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Abstract
Rank-based approaches are among the most popular nonparametric methods for univariate data in
tackling statistical problems such as hypothesis testing due to their robustness and effectiveness.
However, they are unsatisfactory for more complex data. In the era of big data, high-dimensional
and non-Euclidean data, such as networks and images, are ubiquitous and pose challenges for
statistical analysis. Existing multivariate ranks such as component-wise, spatial, and depth-based
ranks do not apply to non-Euclidean data and have limited performance for high-dimensional data.
Instead of dealing with the ranks of observations, we propose two types of ranks applicable to
complex data based on a similarity graph constructed on observations: a graph-induced rank defined
by the inductive nature of the graph and an overall rank defined by the weight of edges in the
graph. To illustrate their utilization, both the new ranks are used to construct test statistics for the
two-sample hypothesis testing, which converge to the χ2

2 distribution under the permutation null
distribution and some mild conditions of the ranks, enabling an easy type-I error control. Simulation
studies show that the new method exhibits good power under a wide range of alternatives compared
to existing methods. The new test is illustrated on the New York City taxi data for comparing travel
patterns in consecutive months and a brain network dataset comparing male and female subjects.
Keywords: Rank-based method; high-dimensional/nonparametric statistics; similarity graph; non-
Euclidean data

1. Introduction

1.1. Multivariate ranks

High-dimensional and non-Euclidean data have become ubiquitous in the era of big data, such as
networks and images, which poses challenges for statistical analysis (Bullmore and Sporns, 2012;
Tian et al., 2016; Menafoglio and Secchi, 2017). Parametric approaches are limited when many
nuisance parameters need to be estimated. Among the nonparametric methods, rank-based methods
are attractive due to their robustness and effectiveness and have been extensively studied for uni-
variate data. However, univariate ranks can not be easily extended to multivariate data due to the
lack of natural ordering of the values. The existing extensions of ranks to multivariate data include
the component-wise rank (Bickel, 1965; Hallin and Puri, 1995; Puri and Sen, 2013), the spatial rank
(Chaudhuri, 1996; Oja, 2010), the depth-based rank (Liu and Singh, 1993; Serfling and Zuo, 2000),
the Mahalanobis rank (Hallin and Paindaveine, 2002, 2004, 2006), the metric rank (Pan et al., 2018)
and the measure transportation-based rank (Deb and Sen, 2021). Specifically, given N observations
Z1, . . . , ZN ∈ Rd:
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• The component-wise rank Ri ∈ Rd is the rank vector for each dimension of Zi, e.g., Rij is
the rank of Zij among Z1j , . . . , ZNj for j = 1, . . . , d. Since it is defined for each dimension,
this rank suffers from correlated covariates and is not invariant to affine transformations.

• The spatial rank function is defined as R(Z) =
∑N

i=1 U(Z − Zi)/N where U(Z) = Z/∥Z∥
for Z ̸= 0d and U(0d) = 0d. The rank is powerful for detecting location differences, but not
for distinguishing scale parameters due to the normalizing procedure involved in U(·).

• The depth-based rank measures the centrality of the observations. It depends on the choice
of depth function. For example, the Mahalanobis’s depth is defined as MhD(Z) =

{
1 +

(Z − Z̄)TS−1(Z − Z̄)
}−1

, where Z̄ =
∑N

i=1 Zi/N is the sample mean and S is the
sample covariance matrix, and the Tukey’s depth is defined as TD(Z) = infX {FN (X ) :
X is a closed half-space containing Z}, where FN is the empirical cumulative distribution
function. Given a depth function, the depth-based ranks are the ranks of the depth values.
The depth MhD does not work when the dimension is larger than the number of observations.
Other depth functions are computationally extensive for high-dimensional data, for example,
TD has the computational complexity O(Nd−1 logN) (Liu, 2017) and the simplicial depth
(Liu, 1988) has the computational complexity O(Nd logN) (Afshani et al., 2016).

• The Mahalanobis rank is designed for multivariate one-sample testing, which is defined as
the rank of the pseudo-Mahalanobis distance d(Z, θ0) = (Z − θ0)

TΣ̂
−1

(Z − θ0), where θ0
is the location parameter of interest and specified under H0, and Σ̂ is an M-estimator of the
covariance matrix due to Tyler (1987). It is powerful for elliptical symmetric distribution but
is not robust to heavy-tailed distributions.

• The metric rank measures the difference between two probability distributions. Assume
Z1, . . . , Zm

iid∼ FX , Zm+1, . . . ZN
iid∼ FY , and define nAX

ij , i, j ∈ {1, . . . ,m} be the rank
of d(Zi, Zj) among {d(Zi, Zu), u = 1, . . . ,m} where d(Zi, Zj) is the distance between Zi

and Zj , mAY
ij , i, j ∈ {1, . . . ,m} be the rank of d(Zi, Zj) among {d(Zi, Zu), u = j,m +

1, . . . , N}, nCX
ij , i, j ∈ {m + 1, . . . , N} be the rank of d(Zi, Zj) among {d(Zi, Zu), u =

1, . . . ,m, j}, and mCY
ij , i, j ∈ {m+1, . . . , N} be the rank of d(Zi, Zj) among {d(Zi, Zu), u =

m+ 1, . . . , N}. Then the differences AX
ij − AY

ij and CX
ij − CY

ij are used to compare the two
distributions. However, the limiting distribution of the test statistic is not easy to approximate,
so a resampling procedure is usually used to obtain the p-value.

• The measure transportation-based ranks are defined by the optimization problem

σ̂ = arg min
σ∈SN

N∑
i=1

∥Zi − cσ(i)∥2 ,

where σ = (σ(1), . . . , σ(N)) and SN is the set of all permutations of {1, . . . , N}, the multi-
variate rank vectors {c1, . . . , cN} are a sequence of ‘uniform-like’ points in [0, 1]d generated
from Halton sequences (Hofer, 2009; Hofer and Larcher, 2010). As a result, the rank vector
of Zi will be cσ̂(i). These ranks are also useful in detecting location differences. However,
when the dimension is high, it is difficult to generate ‘uniformly’ distributed rank vectors,
which suffers from the curse of dimensionality.
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Noticing the limitations of the existing multivariate ranks, we propose ranks that rely on a sim-
ilarity graph (Section 2). We then build test statistics based on the new ranks for two-sample hy-
pothesis testing (Section 3). The asymptotic properties of the new test statistics are studied (Section
4) and the performance of the new tests is explored through extensive simulation studies (Section 5)
and two real data applications (Section 6). The paper concludes with discussions in Section 7.

2. Graph-based ranks

One way of dealing with high-dimensional data is using inter-point distances, which has been shown
to capture much information from data (Hall et al., 2005; Biswas and Ghosh, 2014; Angiulli, 2018).
However, the distance-based methods suffer from outlier and heavy-tailed distributions. Specifi-
cally, many distance-based methods require the existence of some moments for their key theoretical
properties to hold (e.g., Li (2018); Guo and Modarres (2020); Chakraborty and Zhang (2021); Zhu
and Shao (2021)). On the other hand, the graph-based methods are robust to outlier and heavy-
tailed distributions. These methods construct unweighted similarity graphs using the pairwise sim-
ilarities/distances of the observations, then conduct statistical analysis based on the graphs (e.g.,
Friedman and Rafsky (1979); Schilling (1986); Henze (1988); Rosenbaum (2005); Chen and Fried-
man (2017)). We thus want to combine the advantage of both approaches by using more information
compared to the graph-based methods while still keeping their robustness and propose the following
graph-based ranks.

For two graphs G1 and G2 with identical vertices, define G1 ∩ G2 = ∅ if they have no over-
lapping edges and G1 ∪ G2 as the graph with the same vertex set as them and the edge set their
union. Given N independent observations {Zi}Ni=1, and a pre-specified integer k, we can construct
a sequence of simple similarity graphs1 {Gl}kl=0 in an inductive way such that G0 has no edges and

Gl+1 = Gl ∪G∗
l+1 with G∗

l+1 = arg max
G′∈Gl+1

∑
(i,j)∈G′

S(Zi, Zj) ,

where Gl+1 = {G′ ∈ G : G′ ∩ Gl = ∅} and G is a graph set whose elements satisfy specific user-
defined constraints. Here S(·, ·) is a similarity measure, for example, S(Zi, Zj) = −∥Zi − Zj∥ for
Euclidean data. For other choices of the similarity measures, see Chen and Zhang (2013); Sarkar
and Ghosh (2018); Sarkar et al. (2020). Many widely used similarity graphs can be constructed in
this way with different constraints, for example,

• k-nearest neighbor graph (k-NNG): G = {G′ : each vertex i connects to another vertex j };

• k-minimum spanning tree (k-MST)2(Friedman and Rafsky, 1979): G = {G′ : G′ is a tree
that connects all vertices};

• k-minimum distance non-bipartite pairing (k-MDP)3(Rosenbaum, 2005): G = {G′ : G′ is a
non-bipartite pairing};

1. A simple graph is a graph without self-loops and multiple edges between any two vertices.
2. The MST is a spanning tree connecting all observations while minimizing the sum of distances of edges in the tree.

The k-MST is the union of the 1st, . . . , kth MSTs, where the kth MST is a spanning tree that connects all observations
while minimizing the sum of distances across edges excluding edges in the (k − 1)-MST.

3. A non-bipartite pairing divides the N observations into N/2 (assuming N is even) non-overlapping pairs while edges
exist within pairs. The MDP is constructed by minimizing the N/2 distances within pairs. The k-MDP is the union
of the 1st, . . . , kth MDPs, where the kth MDP is a minimum distance non-bipartite pairing while minimizing the sum
of distances within pairs excluding the pairs in the (k − 1)-MDP.
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(i) k-NNG. (ii) k-MST. (iii) k-MDP.

Figure 1: Examples of different similarity graphs.

• k-shortest Hamiltonian path (k-SHP) (Biswas et al., 2014): G = {G′ : G′ is a Hamiltonian
path4}.

Take the k-NNG as an example. By definition, G1 is the 1-NNG as the summation of the edges’
similarities is maximized if and only if each vertex connects to its nearest neighbor. With similar
arguments, G∗

l+1 is the (l+ 1)th NNG for any l ≥ 1. Thus, Gl+1 is the (l+ 1)-NNG. Similarly, for
MSTs, G1 is the 1-MST, G∗

l+1 is the (l+1)th MST for any l ≥ 1, and Gl+1 is the (l+1)-MST. An
illustration of these graphs is presented in Figure 1.

With {Gl}kl=1, we define two types of graph-based rank matrices R = (Rij)
N
i,j=1 ∈ RN×N as

follows. For an event A, 1(A) is an indicator function that equals to one if event A occurs, and
equals to zero otherwise.

