k

2L/δ) +
2

3
· 2R2 log(4k2L/δ)

≤ 1

2

∑
i∈Ψk+1,ℓ

w2
i σ

2
i +

7

3
R2 log(4k2L/δ),

where the last inequality holds due to Young’s inequality. Rearranging the above inequality, we
conclude that P(Evar) ≥ 1 − 2δ by applying union bound over all ℓ ∈ [L]. Thus, we complete the
proof of Lemma C.4.
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Lemma C.5 Suppose that ∥θ∗∥2 ≤ 1. Let weight wi be defined in Algorithm 1. On the event Econf
and Evar (defined in Lemma C.1, C.4), for all k ≥ 1, ℓ ∈ [L] such that 2ℓ ≥ 64

√
log (4(k + 1)2L/δ),

we have the following inequalities:∑
i∈Ψk+1,ℓ

w2
i σ

2
i ≤ 8

∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
+ 6R2 log(4(k + 1)2L/δ) + 2−2ℓ+4,

∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
≤ 3

2

∑
i∈Ψk+1,ℓ

w2
i σ

2
i +

7

3
R2 log(4k2L/δ) + 2−2ℓ.

Proof Let ℓ be an arbitrary index in [L]. By the definition of events Evar, we have

∑
i∈Ψk+1,ℓ

w2
i σ

2
i ≤ 2

∑
i∈Ψk+1,ℓ

w2
i ϵ

2
i +

14

3
R2 log(4k2L/δ)

≤ 4
∑

i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
+ 4

∑
i∈Ψk+1,ℓ

w2
i

[
ϵi −

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)]2
+

14

3
R2 log(4k2L/δ), (C.6)

where the last inequality holds due to (a + b)2 ≤ 2a2 + 2b2. In addition, the gap between ϵi and
ri − ⟨θ̂k+1,ℓ,ai⟩ can be upper bounded by

∑
i∈Ψk+1,ℓ

w2
i

[
ϵi −

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)]2
=

∑
i∈Ψk+1,ℓ

w2
i

(
⟨θ̂k+1,ℓ − θ∗,ai⟩

)2
=

∑
i∈Ψk+1,ℓ

(
θ̂k+1,ℓ − θ∗

)⊤
(wiai) · (wiai)

⊤
(
θ̂k+1,ℓ − θ∗

)
≤
(
θ̂k+1,ℓ − θ∗

)⊤
Σ̂k+1,ℓ

(
θ̂k+1,ℓ − θ∗

)
≤
(
16 · 2−ℓ

√ ∑
i∈Ψk+1,ℓ

w2
i σ

2
i log(4(k + 1)2L/δ) + 6 · 2−ℓR log(4(k + 1)2L/δ) + 2−ℓ+1

)2
,

(C.7)

where the first inequality holds due to Σ̂k+1,ℓ ⪰ w2
i aia

⊤
i and the last inequality holds due to

Lemma C.1. From (C.7), when 2ℓ ≥ 64
√
log (4(k + 1)2L/δ), we have

∑
i∈Ψk+1,ℓ

w2
i

[
ϵi −

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)]2
≤ 1

8

∑
i∈Ψk+1,ℓ

w2
i σ

2
i + 2

(
6 · 2−ℓR log(4(k + 1)2L/δ) + 2−ℓ+1

)2
. (C.8)
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where the inequality holds due to (C.7) with the fact that (a+ b)2 ≤ 2a2 + 2b2. Substituting (C.8)
into (C.6), we have∑

i∈Ψk+1,ℓ

w2
i σ

2
i ≤ 4

∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
+ 4

∑
i∈Ψk+1,ℓ

w2
i

[
ϵi −

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)]2
+

14

3
R2 log(4k2L/δ)

≤ 4
∑

i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
+

1

2

∑
i∈Ψk+1,ℓ

w2
i σ

2
i

+ 2
(
6 · 2−ℓR log(4(k + 1)2L/δ) + 2−ℓ+1

)2
+

14

3
R2 log(4k2L/δ)

≤ 8
∑

i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
+ 6R2 log(4(k + 1)2L/δ) + 2−2ℓ+4,

where the last inequality holds due to the fact that x ≤ x/2+ y implies x ≤ 2y. Thus, we complete
the proof of the first part of Lemma C.5.

For the second part, note that θk+1,ℓ is the minimizer of the following weighted ridge regression

θk+1,ℓ ← arg min
θ∈Rd

∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ,ai⟩

)2
+ 2−2ℓ∥θ∥22.

Thus, we have∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
≤

∑
i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ∗,ai⟩

)2
+ 2−2ℓ∥θ∗∥22 ≤

∑
i∈Ψk+1,ℓ

w2
i ϵ

2
i + 2−2ℓ,

where the second inequality holds due to ∥θ∗∥2 ≤ 1. Combining the result in Lemma C.4, we can
further conclude that∑

i∈Ψk+1,ℓ

w2
i

(
ri − ⟨θ̂k+1,ℓ,ai⟩

)2
≤

∑
i∈Ψk+1,ℓ

w2
i ϵ

2
i + 2−2ℓ

≤ 3

2

∑
i∈Ψk+1,ℓ

w2
i σ

2
i +

7

3
R2 log(4k2L/δ) + 2−2ℓ.

Thus, we complete the proof of Lemma C.5.

Proof [Proof of Theorem 2.3] Applying a union bound on event Econfand Evar defined in Lemma
C.1 and C.4, we have P (Econf ∩Evar) ≥ 1− 3δ. In the remaining proof, we suppose that Econf , Evar
hold simultaneously. For simplicity, let ℓ∗ = ⌈12 log2 log

(
4(K + 1)2L/δ

)
⌉ + 8. By the definition

of β̂k,ℓ and Lemma C.5, we have for all ℓ∗ + 1 ≤ ℓ ≤ L,

β̂K,ℓ−1 ≥ 16 · 2−(ℓ−1)
√ ∑

i∈ΨK,ℓ−1

w2
i σ

2
i log(4K

2L/δ) + 6 · 2−ℓR log(4K2L/δ) + 2−ℓ,
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which further implies∑
τ∈ΨK+1,ℓ

(⟨a∗τ ,θ∗⟩ − ⟨aτ ,θ∗⟩) ≤ Õ
(
d · 2ℓ · β̂K,ℓ−1

)

≤ Õ

d

√√√√ K∑
k=1

w2
k

(
rk − ⟨θ̂K+1,ℓ,ak⟩

)2
+R2 + 1 +R


≤ Õ

d

√√√√ K∑
k=1

σ2
k + dR+ d

 , (C.9)

where the first inequality holds due to Lemma C.3, the second inequality holds due to (2.3) and the
last inequality follows from Lemma C.5.

