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Abstract
Conventional wisdom in machine learning holds that the more data you train your model on, the
better the model can perform. Accordingly, a plethora of federated learning methods have been
developed to aggregate as many local samples as possible. Contrary to this belief, this paper shows
that aggregation of more data is not necessarily beneficial in the presence of heterogeneity, and
reveals a fundamental trade-off between aggregation and heterogeneity in federated learning. We
consider a general family of weighted M -estimators that interpolate between FedAvg and the local
estimator, in which an aggregation rule is determined by the weights of local samples. We derive
an upper bound for the estimation error of the weighted M -estimators, which decomposes into
a bias term induced by heterogeneity and a variance term influenced by aggregation. A measure
of heterogeneity, the federated smoothness β, is introduced to simplify the general result. As an
important consequence, the optimal aggregation rule for each local device is to aggregate only its
⌊K2β/(2β+1)/(n/σ2)1/(2β+1)⌋ ∨ 1 closest neighbors among the K devices, where n is the local
sample size and σ2 is the noise variance. Moreover, we show that our estimator, termed FedKNN,
attains the minimax optimal rate over a certain parameter space characterized by β. This optimal
procedure depends crucially on the neighboring structure among devices in terms of the proximity
of local parameters. Finally, we prove that without such prior knowledge no estimator can achieve
a convergence rate faster than O(σ2/n) and hence adaptation is impossible.
Keywords: federated learning, optimal aggregation, k-nearest neighbors

1. Introduction

Federated learning is an emerging machine learning paradigm in which models are trained on data
that are locally possessed by individual devices (McMahan et al., 2017; Li et al., 2020a). From the
statistical perspective, one major advantage of federated learning is that data from other devices can
be aggregated to produce improved results for each device’s local task. To be specific, we consider
Federated Averaging (FedAvg) (McMahan et al., 2017), a baseline algorithm for federated learning.
For the task of parameter estimation, FedAvg outputs a single global parameter estimate by solving
the optimization problem

θ̂(avg) = argmin
θ

1

N

K∑
k=1

nkL̂k(θ)

in a distributed manner, where nk is the local sample size of device k, N =
∑K

k=1 nj is the total
sample size, and L̂k(θ) is the empirical risk for device k. FedAvg aggregates data from all devices
after weighting them by local sample size and yields a global model with the estimate θ̂(avg). This
allows the algorithm to utilize a much larger sample size N instead of nk, greatly reducing the
variance in parameter estimation when K is large.
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However, federated learning algorithms such as FedAvg suffers from potential distribution shifts
among local devices, which is known as the issue of heterogeneity (Li et al., 2020c; Chen et al.,
2021; Li et al., 2020a). For parameter estimation problems, this means that the true parameters of
local devices may be different from each other. In the presence of heterogeneity, for estimating
the local parameters, aggregating data from other devices introduces bias owing to parameter dis-
crepancy. Consequently, aggregating more local samples would lead to a larger bias, which may
partially or fully offset the benefit of variance reduction due to sample size increase.

A fundamental aggregation–heterogeneity trade-off thus exists in federated learning: borrowing
more information from other devices by aggregation tends to increase the effective sample size and
improve performance for each local device, but meanwhile would introduce more heterogeneity
into the aggregated sample and diminish the accuracy. This can be viewed as a special form of the
bias–variance trade-off, which plays a central role in the analysis of machine learning algorithms.
Although a considerable amount of recent effort has been devoted to the related topic of personalized
federated learning (Li et al., 2020b; Wang et al., 2019; Mansour et al., 2020; Jiang et al., 2019; Wang
et al., 2022), a precise learning-theoretic characterization of this trade-off is still lacking. This gap
poses further obstacles to answering the important question: How should one optimally aggregate
data from local devices in heterogeneous federated learning? Here, optimality is viewed from the
perspective of improving each device’s local task.

It is clear that optimal aggregation should depend on the degree of heterogeneity. To illustrate,
consider two extreme cases. In the completely homogeneous case where all devices have the same
distribution, aggregating data from other devices does no harm to the local task. In this case, all
local samples should be aggregated in order to maximally reduce variance, and hence FedAvg may
be an optimal algorithm. At the other extreme where the true parameters of any two local devices
are far apart, pooling any two local samples will introduce a huge bias, which tends to negate the
benefit of variance reduction. In this case, the local estimator that uses only the device’s own data
would be the best choice. In the intermediate situation between these two extremes, it is possible
that neither FedAvg nor the local estimator is optimal, and one should carefully balance aggregation
and heterogeneity to achieve the best performance.

Among prior theoretical work in federated learning, Chen et al. (2021) seems the most closely
related to our work. They considered FedAvg and the local estimator from a minimax perspective,
and uncovered a phase transition phenomenon: when their proposed measure of heterogeneity, R,
is larger than a certain threshold, FedAvg is minimax optimal; otherwise, the local estimator is
minimax optimal. Roughly speaking, the quantity R describes the variance of the true parameters,
which is a global measure of heterogeneity and cannot capture the local dissimilarity relationships
among devices. Therefore, it is not suitable for studying the aggregation–heterogeneity trade-off
and the corresponding optimal aggregation problem. Consider a simple example, where K devices
are divided evenly into two clusters. Within each cluster, the devices have the same true parameters,
while the parameters of the two clusters are far away from each other. When K → ∞, it is easy to
see that both the FedAvg algorithm run on all devices and the local estimator are suboptimal, since
they are inferior to FedAvg run on each cluster.

In this paper, we investigate the aggregation–heterogeneity trade-off and the related optimal
aggregation problem in federated learning. We focus on the parametric M -estimation framework,
where the task of each local device is to estimate its own parameters. We are interested in analyzing
the estimation performance when both the local sample size n and the number of devices K may
increase to infinity. To this end, we consider a general family of weighted M -estimators that inter-
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polate between FedAvg and the local estimator, in which an aggregation rule is determined by the
weights of local samples. By establishing an upper bound for the estimation error of the weighted
M -estimators, we reveal and precisely quantify an aggregation–heterogeneity trade-off. In order to
simplify the expressions and find an optimal aggregation rule, we introduce a novel quantity, the
federated smoothness β, to measure the degree of heterogeneity among devices. We further develop
an estimator through a k-nearest neighbors procedure, termed FedKNN, which strikes an optimal
balance between aggregation and heterogeneity. Finally, we show that FedKNN is minimax optimal
over a certain parameter space characterized by β, whereas the two baseline methods, FedAvg and
the local estimator, are both suboptimal. Our contributions are summarized as follows.

• We consider a family of weighted M -estimators in Section 3, in which an aggregation rule
is determined by the weights of local samples. Two baseline methods, FedAvg and the local
estimator, are contained in this family. We study how the choice of weights and the degree of
heterogeneity affect the estimation error, which demonstrates the aggregation–heterogeneity
trade-off.

• We propose the federated smoothness β in Section 4.1 to measure the degree of heterogene-
ity among devices. Roughly speaking, β measures the rate at which the parameter distance
between neighboring devices decays to 0. A larger β indicates a lower degree of heterogene-
ity. Compared with other existing heterogeneity measures, β captures the local dissimilarity
relationships among devices and is more appropriate for studying the trade-off.

• We construct an estimator, FedKNN, using a k-nearest neighbors procedure in Section 4.2.
We specialize our general result to this estimator and give a more concise characterization
of the aggregation–heterogeneity trade-off. By an optimal choice of neighbor size, FedKNN
achieves the optimal trade-off, with estimation error of order(

σ2

nK

) 2β
2β+1

∧ σ2

n
.

• By establishing information-theoretic lower bounds in Section 4.3, we show that the conver-
gence rate of FedKNN is minimax optimal over the parameter space defined by β. We also
show that both FedAvg and the local estimator are suboptimal for this parameter space.