• Graph-induced rank

Rij =

k∑
l=1

1
(
(i, j) ∈ Gl

)
. (1)

• Overall rank
Rij = rank(S(Zi, Zj), Gk) , (2)

where rank(S(Zi, Zj), Gk) is the rank of S(Zi, Zj) among {S(Zu, Zv)}(u,v)∈Gk
if (i, j) ∈

Gk and is zero if (i, j) /∈ Gk.

Both ranks depend implicitly on k, whose choice is discussed in Sections 5 and 7.4. The graph-
induced rank Rij is the number of graphs that the edge (i, j) appears in the sequence of graphs
{G1, . . . , Gk}. For instance, the graph-induced rank of edges in the lth NNG or the lth MST will be
k− l+1 for k-NNG and k-MST, respectively. The overall rank is the rank of the similarity of edges

4. A Hamiltonian path with N vertices is a connected and acyclic graph with N − 1 edges, where each node has degree
at most two.
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in the graph Gk. These graph-based ranks impose more weights on edges with higher similarity,
thus incorporating more similarity information than the unweighted graph. In the meantime, the
robustness property of the ranks makes the weights less sensitive to outliers compared to the direct
utilization of similarity. With these ranks, we are ready to build different test statistics for different
problems.

3. A new two-sample test statistic for high-dimensional data and non-Euclidean data

3.1. Two-sample test problem and background

For two independent random samples X1, . . . , Xm
i.i.d∼ FX and Y1, . . . , Yn

i.i.d∼ FY , we consider the
test

H0 : FX = FY against H1 : FX ̸= FY .

For many high-dimensional or non-Euclidean data problems, one has little information on FX and
FY , which makes parametric approaches not applicable. A number of nonparametric tests have
been proposed for high-dimensional data such as the graph-based tests (Friedman and Rafsky, 1979;
Schilling, 1986; Henze, 1988; Rosenbaum, 2005; Chen and Zhang, 2013; Chen and Friedman, 2017;
Chen et al., 2018; Zhang and Chen, 2022), the classification-based tests (Hediger et al., 2019; Lopez-
Paz and Oquab, 2016; Kim et al., 2021), the interpoint distances-based tests (Székely and Rizzo,
2013; Biswas and Ghosh, 2014; Li, 2018), and the kernel-based tests (Gretton et al., 2008; Eric
et al., 2007; Gretton et al., 2009, 2012b; Song and Chen, 2020).

Recently, Pan et al. (2018) introduced Ball Divergence (BD) to measure the difference between
the two distributions and proposed a metric rank test procedure. Deb and Sen (2021) proposed to
define the multivariate ranks through the theory of measure transportation (Hallin et al., 2021), based
on which they built the multivariate rank-based distribution-free nonparametric testing. Both tests
can be applied to high-dimensional data and achieve good performance for some useful settings.
However, they also lose power under some common alternatives, which will be detailed in Section
5. Besides, even though their asymptotic properties were studied, they were not useful to obtain
analytic p-value approximations. The random permutation procedure was recommended by the
authors to obtain their p-values.

3.2. Test statistics on graph-based ranks

Let Zi = Xi, i = 1, . . .m;Zm+j = Yj , j = 1, . . . n be the pooled samples and N = m + n. Let
R ∈ RN×N be the graph-based rank matrix constructed on {Zi}Ni=1 (details see Section 2). We first
define two basic quantities based on R:

Ux =

m∑
i=1

m∑
j=1

Rij and Uy =

N∑
i=m+1

N∑
j=m+1

Rij ,

which are the within-sample rank sums of sample X and sample Y , respectively. We can sym-
metrize R by using 1

2(R+RT). This does not change the values of Ux and Uy by their definitions;
while the derivation for their expectations and variances would be much simpler. With a slight
notation abuse, in the following, R is used for the symmetric version. Before we propose the test
statistic, we illustrate the behaviors of Ux and Uy under different scenarios through toy examples.
Here we set n = m = 50 and consider multivariate Gaussian distribution with dimension d = 100:
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(a) null: FX = FY = N(0d, Id); (b) location alternative: FY = N(1d, Id); (c) scale alternative:
FY = N(0d, 4Id); (d) mixed alternative: FY = N(0.51d, 2Id).
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Figure 2: Heatmap of the graph-based rank matrix. Top: graph-induced ranks in 10-NNG. Bottom:
overall ranks in 10-MDP.

Figure 2 shows the heatmaps of the graph-induced rank matrix in the 10-NNG and the overall
rank matrix in the 10-MDP. When the two distributions are different in the location parameter,
both Ux and Uy tend to be larger than their corresponding values under the null; while for scale
alternative, one of Ux and Uy tends to be larger while the other one tends to be smaller than their
corresponding values under the null. For both location and scale differences, Ux and Uy will also
be different from their values under the null. Thus, Ux and Uy can capture different scenarios. The
proposed Rank In Similarity graph Edge-count two-sample test (RISE) statistic is defined as

TR = (Ux − µx, Uy − µy)Σ
−1(Ux − µx, Uy − µy)

T , (3)

where µx = E(Ux), µy = E(Uy) and Σ = Cov
(
(Ux, Uy)

T
)
. Under the null hypothesis, the group

labels of X and Y are exchangeable. Thus, we can work under the permutation null distribution,
which places 1/

(
N
m

)
probability on each of the

(
N
m

)
permutations of the group labels where the first

group has m observations and the second group has n observations. We use P, E, Var, and Cov to
denote the probability, expectation, variance, and covariance under the permutation null distribution,
respectively.

Theorem 1 Under the permutation null distribution, we have that

µx = E(Ux) = m(m− 1)r0 , µy = E(Uy) = n(n− 1)r0

Var(Ux) =
2mn(m− 1)

(N − 2)(N − 3)

(
(n− 1)Vd + 2(m− 2)(N − 1)Vr

)
,

Var(Uy) =
2mn(n− 1)

(N − 2)(N − 3)

(
(m− 1)Vd + 2(n− 2)(N − 1)Vr

)
,

6
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Cov(Ux, Uy) =
2m(m− 1)n(n− 1)

(N − 2)(N − 3)

(
Vd − 2(N − 1)Vr

)
,

where Vr = r21 − r20 and Vd = r2d − r20 with R̄i· = 1
N−1

∑N
j ̸=iRij , r0 = 1

N

∑N
i=1 R̄i·, r21 =

1
N

∑N
i=1 R̄

2
i· and r2d = 1

N(N−1)

∑N
i=1

∑N
j ̸=iR

2
ij .

The proof of Theorem 1 is provided in Appendix A. To assure that TR is well-defined, the covariance
matrix Σ should be invertible. Here we present the sufficient and necessary conditions.

Theorem 2 Given m,n ≥ 2, the covariance matrix Σ is positive-definite unless (C1) Vr = 0 or
(C2) (N − 2)Vd = 2(N − 1)Vr.

The proof of Theorem 2 is provided in Appendix B. Except for some special graphs, it is rare to
have graphs that satisfy (C1) or (C2). For example, the graph-induced rank in the k-NNG and the
overall rank in the k-MDP would hardly ever run into either (C1) or (C2) (detailed in Appendix B).

Theorem 3 When TR is well-defined, we have

TR = Z2
w + Z2

diff and Cov(Zw, Zdiff) = 0 , (4)

where Zw = Uw−E(Uw)√
Var(Uw)

, Zdiff = Udiff−E(Udiff)√
Var(Udiff)

with Uw = n−1
N−2Ux +

m−1
N−2Uy and Udiff = Ux −Uy.

The proof of Theorem 3 is provided in Appendix C. Under the alternative hypothesis, it is possible
that (i) both Ux and Uy are larger than their null expectations (a typical scenario under location
alternatives) and (ii) one of them is larger than while the other one is smaller than its corresponding
null expectation (a typical scenario under scale alternatives). See Chen and Friedman (2017) for
more discussions on these scenarios. For (i), Zw will be large and for (ii), |Zdiff | will be large.
Some test statistics other than TR can also be considered. For instance, the weighted rank sum
statistic Zw corresponding to the weighted edge-count test (Chen et al., 2018) that should work well
for the location alternative and unbalanced sample sizes, and the max-rank test statistics Rmax ≡
max{Zw, |Zdiff |} that corresponds to the max-type edge-count test statistic (Chu and Chen, 2019),
which is preferred under the change-point setting.

4. Asymptotic properties

Obtaining the exact p-value of TR by examining all permutations could be feasible for small sample
sizes, but is time-prohibitive when the sample size is large. We thus work on the asymptotic dis-
tribution of TR. Let an ≺ bn be that an is dominated by bn asymptotically, an ≍ bn be that an is
bounded both above and below by bn asymptotically, an ≾ bn be that an is bounded above by bn
asymptotically, and ‘the usual limit regime’ be that m,n → ∞ and m/(m+ n) → p ∈ (0, 1).

Theorem 4 (Limiting distribution under the null hypothesis) Let R = (Rij)
j∈[N ]
i∈[N ] ∈ RN×N be

the graph-induced rank or the overall rank matrix defined in Section 3 in the sequence of graphs
{Gl}kl=0. In the usual limit regime, under Conditions (1) r1 ≺ rd; (2)

∑N
i=1

(∑N
j=1R

2
ij

)2
≾ N3r4d;

(3)
∑N

i=1

∣∣R̃i·
∣∣3 ≺ (NVr)

1.5; (4)
∑N

i=1 R̃
3
i· ≺ NrdVr; (5)

∣∣∑N
i=1

∑N
j=1

∑N
s=1,s ̸=j RijRisR̃j·R̃s·

∣∣ ≺
N3r2dVr; (6)

∑N
i=1

∑N
j=1

∑N
s ̸=i,j

∑N
l ̸=i,j RijRjsRslRli ≺ N4r4d, where R̃i· = R̄i· − r0, we have

that
(
Zw, Zdiff

)T D→ N2(02, I2) and TR
D→ χ2

2 under the permutation null distribution, where D→ is
convergence in distribution.
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The proof of Theorem 4 is provided in Appendix D. Theorem 4 holds for a general matrix R with
some additional conditions (discussed in Section 7). As a result, we can use different ways to
weigh the similarity graph such as kernel values. These conditions also assure the invertibility of
Σ. Specifically, Condition (3) requires that Vr > 0. By Cauchy–Schwarz inequality r0 ≤ r1 ≤ rd.
Then Condition (1) implies that Vr ≤ r21 ≺ r2d ≍ Vd. Thus (C1) and (C2) in Theorem 2 are
prohibited. We discuss these conditions more in Appendix E. For k-MDP, all vertices have the same
degree k, we thus have the following lemma.

Lemma 5 The overall rank in k-MDP satisfies Conditions (1), (2), (4), and (6) when k = o(N).