For each round k ∈ [K]\
(⋃

ℓ∈[L]ΨK+1,ℓ

)
:= ΨK+1,L+1, we set ℓk as the value of layer ℓ such

that the while loop in Algorithm 1 stops. Therefore, we have∑
k∈[K]\(

⋃
ℓ∈[L] ΨK+1,ℓ)

(
⟨a∗k,θ∗⟩ − ⟨ak,θ∗⟩

)
≤

∑
k∈ΨK+1,L+1

(
⟨ak, θ̂k,ℓk⟩+ β̂k,ℓk · α− ⟨ak,θ

∗⟩
)

≤
∑

k∈ΨK+1,L+1

(
β̂k,ℓk · α+ α · ∥θ∗ − θ̂k,ℓk∥Σ̂k,ℓk

)
≤

∑
k∈ΨK+1,L+1

2α · β̂k,ℓk

≤ K · Õ (1/K) = Õ(1), (C.10)

where the first inequality holds due to the selection rule of action ak (Line 8 in Algorithm 1) with
Lemma C.1, Lemma C.5 and the fact that a∗k ∈ Ak,ℓk (Lemma C.2), the second inequality holds due
to Cauchy-Schwarz inequality, the third inequality follows from Lemma C.1 and the last inequality
follows from the definition of α and β̂k,ℓ.

Finally, for layer ℓ ∈ [ℓ∗] and round τ ∈ ΨK+1,ℓ, we have∑
τ∈ΨK+1,ℓ

(
⟨a∗τ ,θ∗⟩ − ⟨aτ ,θ∗⟩

)
≤ 2 |ΨK+1,ℓ| = 22ℓ+1

∑
τ∈ΨK+1,ℓ

∥wτaτ∥2Σ̂τ,ℓ
≤ Õ(d), (C.11)

where the first inequality holds since the reward is in the range [−1, 1], the equation follows from the
fact that ∥wτaτ∥Σ̂τ,ℓ

= 2−ℓ holds for all τ ∈ ΨK+1,ℓ and the last inequality follows from Lemma

E.2 with the fact that 2ℓ
∗ ≤ 128

√
log(4(K + 1)2L/δ) is bounded by a logarithmic term. Putting

(C.9), (C.10), (C.11) together, we have

Regret(K) ≤ Õ

d

√√√√ K∑
k=1

σ2
k + dR+ d

 .

Thus, we complete the proof of Theorem 2.3.
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Appendix D. Proofs from Section 3
For k ∈ [K], h ∈ [H], let Fk,h be the σ-algebra generated by the random variables representing the
state-action pairs up to and including those that appear stage h of episode k. More specifically, Fk,h

is generated by

s11, a
1
1, . . . , s

1
h, a

1
h, . . . , s

1
H , a1H ,

s21, a
2
1, . . . , s

2
h, a

2
h, . . . , s

2
H , a2H ,

...

sk1, a
k
1, . . . , s

k
h, a

k
h .

For simplicity, we define the following indicator sequence Ikh for all (k, h) ∈ [K]× [H] :

Ikh = 1
{
∀ℓ ∈ [L],det

(
Σ̂k,h,ℓ

)
/det

(
Σ̂k,1,ℓ

)
≤ 4
}
. (D.1)

For each 1 ≤ h1 ≤ h2 ≤ H , since Σ̂k,h2,ℓ ⪰ Σ̂k,h1,ℓ, the indicator function is monotonic (e.g.,
Ikh1
≤ Ikh2

). In addition, the following lemma provides an upper bound for the number of episodes
when the determinant of covariance matrix grows sharply.

Lemma D.1 If the indicator function Ikh is defined as in (D.1), then for each k ∈ [K], we have

k∑
i=1

(1− IiH) ≤ dL

2
log

λ+ kH/d

λ
+ dL2.

Proof For all layer ℓ ∈ [L], let Dℓ be the set of indices i ∈ [k] such that

det
(
Σ̂i+1,1,ℓ

)
/ det

(
Σ̂i,1,ℓ

)
> 4.

According to the update rule of Σk,1,ℓ, Σk+1,1,ℓ ⪰ Σk,1,ℓ holds for all episode k ∈ [K]. Therefore,
we have

det(Σ̂k+1,1,ℓ)/det(Σ̂1,1,ℓ) =
k∏

i=1

det
(
Σ̂i+1,1,ℓ

)
/ det

(
Σ̂i,1,ℓ

)
≥ 4|Dℓ|, (D.2)

where the inequality holds due to the definition of set Dℓ. In addition, the determinant of matrices
Σ̂k+1,1,ℓ and Σ̂1,1,ℓ is bounded by:

det(Σ̂k+1,1,ℓ) ≤ (tr(Σk+1,1,ℓ)/d)
d ≤ (2−2ℓλ+ kH/d)d,

det(Σ̂1,1,ℓ) =
(
2−2ℓ · λ

)d
,

where the first inequality holds since Σ̂k+1,1,ℓ ⪰ 0, the last inequality holds due to wk,i ≤ 1 and
∥ϕVi,h+1

(sih, a
i
h)∥2 ≤ 1. Combining these results, it holds that

|Dℓ| ≤ log4

(
(λ+ 22ℓkH/d)d

λd

)
≤ d

2
log2

λ+ 22ℓkH/d

λ
≤ d

2
log2

λ+ kH/d

λ
+ d · ℓ.
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Finally, according to the definition of Dℓ and indicator function Ikh , we have

k∑
i=1

(1− IiH) ≤
∑
ℓ∈[L]

|Dℓ| ≤
dL

2
log2

λ+ kH/d

λ
+ dL2.

Thus, we complete the proof of Lemma D.1.

Lemma D.2 Let ΨK+1,ℓ be defined in (3.3). Then for all layer ℓ ∈ [L], it holds that |ΨK+1,ℓ| ≤
2d log

(
1 +KH/(2−2ℓdλ)

)
.

Proof By the definition of wk,h in Algorithm 2,∑
(k,h)∈ΨK+1,ℓ

∥wk,hϕVk,h+1
(skh, a

k
h)∥2Σ̂−1

k,h,ℓ

= |ΨK+1,ℓ| · 2−2ℓ.

On the other hand, by Lemma E.2, we have

∑
(k,h)∈ΨK+1,ℓ

∥wk,hϕVk,h+1
(skh, a

k
h)∥2Σ̂−1

k,h,ℓ

≤ 2d log
2−2ℓdλ+KH

2−2ℓdλ
.

Combining these results, we further conclude that |ΨK+1,ℓ| ≤ 2 · d log
(
1+KH/(2−2ℓdλ)

)
. Thus,

we complete the proof of Lemma D.1.

D.1. High-Probability Events

For simplicity, we define the stochastic transition noise ϵk,h and variance σk,h as follows:

ϵk,h = Vk,h+1(s
k
h+1)−

〈
θ∗,ϕVk,h+1

(skh, a
k
h)
〉
,

σk,h =
√
[VVk,h+1] (s

k
h, a

k
h). (D.3)

With these notations, we further define the following high-probability events:

Ec =
{
∀k ≥ 1, ℓ ∈ [L], ∥θ̂k,ℓ − θ∗∥

Σ̂k,1,ℓ
≤ 16 · 2−ℓ

√ ∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h log(4k

2H2L/δ)

+ 6 · 2−ℓ log(4k2H2L/δ) + 2−ℓ
√
λ ·B

}
, (D.4)

Evar′ =

∀k ≥ 1,
∑

(i,h)∈Ψk,ℓ

w2
i,h

∣∣ϵ2i,h − σ2
i,h

∣∣ ≤ 1

2

∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h +

7

3
log
(
4k2H2/δ

) .