• FedKNN is constructed with prior knowledge of the neighboring structure among devices.
Without such prior information, it may be desirable to develop an adaptive algorithm to detect
the neighboring structure in a data-driven manner. However, in Section 5 we show that in this
case no algorithm can improve the local rate σ2/n and hence adaptation is impossible. When
n is fixed, even if K → ∞, no adaptive algorithm can reduce the estimation error to 0.

1.1. Related Work

Personalized federated learning. There is a growing body of work on personalized federated
learning, which aims at personalizing global models for individual devices to address the issue of
heterogeneity. In particular, Fallah et al. (2020) pointed out the need to fine-tune the initial shared
model on local data and presented a personalized variant of FedAvg. Li et al. (2020b) proposed
FedProx, which uses ℓ2 regularization to combine local models. Other regularization-based methods
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also exist (Hanzely et al., 2020; Acar et al., 2021). Mansour et al. (2020) proposed to first cluster
similar devices and then apply federated averaging to each cluster. Similar ideas were explored
by Ghosh et al. (2020). From a transfer learning perspective, Wang et al. (2019) proposed to first
train a global model and then fine-tune the parameters of the global model on local devices. Jiang
et al. (2019) borrowed ideas from model-agnostic meta learning to deal with personalized federated
learning problems. Smith et al. (2017) proposed MOCHA to produce personalized solutions in the
context of multi-task learning. For a more comprehensive review, see Kulkarni et al. (2020).

Theory of heterogeneous federated learning. Theoretical development of heterogeneous feder-
ated learning is relatively limited. Deng et al. (2020) proposed an algorithm for personalized feder-
ated learning with learning-theoretic guarantees. By encoding heterogeneity information through a
graph, Wang et al. (2022) proposed a fused-lasso-based approach with statistical guarantees. Their
estimation error bounds depend on the structure and fidelity measure of the graph. Chen et al. (2021)
studied regimes of heterogeneity where either FedAvg or the local estimator is minimax optimal.

More generally, the idea of borrowing strength from related tasks to improve performance on a
target task is well established in statistics and widely used in areas such as multi-task learning (Jacob
et al., 2008; Hanneke and Kpotufe, 2022; Du et al., 2021), meta-analysis (Cai et al., 2022; Maity
et al., 2022), and transfer learning (Cai and Wei, 2021; Li et al., 2022a; Kpotufe and Martinet,
2021). The intuition of federated smoothness and FedKNN comes from the k-nearest neighbors
(KNN) method in nonparametric regression (Györfi et al., 2002); see Madrid Padilla et al. (2020)
and Demirkaya et al. (2022) for some recent developments.

2. Preliminaries

We begin with introducing some notation used throughout this paper.

2.1. Notation

For n ∈ N, let [n] = {1, . . . , n}. We use ∥ · ∥ to denote the ℓ2-norm of a vector in Euclidean space.
For two nonnegative sequences an and bn, we denote an ≲ bn or an = O(bn) if an ≤ Cbn, and
an ≳ bn or bn = O(an) if an ≥ Cbn, for some constant C > 0 independent of n. For a, b ∈ R, we
use a∧ b and a∨ b to denote min{a, b} and max{a, b}, respectively. For two distributions P and Q
defined on the same space, we use ∥P −Q∥TV to denote their total variation distance.

2.2. Problem Setup

Suppose that there are K devices, where device k holds nk i.i.d. samples {Z(k)
i }nk

i=1 drawn from
some unknown distribution Pk. At the local device k, the samples are drawn independently from
the distribution Pk, k = 1, . . . ,K. However, we assume Pks to be different from each other.
For some loss function ℓ(·, ·), define the expected and empirical risks for device k by Lk(θ) =

EZ(k)∼Pk
ℓ(θ, Z(k)) and L̂k(θ) = n−1

k

∑nk
i=1 ℓ(θ, Z

(k)
i ), respectively. The task of device k ∈ [K] is

to estimate its local parameter, which is defined by

θ∗k = argmin
θ

Lk(θ).
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We directly equate distribution shifts with differences of local parameters, since the distributions
and the parameters are in one-to-one correspondence as long as the parameters are identifiable.
Hence, the degree of heterogeneity is determined by the distances ∥θ∗k − θ∗j∥ for k ̸= j.

We now state the assumptions needed for our theoretical analysis, which are standard and com-
monly adopted in the federated learning literature (Li et al., 2020c; Chen et al., 2021; Li et al.,
2022b; Wang et al., 2022).

Assumption 1 (Loss function) The loss function ℓ(·, z) is strongly convex with parameter µ > 0
and smooth with parameter η > 0 for any z; that is, it is differentiable and satisfies

ℓ(θ1, z) ≥ ℓ(θ2, z) +∇θℓ(θ2, z)
⊤(θ1 − θ2) +

µ

2
∥θ1 − θ2∥2

and
∥∇θℓ(θ1, z)−∇θℓ(θ2, z)∥ ≤ η∥θ1 − θ2∥

for any θ1 and θ2.

Assumption 2 (Gradient noise) The variance of the gradient is bounded by σ2, that is,

Var(∇θℓ(Z
(k), θ)) ≤ σ2

for every θ and k ∈ [K].

Assumption 3 (Local sample size) The local sample sizes nk = n for all k ∈ [K].

Assumption 1 imposes regularity conditions on the loss function. As a direct consequence, the
local risk functions Lk(θ) are µ-strongly convex and η-smooth, and hence the true parameters θ∗k
are well-defined and unique. Assumption 2 implies that, for supervised problems, the variance of
local noise is uniformly bounded. It can be relaxed to the case where different devices have different
noise sizes. Assumption 3 will be needed in Sections 4 and 5 to simplify our results. Different local
sample sizes can be easily accommodated by considering the minimum or maximum sample size.

3. General Weighted M -Estimators

In this section, we present a family of weighted M -estimators with varying degrees of aggregation
and establish estimation bounds for these estimators. We first consider the two baseline methods,
FedAvg and the local estimator, which estimate θ∗k by

θ̂
(avg)
k = argmin

θ

1

K

K∑
j=1

L̂j(θ)

and
θ̂
(loc)
k = argmin

θ
L̂k(θ),

respectively. Intuitively, these two estimators are two extremes of aggregation: θ̂(avg)k aggregates all
K devices, whereas θ̂(loc)k aggregates none. To study the situation between these two extremes, we
consider the family of weighted M -estimators, which includes FedAvg and the local estimator as
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special cases. Specifically, given any weight matrix W = (wkj) ∈ RK×K with
∑K

j=1wkj = 1 and
wkj ≥ 0 for k, j ∈ [K], the corresponding weighted M -estimator is defined by

θ̂
(W )
k = argmin

θ

{
L̂w(θ) ≡

K∑
j=1

wkjL̂j(θ)

}
.

When W is the identity matrix IK , θ̂(W )
k reduces to the local estimator, which assigns zero weights

to any devices other than itself. When wkj = nj/
∑K

ℓ=1 nℓ for all k, j, θ̂(W ) reduces to FedAvg,
in which case different local devices share the same weight vector. Setting W to other values
represents other aggregation rules. Let wk = (wk1, . . . , wkK)T be the weight vector of device k.
Intuitively, the more evenly distributed the weights wk are, the more information from other devices
are aggregated. We remark that each device can have its specific weights wk, so that instead of
obtaining a single global model, the weighted M -estimator outputs K possibly different parameters
for personalized inference.

The following theorem is our main result on the estimation error of θ̂(W )
k , which characterizes

how aggregation and heterogeneity together affect the estimation.

Theorem 1 Under Assumptions 1 and 2, for each k ∈ [K], we have

E∥θ̂(W )
k − θ∗k∥2 ≤

(
16η2

µ2
+ 4

) K∑
j=1

wkj∥θ∗k − θ∗j∥2 +
8σ2

µ2

K∑
j=1

w2
kj

nj
. (1)

The error bound in (1) breaks down into two terms, which are of order
∑K

j=1wkj∥θ∗j −θ∗k∥2 and∑K
j=1w

2
kjσ

2/nj . The first term is the weighted average of squared distances between parameters,
which originates from the heterogeneity among the K devices. To make it smaller, each device
k should avoid aggregating data from irrelevant devices and instead concentrate its weights wkj

on devices whose parameters are close to its own. The second term is caused by the variance of
data aggregated by device k. By the Cauchy–Schwarz inequality, to reduce this term, each device
k should make its weights wkj more evenly distributed. In general, these two terms cannot be
minimized at the same time, and therefore an aggregation–heterogeneity trade-off arises.