The proof of Lemma 5 is provided in Appendix F. When k = 1, the other Conditions (3) and
(5) will also be satisfied. Specifically, TR constructed on the overall rank in 1-MDP is exactly
distribution-free, while its distribution can be approximated by χ2

2 when N is large enough.

Remark 6 The above theoretical results allow the similarity graph to be very dense such as k ≍
Nβ for some β ∈ (0, 1). Besides, the conditions in Theorem 4 are only sufficient conditions. As we
observed in numeric experiments, even if some conditions are violated, the tail probability of TR

can usually be well controlled by the tail probability of χ2
2.

Theorem 7 (Consistency) For two continuous multivariate distributions FX and FY , if the graph-
induced rank is used with the k-MST or k-NNG based on the Euclidean distance, where k = O(1),
then the power of RISE of level α ∈ (0, 1) goes to one in the usual limiting regime.

The proof of Theorem 7 is provided in Appendix G. It follows straightforwardly from Schilling
(1986) and Henze and Penrose (1999), which involves the (stochastic) limit of the statistic TR.

Theorem 8 Assume that FX and FY satisfy Assumptions 1-2 in Biswas et al. (2014), and there exist
σ2
1, σ

2
2 > 0 and υ2 such that for X ∼ FX and Y ∼ FY independently, limd→∞E∥X−EX∥22/d =

σ2
1 , limd→∞E∥Y −EY ∥22/d = σ2

2 , and limd→∞ ∥EX −EY ∥22/d = υ2, where d is the dimension
of the data. Without loss of generality, assume that σ2

1 ≥ σ2
2 . When m,n ≥ 2, for a fixed α ∈ (0, 1),

we have limd→∞ P (TR > χ2
2(1− α)) = 1 for

(1) Rg-NN with k < min{n,m} when either of the following conditions hold:

(a) |σ2
1 − σ2

2| < υ2, N ≥ Cα for a constant Cα > 0 depending only on α,

(b) σ2
1 − σ2

2 > υ2, the degrees of the k-NNG are bounded by cm/nN1/2−β for constants
c, β > 0, and N ≥ Cα,c,β for a constant Cα,c,β > 0 depending only on α and c and β,

(2) Ro-MDP with k ≤ min{n,m}/2, σ2
1 > σ2

2 , υ2 > 0, m/N = p, N ≥ Cα,p for a constant
Cα,p > 0 depending only on α and p.

Theorem 8 studies the consistency of the test in the HDLSS (high-dimension low-sample size)
regime. The proof the theorem is provided in Appendix H.
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5. Simulation studies

In this section, we conduct simulations to examine the performance of t RISE. We mainly focus on
the graph-induced rank in the k-NNG and the overall rank in the k-MDP as the representation of
the two types of ranks. Supplement S8.3 provides results on other combinations as well. Specifi-
cally, we consider a wide range of null and alternative distributions in moderate/high dimensions,
including multivariate Gaussian distribution, Gaussian mixture distribution, multivariate log-normal
distribution, and multivariate t5 distribution. These different distributions range from light-tails to
heavy-tails, and the alternatives range from location difference, and scale difference to mixed al-
ternatives, with the hope that these simulation settings can cover real-world scenarios. The details
of these settings are in Appendix I.1. Chen and Friedman (2017) suggested using k = 5 for GET
based on k-MST to achieve moderate power. For the k-NNG and k-MDP, the largest value of k can
be N−1, while for the k-MST, the largest value of k can only be N/2. So it is reasonable to choose
k for the k-NNG and k-MDP as twice k for the k-MST. Hence, we use k = 10 for simplicity in
both simulation and real data analysis. We denote our methods as Rg-NN and Ro-MDP for RISE
on the 10-NNG with the graph-induced rank and on the 10-MDP with the overall rank, respectively.
Besides, a detailed comparison between RISE and GET including the results of RISE on the k-MST
with the graph-induced rank and the overall rank is provided in Appendix I.3.

We compare the type-I error and statistical power with seven state-of-art methods, including
two graph-based methods: GET on 5-MST using the R package gTests (Chen and Friedman, 2017),
Rosenbaum’s cross-matching test (CM) using the R package crossmatch (Rosenbaum, 2005); two
rank-based methods: a multivariate rank-based test using measure transportation (MT) (Deb and
Sen, 2021) and a non-parametric two-sample test based on ball divergence (BD) using the R package
Ball (Pan et al., 2018); and three other tests: an LP-nonparametric test statistic (GLP) using the
R package LPKsample (Mukhopadhyay and Wang, 2020), a high-dimensional low sample size k-
sample tests (HD) using the R package HDLSSkST (Paul et al., 2021) and a kernel-based two-sample
test (MMD) using the R package kerTests (Gretton et al., 2012a). The tuning parameters of these
comparable methods are set as their default values.

Here we present the results for m = n = 50 and d ∈ {200, 500, 1000}. The results for
m = 50, n = 100 show similar patterns and are deferred to Tables A.7-A.10 in Appendix I.2.
The empirical sizes are presented in Table A.6 of Appendix I.2. RISE can control the type-I error
well for different significant levels and settings, which validates the effectiveness of the asymptotic
approximation even for relatively small sample sizes (m = n = 50). For other tests, MMD seems
a little conservative and GLP has a somewhat inflated type-I error for some settings, while all of the
other tests can control the type-I error well.

The estimated power of these tests (in percent) is presented in Tables 1-3. The highest power
for each setting and those with power higher than 95% of the highest one are highlighted in bold
type. Table 1 shows the results for the multivariate Gaussian distribution and the Gaussian mixture
distribution settings. From Table 1, we see that for the multivariate Gaussian distribution, under the
simple location alternative (a), MT performs the best, followed immediately by BD, Rg-NN and
Ro-MDP. MMD is also good for d = 200 and 500. Under the directed location alternative (b),
Rg-NN outperforms all of the other tests, followed immediately by Ro-MDP, then by GET. MMD
is also good for d = 200, while all of other tests have low power. Under the simple sale alternative
(c), BD performs the best and Ro-MDP performs the second best. Rg-NN, GET and HD also have
satisfactory performance, while all of other tests have much lower power. Under the correlated
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Table 1: Estimated power (in percent) (α = 0.05) under multivariate Gaussian I: (a) simple loca-
tion, (b) directed location, (c) simple scale, (d) correlated scale, and (e) location and scale
mixed and the Gaussian mixture II: (a) location, (b) scale, and (c) location and scale mixed.

d 200 500 1000 200 500 1000 200 500 1000 200 500 1000
m = n = 50 Setting I (a) Setting I (b) Setting I (c) Setting I (d)

Rg-NN 68 64 60 89 78 67 64 78 84 94 92 91
Ro-MDP 66 58 53 84 71 57 75 87 91 92 93 91

GET 62 56 50 81 68 56 59 71 80 81 78 75
CM 30 27 22 38 29 24 4 4 4 63 63 63
MT 98 96 93 7 6 7 5 5 4 13 14 14
BD 79 61 41 52 37 23 82 94 97 15 16 14
GLP 55 49 22 15 15 8 6 5 5 7 6 6
HD 4 4 3 3 3 4 55 71 84 8 9 7

MMD 90 54 6 98 54 3 0 0 0 0 0 0
Setting I (e) Setting II (a) Setting II (b) Setting II (c)

Rg-NN 98 96 96 53 69 85 62 63 64 68 57 54
Ro-MDP 97 95 96 41 50 58 23 25 26 48 47 50

GET 91 87 86 44 59 75 63 65 66 51 40 38
CM 71 69 71 14 20 23 4 4 4 53 55 57
MT 16 14 11 49 54 56 4 5 5 7 11 12
BD 20 19 18 37 47 63 39 29 30 6 9 11
GLP 9 9 5 8 8 8 8 8 8 8 8 8
HD 8 8 7 2 4 2 3 4 3 2 4 2

MMD 1 0 0 1 2 1 0 1 0 1 1 0

scale alternative (d), Rg-NN and Ro-MDP exhibit the highest power and GET is also good enough.
Under the location and scale mixed alternative (e), Rg-NN and Ro-MDP perform the best again,
CM and GET have moderate power, and all other tests have low power. In these settings, Rg-NN,
Ro-MDP, and GET perform well in the multivariate Gaussian distribution setting, across a wide
range of alternatives, while other tests can perform well in some alternatives, but have low power
in other alternatives. For the Gaussian mixture distribution setting II, we see that under the location
alternative (a), Rg-NN performs the best. Ro-MDP, GET, MT, and BD have moderate power while
all of the other tests have low power. Under the scale alternative (b), GET and Rg-NN outperform
all other tests. Under the location and scale mixed alternative (c), Rg-NN and CM perform the best.
So the overall performance of Rg-NN is the best in the Gaussian mixture setting.

Table 2 shows the result of the multivariate log-normal distribution. Under the simple location
alternative (a), MT performs the best when d is 200, and Ro-MDP performs the best when d is 500
and 1000. Rg-NN, GET, GLP, and BD also perform well. Under the sparse location alternative
(b), Rg-NN outperforms all of the other tests, followed by Ro-MDP. MMD also performs well for
d = 200. Under the scale alternative (c), BD performs the best and Ro-MDP performs the second
best. Under the mixed alternative (d), Ro-MDP and BD perform the best, followed immediately by
MT, Rg-NN, and GET. So the overall performance of Ro-MDP is the best under Setting III.
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Table 2: Estimated power (in percent) (α = 0.05) under the multivariate log-normal distribution
III: (a) simple location, (b) sparse location, (c) scale, and (d) location and scale mixed.

d 200 500 1000 200 500 1000 200 500 1000 200 500 1000
m = n = 50 Setting III (a) Setting III (b) Setting III (c) Setting III (d)

Rg-NN 75 71 68 94 86 71 26 30 32 53 59 58
Ro-MDP 94 95 95 85 80 68 46 58 63 80 88 93

GET 68 61 56 85 69 49 24 26 27 49 51 50
CM 18 17 15 32 30 25 6 6 6 9 10 12
MT 97 94 88 11 25 43 17 19 13 68 65 60
BD 91 93 94 17 14 10 56 68 72 82 91 94
GLP 70 65 30 23 36 15 12 9 10 22 18 11
HD 29 36 43 4 4 4 16 19 23 24 34 44

MMD 83 57 20 98 79 8 19 7 0 54 32 10

Table 3: Estimated power (in percent) (α = 0.05) under the multivariate t5 distribution IV: (a)
simple location, (b) sparse location, (c) scale and (d) location and scale mixed.

d 200 500 1000 200 500 1000 200 500 1000 200 500 1000
m = n = 50 Setting IV (a) Setting IV (b) Setting IV (c) Setting IV (d)

Rg-NN 82 66 57 81 62 49 81 65 58 88 73 63
Ro-MDP 70 63 53 68 55 44 95 93 93 82 78 74

GET 66 44 33 58 36 24 70 46 39 76 56 43
CM 24 21 18 24 20 17 72 68 67 45 41 42
MT 95 92 88 10 9 6 17 19 19 75 72 67
BD 6 6 5 5 5 5 66 66 69 7 6 5
GLP 52 40 18 8 10 6 39 39 39 51 39 30
HD 2 2 2 3 2 2 13 11 11 2 3 1

MMD 62 17 4 42 8 3 30 29 35 60 20 5

Finally, Table 3 shows the result of the multivariate t5 distribution. MT performs the best
under the simple location alternative (a), while Rg-NN and Ro-MDP are also good and outperform
other tests. Under the sparse location alternative (b), Rg-NN performs the best. Ro-MDP performs
the best in the scale alternative (c) and both Rg-NN and Ro-MDP perform the best in the mixed
alternative (d). In these settings, Rg-NN and Ro-MDP are doing well consistently.