(D.5)

Lemma D.3 Let Ec be defined in (D.4). Then we have P(Ec) ≥ 1− δ.
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Proof From the definition of ℓk,h and wk,h in Algorithm 2, we can deduce that for all k ∈ [K], h ∈
[H],

∥∥wk,hϕVk,h+1
(skh, a

k
h)
∥∥
Σ̂−1

k,h,ℓk,h

≤ 2−ℓk,h . According to Theorem 2.1, for layer ℓ ∈ [L], we

have with probability at least 1− δ/L, for all k ∈ [K]:

∥θ̂k,ℓ∥Σ̂k,1,ℓ
≤ 16 · 2−ℓ

√ ∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h log(4k

2H2L/δ) + 6 · 2−ℓ log(4k2H2L/δ) + 2−ℓ
√
λB.

After applying a union bound over ℓ ∈ [L], we complete the proof of Lemma D.3.

Lemma D.4 Let Evar′ be defined in (D.5). We have P(Evar′) ≥ 1− 2δ.

Proof By the definition of V and Definition 3.2, we have

E[ϵ2k,h|Fk,h] = σ2
k,h, P(|ϵk,h| ≤ 1) = 1.

Equivalent as the proof of Lemma C.4, we can prove that with probability at least 1 − 2δ, for all
episode k ≥ 1 and layer ℓ ∈ [L],∑

(i,h)∈Ψk,ℓ

w2
i,h

∣∣ϵ2i,h − σ2
i,h

∣∣ ≤ 1

2

∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h +

7

3
log
(
4k2H2L/δ

)
,

which completes the proof of Lemma D.4.

D.2. Proof of Optimism
Lemma D.5 Let wk,h be defined in Algorithm 2. On the event Ec and Evar′ , for all k ≥ 1, ℓ ∈ [L]

such that 2ℓ ≥ 64
√

log(4k2H2L/δ), the following inequalities hold:∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h ≤ 8

∑
(i,h)∈Ψk,ℓ

w2
i,h

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)2

+ 8 log(4k2H2L/δ) + 2−2ℓ+5 · λB2,∑
(i,h)∈Ψk,ℓ

w2
i,h

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)2
≤ 3

2

∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h + 2−2ℓλB2

+
7

3
log
(
4k2H2L/δ

)
.

Proof Let ℓ be an arbitrary layer in [L]. According to the definition of event Evar′ , we have∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h ≤ 2

∑
(i,h)∈Ψk,ℓ

w2
i,hϵ

2
i,h +

14

3
log
(
4k2H2L/δ

)
≤ 4

∑
(i,h)∈Ψk,ℓ

w2
i,h

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)2

+ 4
∑

(i,h)∈Ψk,ℓ

w2
i,h

[
ϵi,h −

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)]2
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+
14

3
log
(
4k2H2L/δ

)
, (D.6)

where the last inequality holds due to the fact (a+ b)2 ≤ 2a2 + 2b2. Then we consider the second
term and we have∑
(i,h)∈Ψk,ℓ

w2
i,h

[
ϵi,h −

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)]2

=
∑

(i,h)∈Ψk,ℓ

w2
i,h

(〈
θ∗ − θ̂k,ℓ,ϕVi,h+1
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i
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〉)2

=
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(i,h)∈Ψk,ℓ

w2
i,h

(
θ∗ − θ̂k,ℓ

)⊤
ϕVi,h+1

(sih, a
i
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(sih, a
i
h)

⊤
(
θ∗ − θ̂k,ℓ

)
≤
∥∥∥θ∗ − θ̂k,ℓ

∥∥∥2
Σ̂k,ℓ

≤

16 · 2−ℓ
√ ∑

(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h log(4k

2H2L/δ) + 6 · 2−ℓ log(4k2H2L/δ) + 2−ℓ
√
λ ·B

2

,

(D.7)

where the inequality holds due to Σ̂k,ℓ ⪰ ϕVi,h+1
(sih, a

i
h)ϕVi,h+1

(sih, a
i
h)

⊤ and weight wi,h ≤ 1, the
last equality follows from the definition of Ec. In addition, from (D.7), when 2ℓ ≥ 64

√
log(4k2H2L/δ),∑

(i,h)∈Ψk,ℓ

w2
i,h

[
ϵi,h −

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)]2

≤ 1

8

∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h + 2

(
6 · 2−ℓ log(4k2H2L/δ) + 2−ℓ

√
λ ·B

)2
≤ 1

8

∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h + log(4k2H2L/δ) + 2−2ℓ+2 · λB2, (D.8)

where the first inequality and the second inequality hold due to the fact that (a+ b)2 ≤ 2a2 + 2b2.
Substituting (D.8) into (D.6), we have∑

(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h ≤ 4

∑
(i,h)∈Ψk,ℓ

w2
i,h

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)2

+
1

2

∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h + 4 log(4k2H2L/δ) + 2−2ℓ+4 · λB2

≤ 8
∑

(i,h)∈Ψk,ℓ

w2
i,h

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)2

+ 8 log(4k2H2L/δ) + 2−2ℓ+5 · λB2,

where the last inequality holds due to the fact that x ≤ x/2+ y implies x ≤ 2y. Thus, we complete
the proof of the first inequality in this lemma.
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Note that θ̂k,ℓ is the minimizer of

θ̂k,ℓ ← arg min
θ∈Rd

∑
(i,h)∈Ψk,ℓ

w2
i,h

(
Vi,h+1(s

i
h+1)− ⟨θ,ϕVi,h+1

(sih, a
i
h)⟩
)2

+ 2−2ℓλ∥θ∥22,

and we have ∑
(i,h)∈Ψk,ℓ

w2
i,h

(
Vi,h+1(s

i
h+1)−

〈
θ̂k,ℓ,ϕVi,h+1

(sih, a
i
h)
〉)2

≤
∑

(i,h)∈Ψk,ℓ

w2
i,h

(
Vi,h+1(s

i
h+1)−

〈
θ∗,ϕVi,h+1

(sih, a
i
h)
〉)2

+ 2−2ℓλ∥θ∗∥22

≤
∑

(i,h)∈Ψk,ℓ

w2
i,hϵ

2
i,h + 2−2ℓλB2

≤ 3

2

∑
(i,h)∈Ψk,ℓ

w2
i,hσ

2
i,h + 2−2ℓλB2 +

7

3
log
(
4k2H2L/δ

)
,

where the first inequality holds due to the definition of θ̂k,ℓ, the second inequality holds due to
∥θ∗∥ ≤ B and the last inequality follows from the definition of Evar′ . Therefore, we complete the
proof of Lemma D.5.