The optimal weights that minimize the bound (1) are determined by the degree of heterogeneity
and the local noise level simultaneously. Consider the following two extreme cases. For simplicity,
we assume nk = n and σ2

k = 1 for all k. The first case is the homogeneous setting, where θ∗j = θ∗k
for all j, k. In this case, the first term in (1) vanishes and we need only minimize the second term.
By the Cauchy–Schwarz inequality, the optimal weights for each k are wk = (1/K, . . . , 1/K)T .
Thus, the optimal weighted M -estimator reduces to FedAvg whose estimation error is of order
1/(nK). This greatly improves the local rate 1/n when K is large. The second case is that the
parameters of any two devices are far apart; that is, for all j ̸= k, ∥θ∗j − θ∗k∥ ≥ c for some constant
c ≳ 1/

√
n. Then the optimal weights for each k are approximately given by wkk = 1 and wkj = 0

for j ̸= k, which minimize the first term in (1). These optimal weights correspond to the local
estimator, and the optimal estimation error is of order 1/n. In this setting, aggregation does not
bring any improvement over the local estimator owing to the high heterogeneity.

We remark that Theorem 1 is similar in spirit to Theorem 3 of Ben-David et al. (2010), which
also considered the minimization of combined empirical risk from different domains and provided
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a general learning bound. However, their analysis is confined to classification problems and the
case of two domains, a source domain and a target domain, which is not well suited to federated
learning scenarios where the number of devices may be large and even tend to infinity (e.g., Internet
of Things (Atzori et al., 2010)).

4. Optimal Aggregation Method

Generally, it is difficult to obtain a closed-form solution for the optimal weights in (1) if we do
not impose any assumption on the heterogeneity terms {∥θ∗k − θ∗j∥}j ̸=k. In order to investigate
the optimal weights and the resulting estimator, in Section 4.1 we propose federated smoothness to
measure the degree of heterogeneity. Using this measure, in Section 4.2 we specialize our general
result to a more concise version and construct an optimal estimator, FedKNN, using a k-nearest
neighbors (KNN) procedure. In Section 4.3 we give minimax lower bounds and show that FedKNN
is indeed minimax optimal over the parameter space defined by federated smoothness.

4.1. Federated Smoothness

To measure the degree of heterogeneity, we introduce federated smoothness in the following defini-
tion. We use Θ∗ = (θ∗1, . . . , θ

∗
K) to denote the concatenated parameter.

Definition 1 (Federated smoothness) Let 0 ≤ β ≤ ∞. We say that Θ∗ has federated smoothness
β if there exists a fixed constant C > 0 such that

∥θ∗k − θ∗π(k,j)∥ ≤ C

(
j

K

)β

(2)

for every k, j ∈ [K], where π : [K] × [K] → [K] maps (k, j) to the index of the device whose
parameter is the jth closest to the parameter of device k.

In the definition of π, we break ties in an arbitrary way if there are any. Also, π(k, 1) = k by
convention. For Θ∗ satisfying this definition, we will also say that Θ∗ is β-federated-smooth. Note
that for any fixed Θ∗, such β and C always exist, although they are not unique. We are particularly
interested in the class of parameters satisfying federated smoothness for some fixed C and β when
K is allowed to increase. Moreover, if (2) holds for some β, then it also holds for any 0 ≤ β′ < β.
Hence, our results can be interpreted as true for the largest such β.

The value of β measures the rate at which the distance between the parameters of neighboring
devices decays to 0. A larger β indicates a lower degree of heterogeneity, which further leads to a
smaller estimation error as we will see later. The role of π is to describe the neighboring structure
among devices. Examples include federated learning applications where the devices are distributed
geographically or over a social network and each device shares similar parameters only with their
closest neighbors. In this section, we consider the case where π is given as prior knowledge.

To get a sense of the applicability of Definition 1, we consider a few examples with different
levels of federated smoothness. As it turns out, our framework includes many conventional regimes
studied in previous work.

Example 1 (Homogeneity) Suppose that all of the K devices have the same parameters. Then Θ∗

has federated smoothness β = ∞.

7



ZHAO WANG LIN

Example 2 (Complete heterogeneity) Suppose that there exists a constant c > 0 such that ∥θk −
θj∥ ≥ c for any k ̸= j. Then for any fixed C, the federated smoothness β of Θ∗ tends to 0 when
K → ∞.

Example 3 (Clustering structure) Suppose that, for an even K, the K devices are divided into
two groups with equal size. Furthermore, devices in the same group have the same parameters,
and the distance between the parameters of the two groups is denoted by δ. Then the federated
smoothness β = log(C/δ)/ log 2.

Example 4 (Hölder smooth function) Consider any function f : [0, 1] → Rd satisfying f ′(0) =
f (2)(0) = · · · = f (⌊β⌋−1)(0) = 0 and ∥f (⌊β⌋)(x) − f (⌊β⌋)(y)∥ ≤ C|x − y|β−⌊β⌋ for any x, y ∈
[0, 1] and some β > 0. Suppose that θ∗π(k,j) = f(j/K). Then applying Taylor’s expansion gives
∥θ∗π(k,j) − θ∗k∥ ≤ C(j/K)β .

Other heterogeneity measures have been considered in the literature. Defining F ∗
k = L̂k(θ̂

(loc)
k )

and F ∗ = K−1
∑K

k=1 L̂k(θ̂
(avg)), Li et al. (2020c) proposed using Γ = F ∗ − K−1

∑K
k=1 F

∗
k

to measure heterogeneity. If all the devices have the same distributions, their empirical risks are
approximately the same and hence Γ ≈ 0. Otherwise, Γ may be large since the minimizers of local
empirical risks L̂k are different. Alternatively, Chen et al. (2021) suggested using the variance of
local parameters, R = K−1

∑K
k=1 ∥θ∗k −K−1

∑K
j=1 θ

∗
j∥2, to measure the degree of heterogeneity.

The common intuition behind these measures is that they all depict heterogeneity from a global
point of view. They focus on the degree of heterogeneity across all K devices, but do not reflect the
local dissimilarity relationships among devices. In comparison, our proposed federated smoothness
is a local quantity in that it characterizes the decay rate of the distances between local parameters.
Therefore, it is more appropriate for analyzing the aggregation–heterogeneity trade-off.

4.2. FedKNN: Optimal Weights via KNN

With the notion of federated smoothness in mind, we now focus on a particular set of weighted M -
estimators. Specifically, we determine the weight matrix W (m) = (w

(m)
kj ) by the following KNN

procedure:

w
(m)
k,π(k,j) =


1

m
if 1 ≤ j ≤ m,

0 otherwise,
(3)

where m ∈ [K] is the number of neighbors (including the device itself) to be aggregated. We denote
by θ̂(m) the estimator obtained with W (m) and call it federated k-nearest neighbors (FedKNN).

FedKNN builds on the simple intuition that each device should only aggregate data from its
closest neighbors. Accordingly, it uses hard thresholding to determine the weights: it assigns equal
weights to the m closest devices and zero weights to the others. Here, m directly specifies the level
of aggregation, so that a larger m means that more data from other devices are aggregated.

Using Theorem 1 and Definition 1, we obtain bounds for the estimation error of FedKNN as
well as the optimal choice of m for β-federated-smooth parameters.