To summarize, we observe that RISE performs well in a wide range of alternatives under differ-
ent distributions. Besides, MT performs well in the simple location alternative, e.g., Setting I (a),
III (a), IV (a), but lacks power in directed or sparse location alternative and scale alternatives, while
BD performs well in the simple scale alternative but lacks power in the location alternatives. GET
is doing a good job overall, but it is outperformed by RISE in most of the settings.
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6. Real data analysis

6.1. New York City taxi data

To illustrate the proposed tests, we here conduct an analysis of whether the travel patterns are
different in consecutive months in New York City. We use New York City taxi data from the NYC
Taxi Limousine Commission (TLC) website5. The data contains rich information such as the taxi
pickup and drop-off date/times, longitude, and latitude coordinates of pickup and drop-off locations.
Specifically, we are interested in the travel pattern from the John F. Kennedy International Airport
of the year 2015. Similarly to Chu and Chen (2019), we set the boundary of JFK airport from 40.63
to 40.66 latitude and from −73.80 to −73.77 longitude. Additionally, we set the boundary of New
York City from 40.577 to 41.5 latitude and from −74.2 to −73.6 longitude. We only consider those
trips that began with a pickup at JFK and ended with a drop-off in New York City. The New York
City is then split into a 30× 30 grid with equal size and the number of taxi drop-offs that fall within
each cell is counted for each day. Thus each day is represented by a 30× 30 matrix and we use the
negative Frobenius norm as the similarity measure.

Table 4: The p-values of the tests for the NYC taxi data.
Method Rg-NN Ro-MDP GET MT BD
Jan/Feb 0.007 0.002 0.090 0.528 0.340
Feb/Mar 0.005 0.000 0.013 0.053 0.050
Mar/Apr 0.000 0.008 0.000 0.030 0.020

We conduct three comparisons over consecutive months: January vs February, February vs
March, and March vs April. With the aim of illustration, we treat them as three separate tests rather
than multiple testing problems. For simplicity, we only compare our method with GET and two
rank-based methods MT and BD that show merits in simulation studies. The p-values of the five
tests are presented in Table 4, where those smaller than 0.05 are highlighted by bold type. For
February vs March, all methods other than MT can reject the null hypothesis at the significance
level of 0.05, while RISE is the only method that can reject the null hypothesis at the significance
level of 0.01. A similar pattern can be observed in the comparison of March and April (MT rejects
this comparison at the 0.05 level as well). It indicates that RISE may be more powerful than other
methods in both comparisons. For the comparison of January and February, RISE is the only test
that can reject at the 0.05 level. We then take a closer look at GET to understand this better in
Appendix J.

6.2. Brain network data

We here evaluate the performance of RISE in distinguishing differences in brain connectivity be-
tween male and female subjects using brain networks constructed from diffusion magnetic reso-
nance imaging (dMRI). The data from the HNU1 study (Zuo et al., 2014) consists of dMRI records
of fifteen male and fifteen female healthy subjects that were scanned ten times each over a period
of one month. Processing the data in the same way as Arroyo et al. (2021), we constructed 300
weighted networks (one per subject and scan) with 200 nodes registered to the CC200 atlas using

5. https://www1.nyc.gov/site/ tlc/about/tlc-trip-record-data.page
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Table 5: The p-values of the tests for the brain network data.
Method Rg-NN Ro-MDP GET MT BD
p-values 0.003 (0.007) 0.019 (0.019) 0.005 (0.011) 0.095 0.057

the NeuroData’s MRI to Graphs pipeline (Kiar et al., 2018). The non-Ecludiean network data are
then represented by 200×200 weighted adjacency matrices. For each subject, we use the average of
their ten networks from different scans as their brain network representation, then we obtain fifteen
networks for the male and female groups, respectively. Here, we also use the negative Frobenius
norm as the similarity measure.

The results are presented in Table 5. Since the sample size is small (N = 30), to check the
validity of the asymptotic p-value approximation, we also show the p-values of GET and RISE from
1000 permutations, which are shown in the brackets. We notice that for RISE, the approximate p-
values are very close to the p-values from permutations even in such a small sample size. All
of these tests have small p-values. BD shows some evidence of difference with a p-value slightly
larger than 0.05 while MT shows less evidence of difference, but RISE can provide a more confident
conclusion with smaller p-values.

Besides, a heat map of the distance matrix of the 30 subjects is presented in Figure A.8 in
Appendix J where the first 15 subjects are male and the following 15 subjects are female. We see an
obvious difference between male and female subjects from the heat map, where the male subjects
have larger within-sample distances, but the female subjects have smaller within-sample distances.
This is evidence of scale difference.

7. Discussion and conclusion

7.1. Potential applications of graph-based ranks

Besides the two-sample hypothesis testing detailed in this paper, the new ranking scheme can also
be applied to other statistical problems, such as the multi-sample tests (Song and Chen, 2022) and
independence tests (Friedman et al., 1983; Heller and Heller, 2016; Shi et al., 2022). For example,
we can propose test statistics based on the within-sample and between-sample ranks to test the
equality of the multi-samples similarly to Song and Chen (2022). We can also define a rank-based
association measure for multivariate data by constructing rank matrices for two sets of multivariate
variables following the procedure of Friedman et al. (1983).

7.2. Kernel and Distance IN Graph

The approach proposed in this paper can be extended to weights other than ranks in weighting the
edges in the similarity graph. By incorporating different weights, the performance of the test can be
different. For example, kernel-based methods are popular since they can be applied to any data and
distance-based methods are intuitive. Here we discuss extending our framework to these methods
for the two-sample testing problem. Specifically, we can define Rij = K(yi, yj)1

(
(i, j) ∈ Gk

)
,

where K is a kernel function or a negative distance function, for example, the Gaussian kernel
K(yi, yj) = exp

(
− ∥yi − yj∥2/(2σ2)

)
with the kernel bandwidth σ. We then define statistics

based on Kernel IN Graph (KING) or Distance IN Graph (DING). By Theorem 9, the asymptotic
property of the two-sample test statistic TR holds.
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Theorem 9 Let R = (Rij)
j∈[N ]
i∈[N ] ∈ RN×N be a symmetric matrix with non-negative entries and

zero diagonal elements. Suppose further Rij ≥ 1 if Rij > 0 and maxi,j Rij = o
(
N2r2d

)
. In the

usual limit regime, under the permutation null distribution and Conditions (1)-(6), we have that(
Zw, Zdiff

)T D→ N2(02, I2) and TR
D→ χ2

2.

7.3. Other graph-based ranks

Besides the two graph-based ranks proposed in the paper, we can also define other types of graph-
based ranks. For example, we can define the graph-depth rank which lies between the graph-induced
rank and the overall rank. For all (i, j) ∈ Gk, by definition, there exists 1 ≤ l ≤ k such that
(i, j) ∈ Gl/Gl−1. Let rij be the normalized rank (e.g., the largest one ranks 1 and the smallest one
ranks 1/M , where M is the number of edges to be ranked) of S(Zi, Zj) among S(Zl, Zs), (l, s) ∈
Gl/Gl−1. We then define the graph-depth rank as Rij =

∑k
l=1 1

(
(i, j) ∈ Gl

)
− 1 + rij . This

graph-depth rank utilizes more information from the graphs than the overall rank by keeping the
order of the graph sequence. Specifically, an edge from Gl/Gl−1 will rank higher than an edge
from Gl+1/Gl since the former one is added to the graph earlier, while the overall rank will lose
the information. On the other hand, the graph-depth rank exploits more similarity information
by imposing more weights on the edges with higher similarity within a graph. We explored the
performance of the graph-depth rank and it shows similar results to the other two ranks.

7.4. Conclusion

We propose a new framework of an asymptotically distribution-free rank-based test, which shows
superior performance under a wide range of alternatives. The computational times for k-NN, k-
MST, and k-MDP are O(N2d), O

(
N2(d + logN)

)
(Friedman and Rafsky, 1979) and O

(
N2(d +

kN)
)

(Rosenbaum, 2005) respectively, while computing shortest Hamiltonian path (SHP) (Biswas
et al., 2014) is NP-hard. If we use the kd-tree algorithm to search for the approximate nearest
neighbors, it takes O(dN(logN+k log d) time (Beygelzimer et al., 2013). Specifically, we suggest
using Rg-NN because of its robust performance and lower computational complexity. In most
settings of the paper, we fix k = 10 for Rg-NN, which is already good enough in terms of power.
For tests based on similarity graphs, the choice of the graph is still an open question. Some previous
works (Friedman and Rafsky, 1979; Zhang and Chen, 2022; Chen and Friedman, 2017; Chen et al.,
2018) suggested to use the k-MST and set k as a small constant number, e.g., k = 3 or k = 5.
Recently, Zhu and Chen (2021) observed that a denser graph can improve the power of the tests
such that k = O(Nλ) for some 0 < λ < 1 where N is the total number of observations. Following
this, Zhang and Chen (2021) compared the power for different λ’s under various simulation settings
and suggested using λ = 0.5 for GET, where it showed adequate power across different simulation
settings. Here we adopt a similar procedure to explore k for RISE with details in Appendix K. Based
on these numerical results, we found that if the sample size is large enough, it can be sufficient to
use k = 10, otherwise, using k = [N0.65] for k-NNG or k-MDP could be a good choice when
computation is not an issue. Another plausible way could be to select a few representative values of
k’s to run the test and then combine the results.
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Appendix A. Proof of Theorem 1

Let gi = 1 if the ith sample is from FX and gi = 0 if from FY . Then Ux and Uy can be rewritten as

Ux =
N∑
i=1

N∑
j=1

gigjRij and Uy =
N∑
i=1

N∑
j=1

(1− gi)(1− gj)Rij .

Under the permutation null distribution, for i, j, s, k all different, we have

E(gi) =
m

N
, E(gigj) =

m(m− 1)

N(N − 1)
,

E(gigjgk) =
m(m− 1)(m− 2)

N(N − 1)(N − 2)
, E(gigjgkgs) =

m(m− 1)(m− 2)(m− 3)

N(N − 1)(N − 2)(N − 3)
.