Lemma D.6 Let value function Qk,h, Vk,h and confidence radius β̂k,ℓ be defined in Algorithm 2.
Suppose that λ = 1/B2 in Algorithm 2. Then, on the event Evar′ ∩ Ec, for any (k, h) ∈ [K]× [H],
we have [PVk,h+1](s

k
h, a

k
h) ≤ Vk,h(s

k
h).

Proof From the definition of event Evar′ and Lemma D.5, we can deduce that

β̂k,ℓ ≥ 16 · 2−ℓ

√√√√ k∑
i=1

σ2
i log(4k

2H2L/δ) + 6 · 2−ℓ log(4k2H2L/δ) + 2−ℓ
√
λ ·B.

Therefore, by the definition of Ec, we have

∀k ≥ 1, ℓ ∈ [L], ∥θ̂k,ℓ − θ∗∥
Σ̂k,1,ℓ

≤ β̂k,ℓ. (D.9)

According to Algorithm 2, we have

Vk,h(s
k
h) = min

{
1,min

ℓ∈[L]

{
r(skh, a

k
h) +

〈
θ̂k,ℓ,ϕVk,h+1

(skh, a
k
h)
〉
+ β̂k,ℓ

∥∥∥ϕVk,h+1
(skh, a

k
h)
∥∥∥
Σ̂−1

k,1,ℓ

}}
≥ min

{
1,min

ℓ∈[L]

{〈
θ̂k,ℓ,ϕVk,h+1

(skh, a
k
h)
〉
+ β̂k,ℓ

∥∥∥ϕVk,h+1
(skh, a

k
h)
∥∥∥
Σ̂−1

k,1,ℓ

}}
≥ min

{
1,min

ℓ∈[L]

{〈
θ∗,ϕVk,h+1

(skh, a
k
h)
〉}}

= [PVk,h+1](s
k
h, a

k
h),

where the first inequality holds due to r(skh, a
k
h) > 0, the second one follows from (D.9), the last

equality holds due to the definition of linear mixture MDPs and the fact that Vk,h+1(s) ≤ 1 for all
s ∈ S. Thus, we complete the proof of Lemma D.6.
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Lemma D.7 Let value function Qk,h, Vk,h and confidence radius β̂k,ℓ be defined in Algorithm 2.
Suppose that λ = 1/B2 in Algorithm 2. Then, on the event Evar′ ∩ Ec, for any (s, a, k, h) ∈
S ×A× [K]× [H], we have Q∗

h(s, a) ≤ Qk,h(s, a) and V ∗
h (s) ≤ Vk,h(s).

Proof From the definition of event Evar′ and Lemma D.5, we can deduce that

β̂k,ℓ ≥ 16 · 2−ℓ

√√√√ k∑
i=1

σ2
i log(4k

2H2L/δ) + 6 · 2−ℓ log(4k2H2L/δ) + 2−ℓ
√
λ ·B.

Therefore, by the definition of Ec, we have

∀k ≥ 1, ℓ ∈ [L], ∥θ̂k,ℓ − θ∗∥
Σ̂k,1,ℓ

≤ β̂k,ℓ. (D.10)

Consider an arbitrary episode k ∈ [K] in the remaining proof. If for some stage h > 1, the
following inequalities Q∗

h(s, a) ≤ Qk,h(s, a), V ∗
h (s) ≤ Vk,h(s) hold for all (s, a) ∈ S × A, then

for any (s, a) ∈ S ×A, ℓ ∈ [L] and stage h− 1, we have

Q∗
h−1(s, a) = r(s, a) +

〈
θ∗,ϕV ∗

h
(s, a)

〉
≤ r(s, a) +

〈
θ∗,ϕVk,h

(s, a)
〉

≤ r(s, a) +
〈
θ̂k,ℓ,ϕVk,h

(s, a)
〉
+
∥∥θ̂k,ℓ − θ∗∥∥

Σ̂k,1,ℓ

∥∥ϕVk,h
(s, a)

∥∥
Σ̂−1

k,1,ℓ

≤ r(s, a) +
〈
θ̂k,ℓ,ϕVk,h

(s, a)
〉
+ β̂k,ℓ

∥∥ϕVk,h
(s, a)

∥∥
Σ̂−1

k,1,ℓ
,

where the first inequality holds by our assumption that V ∗
h (s) ≤ Vk,h(s), the second inequality holds

due to Cauchy-Schwarz inequality and the last inequality follows from (D.10). By the arbitrariness
of layer ℓ, we have Q∗

h−1(s, a) ≤ Qk,h−1(s, a) holds for all state-action pair (s, a), which indicates
that V ∗

h−1(s) ≤ Vk,h−1(s) holds for all s ∈ S. Since 0 = V ∗
H+1(·) ≤ Vk,H+1(·) holds trivially for

stage H + 1, we complete the proof of Lemma D.7 by induction.

D.3. Sum of Bellman Errors

Lemma D.8 Let β̂k,ℓ, Vk,h, ϕVk,h+1
be defined in Algorithm 2 and set λ = 1/B2, α = 1/(KH)3/2.

Then on the event Evar′ ∩ Ec, we have

K∑
k=1

H∑
h=1

Ikh max
{[

Vk,h(s
k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]
, 0
}
≤ Õ

d

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + d

 .

Proof For simplicity, let ℓ∗ be the smallest ℓ in L such that 2ℓ ≥ 64
√
log (4K2H2L/δ). According

to Algorithm 2, we have

Vk,h(s
k
h) = min

{
1,min

ℓ∈[L]

{
r(skh, a

k
h) +

〈
θ̂k,ℓ,ϕVk,h+1

(skh, a
k
h)
〉
+ β̂k,ℓ

∥∥∥ϕVk,h+1
(skh, a

k
h)
∥∥∥
Σ̂−1

k,1,ℓ

}}
.

Therefore, we have

K∑
k=1

H∑
h=1

Ikh max
{[

Vk,h(s
k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]
, 0
}

(D.11)
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≤
K∑
k=1

H∑
h=1

Ikh

[
min
ℓ∈[L]

{〈
θ̂k,ℓ − θ∗,ϕVk,h+1

(skh, a
k
h)
〉
+ β̂k,ℓ

∥∥∥ϕVk,h+1
(skh, a

k
h)
∥∥∥
Σ̂−1

k,1,ℓ

}]
[0,2]

≤
K∑
k=1

H∑
h=1

Ikh min

{
2,min

ℓ∈[L]

{
2β̂k,ℓ

∥∥∥ϕVk,h+1
(skh, a

k
h)
∥∥∥
Σ̂−1

k,1,ℓ

}}

≤
L+1∑

ℓ=ℓ∗+1

∑
(k,h)∈ΨK+1,ℓ

Ikh min

{
2, 2β̂k,ℓ−1

∥∥∥ϕVk,h+1
(skh, a

k
h)
∥∥∥
Σ̂−1

k,1,ℓ−1

}
+ 2

ℓ∗∑
ℓ=1

|ΨK+1,ℓ|, (D.12)

where the first inequality holds due to the definition of value function Vk,h(s
k
h), the second inequality

holds due to Cauchy-Schwarz inequality with event Ec and the last inequality holds since indicator
function Ikh ≤ 1. By the definition of indicator function Ikh and Lemma E.3, we further have∥∥∥ϕVk,h+1