Proposition 1 Under Assumptions 1–3, if Θ∗ is β-federated-smooth for some 0 < β < ∞, then
for each k ∈ [K], the FedKNN estimator θ̂(m)

k satisfies

E∥θ̂(m)
k − θ∗k∥2 ≤ C1

m2β

K2β
+

C2σ
2

mn
, (4)
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where C1 = C(16η2 + 4µ2)22β+1/{µ2(2β + 1)} and C2 = 8/µ2. In particular, if we take m =
m∗ ≡

⌊
(C2σ

2/C1)
1/(2β+1)K2β/(2β+1)/n1/(2β+1)

⌋
∨ 1, then the above upper bound attains its

minimum over the choice of m:

E∥θ̂(m)
k − θ∗k∥2 ≤ Cβ

(
σ2

nK

)2β/(2β+1)

∧ 8σ2

µ2n
, (5)

where Cβ = C
2β/(2β+1)
2 C

1/(2β+1)
1 .

The two terms in (4) correspond to the two terms in (1). From (4) we see a clearer trade-off
between aggregation and heterogeneity: a larger m indicates more aggregation from other devices,
which increases the first term and decreases the second term. The value m∗ balances the two terms
optimally and attains the minimum of (4) over the choice of m. It can be interpreted as the effective
number of devices, which characterizes how many other devices can optimally improve on the local
estimation and leads to the optimal estimation error of order σ2/(m∗n).

For a fixed β, m∗ decreases with n and increases with K. This is because if K is fixed, a
larger n implies that the estimation error of the local estimator is smaller, and hence the criterion
on whether to aggregate data from other devices is stricter, which leads to a smaller m∗. On the
other hand, if n is fixed, a larger K means that there are more devices with smaller bias, and hence
one should aggregate data from more devices, so that m∗ increases. When β → ∞, it is easy to
check that m∗ → K and E∥θ̂k − θ∗k∥2 → σ2/(nK), which means that almost all devices are useful.
Indeed, β = ∞ corresponds to the homogeneous setting, where the estimation error is exactly
O(σ2/(nK)).

When K ≳ n1/(2β), we have m∗ ≳ 1 and the term 1/(nK)2β/(2β+1) dominates the bound (5).
In this regime, there exist aggregation methods that outperform the local estimator. Indeed, it is
easy to check that in this case ∥θ∗π(k,2) − θ∗k∥ ≲ 1/

√
n, so that there exists at least another device

that can improve on the estimation of θ∗k. Even when the local sample size n is fixed, FedKNN is
still consistent as long as the number of devices K → ∞.

We remark that FedKNN is inspired by the classical KNN methods in nonparametric statistics
(Györfi et al., 2002). Indeed, we can naturally make the analogy between federated learning and
nonparametric regression: each device corresponds to a covariate point, the local parameter θ∗k cor-
responds to the conditional mean of the response, and the local variance O(σ2/n) corresponds to the
variance of the response. The role of π is to define the neighboring structure among devices. From
this point of view, β can be related to the smoothness of the regression function in nonparametric
regression, which is the reason why we call it federated smoothness.

Our FedKNN estimator bears some resemblance to the rank-based procedure considered by
Hanneke and Kpotufe (2022). However, the settings of Hanneke and Kpotufe (2022) and our work
differ remarkably in terms of learning scenarios and the source of heterogeneity. Accordingly, the
procedures for exploiting the neighboring structure and their performance bounds are also very
different. Specifically, heterogeneity in their work stems from distribution shifts, and the ranking
information reflects discrepancies between excess risks under different distributions. In contrast,
heterogeneity in our setting is due to varying parameters, and the neighboring structure is defined
through distances between local parameters.
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4.3. Minimax Lower Bounds

Although FedKNN is only a subset of weighted M -estimators, our next result indicates that it indeed
achieves minimax optimality over the parameter space determined by β. To derive the minimax
lower bounds, we consider a mean estimation problem. Suppose that the data are generated by

Z
(k)
i = θ∗k + ε

(k)
i , k ∈ [K], i ∈ [nk], (6)

where θ∗k ∈ Rd and ε
(k)
i are i.i.d. Gaussian with mean 0 and variance σ2Id. Denote the concatenated

parameter matrix by Θ∗ = (θ∗1, . . . , θ
∗
K) ∈ Rd×K . We consider the parameter space

P(β,K,C, π) ≡

{
Θ∗ ∈ Rd×K : ∥θ∗π(k,i) − θ∗k∥2 ≤ C

(
i

K

)β

for all k, i ∈ [K]

}
.

Note that in addition to β, K and C, the parameter space also depends on the neighboring structure
π, which is given as prior information. The loss function is taken to be ℓ2 loss, that is, ℓ(θ, z) =
∥θ− z∥2. It is easy to check that Assumptions 1 and 2 are satisfied. We denote the parameter space
by Pβ or P(β, π) for simplicity when there is no confusion. For the estimation error of Θ in Pβ ,
we have the following information-theoretic lower bound.

Theorem 2 (Minimax lower bound) Under Assumption 3, if β < ∞, K ≥ 3 and (nK)/σ2 ≥
(log 2)22β−1/C2, then for each k ∈ [K] we have

inf
θ̂k

sup
Θ∗∈Pβ

E∥θ̂k − θ∗k∥ ≥ C ′
β

(
σ2

nK

)2β/(2β+1)

∧ σ2

n
(7)

for some constant C ′
β > 0 depending only on β and C, where θ̂k denotes any measurable function

of samples from all local devices.

While the pair (C, β) is not unique in Definition 1, it is important to have the class Pβ depend
on a fixed C, so that β is well defined. The lower bound (7) matches the upper bound (5), which
shows that FedKNN with neighborhood size m∗ is minimax optimal. This result illustrates that the
federated smoothness β precisely characterizes the degree of heterogeneity and the extent to which
information from other devices can improve on the local estimation. The proof is an application of
the celebrated La Cam method, by carefully constructing two parameters Θ(1) and Θ(2) in P such
that ∥θ(1)k − θ

(2)
k ∥ is relatively large while {∥θ(2)j − θ

(2)
j ∥}j ̸=k are as small as possible.

When K2β ≲ n, the minimax rate is σ2/n, which agrees with the local estimation rate without
aggregation. This is because in this case the local variance σ2/n is relatively small so that the bias
introduced by aggregation dominates the estimation error. Therefore, no devices other than device
k contain information that can further improve the local estimation error σ2/n. When K2β ≳ n,
owing to the restriction of β-federated-smoothness, other devices also contain information useful
for estimating θk, the amount of which depends on the magnitude of K and β. As a result, the
minimax rate is improved to {σ2/(nK)}2β/(2β+1).

Moreover, the following result suggests that in our heterogeneous setting both FedAvg and the
local estimator are suboptimal since their worst-case errors are larger than the minimax rate (7).
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Theorem 3 (Suboptimality of FedAvg and local estimators) Consider the Gaussian mean esti-
mation problem specified in (13). Under Assumption 3, there exists an integer L independent of K
and n such that, for every K ≥ L and n ≥ L, there exists k ∈ [K] and π such that

sup
Θ∗∈Pβ

E∥θ̂(loc)k − θ∗k∥2 ≥
σ2d

n
(8)

and

sup
Θ∗∈Pβ

E∥θ̂(avg)k − θ∗k∥2 ≥
C

6β+1
. (9)

The suboptimality of FedAvg and the local estimator stems from the fact that they are two ex-
tremes of the aggregation–heterogeneity trade-off. The bound (8) for the local estimator is intuitive:
since the local estimator does not aggregate any other devices, its rate is typically O(σ2/n), which
has nothing to do with heterogeneity but also does not benefit from aggregation. On the other hand,
FedAvg aggregates all K devices, which introduces too much heterogeneity. Thus, the benefit of
aggregation is dominated by the harm of heterogeneity, which leads to an O(1) worst-case error (9).
Notably, the rates of these two methods do not involve K, so that their estimation errors will not be
reduced by increasing the number of devices. As a result, in the setting where the local sample size
n is relatively small and the number of devices K is relatively large, they underperform FedKNN
substantially.