Recall that R is symmetric with zero diagonal elements, then

E(Ux) =
N∑
i=1

N∑
j ̸=i

RijE(gigj) =
m(m− 1)

N(N − 1)

N∑
i=1

N∑
j ̸=i

Rij = m(m− 1)r0 ,

and similarly E(Uy) = n(n− 1)r0. Then we have

E(U2
x) =

N∑
i=1

N∑
j=1

N∑
s=1

N∑
l=1

RijRslE(gigjgsgl)

=2

N∑
i=1

N∑
j=1

R2
ijE(gigj) + 4

N∑
i=1

N∑
j=1

N∑
s ̸=i,j

RijRisE(gigjgs)

+
N∑
i=1

N∑
j=1

N∑
s ̸=i,j

N∑
l ̸=i,j,s

RijRslE(gigjgsgl)

=
m(m− 1)n

(
2(n− 1)r2d + 4(m− 2)(N − 1)r21 +

N(N−1)(m−2)(m−3)
n r20

)
(N − 2)(N − 3)

.
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Combing with Var(Ux) = E(U2
x)−E(Ux)

2, we can obtain the variance of Ux under the permutation
null distribution. A similar result can be obtained for Var(Uy). Finally, we have Cov(Ux, Uy) =
E(UxUy)−E(Ux)E(Uy), where

E
(
UxUy

)
=

N∑
i=1

N∑
j=1

N∑
s=1

N∑
l=1

RijRslE
(
gigj(1− gs)(1− gl)

)
=

N∑
i=1

N∑
j=1

N∑
s=1

N∑
l=1

RijRsl

(
E(gigj)−E(gigjgs)−E(gigjgl) +E(gigjgsgl)

)
=m(m− 1)N(N − 1)r20 − 2

m(m− 1)

N

N∑
i=1

N∑
j=1

Rij(R̄i· + R̄j·)

− 2
m(m− 1)

N

N∑
i=1

N∑
j=1

Rij(R̄i· + R̄j·) + Var(Ux)

=m(m− 1)N(N − 1)r20 − 4m(m− 1)(N − 1)r21

− 2
m(m− 1)(m− 2)

N(N − 1)(N − 2)

(
N2(N − 1)2r20 − 2N(N − 1)2r21

)
+Var(Ux) .

We then finish the proof by plugging in the expression of Var(Ux).

Appendix B. Proof of Theorem 2

We have

det(Σ) = Var(Ux)Var(Uy)− Cov(Ux, Uy)
2

=
32m2n2(m− 1)2(n− 1)2(N − 1)Vr

(
(N − 2)Vd − 2(N − 1)Vr

)
(N − 2)2(N − 3)

̸= 0 if Vr ̸= 0 and (N − 2)Vd − 2(N − 1)Vr ̸= 0.

In the following, we briefly discuss the two cases. It is obvious that (C1) happens when R̄i· = r0.
For instance, the graph-induced rank in the k-MDP satisfies (C1) as all vertices are required to have
the exact same degree k for the k-MDP and thus R̄i· = r0 for all i. We can also show that (C2)
happens only for some special graphs. For example, when |Gk| ≤ N − 1 where | · | denotes the
cardinality of a set and the number of edges for a graph, we have

N(N − 1)2r21 ≤ N2(N − 1)2

4
r20 +

N(N − 1)

2
r2d

and

(N − 2)Vd − 2(N − 1)Vr = (N − 2)r2d − 2(N − 1)r21 +Nr20

≥ (N − 2)(N − 1)r21 − 2(N − 1)r21 +Nr20

= N((N − 1)r20 − r21)

≥ (N − 3)r2d −
N(N − 3)

2
r20
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=
N − 3

N(N − 1)

( N∑
i=1

N∑
j=1

R2
ij −

(
∑N

i=1

∑N
j=1Rij)

2

2(N − 1)

)
≥ 0

by Cauchy–Schwarz inequality and |Gk| ≤ N − 1. The equalities hold if and only if for some i, we
have Rij = Rji = c for some constant c and all j ̸= i, and Rjl = 0 for all j, l ̸= i. As a result, Gk

is perfectly star-shaped with the hub vertex i, and all other vertices have the same rank c related to
the vertex i.
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Figure A.3: Boxplots of the two corner conditions.

Except for such special graphs, it is rare to have graphs that satisfy (C1) or (C2). For example,
the graph-induced rank in the k-NNG and the overall rank in the k-MDP would hardly ever run into
either (C1) or (C2). We check it through Monte Carlo simulations by generating datasets from the
standard multivariate Gaussian distribution with different sample sizes N ’s and dimension d’s. For
each dataset, we calculate the two ratios r21/r

2
0 and (N − 2)Vd/

(
2(N − 1)Vr

)
. The procedure is
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repeated 1, 000 times for each combination of N ∈ { 50, 100, 200 } and d ∈ { 50, 1000 } using R
constructed by the graph-induced rank in the k-NNG and the overall rank in the k-MDP, respec-
tively, where k is set as 5, [N0.5] and [N0.8], respectively. Among these 18, 000 simulation runs,
the smallest r21/r

2
0 value is 1.049 and the smallest (N − 2)Vd/

(
2(N − 1)Vr

)
value is 3.219. They

are all larger than 1. The boxplots of the two corner conditions under each combination of k, d, and
N are shown in Figure A.3. We find that neither (C1) nor (C2) happens in any of these simulation
runs. In practice, when we apply the method, we can easily check whether the two cases happen.
If it unfortunately happens, we could always use a different type of similarity graph to avoid the
problem.

Appendix C. Proof of Theorem 3

Denote U = (Ux − µx, Uy − µy)
T and A =

(
1 −1

n−1
N−2

m−1
N−2

)
. Since A is invertible, we have

TR = U
T
Σ−1U = U

T
AT(AΣAT)−1AU .

It is easy to see that

AΣAT =

(
σ2
diff 0
0 σ2

w

)
and AU =

(
Udiff −E(Udiff), Uw −E(Uw)

)T, thus finishing the proof.

Appendix D. Proof of Theorems 4

At first, we consider the bootstrap null distribution, which places probability 1/2N on each of the
2N assignments of N observations to either of the two samples, i.e., each observation is assigned
to sample X with probability m/N and to sample Y with probability n/N , independently from
any other observations. Let EB, VarB, CovB be expectation, variance, and covariance under the
bootstrap null distribution. It is not hard to see that the number of observations assigned to sample
X may not be m. Let nX be this number and ZX = (nX − m)/σB where σB is the standard
deviation of nX under the bootstrap null distribution. Notice that the bootstrap null distribution
becomes the permutation null distribution conditioning on nX = m.

By applying Theorem 1 and making simplifications, we have that

µw = E(Uw) =
N(n− 1)(m− 1)

N − 2
r0 ; µdiff = E(Udiff) = (N − 1)(m− n)r0 ;

σ2
w = Var(Uw) =

2m(m− 1)n(n− 1)

(N − 2)2(N − 3)
{(N − 2)(r2d − r20)− 2(N − 1)(r21 − r20)}

and

σ2
diff = Var(Udiff) = 4(N − 1)mn(r21 − r20) .
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Since gi’s are independent under the bootstrap null distribution, it’s not hard to derive that

EB(Ux) =
m2(N − 1)

N
r0 ; EB(Uy) =

n2(N − 1)

N
r0 ,

VarB(Ux) =
2m2n2(N − 1)

N3
r2d +

4nm3(N − 1)2

N3
r21 ,

VarB(Uy) =
2m2n2(N − 1)

N3
r2d +

4n3m(N − 1)2

N3
r21 ,

CovB(Ux, Uy) =
2m2n2(N − 1)

N3
r2d −

4n2m2(N − 1)2

N3
r21 ,

which implies that

µB
w = EB(Uw) =

N − 1

N(N − 2)
(Nmn−m2 − n2)r0 ,

µB
diff = EB(Udiff) = (N − 1)(m− n)r0 ,

and

(σB
w)

2 = VarB(Uw) =
2(N − 1)m2n2

N3
r2d +

4(N − 1)2nm(m− n)2

(N − 2)2N3
r21 ,

(σB
diff)

2 = VarB(Udiff) =
4(N − 1)2nm

N
r21 , and (σB)2 = VarB(nX) =

mn

N
.

By defining ZB
w = (Uw − µB

w)/σ
B
w, Z

B
diff = (Udiff − µB

diff)/σ
B
diff , we express (Zw, Zdiff) in the

following way:(
Zw

Zdiff

)
=

(
σB
w/σw 0
0 σB

diff/σdiff

)(
ZB
w

ZB
diff

)
+

(
(µB

w − µw)/σw
(µB

diff − µdiff)/σdiff

)
=

(
σB
w/σw 0

0
√
(N − 1)/N

)(
ZB
w√

TZB
diff

)
+

(
(µB

w − µw)/σw
(µB

diff − µdiff)/σdiff

)
,

(A.5)

where T = r21/(r
2
1−r20). Since the distribution of (Zw, Zdiff) under the permutation null distribution

is equivalent to the distribution of (ZB
w , Z

B
diff) | ZX = 0 under the bootstrap null distribution, we

only need show following two statements for proving Theorem 4:

(i)
(
ZB
w ,

√
T (ZB

diff −
√

1− 1/TZX), ZX

)
is asymptotically multivariate Gaussian distributed

under the bootstrap null distribution and the covariance matrix of the limiting distribution is
of full rank.

(ii) σB
w/σw → cw; (µ

B
w − µw)/σw → 0; (µB

diff − µdiff)/σdiff → 0 where cw is a positive constant.

From Statement (i), the asymptotic distribution of
(
ZB
w ,

√
T (ZB

diff−
√
1− 1/TZX)

)
condition-

ing on ZX = 0 is a bivariate Gaussian distribution under the bootstrap null distribution when the
joint distribution of

(
ZB
w ,

√
T (ZB

diff −
√

1− 1/TZX), ZX

)
is smooth at ZX = 0, which further im-

plies that the asymptotic distribution of (ZB
w ,

√
TZB

diff) under the permutation null distribution is a
bivariate Gaussian distribution. Then, with Statement (ii) and equation (A.5), we have (Zw, Zdiff) is
asymptotically bivariate Gaussian distributed under the permutation null distribution. Finally, with
the fact that Var(Zw) = Var(Zdiff) = 1 and Cov(Zw, Zdiff) = 0, we have that TR

D→ χ2
2.
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The proof of Statement (i) is deferred to Appendix L. Here, we show the joint distribution of(
ZB
w ,

√
T (ZB

diff −
√
1− 1/TZX), ZX

)
is smooth at ZX = 0. It can be noticed that ZX = 0 is

not a singular point and the behavior of the three random variables has nothing special at ZX = 0.
This can be roughly shown as follows. Let (Ūx, Ūy) be the statistics from the bootstrap data which
only has one different label with (Ux, Uy). Without loss of generality, assume that (Ūx, Ūy) have
m̄ = m + 1 > 1 observations with label X and n̄ = n − 1 > 0 observations with label Y . Let
Ūw = n̄−1

N−2 Ūx +
m̄−1
N−2 Ūy and Ūdiff = Ūx − Ūy. Then

max
{
|Uw − Ūw|, |(Udiff − Ūdiff |

}
≤ 2 max

i=1,...,N
Ri· .