(skh, a
k
h)
∥∥∥
Σ̂−1

k,1,ℓk,h−1

≤ 2
∥∥∥ϕVk,h+1

(skh, a
k
h)
∥∥∥
Σ̂−1

k,h,ℓk,h−1

≤ 2 · 2−ℓk,h+1, (D.13)

where the last inequality follows from the definition of ℓk,h in Algorithm 2. Substituting (D.13) into
(D.12), we have

K∑
k=1

H∑
h=1

Ikh max
{[

Vk,h(s
k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]
, 0
}

≤
L+1∑

ℓ=ℓ∗+1

|ΨK+1,ℓ| · Õ

2−ℓ · 2−ℓ

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + 2−2ℓ

+ 2

ℓ∗∑
ℓ=1

|ΨK+1,ℓ|

≤ Õ

d

√√√√ K∑
k=1

H∑
h=1

σ2
k,h + d

 ,

where the first inequality follows from the definition of β̂k,ℓ in Algorithm 2 and Lemma D.5, the last
inequality holds due to Lemma D.2 and the definition of L. Thus, we complete the proof of Lemma
D.8.

D.4. Quantities in MDP

In this subsection, we define the following quantities: We use V̌k,h(s) to denote the estimation error
between the optimistic value function and the actually optimal value function, and use Ṽk,h(s) to
denote the sub-optimality gap of policy πk at stage h:

V̌k,h(s) = Vk,h(s)− V ∗
h (s), ∀s ∈ S, (k, h) ∈ [K]× [H] (D.14)

Ṽk,h(s) = V ∗
h (s)− V πk

h (s), ∀s ∈ S, (k, h) ∈ [K]× [H] (D.15)

We use Q0, Sm, Šm, S̃m to represent the total variances of optimal value function V ∗
h+1 and 2m-th

order value functions (V 2m

k,h+1, V̌
2m

k,h+1, Ṽ
2m

k,h+1):

Sm =
K∑
k=1

H∑
h=1

[VV 2m

k,h+1](s
k
h, a

k
h), (D.16)
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Šm =
K∑
k=1

H∑
h=1

[VV̌ 2m

k,h+1](s
k
h, a

k
h), (D.17)

S̃m =

K∑
k=1

H∑
h=1

[VṼ 2m

k,h+1](s
k
h, a

k
h), (D.18)

Q0 =
K∑
k=1

H∑
h=1

[VV ∗
h+1](s

k
h, a

k
h), (D.19)

where Q0 is introduced as a shorthand for Var∗K for simplicity. In addition, for 2m-th order value
functions (V 2m

k,h+1, V̌
2m

k,h+1, Ṽ
2m

k,h+1) and optimistic value function Vk,h, we denote the summation of
stochastic transition noise as follows:

Am =

∣∣∣∣∣
K∑
k=1

H∑
h=1

[[PV 2m

k,h+1](s
k
h, a

k
h)− V 2m

k,h+1(s
k
h+1)]

∣∣∣∣∣ , (D.20)

Ǎm =

∣∣∣∣∣
K∑
k=1

H∑
h=1

[[PV̌ 2m

k,h+1](s
k
h, a

k
h)− V̌ 2m

k,h+1(s
k
h+1)]

∣∣∣∣∣ , (D.21)

Ãm =

∣∣∣∣∣
K∑
k=1

H∑
h=1

[[PṼ 2m

k,h+1](s
k
h, a

k
h)− Ṽ 2m

k,h+1(s
k
h+1)]

∣∣∣∣∣ , (D.22)

R0 =

K∑
k=1

H∑
h=1

Ikh max
{[

Vk,h(s
k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]
, 0
}
. (D.23)

Finally, we use the quantity G to denote the number of episodes when the determinant of covariance
matrix grows sharply:

G =

K∑
k=1

(1− IkH), (D.24)

where indicator function Ikh is defined in (D.1). For the above quantities, we only consider m ∈
[M ] where M := ⌈log2 2HK⌉. Now, we introduce the following lemmas to build the connection
between these quantities.

To construct the connections and upper bounds of the quantities above, our proof in this subsec-
tion follows the previous approaches proposed by Zhang et al. (2021b) and Zhou and Gu (2022),
but with a more fine-grained analysis to remove explicit K-dependence.

Lemma D.9 Let Šm, Am, R0, G be defined in (D.17), (D.20), (D.23), (D.24). On the event
Evar′ ∩ Ec, we have the following inequalities for all m ∈ [M ]:

Šm ≤ Ǎm+1 +G+ 2m+1 · (R0 +G+A0).

Proof Based on the definition of Šm, we compute

Šm =

K∑
k=1

H∑
h=1

[VV̌ 2m

k,h+1](s
k
h, a

k
h)

35



ZHAO HE ZHOU ZHANG GU

=

K∑
k=1

H∑
h=1

[
[PV̌ 2m+1

k,h+1](s
k
h, a

k
h)−

(
[PV̌ 2m

k,h+1](s
k
h, a

k
h)
)2]

=

K∑
k=1

H∑
h=1

[
[PV̌ 2m+1

k,h+1](s
k
h, a

k
h)− V̌ 2m+1

k,h+1(s
k
h+1)

]
+

K∑
k=1

H∑
h=1

[
V̌ 2m+1

k,h (skh)−
(
[PV̌ 2m

k,h+1](s
k
h, a

k
h)
)2]

.

(D.25)

For the second term, it can be further upper bounded by

K∑
k=1

H∑
h=1

[
V̌ 2m+1

k,h (skh)−
(
[PV̌ 2m

k,h+1](s
k
h, a

k
h)
)2]

≤
K∑
k=1

H∑
h=1

[
V̌ 2m+1

k,h (skh)−
(
[PV̌k,h+1](s

k
h, a

k
h)
)2m+1

]

≤ 2m+1
K∑
k=1

H∑
h=1

max
{
V̌k,h(s

k
h)− [PV̌k,h+1](s

K
h , akh), 0

}
≤ 2m+1

K∑
k=1

H∑
h=1

Ikh max
{[

Vk,h(s
k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]
, 0
}

+ 2m+1
K∑
k=1

(1− IkH)
H∑

h=1

max
{[

Vk,h(s
k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]
, 0
}

≤ 2m+1R0 + 2m+1
K∑
k=1

(1− IkH)

H∑
h=1

[
Vk,h+1(s

k
h+1)− [PVk,h+1](s

k
h, a

k
h)
]

+ 2m+1
K∑
k=1

(1− IkH)
H∑

h=1

(
Vk,h(s

k
h)− Vk,h+1(s

k
h+1)

)
≤ 2m+1 · (R0 +G+A0), (D.26)

where the first inequality holds due to

(
[PV̌ 2m

k,h+1](s
k
h, a

k
h)
)2
≥
(
[PV̌ 2m−1

k,h+1 ](s
k
h, a

k
h)
)4
≥ · · · ≥

(
[PV̌k,h+1](s

k
h, a

k
h)
)2m+1

,

the second inequality follows from the fact that ax − bx ≤ xmax{a − b, 0} for a, b ∈ [0, 1] and
x ≥ 1, the third inequality follows from the monotonicity of indicator function Ikh and the definition
of function V̌k,h, the fourth holds since r(skh, a

k
h) ≥ 0 and the last inequality holds due to Lemma

D.6.
Substituting (D.26) into (D.25), we have

Šm ≤ Ǎm+1 +G+ 2m+1 · (R0 +G+A0).