We remark that the estimation errors of these two baseline methods have been studied by Chen
et al. (2021). Over a certain parameter space determined by their proposed heterogeneity measure
R = σ2K−1

∑K
k=1 ∥θ∗k −K−1

∑K
j=1 θ

∗
j∥, they showed that if R ≲ σ2/n, then FedAvg is minimax

optimal; otherwise, the local estimator is minimax optimal. This seems to contradict the subopti-
mality result of Theorem 3. The main reason for this discrepancy is that we measure the degree
of heterogeneity in a different way. As discussed above, their quantity R is a global heterogeneity
measure, which cannot characterize the aggregation–heterogeneity trade-off. Consequently, their
result can be viewed as a phase transition from one extreme to the other. In contrast, our federated
smoothness β is a local heterogeneity measure, which gives rise to the trade-off and allows the
estimation rate to vary continuously with respect to the degree of heterogeneity β.

5. Impossibility of Adaptation

The construction of the FedKNN procedure and the minimax result in the previous section rely
critically on the knowledge of the neighboring structure π. In the absence of such prior information,
it is desirable to develop an adaptive algorithm to determine which devices should be federated in
a data-driven manner. For example, we can first estimate π using the local estimators {θ̂(loc)k }Kk=1,
and then perform the FedKNN procedure based on the estimated π̂. One might hope that there
would exist some adaptive algorithm to achieve the minimax rate (5). Unfortunately, if there is no
information beyond the samples, for such data-driven procedures the estimation error of π, which
is typically of order σ2/n, dominates and adaptation is impossible. Indeed, by proving a minimax
lower bound for the case where π is unknown, we will show that no adaptive algorithm can actually
improve the local estimation rate O(σ2/n).

We are still concerned with the mean estimation problem introduced in Section 4.3. However,
instead of the parameter space P(β,K,C, π) studied above, we consider the following parameter
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space, which does not take π as its argument:

P̃(β,K,C) :=

{
Θ∗ ∈ Rd×K : ∃π s.t. ∥θ∗π(k,i) − θ∗k∥2 ≤ C

(
i

K

)β

for all k, i ∈ [K]

}
.

We denote it by P̃β for simplicity when there is no confusion. No prior knowledge of π means
that each parameter in P̃β still satisfies the β-federated smoothness, but has its specific neighboring
structure π, which is not given. Indeed, this parameter space is the union of P(β, π) defined before,
that is, P̃β = ∪πP(β, π), where the union is taken over all possible π. If π is known as prior
information, we only need to consider the worst-case error over some specific P(β, π); otherwise,
we must consider the worst case over all possible π, or P̃β .

For this larger parameter space, we have the following minimax lower bound.

Theorem 4 Under Assumption 3, there exists an integer L independent of K and n such that for
any K ≥ L, n ≥ L and 0 < β < ∞, we have, for any k ∈ [K],

inf
θ̂k

sup
Θ∗∈P̃β

E∥θ̂k − θ∗∥2 ≥
(log 2)σ2

2n
. (10)

Compared with Theorem 2, no knowledge of π means that the minimax analysis is performed
over a larger set, that is, P̃β instead of P(β, π) specified by some known π. That is why the lower
bound O(1/n) here is much larger than that in (7). If we want to estimate π from scratch, its
estimation error is already O(σ2/n). The most frustrating conclusion of Theorem 4 is that when the
local sample size n is fixed, even if K increases to infinity and federated smoothness is satisfied for
some β < ∞, the estimation error of any adaptive estimator does not vanish asymptotically. This
suggests the necessity of prior knowledge about the neighboring structure: we must at least be able
to estimate π at a faster rate than O(σ2/n).

More technically, an important property used in the proof of Theorem 4 is that P̃β is closed under
permutation. Then we can apply Le Cam’s method by considering two concatenated parameters
Θ(1) and Θ(2) in P̃β such that they differ only by swapping the local parameters of two specific
devices k and j. In this case, data from devices l ̸= k, j do not provide any information that can
distinguish between θ

(1)
k and θ

(2)
k , which results in the large rate O(σ2/n).

We remark that similar results have been obtained for multi-task learning by Hanneke and
Kpotufe (2022). For a multi-task classification problem where all data distributions induce the
same optimal classifier, they showed that no adaptive algorithm attains the minimax convergence
rate unless the ranking of distributional discrepancy is known a priori. At a high level, our messages
about the impossibility of adaptation and necessity of knowledge of π are the same as theirs, while
we are working in a quite different setting.

6. Discussion and Future Work

In this paper, we have considered parameter estimation in heterogeneous federated learning from a
theoretical perspective. We have derived estimation bounds for a family of weighted M -estimators,
which reveals a fundamental aggregation–heterogeneity trade-off. We have introduced federated
smoothness to quantify the degree of heterogeneity among devices and have constructed a k-nearest
neighbors estimator, FedKNN, to optimally balance the trade-off. We have given minimax lower
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bounds, from which we show that FedKNN is minimax optimal and that the two baseline methods,
FedAvg and the local estimator, are both suboptimal since they ignore the aggregation–heterogeneity
trade-off. Finally, we have demonstrated the necessity of prior knowledge about the neighboring
structure by proving the impossibility of adaptation.

We point out some directions for future research. The first is the optimization aspects of Fed-
KNN. Although FedKNN can be conducted in a distributed manner by simply regarding each device
as a center and performing FedAvg multiple times, this trivial procedure incurs computation and
communication costs m times those of FedAvg, where m is the number of aggregated neighbors.
How to more efficiently implement the optimization is of practical interest.

Second, it remains to investigate the settings where π is inaccurate or β is unknown. We have
shown that the lack of knowledge of π leads to a pessimistic O(σ2/n) rate. In practice, we may have
partial knowledge about π or be given an inaccurate version of it. How the accuracy of π affects
the estimation error is an interesting question. Also, adaptation to unknown β would be possible by
following Lepski’s method (Lepskii, 1991).

Finally, extensions to structured heterogeneity settings would be worthwhile. In this paper and
most related work in federated learning, heterogeneity is simply encoded in the Euclidean distance
between parameters. In more complex scenarios, however, heterogeneity may be structured. For
example, there may be some components of the local parameters that are shared, while the rest
are device-specific. Both the shared parts and the specific parts can be high-dimensional or very
complex. How to borrow strength from multiple devices to estimate the shared components without
being harmed by the specific parts is a direction for future work.
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Appendix A. Upper Bounds

A.1. Proof of Theorem 1

Proof For simplicity, we omit the superscript W throughout this proof. For each k ∈ [K], define
Lk(θ) =

∑K
j=1wkjE[ℓ(θ, Z(j))], L̂k(θ) =

∑K
j=1

wkj

nj

∑nj

i=1 ℓ(θ, Z
(j)
i ) and θ̃k = argminθ∈Ω Lk(θ).

By the strong convexity of ℓ and the definition of θ̂k, we have

0 ≥ L̂k(θ̂k)− L̂k(θ̃k) ≥ ∇L̂(θ̃k)
⊤(θ̂k − θ̃k) +

µ

2
∥θ̃k − θ̂k∥2,
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which implies

∥θ̂k − θ̃k∥2 ≤
4

µ2
∥∇L̂k(θ̃k)∥2.

Also, by definition, E[∇L̂k(θ̃k)] = 0. Taking expectation on both sides yields

E∥θ̂k − θ̃k∥2 ≤
4

µ2
E∥∇L̂k(θ̃k)∥2 =

4

µ2
Var(∇L̂k(θ̃k))

=
4

µ2

K∑
j=1

w2
kj

nj
Var(∇ℓ(θ̃k, Z

(j)))

≤ 4σ2

µ2

K∑
j=1

w2
kj

nj
.