We have

|ZB
w − Z̄B

w | =
|UB

w − ŪB
w |

σB
w

≤ C
maxi=1,...,N Ri·√

N2r2d

≾

√
N2r21√
N2r2d

→ 0

by Condition (1) and (σB
w)

2 ≍ N2r2d. We also have

|ZB
diff − Z̄B

diff | ≤
|UB

diff − ŪB
diff |

σB
diff

≤ C
maxi=1,...,N Ri·√

N3r21
≾

1√
N

→ 0

since (σB
diff)

2 ≍ N3r21. As a result, the joint distribution of
(
ZB
w ,

√
T (ZB

diff −
√
1− 1/TZX), ZX

)
is smooth at ZX = 0.

For Statement (ii), by Condition (1) that r1 ≺ rd and Cauchy–Schwarz inequality that r2d ≥
r21 ≥ r20, we have

σ2
w ≍ N2(r2d − 2r21 + r20) ≍ N2r2d; (σ

B
w)

2 ≍ N2r2d; σ
2
diff ≍ N3(r21 − r20); (σ

B
diff)

2 ≍ N3r21 .

Since µB
diff − µdiff = 0 and

µB
w − µw =

mn

N
r0 ≍ Nr0,

by Condition (1), we have
µB
w − µw

σw
≍ r0/rd ≾ r1/rd → 0 .

We then finish the proof of Statement (ii).

Appendix E. Discussion on Conditions of the Asymptotic Null Distribution

Denote K = maxRij (for example, K = k for the graph-induced rank in k-NNG or k-MST
and K = Nk/2 for the overall rank in k-MDP). Usually we have r0 ≍ K|Gk|/N2 and r2d ≍
K2|Gk|/N2 where |Gk| ≍ Nk, which hold for the three types of graphs in Section 2. Conditions
(1)-(4) essentially require the absence of hubs that nodes with a large degree or a cluster of small
hubs. For instance, assuming the largest degree of Gk is bounded by Ck for some constant C, we
have Conditions (1), (2), (4), and (6) always hold such as

r21 =
1

N(N − 1)2

N∑
i=1

(

N∑
j ̸=i

Rij)
2 ≲

K2k2

N2
≺ r2d ,
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N∑
i=1

( N∑
j=1

R2
ij

)2
≾ N(kK2)2 ≍ N3r4d ≍ K4|Gk|2/N ,

N∑
i=1

R̃3
i· ≤ max

i
|R̃i·|NVr ≲ NVrkK/N ≺ NrdVr ,

N∑
i=1

N∑
j=1

N∑
s ̸=i,j

N∑
l ̸=i,j

RijRjsRslRli ≾ KN3
N∑
i=1

R̄3
i· ≾ K4Nk3 ≺ K4N2k2 ≍ N4r4d ,

when k = o(N). Particularly, Condition (6) can be viewed the constraint on the number of squares
in Gk, denoted as Nsq. We then have

N∑
i=1

N∑
j=1

N∑
l ̸=i,j

N∑
s ̸=i,j

RijRjlRlsRsi ≲ K4Nsq and N4r4d ≍ K4|Gk|2 .

Thus, if Nsq ≺ |Gk|2, Condition (6) will hold even if the degrees are not asymptotically bounded
by k. For Condition (3), by

∑N
i=1

∣∣R̃i·
∣∣3 ≲ maxi |R̃i·|NVr, it holds if

max
i

|R̃i·| ≺
√
NVr =

( N∑
i=1

R̃2
i·
)0.5

, (A.6)

which may be satisfied unless the variation of the average row-wise ranks Vr is dominated by some
vertices such that

∑N
i=1 R̃

2
i· ≈ R̃2

j· for some vertex j. Finally, for Condition (5), by Cauchy–Schwarz
inequality,

∣∣ N∑
i=1

N∑
j=1

N∑
s=1,s ̸=j

RijRisR̃j·R̃s·
∣∣ = ∣∣ N∑

i=1

( N∑
j=1

RijR̃j·
)2 − N∑

i=1

N∑
j=1

R2
ijR̃

2
j·
∣∣

≤
N∑
i=1

( N∑
j=1

RijR̃j·
)2 ≤ N∑

i=1

CkK2max
j

R̃2
j·

= CNkK2max
j

R̃2
j· ≍ N2r2d max

j
R̃2

j·.

As a result, Condition (5) holds if maxj R̃
2
j· ≺ NVr, which is equivalent to (A.6).

We verify conditions (3) and (5) on simulation as follows. We set m = n = N/2 and in-
crease N from 50 to 4000 and generate the observations from Fx = Fy = Nd(0d, Id). We con-
sider three combinations of the data dimension d and the k for k-NNG and k-MDP: (1) (d, k) =
(40, 5); (2) (d, k) = (1000, [

√
N ]); and (3) (d, k) = (N, [

√
N ]). We calculate the two ratios

A3 =
∑N

i=1

∣∣R̃i·
∣∣3/(NVr)

1.5 and A5 =
∣∣∑N

i=1

∑N
j=1

∑N
s=1,s ̸=j RijRisR̃j·R̃s·

∣∣/N3r2dVr for Con-
ditions (3) and (5), respectively and show the average values based on 100 simulations in Figure A.4.
We can see that for both Rg-NN and Ro-MDP, the two ratios converge to zero or are very close to
zero, which verifies that the two conditions are satisfied.

Upon examining the New York City taxi data, it is observed that the highest values for A3 and
A5 in the eleven comparisons are 0.249 and 0.025 for Rg-NN, and 0.169 and 0.107 for Ro-MDP,
respectively. In the brain network data, these two ratios are recorded as 0.317 and 0.032 for Rg-NN,
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Figure A.4: The average ratios of Conditions (3) and (5) based on 100 simulations for Rg-NN and
Ro-MDP.

and 0.243 and 0.063 for Ro-MDP, respectively. These values are in alignment with the simulation
results in Figure A.4.

Even though the value of A3 is not sufficiently low, the corresponding asymptotic p-values
maintain a high level of accuracy, as can be seen in Table 5. This suggests that the present sufficient
conditions leave room for potential enhancements, an aspect that warrants future exploration.

Appendix F. Proof of Lemma 5

Proof A k-MDP is an undirected graph where each vertex has degree k, thus it has Nk/2 edges in
total (assuming that N is even for simplicity). We then have

r0 =
2

N(N − 1)

Nk/2∑
l=1

l =
k(1 +Nk/2)

2(N − 1)
≍ k2 ,

r2d =
2

N(N − 1)

Nk/2∑
l=1

l2 =
k(1 +Nk/2)(1 +Nk)

6(N − 1)
≍ Nk3 ,

r21 =
1

N

N∑
i=1

R̄2
i· ∈ [r20,

1

N(N − 1)2

N∑
i=1

(2ki+ 1)2k2] ≍ k4 ,

which implies Condition (1) since k ≺ N . For Condition (2), we have

N∑
i=1

( N∑
j=1

R2
ij

)2 ≤ N
(
k(Nk/2)2

)2 ≍ N5k6 ≍ N3r4d .
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For Condition (4), by

R̄i· ∈ [
1

N − 1

k∑
l=1

l,
1

N − 1

k∑
l=1

(Nk/2− l + 1)] = [O(k2/N), O(k2)] ,

we have
N∑
i=1

∣∣R̃i·
∣∣3 ≤ max

i
|R̃i·|

N∑
i=1

R̃2
i· ≤ k2NVr ≤ N0.5k1.5NVR ≺ NrdVr .

Finally, for Condition (6), we have

N∑
i=1

N∑
j=1

N∑
l ̸=i,j

N∑
s ̸=i,j

RijRjlRlsRsi ≾ kN2
N∑
i=1

N∑
j=1

N∑
s ̸=i,j

RijRsimin{R̄j· R̄s·}

≤ kN2
N∑
i=1

N∑
j=1

N∑
s ̸=i,j

RijRsiR̄j· ≤ kN3
N∑
i=1

N∑
j=1

RijR̄i·R̄j·

≤ kN3

√√√√( N∑
i=1

N∑
j=1

RijR̄2
i·

)( N∑
i=1

N∑
j=1

RijR̄2
j·

)
= kN4

N∑
i=1

R̄3
i·

≾ N5k7 ≺ N6k6 ≍ N4r4d .

Appendix G. Proof of Theorem 7

Proof Let fx and fy be the density function of FX and FY , respectively. When k = O(1), if the
similarity graph is the k-MST or the k-NNG, following the approach of Henze and Penrose (1999)
or Schilling (1986), we have

Uj

N
→ k(k + 1)

2

∫
p2jf

2
j (z)∑

i=x,y pifi(z)
dz almost surely,

where j = x, y, px = limm,n→∞m/(m+n) and py = 1− py. Let δj = limN→∞(Uj −µj)/N for
j = x, y. We then have

lim
N→∞

TR

N
= lim

N→∞
(δx, δy)

(Σ
N

)−1
(δx, δy)

T = a(δx − δy)
2 + b(pyδx + pxδy)

2 ,

where a = limN→∞N/σ2
diff and b = limN→∞N/σ2

w. By Theorem 1, Var(Uw) = O(N), so
b > 0. It can be shown that pyδx + pxδy > 0 when f1 and f2 differ on a set of positive measure:

pyδx + pxδy =
k(k + 1)pxpy

2

(∫ ∑
i=x,y pifi(z)

2∑
i=x,y pifi(z)

dz − 1
)

=
k(k + 1)p2xp

2
y

2

∫ (
fx(z)− fy(z)

)2∑
i=x,y pifi(z)

dz > 0 .

Thus, RISE is consistent.
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Appendix H. Proof of Theorem 8

Proof We first show (1). For k-NNG, Let {Nij}i,j∈{X,Y } be the number of edges pointing from
sample i to sample j. Then, it is easy to see that NXX + NXY = km and NY X + NY Y = kn.
As shown in Section 4 of Biswas et al. (2014), when d → ∞, ∥X1 −X2∥22/d, ∥Y1 − Y2∥22/d, and
∥X1−Y1∥22/d converge to 2σ2

1 , 2σ2
2 , and σ2

1 +σ2
2 +υ2 in probability, respectively. Then the sum of

distances of the edges in the k-NNG divided by d converges in probability to 2NXXσ2
1+2NY Y σ

2
2+

(NXY +NY X)(σ2
1+σ2

2+υ2) = 2kmσ2
1+2knσ2

2+NXY (υ
2−(σ2

1−σ2
2))+NY X(υ2+(σ2

1−σ2
2)).