Thus, we complete the proof of Lemma D.9.
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Lemma D.10 Let Am, Q0, Šm be defined in (D.20), (D.19), (D.17). Then with probability at least
1− 2δ, we have

A0 ≤ 2

√
(Q0 + Š0) log(1/δ) + (2/3) · log(1/δ).

For simplicity, we denote the corresponding event by Er1 .

Proof Applying the Freedman’s inequality in Lemma E.4, we have with probability at least 1− 2δ,

A0 =

∣∣∣∣∣
K∑
k=1

H∑
h=1

[
[PVk,h+1](s

k
h, a

k
h)− Vk,h+1(s

k
h+1)

]∣∣∣∣∣ ≤
√√√√2

K∑
k=1

H∑
h=1

σ2
k,h log(1/δ) +

2

3
log(1/δ),

(D.27)

where the variance σk,h is defined in (D.3). For variance σk,h, we further have

σ2
k,h = [VVk,h+1](s

k
h, a

k
h) ≤ 2[VV ∗

h+1](s
k
h, a

k
h) + 2[VV̌k,h+1](s

k
h, a

k
h), (D.28)

where the inequality holds due to the fact that Var(x + y) ≤ 2Var(x) + 2Var(y). Substituting
(D.28) into (D.27), we complete the proof of Lemma D.10.

Lemma D.11 Let Ǎm, Šm be defined in (D.20), (D.17). With probability at least 1− 2(M + 1)δ,
for all m ∈ [M ] ∪ {0}, we have

Ǎm ≤
√
2Šm log(1/δ) +

4

3
· log(1/δ).

We denote the corresponding event by Er2 .

Proof Note that for all state s, V̌k,h(s) = Vk,h(s) − V ∗
h (s) ∈ [−1, 1]. Applying Freedman’s

inequality in Lemma E.4, we have with probability at least 1− 2δ:

Ǎm ≤
√
2Šm log(1/δ) +

4

3
· log(1/δ),

for each m ∈ [M ]. Thus, we complete the proof of Lemma D.11 by using a union bound over
m ∈ [M ].

Lemma D.12 Let Am, Q0, Ǎm, R0, G be defined in (D.20), (D.19), (D.21), (D.23), (D.24). On
the event Er1 ∩ Evar′ ∩ Ec, we have

A0 ≤ 4
√(

Q0 + Ǎ1 +G+ 2(R0 +G)
)
log(1/δ) + 10 · log(1/δ).

Proof According to Lemma D.9 and Lemma D.10, we have

A0 ≤ 2

√
(Q0 + Š0) log(1/δ) + (2/3) · log(1/δ)

≤ 2
√(

Q0 + Ǎ1 +G+ 2(R0 +G+A0)
)
log(1/δ) + (2/3) · log(1/δ)
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≤ 2
√(

Q0 + Ǎ1 +G+ 2(R0 +G)
)
log(1/δ) + (2/3) · log(1/δ) + 2

√
2A0 log(1/δ)

≤ 4
√(

Q0 + Ǎ1 +G+ 2(R0 +G)
)
log(1/δ) + 10 · log(1/δ),

where the first inequality holds due to Lemma D.9, the second inequality holds due to D.10 and the
last inequality holds due to x ≤ a

√
x+ b⇒ x ≤ a2 + 2b. Thus, we complete the proof of Lemma

D.12.

Lemma D.13 Let Am, G, R0 be defined in (D.20), (D.24), (D.23). On the event Er2 ∩ Evar′ ∩ Ec,
we have

Ǎ1 ≤ 4
√
(R0 + 2G+A0) log(1/δ) + 11 log(1/δ).

Proof By the definition of Er2 in Lemma D.11, we have

Ǎm ≤
√
2Šm log(1/δ) +

4

3
· log(1/δ). (D.29)

Substituting the bound of Šm in Lemma D.9 into (D.29),

Ǎm ≤
√
2
(
Ǎm+1 + 2m+1 · (R0 + 2G+A0)

)
log(1/δ) +

4

3
· log(1/δ).

Applying Lemma E.5, we have

Ǎ1 ≤ max
{
11 log(1/δ), 4

√
(R0 + 2G+A0) log(1/δ) + 2 log(1/δ)

}
≤ 4
√

(R0 + 2G+A0) log(1/δ) + 11 log(1/δ).

Thus, we complete the proof of Lemma D.13.

Lemma D.14 Let Am, G, R0, Q0 be defined in (D.20), (D.24), (D.23), (D.19). On the event
Er1 ∩ Er2 ∩ Evar′ ∩ Ec, we have

A0 ≤ 132 log(1/δ) + 28
√

R0 log(1/δ) + 40
√
G log(1/δ) + 8

√
Q0 log(1/δ).

Proof We compute

A0 ≤ 4
√(

Q0 +G+ 2(R0 +G)
)
log(1/δ) + 10 · log(1/δ) + 4

√
Ǎ1 log(1/δ)

≤ 4
√(

Q0 +G+ 2(R0 +G)
)
log(1/δ) + 2Ǎ1 + 12 log(1/δ)

≤ 8
√
(R0 + 2G+A0) log(1/δ) + 34 log(1/δ) + 4

√
(Q0 +G+ 2(R0 +G)) log(1/δ)

≤ 132 log(1/δ) + 28
√

R0 log(1/δ) + 40
√
G log(1/δ) + 8

√
Q0 log(1/δ),

where the first inequality follows from Lemma D.12, the second inequality holds due to the fact that
2ab ≤ a2 + b2, the third inequality holds due to Lemma D.13 and the last inequality holds due to
the fact that x ≤ a

√
x+ b⇒ x ≤ a2 + 2b. Thus, we complete the proof of Lemma D.14.
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Lemma D.15 Let S̃m, Am, R0, G be defined in (D.18), (D.20), (D.23), (D.24). On the event
Evar′ ∩ Ec, we have the following inequalities for all m ∈ [M ]:

S̃m ≤ Ãm+1 +G+ 2m+1 · (R0 +G+A0).