(11)

By the strong convexity again we have

∥∥∥∥θ̃k − K∑
j=1

wkjθ
∗
j

∥∥∥∥2 ≤ 4

µ2

∥∥∥∥∇Lk

(∑
j∈[K]

wkjθ
∗
j

)∥∥∥∥2.
Therefore, by the triangle inequality,

∥θ̃k − θ∗k∥2 ≤ 2

∥∥∥∥θ̃k − ∑
j∈[K]

wkjθ
∗
j

∥∥∥2 + 2

∥∥∥∥ ∑
j∈[K]

wkjθ
∗
j − θ∗k

∥∥∥2
≤ 8

µ2

∥∥∥∥∇Lk

(∑
j∈[K]

wkjθ
∗
j

)∥∥∥∥2 + 2

∥∥∥∥∑
j∈[K]

wkjθ
∗
j − θ∗k

∥∥∥∥2.
For the first term, using the smoothness of ℓ gives

8

µ2

∥∥∥∥∇Lk

(∑
j∈[K]

wkjθ
∗
j

)∥∥∥∥2

=
8

µ2

∥∥∥∥∑
j∈[K]

wkj∇
{
Eℓ

(∑
j∈[K]

wjθ
∗
j , Z

(j)

)
− Eℓ(θ∗j , Z

(j))

}∥∥∥∥2

≤ 8

µ2

(∑
j∈[K]

wkj

∥∥∥∥∇{Eℓ

(∑
j∈[K]

wjθ
∗
j , Z

(j)

)
− Eℓ(θ∗j , Z

(j))

}∥∥∥∥
)2

≤ 8η2

µ2

(∑
j∈[K]

wkj

∥∥∥∥∑
j∈[K]

wkjθ
∗
j − θ∗j

∥∥∥∥
)2

≤ 8η2

µ2

∑
j∈[K]

wkj

∥∥∥∥∑
j∈[K]

wkjθ
∗
j − θ∗j

∥∥∥∥2,
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where the last formula is obtained by the Cauchy–Schwarz inequality. Then by the property of
weighted average,

∥θ̃k − θ∗k∥2 ≤
(
8η2

µ2
+ 2

) ∑
j∈[K]

wkj

∥∥∥∥∑
j∈[K]

wkjθ
∗
j − θ∗j

∥∥∥∥2
≤
(
8η2

µ2
+ 2

) ∑
j∈[K]

wkj∥θ∗k − θ∗j∥2.
(12)

Combining (11) and (12) yields

E∥θ̂k − θ∗k∥2 ≤
(
16η2

µ2
+ 4

) K∑
j=1

wkj∥θ∗k − θ∗j∥2 +
8σ2

µ2

K∑
j=1

w2
kj

nj
,

which completes the proof.

A.2. Proof of Proposition 1

Proof Recall that the KNN weight matrix is defined by

w
(m)
k,π(k,j) =


1

m
if 1 ≤ j ≤ m,

0 otherwise.

Substituting it into the first term in (1) and using the definition of β, we obtain

K∑
j=1

w
(m)
kj ∥θ∗j − θ∗k∥2 =

m∑
j=1

1

m
∥θ∗k − θ∗j∥2

≤ C

m

m∑
j=1

j2β

K2β
≤ C

mK2β

∫ m+1

1
x2βdx

≤ 22β+1C

2β + 1

m2β

K2β
.

For the second term in (1), we have

K∑
j=1

(w
(m)
kj )2

nj
=

m∑
j=1

1

m2nj
=

1

mn
,

where the last step comes from Assumption 3. Combining the two terms gives the overall bound

E∥θ̂(m)
k − θ∗k∥2 ≤

(
16η2

µ2
+ 4

)
22β+1C

2β + 1

m2β

K2β
+

8σ2

µ2mn
= C1

m2β

K2β
+

C2σ
2

mn
,

where C1 = (16η2 + 4µ2)22β+1C/{µ2(2β + 1)} and C2 = 8/(µ2). This bound, as a function of
m, is minimized by choosing m = m∗, where

m∗ =
⌊
(C2σ

2/C1)
1/(2β+1)K2β/(2β+1)/n1/(2β+1)

⌋
∨ 1.
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If m∗ = 1, we only use samples of the device k to estimate θ∗k (i.e., local estimator), in which case
E∥θ̂(m∗)

k − θ∗k∥2 ≤ 8σ2/(µ2n). Thus, the resulting rate scales as

E∥θ̂(m∗)
k − θ∗k∥2 ≤ Cβ

(
σ2

nK

)2β/(2β+1)

∧ 8σ2

µ2n
,

where Cβ = C
2β/(2β+1)
2 C

1/(2β+1)
1 .

Appendix B. Lower Bounds

B.1. Problem Setup

To derive the minimax lower bounds, we consider a mean estimation problem. Suppose that the
data are generated by

Z
(k)
i = θ∗k + ε

(k)
i , k ∈ [K], i ∈ [nk], (13)

where θ∗k ∈ Rd and ε
(k)
i are i.i.d. Gaussian with mean 0 and variance σ2Id. Denote the concatenated

parameter matrix by Θ∗ = (θ∗1, . . . , θ
∗
K) ∈ Rd×K . The loss function is taken to be ℓ2 loss, that is,

ℓ(θ, z) = ∥θ − z∥2. It is easy to check that Assumptions 1 and 2 are satisfied.

B.2. Lower Bound with Known Neighboring Structure

Proof [Proof of Theorem 2] Recall that we consider the parameter space

P(β,K,C, π) ≡
{
Θ∗ ∈ Rd×K : ∥θ∗π(k,i) − θ∗k∥2 ≤ C

(
i

K

)β

for all k, i ∈ [K]

}
.

Using Le Cam’s method (Wainwright, 2019), for any k ∈ [K] and any two parameters Θ(1) =

(θ
(1)
1 , . . . , θ

(1)
K ) and Θ(2) = (θ

(2)
1 , . . . , θ

(2)
K ) in Pβ , we have

inf
θ̂k

sup
Θ∈Pβ

E∥θ̂k − θk∥2 ≥
∥θ(1)k − θ

(2)
k ∥2

8

(
1− ∥P (1) − P (2)∥TV

)
, (14)

where P (1) and P (2) denote the sample distributions of Θ(1) and Θ(2), respectively. For complete-
ness, we will prove (14) in Lemma 5. For the total variation distance, we further have the bound

∥P (1) − P (2)∥2TV ≤ 1

4

{
exp

(
n

σ2

K∑
j=1

∥θ(1)j − θ
(2)
j ∥2

)
− 1

}
, (15)

whose proof is given in Lemma 6.
Next, we proceed to prove the theorem by considering two different cases.
(i) First, we consider the case where (log 2)σ2K2β/(4C2n) ≥ 1. Let m ∈ [K/2] be a value to

be specified later. Choose any S ⊂ [K] such that k ∈ S and |S| = m. Then for δm = C(m/K)β ,
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there exist Θ(1) = (θ
(1)
1 , . . . , θ

(1)
K ) and Θ(2) = (θ

(2)
1 , . . . , θ

(2)
K ) in Pβ such that

θ
(1)
j = θ

(2)
j = θ0 for any j ∈ [K]− S,

θ
(1)
j = θ1 for any j ∈ S,

θ
(2)
j = θ2 for any j ∈ S,

∥θ1 − θ2∥ = 2∥θ1 − θ0∥ = 2∥θ2 − θ0∥ = 2δm.

The existence of parameters satisfying these conditions is proved in (1) of Lemma 7. By (15), for
these two parameters we have

∥P (1) − P (2)∥2TV ≤ 1

4

{
exp

(
4
mn

σ2
δ2m

)
− 1

}
.

Now we choose an m ∈ [K/2] such that ∥P (1) − P (2)∥TV ≤ 1/2. To this end, we need 4mnδ2m =
4C2m2β+1n/K2β ≤ (log 2)σ2, that is,

m ≤
(
log 2

4C2
· K2β

n/σ2

)1/(2β+1)

.