For (a), when |σ2
1 − σ2

2| < υ2, the above sum is minimized when NXY = NY X = 0, so all
edges in the k-NNG are within samples. Then for Rg-NN, we have Ux = m

∑k
i=1 i =

k(k+1)m
2

and Uy = n
∑k

i=1 i = k(k+1)n
2 . Besides, we have r0 = 1

N(N−1)N
∑k

i=1 i = k(k+1)
2(N−1) and r2d ≤

2
N(N−1)N

∑k
i=1 i

2 = k(k+1)(2k+1)
3(N−1) . Then

σ2
w ≤ 2m(m− 1)n(n− 1)

(N − 2)2(N − 3)
(N − 2)(r2d − r20) ≤

8n2m2r2d
N2

≤ 32k3m2n2

N3
.

In addition,

Zw =
(n− 1)mk(k + 1) + (m− 1)nk(k + 1)

2(N − 2)σw
− N(n− 1)(m− 1)

(N − 2)σw

k(k + 1)

2(N − 1)

=
mn(N − 2)k(k + 1)

2(N − 1)σw
≥ mnk2

4σw

We then get

TR ≥ Z2
w ≥ kN3

512
> χ2

2(1− α)

when N ≥ Cα for a constant Cα > 0 depending only on α.
For (b), when σ2

1 − σ2
2 > υ2, the sum is minimized when NXY = km, NY X = 0. Then for

Rg-NN, we have Ux = 0 and Uy = n
∑k

i=1 i =
k(k+1)n

2 . By the condition in (b) that the degrees of
the k-NNG are bounded by dk = c

√
m/nN1/2−β , we have

r21 ≤ 1

N(N − 1)2

N∑
i=1

(kdk)
2 ≤

4k2d2k
N2

and

σ2
diff = 4(N − 1)mn(r21 − r20) ≤ 4(N − 1)mnr21 ≤

16mnk2d2k
N

.

We then get

Zdiff =
−nk(k + 1)

2σdiff
− (N − 1)(m− n)k(k + 1)

2(N − 1)σdiff
= −mk(k + 1)

2σdiff
≤ − k

8
√
c
Nβ,

and as a result,

TR ≥ Z2
diff ≥ k2

4c
N2β > χ2

2(1− α)

when N ≥ Cα,c,β for a constant Cα,c,β > 0 depending only on α, c and β.
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We next show (2). For simplicity, assume that m and n are even. When m or n is not even,
a similar proof can be applied with a more tedious procedure, thus leaving it out here. For k-
MDP, let A, B and C be the number of edges connecting within sample X , within sample Y , and
between sample X and sample Y , respectively. With a similar argument as in proving (1), when
d → ∞, the sum of distances of the edges in k-MDP divided by d converges in probability to
2kAσ2

1 + 2kBσ2
2 + kC(σ2

1 + σ2
2 + υ2) = mk(σ2

1 + nσ2
2 + Cυ2), which is minimized if and only

if C = 0 since υ2 > 0. Thus, the k-MDP is constructed with all pairs, with both observations
coming from the same distribution. Then by the Proof of Lemma 5, we obtain r0 = k(Nk+2)

4(N−1)

and r2d = k(Nk+2)(1+Nk)
12(N−1) . Besides, Ux =

∑km/2
j=1 2j = km(km+2)

4 and Uy =
∑kN/2

j=km/2+1 2j =
kN(kN+2)

4 − Ux. We then get

Zw =
qUx + pUy − µw

σw

=
(n− 1)km(km+ 2) + (m− 1){kN(kN + 2)− km(km+ 2)}

4(N − 2)σw

− N(n− 1)(m− 1)

(N − 2)σw

k(kN + 2)

4(N − 1)

=
(n−m)km(km+ 2) + (m− 1)kN(kN + 2)

4(N − 2)σw
− kN(kN + 2)(n− 1)(m− 1)

4(N − 2)(N − 1)σw

=
kmn

4(N − 2)(N − 1)σw
{(kN + 2)(N − 2)− k(n−m)(N − 1)} ≥ k2m2n

4(N − 1)σw

and

σ2
w =

2m(m− 1)n(n− 1)

(N − 2)2(N − 3)
{(N − 2)(r2d − r20)− 2(N − 1)(r21 − r20)}

≤
2m2n2r2d

(N − 2)(N − 3)
≤ 16m2n2k3

3N
.

Then

TR ≥ Z2
w ≥ km2

256N
=

kp2N

256
> χ2

2(1− α)

when N ≥ Cα,p for some constant Cα,p > 0 depending only on α and p.

Appendix I. Addition Simulation Details and Results

I.1. Detailed Settings

The four settings are as follows:

I. FX = Nd(0d,ΣX) is the multivariate Gaussian distribution, where ΣX,ij = 0.6|i−j|.

(a) Simple location: FY = Nd(δ1d,ΣX) where δ = 0.5 log d/
√
d.

(b) Directed location: FY = Nd(µ,ΣX) where µ = 0.5 log dµ′/∥µ′∥2 and µ′ ∼ Nd(0d, Id)
is fixed.
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(c) Simple scale: FY = Nd(0d, σ
2ΣX) where σ = 1 + 0.12 log d/

√
d.

(d) Correlated scale: FY = Nd(0d,ΣY ) where ΣY,ij = 0.15|i−j|.

(e) Location and scale mixed: FY = Nd(µ,ΣY ) where µ = 0.2 log dµ′/∥µ′∥2 and µ′ ∼
Nd(0d, Id) is fixed.

II. FX = WNd(0.31d, Id) + (1 − W )Nd(−0.31d, 2Id) is the Gaussian mixture distribution,
where W ∼ Bernoulli(0.5).

(a) Location: FY = WNd

(
(0.3+0.75/ log d)1d, Id

)
+(1−W )Nd

(
−(0.3+0.75/ log d)1d, 2Id

)
.

(b) Scale: FY = WNd(0.31d, (1 + σ)2Id) + (1 − W )Nd(−0.31d, (
√
2 + σ)2Id), where

σ = 0.12
√

50/d.

(c) Location and scale mixed: FY = WNd(0.351d,ΣY ) + (1 − W )Nd(−0.351d, 2ΣY ),
where ΣY,ij = 0.5|i−j|.

III. FX = exp
(
Nd(0d,ΣX)

)
is the multivariate log-normal distribution, where ΣX,ij = 0.6|i−j|.

(a) Simple location: FY = exp
(
Nd(δ1d,ΣX)

)
where δ = 0.5 log d/

√
d.

(b) Sparse location: FY = exp
(
Nd(µ,ΣX)

)
where µj = (−1)j2.8 log d/

√
d, j = 1, . . . , [0.05d],

µj = 0, j = [0.05d] + 1, . . . , d.

(c) Scale: FY = exp
(
Nd(0d, σ

2ΣX)), where σ = 1 + 0.15 log d/
√
d.

(d) Location and scale mixed: FY = exp
(
Nd(δ1d, σΣX)

)
where σ = 1 + 0.1(50/d)0.25

and δ = 0.25 log d/
√
d.

IV. FX = t5
(
0d,ΣX

)
is the multivariate t5 distribution, where ΣX,ij = 0.6|i−j|.

(a) Simple location: FY = t5
(
δ1d,ΣX

)
where δ = 0.5 log d/

√
d.

(b) Sparse location: FY = t5
(
µ,ΣX

)
where µj = (−1)j2.1 log d/

√
d, j = 1, . . . , [0.05d],

µj = 0, j = [0.05d] + 1, . . . , d.

(c) Scale: FY = t5
(
0d,ΣY )), where ΣY,ij = 0.7(0.1)|i−j|.

(d) Location and scale mixed: FY = t5
(
δ1d,ΣY )

)
where ΣY,ij = (0.8)|i−j| and δ =

0.5 log d/
√
d.

I.2. Addition Simulation Results

See Tables A.6-A.10.

I.3. A detailed comparison between RISE and GET

Here, we compare the power of RISE and GET by varying k’s. We also explore the graph-induced
rank (denoted by Rg-MST) and the overall rank (denoted by Ro-MST) in the k-MST. To compare
different graphs in a more unified fashion, for the k-NNG and k-MDP, we set k = 2[Nλ] while for
the k-MST, we set k = [Nλ], for λ ∈ (0, 0.8), since for the k-NNG and k-MDP, the largest value
of k can be N − 1, while for the k-MST, the largest value of k can only be N/2. The results for
different n’s and d’s show similar patterns, so we only present the results for m = n = 50 and
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Table A.6: Empirical sizes of the tests under the four settings when the nominal significance level
α = 0.01 and 0.05, respectively, for m = n = 50 and d = 200, 500, 1000.

d 200 500 1000 200 500 1000 200 500 1000 200 500 1000
α = 0.01 Setting I Setting II Setting III Setting IV
Rg-NN 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01
Ro-MDP 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.00 0.01

GET 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01
CM 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01
MT 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01
BD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01
GLP 0.01 0.01 0.01 0.02 0.03 0.03 0.06 0.07 0.06 0.01 0.01 0.01
HD 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00

MMD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
α = 0.05 Setting I Setting II Setting III Setting IV
Rg-NN 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.04 0.03 0.06 0.04 0.05
Ro-MDP 0.06 0.05 0.04 0.04 0.06 0.04 0.05 0.06 0.04 0.05 0.04 0.05

GET 0.05 0.05 0.04 0.04 0.05 0.06 0.05 0.05 0.04 0.04 0.04 0.05
CM 0.04 0.04 0.03 0.04 0.03 0.04 0.03 0.03 0.04 0.04 0.03 0.03
MT 0.05 0.05 0.06 0.04 0.05 0.05 0.05 0.06 0.07 0.05 0.05 0.04
BD 0.04 0.05 0.06 0.04 0.06 0.04 0.05 0.05 0.05 0.05 0.05 0.05
GLP 0.06 0.05 0.06 0.07 0.08 0.07 0.10 0.09 0.09 0.06 0.06 0.05
HD 0.03 0.04 0.03 0.03 0.04 0.03 0.02 0.03 0.02 0.02 0.02 0.02

MMD 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01

d = 500 here for Settings I-IV in Section I.1 with α = 0.05. Each configuration is repeated 1000
times to estimate the empirical size or power.