Proof Based on the definition of S̃m, we compute

S̃m =

K∑
k=1

H∑
h=1

[VṼ 2m

k,h+1](s
k
h, a

k
h)

=

K∑
k=1

H∑
h=1

[
[PṼ 2m+1

k,h+1](s
k
h, a

k
h)−

(
[PṼ 2m

k,h+1](s
k
h, a

k
h)
)2]

=

K∑
k=1

H∑
h=1

[
[PṼ 2m+1

k,h+1](s
k
h, a

k
h)− Ṽ 2m+1

k,h+1(s
k
h+1)

]
+

K∑
k=1

H∑
h=1

[
Ṽ 2m+1

k,h (skh)−
(
[PṼ 2m

k,h+1](s
k
h, a

k
h)
)2]

,

(D.30)

For the second term, we further have

K∑
k=1

H∑
h=1

[
Ṽ 2m+1

k,h (skh)−
(
[PṼ 2m

k,h+1](s
k
h, a

k
h)
)2]

≤
K∑
k=1

H∑
h=1

[
Ṽ 2m+1

k,h (skh)−
(
[PṼk,h+1](s

k
h, a

k
h)
)2m+1

]

≤ 2m+1
K∑
k=1

H∑
h=1

max
{
Ṽk,h(s

k
h)− [PṼk,h+1](s

k
h, a

k
h), 0

}
≤ 2m+1

K∑
k=1

H∑
h=1

Ikh
[
V ∗
h (s

k
h)− r(skh, a

k
h)− [PV ∗

h+1](s
k
h, a

k
h)
]

+ 2m+1
K∑
k=1

(1− IkH)

H∑
h=1

[
V ∗
h (s

k
h)− r(skh, a

k
h)− [PV ∗

h+1](s
k
h, a

k
h)
]

≤ 2m+1R0 + 2m+1Ǎ0 + 2m+1
K∑
k=1

(1− IkH)
H∑

h=1

[
Vk,h+1(s

k
h+1)− [PVk,h+1](s

k
h, a

k
h)
]

+ 2m+1
K∑
k=1

(1− IkH)

H∑
h=1

(
Vk,h(s

k
h)− r(skh, a

k
h)− Vk,h+1(s

k
h+1)

)
≤ 2m+1 · (R0 +G+A0 + Ǎ0), (D.31)

where the first inequality holds since(
[PṼ 2m

k,h+1](s
k
h, a

k
h)
)2
≥
(
[PṼ 2m−1

k,h+1 ](s
k
h, a

k
h)
)4
≥ · · · ≥

(
[PṼk,h+1](s

k
h, a

k
h)
)2m+1

,

the second inequality follows from the fact that ax − bx ≤ xmax{a − b, 0} for a, b ∈ [0, 1] and
x ≥ 1, the third inequality follows from the monotonicity of Ikh and the definition of function Ṽk,h,
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the fourth inequality holds due to the definition of R0 and Ǎ0, the last inequality follows from the
fact that r(skh, a

k
h) ≥ 0.

Substituting (D.31) into (D.30), we have

S̃m ≤ Ãm+1 +G+ 2m+1 · (R0 +G+A0 + Ǎ0).

Thus, we complete the proof of Lemma D.15.

Lemma D.16 Let Ãm, S̃m be defined in (D.22), (D.18). With probability at least 1− 2(M + 1)δ,
for all m ∈ [M ] ∪ {0},

Ãm ≤
√
2S̃m log(1/δ) +

4

3
· log(1/δ).

We denote the corresponding event by Er3 .

Proof The proof is equivalent to the proof of Lemma D.11.

Lemma D.17 Let Am, Ǎm, R0, G be defined in (D.20), (D.21), (D.23), (D.24). On the event
Er1 ∩ Er2 ∩ Er3 ∩ Evar′ ∩ Ec, we have

Ã1 ≤ 4

√
(R0 + 2G+A0 + Ǎ0) log(1/δ) + 11 · log(1/δ),

Ã0 ≤ 2

√
(R0 + 2G+A0 + Ǎ0) log(1/δ) + 7 · log(1/δ).

Proof By Lemma D.15 and Lemma D.16, we have for all m ∈ [M ] ∪ {0},

Ãm ≤
√
2
(
Ãm+1 + 2m+1 · (R0 + 2G+A0 + Ǎ0)

)
log(1/δ) +

4

3
· log(1/δ). (D.32)

Applying Lemma E.5, we have

Ã1 ≤ max

{
11 log(1/δ), 4

√
(R0 + 2G+A0 + Ǎ0) log(1/δ) + 2 log(1/δ)

}
≤ 4

√
(R0 + 2G+A0 + Ǎ0) log(1/δ) + 11 log(1/δ).

By (D.32), it can be further deduced that

Ã0 ≤

√
18 log(1/δ) + 4

(√
R0 + 2G+A0 + Ǎ0 +

√
log(1/δ)

)2√
log(1/δ) +

4

3
· log(1/δ)

≤ 2

√
(R0 + 2G+A0 + Ǎ0) log(1/δ) + 7 · log(1/δ).

Thus, we complete the proof of Lemma D.17.
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Lemma D.18 Let Q0, Sm be defined in (D.19), (D.16). With probability at least 1−δ, it holds that

Q0 ≤ 2S̃0 + Õ(K).

We denote the corresponding event by Er4 .

Proof By the definition of Q0, we have

Q0 ≤ 2S̃0 + 2

K∑
k=1

H∑
h=1

[VV πk
h+1](s

k
h, a

k
h). (D.33)

Note that for all k ∈ [K],

E{(sh,ah)}h∈[H]∼πk

[
H∑

h=1

[VV πk
h+1](sh, ah)

]
= Var{(sh,ah)}h∈[H]∼πk

[
H∑

h=1

r(sh, ah)− V πk
1 (sk1)

]
≤ 1,

(D.34)

where the last inequality holds due to the fact that
∑H

h=1 r(sh, ah), V
πk
1 (sk1) ∈ [0, 1]. In addition,

the variance is upper bounded by:

H∑
h=1

Var
[
[VV πk

h+1](s
k
h, a

k
h)
∣∣Fk,1

]
≤

H∑
h=1

E
[(

[VV πk
h+1](s

k
h, a

k
h)
)2 ∣∣Fk,1

]

≤
H∑

h=1

1 · E
[
[VV πk

h+1](s
k
h, a

k
h)
∣∣Fk,1

]
≤ 1,

where the last inequality holds due to (D.34). By Freedman’s inequality (Lemma E.4), with proba-
bility at least 1− δ/K,

H∑
h=1

[VV πk
h+1](s

k
h, a

k
h) ≤ 1 +

√
2 log(K/δ) + 2/3 · log(K/δ).

Using a union bound over k ∈ [K], we can conclude that with probability at least 1− δ,

K∑
k=1

H∑
h=1

[VV πk
h+1](s

k
h, a

k
h) ≤ Õ(K). (D.35)

Thus, we complete the proof of Lemma D.18 by substituting (D.35) into (D.33).