Since
log 2

4C2
· σ

2K2β

n
≥ 1,

we can directly set the value of m to

m∗ ≡
⌊(

log 2

4C2

)1/(2β+1) K2β/(2β+1)

(n/σ2)1/(2β+1)

⌋
,

which is a positive integer. Also, the assumption (nK)/σ2 ≥ log 2 · 22β−1/C2 ensures that m∗ ≤
K/2. Thus, the aforementioned existence of parameters holds for m∗. In this case,

δ2m∗ = C2
(m∗
K

)2β
≥ C2

4β

(
log 2

4C2
· σ2

nK

)2β/(2β+1)

.

Substituting δm∗ into (14), we obtain

inf
θ̂k

sup
Θ∈Pβ

E∥θ̂k − θk∥2 ≥
δ2m∗

4
≥ C2

4β+1

(
log 2

4C2

)2β/(2β+1)( σ2

nK

)2β/(2β+1)

. (16)

(ii) Next, we consider the case (log 2)σ2K2β/(4C2n) ≤ 1. By (4) of Lemma 7, for

δ =

√
log 2

4
· σ

2

n
≤ C

Kβ
,

there exist Θ(1) and Θ(2) such that
∥θ(1)k − θ

(2)
k ∥ = 2δ

19



ZHAO WANG LIN

and
∥θ(1)π(k,j) − θ

(2)
π(k,j)∥ = 0

for j ≥ 2. For these two parameters, by (15),

∥P (1) − P (2)∥TV ≤ 1

2
.

Substituting these pieces into (14) gives

inf
θ̂k

sup
Θ∈Pβ

E∥θ̂k − θk∥2 ≥
δ2

4
=

log 2

16
· σ

2

n
.

(iii) Since (log 2)σ2K2β/(4C2n) ≥ 1 is equivalent to

(
σ2

nK

) 2β
2β+1 ≤

( log 2
4C2

) 1
2β+1 σ2

n
,

combining the above two cases gives

inf
θ̂k

sup
Θ∈Pβ

E∥θ̂k − θk∥2 ≥ min

{
C2

4β+1

(
log 2

4C2

) 2β
2β+1

,
log 2

16

(
log 2

4C2

)− 1
2β+1

}

×min

{(
σ2

nK

) 2β
2β+1

,

(
log 2

4C2

) 1
2β+1 σ2

n

}
≥ min

{
C2

4β+1

(
log 2

4C2

) 2β
2β+1

,
log 2

16

(
log 2

4C2

)− 1
2β+1

}
×min

{(
log 2

4C2

) 1
2β+1

, 1

}
×min

{(
σ2

nK

) 2β
2β+1

,
σ2

n

}
.

Let

C ′
β = min

{
C2

4β+1

(
log 2

4C2

) 2β
2β+1

,
log 2

16

(
log 2

4C2

)− 1
2β+1

}
×min

{(
log 2

4C2

) 1
2β+1

, 1

}
,

which depends only on β and C. Then we finally obtain

inf
θ̂k

sup
Θ∈Pβ

E∥θ̂k − θk∥2 ≥ C ′
β min

{(
σ2

nK

)2β/(2β+1)

,
σ2

n

}
.
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B.3. Lower Bounds for FedAvg and Local Estimators

Proof [Proof of Theorem 3] We prove (8) and (9) in (1) and (2), respectively.

(1) For this problem instance, it’s easy to show that the local estimator is the local empirical
mean, i.e., θ̂(loc)k = 1

n

∑n
i=1 Z

(k)
i . Then for any Θ and any k, its estimation error is

E∥θ̂(loc)k − θk∥2 =
1

n
E∥Z(k) − θk∥2 =

σ2d

n
,

which proves (8).

(2) For the FedAvg, taking derivative we obtain its explicit solution is

θ̂
(avg)
k =

1

nK

K∑
j=1

n∑
i=1

Z
(j)
i

for each k ∈ [K]. Therefore, its estimation error is

E∥θ̂(avg)k − θk∥2 =
1

nK2

K∑
j=1

E∥Z(j) − θj∥2 +
∥∥∥ 1

K

K∑
j=1

θj − θk

∥∥∥2
=

σ2d

nK
+
∥∥∥ 1

K

K∑
j=1

θj − θk

∥∥∥2
≥
∥∥∥ 1

K

K∑
j=1

θj − θk

∥∥∥2.
By (3) of Lemma 7, for each K ≥ 3 and 0 < β < ∞, there exists π and Θ ∈ Pβ such that
∥ 1
K

∑K
j=1 θj − θk∥2 ≥ C

6β+1 , which completes the proof directly.

B.4. Lower Bound with Unknown Neighboring Structure

Proof [Proof of Theorem 4] Recall that the parameter space now is

P̃(β,K,C) :=

{
Θ∗ ∈ Rd×K : ∃π s.t. ∥θ∗π(k,i) − θ∗k∥2 ≤ C

(
i

K

)β

for all k, i ∈ [K]

}
,

which does not specify π in advance.
We still use Le Cam’s method as in (14). For some j ̸= k, we consider two parameters

Θ(1),Θ(2) ∈ P̃β satisfying

∥θ(1)k − θ
(1)
j ∥ =

√
log 2σ√
n

,

θ
(1)
k = θ

(2)
j , θ

(2)
k = θ

(1)
j ,

θ
(1)
l = θ

(2)
l for l ̸= k, j.
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The existence of such parameters is given in (2) of Lemma 7. Applying (14) to these two parameters
yields

inf
θ̂

sup
Θ∈P

E∥θ̂k − θk∥2 ≥
σ2 log 2

n

[
1− 1

2

(
elog 2 − 1

)1/2]
=

(log 2)σ2

2n
, (17)

which completes the proof.

B.5. Technical Lemmas

This section consists of technical lemmas used in the proofs of our main results.

Lemma 5 For any two parameters Θ(1) and Θ(2) in P(β,K,C, π), let P (1)
n and P

(2)
n be the cor-

responding distributions of {Z(k)
i }k∈[K],i∈[n], respectively. Then we have

inf
θ̂

sup
Θ∈Pβ

E∥θ̂k − θk∥2 ≥
∥θ(1)k − θ

(2)
k ∥2

8

[
1− ∥P (1) − P (2)∥TV

]
,

Proof Let δ = 1
2∥θ

(1)
k − θ

(2)
k ∥. By Markov’s inequality, for any Θ we have

E∥θ̂k − θk∥2 ≥ δ2P (∥θ̂k − θk∥ ≥ δ).

Therefore, since Θ(1),Θ(2) ∈ Pβ , we obtain

inf
θ̂k

sup
Θ∈Pβ

E∥θ̂k − θk∥2 ≥ inf
θ̂k

sup
Θ∈{Θ(1),Θ(2)}

E∥θ̂k − θk∥2

≥ δ2 sup
Θ∈{Θ(1),Θ(2)}

P (∥θ̂k − θk∥ ≥ δ)

≥ δ2

2

(
PΘ(1)(∥θ̂k − θ

(1)
k ∥ ≥ δ) + PΘ(2)(∥θ̂k − θ

(2)
k ∥ ≥ δ)

)
(i)
≥ δ2

2

(
P (1)
n (∥θ̂k − θ

(2)
k ∥ ≤ δ) + P (2)

n (∥θ̂k − θ
(2)
k ∥ ≥ δ)

)
=

δ2

2

[
1− (P (1)

n (∥θ̂k − θ
(2)
k ∥ ≥ δ) + P (2)

n (∥θ̂k − θ
(2)
k ∥ ≥ δ))

]
(ii)
≥ δ2

2

[
1− ∥P (1)

n − P (2)
n ∥TV

]
,

where step (i) follows from ∥θ(1)k − θ
(2)
k ∥ = 2δ, and step (ii) follows from the definition of total

variation norm. Therefore, we finally obtain

inf
θ̂

sup
Θ∈Pβ

E∥θ̂k − θk∥2 ≥
∥θ(1)k − θ

(2)
k ∥2

8

[
1− ∥P (1) − P (2)∥TV

]
.

22



THE AGGREGATION–HETEROGENEITY TRADE-OFF IN FEDERATED LEARNING

Lemma 6 Let P (1)
n and P

(2)
n be the distributions of {Z(k)

i }k∈[K],i∈[n] with parameters Θ(1) and
Θ(2), respectively. Then we have

∥P (1)
n − P (2)

n ∥2TV ≤ 1

4

[
exp

(
n

σ2

K∑
j=1

∥θ(1)j − θ
(2)
j ∥2

)
− 1

]
.

Proof Let p(1) and p(2) be the density functions of P (1) and P (2) with respect to the Lebesgue
measure. By the Cauchy–Schwarz inequality we have

∥P (1)
n − P (2)

n ∥2TV =
1

4

[∫
RdnK

|p(1)(z)− p(2)(z)|dz
]2

=
1

4

[∫
RdnK

∣∣∣∣p(1)(z)p(2)(z)
− 1

∣∣∣∣p(2)(z)dz
]2

≤ 1

4

∫
RdnK

(
p(1)(z)

p(2)(z)
− 1

)2

p(2)(z)dz

=
1

4

[∫
RdnK

p(1)(z)2

p(2)(z)
dz − 1

]
.

By the definition of Z(k)
i , p(1)(z) =

∏K
k=1

∏n
i=1 p

(1)
k (z

(k)
i ), where p

(1)
k is the density function of

N (θ
(1)
k , σ2Id). A similar formula holds for Pn(2). Then we further have

∥P (1)
n − P (2)

n ∥2TV ≤ 1

4

[∫
RdnK

K∏
k=1

n∏
i=1

p(1)(z
(k)
i )2

p(2)(z
(k)
i )

dz − 1

]

=
1

4

[
exp

(
n

σ2

K∑
k=1

∥θ(1)k − θ
(2)
k ∥2

)
− 1

]
,

which completes the proof.

Lemma 7 The parameter spaces P(β,K,C, π) and P̃(β,K,C) satisfy the following properties.

(1) Suppose K ≥ 3, log 2
4C2 · 22β+1 ≤ nK

σ2 and log 2
4C2 · σ2K2β

n ≥ 1. For any m ∈ [K] and S ⊂ [K]

with |S| = m and m ≤ K/2, there exist Θ(1),Θ(2) ∈ P(β,K,C, π) such that

θ
(1)
j = θ

(2)
j = θ0 for any j ∈ [K]− S,

θ
(1)
j = θ1 for any j ∈ S,

θ
(2)
j = θ2 for any j ∈ S,

∥θ1 − θ2∥ = 2∥θ1 − θ0∥ = 2∥θ2 − θ0∥ = 2δm,

where δm = C(m/K)β .
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(2) Suppose K ≥ 3 and n ≥ 4 · 62β/C2. For any j ̸= k, there exist Θ(1),Θ(2) ∈ P̃(β,K,C)
such that

∥θ(1)k − θ
(1)
j ∥ =

2√
n
,

θ
(1)
k = θ

(2)
j , θ

(2)
k = θ

(1)
j ,

θ
(1)
l = θ

(2)
l for l ̸= k, j.

(3) For any K ≥ 3 and 0 < β < ∞, there exist π and Θ ∈ P(β,K,C, π) such that for any
k ∈ [K], ∥∥∥∥ 1

K

K∑
j=1

θj − θk

∥∥∥∥ ≥ C

6β+1
.

(4) For any K ≥ 3 and any P(β,K,C, π), for any δ ≤ C/Kβ there exists Θ(1),Θ(2) ∈
P(β,K,C, π) such that ∥θ(1)k − θ

(2)
k ∥ = 2δ and θ

(1)
j = θ

(2)
j for any j ̸= k.

Proof

(1) For any θ1 and θ2 such that ∥θ1 − θ2∥ = 2δ, let θ0 be their midpoint. Then for any S ⊂ [K],
the corresponding two parameters can be specified by the above conditions. We only need
to check that they are indeed in the parameter space Pβ . We first consider Θ(1). For any
k ∈ S and j ≤ m, ∥θ(1)k − θ

(1)
π(k,j)∥ = 0 ≤ C(j/K)β . For j > m, ∥θ(1)k − θ

(1)
π(k,j)∥ = δm =

C(m/K)β ≤ C(j/K)β . For any k ∈ [K] − S , m ≤ K/2 implies that ∥θ(1)k − θ
(1)
π(k,j)∥ ≤

∥θ(1)l − θ
(1)
π(l,j)∥ for any l ∈ S. Therefore, Θ(1) satisfies the federated smoothness condition

and hence Θ(1) ∈ Pβ . Similar arguments also hold for Θ(2).

(2) We first show that P̃(β,K,C) is closed under permutation. For any Θ = (θ1, . . . , θK) ∈ P̃β

with neighboring structure π and any permutation σ : [K] → [K] of [K], define Θσ ∈
Rd×K by Θσ = (θσ(1), . . . , θσ(K)). Further define πσ(k, j) = π(σ(k), j) which is also a
neighboring structure. Then we have

∥Θσ
k −Θσ

πσ(k,j)∥ = ∥θσ(k) − θπ(σ(k),j)∥ ≤ C
jβ

Kβ
,

which implies that Θσ ∈ Pβ with neighboring structure π(σ(k, j)).

Therefore, we only need to prove there exists Θ(1) ∈ P̃β such that ∥θ(1)k − θ
(1)
j ∥ = 2/

√
n,

then Θ(2) is immediately obtained by swapping θ
(1)
k and θ

(1)
j and keeping other parameters

fixed.

We first fix any θk, θj ∈ Rd such that ∥θk − θj∥ = 2/
√
n whose existence is obvious. For

other K − 2 devices, let C1 ⊂ [K] \ {k, j} be any subset with ||C1| − (K/2− 1)| < 1 and let
C2 = [K] \ ({k, j} ∪ C1). For any l ∈ C1, set θl = θk; for any l ∈ C2, set θl = θj . Then we
construct Θ(1) using these parameters by Θ(1) = (θ1, . . . , θK) and let π by its neighboring
structure. For any k ∈ [K] and j ∈ [K] such that j < K/2, ∥Θ(1)

k −Θ
(1)
π(k,j)∥ = 0 ≤ ( j−1

K )β;
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for j ∈ [K] such that j ≥ K/2, ∥Θ(1)
k −Θ

(1)
π(k,j)∥ = 2/

√
n ≤ C(K/2−1

K )β ≤ C( j−1
K )β by the

assumptions K ≥ 3 and n ≥ 4 · 62β/C2. Therefore, Θ(1) ∈ P̃(β,K,C).

(3) We still consider clustered parameters similar to (2). We arbitrarily choose C1 ∈ [K] and
C2 = [K] \ C1 such that

∣∣|C1| − (K/2 − 1)
∣∣ < 1. Then we consider K parameters such

that θk = a for k ∈ C1 and θk = b for k ∈ C2, where a, b ∈ Rd satisfy ∥a − b∥ = C/6β .
For any k ∈ [K] and j ∈ [K] such that j < K/2, ∥θk − θπ(k,j)∥ = 0 ≤ ( j−1

K )β; for

j ∈ [K] such that j ≥ K/2, ∥θk − θπ(k,j)∥ ≤ C/6β ≤ C · (K/2−1
K )β ≤ ( j−1

K )β . Therefore,
Θ = (θ1, . . . , θK) ∈ P(β,K,C, π) for some π.

Moreover, for this parameter, for any k ∈ [K],∥∥∥∥ 1

K

K∑
j=1

θj − θk

∥∥∥∥ ≥ K − 1

2K
∥a− b∥ ≥ 1

3
∥a− b∥ ≥ C

6β+1
,

which completes the proof.

(4) For any a and b such that ∥a− b∥ = 2δ, let c be their midpoint. Then we set θ(1)j = θ
(2)
j = c

for j ̸= k, θ(1)k = a and θ
(2)
k = b. Then it is easy to verify that all conditions are satisfied.

This completes the proof of the lemma.
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