D.5. Regret Analysis
Proof [Proof of Theorem 3.3] We prove this theorem on the event Er1 ∩Er2 ∩Er3 ∩Ec∩Evar′ , which
occurs with probability at least 1 − (4M + 9)δ by Lemmas D.10, D.11, D.16, D.3, D.4. On these
events, we have the following decomposition of Regret(K),

Regret(K) =
K∑
k=1

[
V ∗
1 (s

k
1)− V πk

1 (sk1)
]
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≤
K∑
k=1

[
Vk,1(s

k
1)− V πk

1 (sk1)
]

≤
K∑
k=1

H∑
h=1

Ikh

[
Vk,h(s

k
h)− Vk,h+1(s

k
h+1)

]
−

K∑
k=1

V πk
1 (sk1) +G

=

K∑
k=1

H∑
h=1

Ikh · r(skh, akh) +
K∑
k=1

H∑
h=1

Ikh

[
Vk,h(s

k
h)− r(skh, a

k
h)− [PVk,h+1](s

k
h, a

k
h)
]

+
K∑
k=1

H∑
h=1

Ikh

[
[PVk,h+1](s

k
h, a

k
h)− Vk,h+1(s

k
h+1)

]
−

K∑
k=1

V πk
1 (sk1) +G

≤ R0 +A0 +G+

K∑
k=1

(
H∑

h=1

r(skh, a
k
h)− V πk

1 (sk1)

)
︸ ︷︷ ︸

I1

,

where the first inequality holds due to Lemma D.7, the second inequality holds due to the mono-
tonicity of indicator function Ikh , the last inequality holds due to Ikh ≤ 1 and r(skh, a

k
h) ≥ 0.

For the term I1, we have

K∑
k=1

(
H∑

h=1

r(skh, a
k
h)− V πk

1 (sk1)

)
=

K∑
k=1

H∑
h=1

[
V πk
h (skh)− [PV πk

h+1](s
k
h, a

k
h)
]
−

K∑
k=1

V πk
1 (sk1)

=

K∑
k=1

H∑
h=1

[
V πk
h+1(s

k
h+1)− [PV πk

h+1](s
k
h, a

k
h)
]

≤ |A0|+ |Ǎ0|+ |Ã0|, (D.36)

where the inequality holds due to |x+ y + z| ≤ |x|+ |y|+ |z|.
For the term R0, according to Lemma D.8, we have

R0 ≤ Õ

d

√√√√ K∑
k=1

H∑
h=1

σ2
h,k + d


≤ Õ

(
d
√

Q0 + d

√
Š0 + d

)
≤ Õ

(
d
√
Q0 + d

√
Ǎ1 +G+R0 +A0 + d

)
≤ Õ

(
d
√

Q0 + d

√
G+R0 +

√
Q0 +

√
R0 + d

)
≤ Õ

(
d
√

Q0 + d2
)
, (D.37)

where the first inequality follows from Lemma D.8, the second inequality follows from the definition
of Š0 and Q0, the third inequality holds due to Lemma D.9, the fourth inequality is obtained by
applying Lemma D.13 and D.14, the last inequality follows from the fact that x ≤ a

√
x+ b⇒ x ≤

a2 + 2b and the upper bound of G in Lemma D.1.
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For the term A0, by Lemma D.14, we have

A0 ≤ 132 log(1/δ) + 28
√
R0 log(1/δ) + 40

√
G log(1/δ) + 8

√
Q0 log(1/δ).

Putting everything together, we have

Regret(K) ≤ Õ
(
d
√

Q0 + d2
)
.

Thus, we complete the proof of Theorem 3.3.

Corollary D.19 Under the same condition of Theorem 3.3, with probability at least 1−(4M+10)δ,
the regret of Algorithm 2 is bounded by:

Regret(K) ≤ Õ
(
d
√
K + d2

)
.

Proof We prove this corollary on the event Er1 ∩ Er2 ∩ Er3 ∩ Er4 ∩ Ec ∩ Evar′ , which occurs with
probability at least 1− (4M + 10)δ by Lemmas D.10, D.11, D.16, D.18, D.3, D.4.

By the definition of Er4 in Lemma D.18, we have

Q0 ≤ 2S0 + Õ(K)

≤ 2Ã1 +G+ 2(R0 +G+A0) + Õ(K)

≤ 8

√
(R0 + 2G+A0 + Ǎ0) log(1/δ) + 22 · log(1/δ) +G+ 2(R0 +G+A0) + Õ(K)

≤ Õ
(
d
√

Q0 + d2 +K
)

≤ Õ(K + d2),

where the second inequality follows from Lemma D.15, the third inequality holds due to D.17, the
fourth inequality is derived by Lemma D.14, Lemma D.13, (D.37) and omitting the lower order
terms, the last inequality holds due to the fact that x ≤ a

√
x+ b⇒ x ≤ a2 + 2b.

By Theorem 3.3, we can obtain

Regret(K) ≤ Õ(d
√

Q0 + d2) ≤ Õ(d
√
K + d2).

Thus, we complete the proof of Corollary 3.4.

Appendix E. Auxiliary Lemmas
Lemma E.1 (Azuma-Hoeffding inequality, Cesa-Bianchi and Lugosi 2006) Let {xi}ni=1 be a mar-
tingale difference sequence with respect to a filtration {Gi} satisfying |xi| ≤ M for some constant
M , xi is Gi+1-measurable, E[xi|Gi] = 0. Then for any 0 < δ < 1, with probability at least 1 − δ,
we have

n∑
i=1

xi ≤M
√
2n log(1/δ).
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Lemma E.2 (Lemma 11, Abbasi-Yadkori et al. 2011) For any λ > 0 and sequence {xk}Kk=1 ⊂
Rd for k ∈ [K], define Zk = λI +

∑k−1
i=1 xix

⊤
i . Then, provided that ∥xk∥2 ≤ L holds for all

k ∈ [K], we have

K∑
k=1

min
{
1, ∥xk∥2Z−1

k

}
≤ 2d log

(
1 +KL2/(dλ)

)
.

Lemma E.3 (Lemma 12, Abbasi-Yadkori et al. 2011) Suppose A,B ∈ Rd×d are two positive
definite matrices satisfying that A ⪰ B, then for any x ∈ Rd, ∥x∥A ≤ ∥x∥B ·

√
det(A)/det(B).

Lemma E.4 (Freedman 1975) Let M, v > 0 be fixed constants. Let {xi}ni=1 be a stochastic
process, {Gi}i be a filtration so that for all i ∈ [n], xi is Gi-measurable, while almost surely

E [xi|Gi−1] = 0, |xi| ≤M,
n∑

i=1

E[x2i |Gi−1] ≤ v.

Then for any δ > 0, with probability at least 1− δ, we have

n∑
i=1

xi ≤
√

2v log(1/δ) + 2/3 ·M log(1/δ).

Lemma E.5 (Lemma 2, Zhang et al. 2021a) Let λ1, λ2, λ4 > 0, λ3 ≥ 1, and i′ = log2 λ1. Let
a1, a2, · · · , ai′ be non-negative reals such that ai ≤ λ1 and ai ≤ λ2

√
ai+1 + 2i+1λ3 + λ4 hold for

any 1 ≤ i ≤ i′. Then we have that

a1 ≤ max

{(
λ2 +

√
λ2
2 + λ4

)2

, λ2

√
8λ3 + λ4

}
.
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