The empirical sizes of the five tests under Settings I-IV are presented in Figure A.5. We see that
all of these tests can control the type-I error well even for large λ under all settings. The estimated
power for Settings I and II are presented in Figure A.6 and the estimated power for Settings III
and IV are presented in Figure A.7. We observe that for some settings, the power of these tests
increases first when λ increases, then decreases when λ is too large. The reason is that a denser
graph can contain more similar information among the observations. However, it can also include
noisier information when it is too dense. For GET, when λ = 1 which means the graph is a complete
graph, its test statistic is not well-defined. Its power may approach zero when λ approaches one,
while RISE still has power for a complete graph. From these figures, we see that RISE performs
better than GET in most of the settings for a wide range of k’s.

We notice that Rg-NN has the best performance in most of the settings for all k’s. The improve-
ment of Rg-NN and Ro-MDP over GET is more significant under the heavy-tailed Setting III and
IV. However, Ro-MDP is less powerful under the Gaussian mixed Setting II, which may be due to
the intrinsic property of MDP. Ro-MST has a moderate performance such that it outperforms GET
in most of the settings but is dominated by Rg-NN in most instances. Rg-MST seems not very
robust as it can achieve high power in some cases but is outperformed by GET sometimes.
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Table A.7: Empirical sizes of the tests under the four settings when the nominal significance level
α = 0.01 and 0.05, respectively, for m = 50, n = 100 and d = 200, 500, 1000.

Setting I Setting II Setting III Setting IV
α = 0.01 200 500 1000 200 500 1000 200 500 1000 200 500 1000
Rg-NN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Ro-MDP 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01
GET 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.00 0.00 0.01
CM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MT 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
BD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
GLP 0.01 0.01 0.01 0.03 0.04 0.03 0.06 0.06 0.07 0.02 0.01 0.02
HD 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00
MMD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

Setting I Setting II Setting III Setting IV
α = 0.05 200 500 1000 200 500 1000 200 500 1000 200 500 1000
Rg-NN 0.04 0.04 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.04 0.04 0.03
Ro-MDP 0.04 0.06 0.05 0.05 0.06 0.06 0.05 0.06 0.05 0.06 0.05 0.05
GET 0.04 0.06 0.04 0.04 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.04
CM 0.05 0.05 0.04 0.04 0.05 0.05 0.06 0.04 0.05 0.06 0.04 0.05
MT 0.05 0.06 0.06 0.05 0.06 0.04 0.06 0.06 0.05 0.05 0.05 0.05
BD 0.05 0.06 0.05 0.06 0.06 0.05 0.06 0.05 0.05 0.05 0.04 0.05
GLP 0.04 0.05 0.05 0.08 0.09 0.09 0.08 0.08 0.09 0.06 0.05 0.06
HD 0.04 0.05 0.04 0.05 0.04 0.05 0.03 0.03 0.04 0.03 0.02 0.02
MMD 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01
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Table A.8: Estimated power of the tests with α = 0.05 under the multivariate Gaussian distribution
(Setting I) and the Gaussian mixture distribution (Setting II) for m = 50, n = 100 and
d = 200, 500, 1000.

Setting I (a) Setting I (b) Setting I (c) Setting I (d)
Method 200 500 1000 200 500 1000 200 500 1000 200 500 1000
Rg-NN 80 75 70 97 90 81 82 90 95 100 99 100
Ro-MDP 74 71 66 94 85 73 88 96 98 99 98 99
GET 73 67 61 92 82 71 77 87 92 97 96 96
CM 36 35 33 51 40 33 4 6 6 83 81 80
MT 100 100 99 8 6 7 5 5 5 17 17 18
BD 91 76 56 68 48 30 94 99 100 26 28 26
GLP 73 60 45 15 13 14 7 8 4 8 6 5
HD 6 6 5 6 7 5 72 88 93 8 9 7
MMD 99 94 58 100 99 60 0 0 0 1 0 0

Setting I (e) Setting II (a) Setting II (b) Setting II (c)
Method 200 500 1000 200 500 1000 200 500 1000 200 500 1000
Rg-NN 100 100 100 74 92 99 83 83 83 92 87 81
Ro-MDP 100 100 99 52 68 78 34 36 36 83 86 89
GET 99 99 98 65 88 97 84 83 85 80 72 67
CM 88 88 86 20 30 33 6 5 5 78 80 80
MT 18 18 19 71 82 84 5 6 4 9 12 16
BD 37 35 33 56 69 89 52 42 41 9 12 17
GLP 9 10 4 10 8 8 8 9 9 9 10 9
HD 8 9 7 5 4 4 4 5 4 5 5 4
MMD 9 0 0 2 1 2 1 1 1 2 1 1

Table A.9: Estimated power of the tests with α = 0.05 under the multivariate log-normal distribu-
tion (Setting III) for m = 50, n = 100 and d = 200, 500, 1000.

Setting III (a) Setting III (b) Setting III (c) Setting III (d)
Method 200 500 1000 200 500 1000 200 500 1000 200 500 1000
Rg-NN 88 86 85 98 95 83 42 46 48 72 78 78
Ro-MDP 98 99 98 91 90 78 60 72 77 91 96 97
GET 84 82 78 93 83 61 40 42 44 69 73 74
CM 24 23 21 44 38 32 6 7 7 13 13 14
MT 99 99 98 13 21 39 22 26 22 84 83 79
BD 97 99 98 22 19 14 71 82 84 93 98 98
GLP 85 74 62 22 30 36 12 10 10 26 20 18
HD 35 46 49 5 5 4 19 28 31 29 44 50
MMD 96 87 62 100 100 77 32 16 3 76 60 35
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Table A.10: Estimated power of the tests with α = 0.05 under the multivariate t5 distribution
(Setting IV) for m = 50, n = 100 and d = 200, 500, 1000.

Setting IV (a) Setting IV (b) Setting IV (c) Setting IV (d)
Method 200 500 1000 200 500 1000 200 500 1000 200 500 1000
Rg-NN 91 81 72 93 80 66 87 69 56 95 85 75
Ro-MDP 81 78 69 85 76 62 100 99 99 95 95 94

GET 79 58 47 80 54 38 78 44 21 86 69 56
CM 33 29 25 36 31 22 89 88 86 62 64 59
MT 99 99 99 10 10 7 22 24 28 92 92 86
BD 8 5 6 6 4 6 77 76 81 8 5 6
GLP 67 54 44 7 10 9 53 51 50 66 49 39
HD 3 2 3 3 2 2 23 24 23 3 2 2

MMD 90 52 14 88 31 8 51 51 53 87 52 16

Setting III Setting IV

Setting I Setting II
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Figure A.5: Empirical sizes of RISE and GET for varying λ.
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Setting I (e) Setting II (a) Setting II (b) Setting II (c)
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Figure A.6: Estimated power of RISE and GET for varying λ under Settings I and II.
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Figure A.7: Estimated power of RISE and GET for varying λ under Settings III and IV.
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Table A.11: The edge-count statistics on the kth MST and the p-values of GET using the kth MST
and the k-MST, respectively. The expected edges for each MST are 15.76 and 12.81
for Samples Jan and Feb, respectively.

k 1 2 3 4 5

Edge-count
Jan 15 15 14 14 13
Feb 20 18 19 16 8

p-values
kth MST 0.034 0.112 0.105 0.540 0.109
k-MST 0.034 0.007 0.002 0.003 0.090

Appendix J. More Discussions on Real Data Analysis

For the comparison of January and February, RISE is the only test that can reject at the 0.05 level.
We then take a closer look at GET to understand this better. We first examine each kth MST and
k-MST separately for k = 1, . . . , 5. The test statistic of GET depends on how far the two within-
sample edge counts deviate from their expectations under the null distribution, so we check how
the two edge-count statistics change when k increases from 1 to 5. Table A.11 shows the within-
sample edge counts of each sample in each kth MST. The p-values of GET on the kth MST and
the k-MST for different k’s are also presented. We notice that for most of the kth MSTs, at least
one of the within-sample edge counts somewhat deviates from their corresponding expectations.
However, since GET treats all MSTs equally, there are two issues: (i) different MSTs can contain
opposite information and (ii) a kth MST for a large k can contain noisier information. The first
issue is obvious from the edge-count statistics. For example, the sample February has the within-
sample edge count above its expectation for the first to the fourth MSTs, but below its expectation
for the fifth MST. This makes the p-value increase from 0.003 on the 4-MST to 0.09 on the 5-MST.
The second issue can be observed from the p-values of GET on the kth MST. The p-value of the
comparison on the first MST is small, but it can be very large for other kth MSTs. When the kth
MST does not contain useful information but noise, the consequence for GET is to yield a larger
p-value. On the other hand, RISE is less affected by the two issues by incorporating weights.

Appendix K. Exploration on graphs

We generate i.i.d. samples of Xi ∼ FX and Yi ∼ FY , and set d = 500 and vary the sample sizes
(m,n). Three combinations of (FX , FY ) are considered. Figure A.9 shows how the power varies
with λ such that k = [Nλ] and the nominal significance level is set as 0.05. We see that the optimal
k varies for different settings and it is reasonable to choose λ = 0.65 for both the k-NNG and the
k-MDP to achieve adequate power. Besides, Rg-NN performs better than Ro-MDP.

Appendix L. Proof of Statement (i)

Let
W = a1Z

B
w + a2

√
T (ZB

diff −
√

1− 1/TZX) + a3ZX

= a1Z
B
w + a2

√
TZB

diff + (a3 − a2
√
T − 1)ZX .
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Figure A.8: The heatmap of the distance matrix of the 30 subjects, where the first 15 subjects are
male and the others female.

We firstly show that, in the usual limit regime,

lim
N→∞

VarB(W ) = 0 iff a1 = a2 = a3 = 0.

By the independence of gi’s under the bootstrap null distribution, it is easy to see that

CovB(Z
B
w , Z

B
diff) =

4mn(n−m)

(N − 2)N2

(N − 1)2r21
σB
wσ

B
diff

,

CovB(Z
B
w , ZX) =

2(N − 1)mn(n−m)

(N − 2)N2

r0
σB
wσ

B
,

and CovB(Z
B
diff , ZX) =

2(N − 1)mnr0

NσB
diffσ

B
=

r0
r1

.

As a result, we have
√
TCovB(Z

B
diff , ZX) =

√
T − 1 and

VarB(W ) =a21 + a22(2T − 1) + a23 − 2a2a3
√
T − 1 + 2a1a2

√
TCovB(Z

B
w , Z

B
diff)

+ 2a1(a3 − a2
√
T − 1)CovB(Z

B
w , ZX)

+ 2a2(a3 − a2
√
T − 1)

√
TCovB(Z

B
diff , ZX)

=a21 + a22 + a23 + 2a1a3CovB(Z
B
w , ZX)

+ 2a1a2
(√

TCovB(Z
B
w , Z

B
diff)−

√
T − 1CovB(Z

B
w , ZX)

)
.

Besides, we have
CovB

(
ZB
w , ZX

)
≍ r0√

Nrd
→ 0 ,
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Figure A.9: Estimated power of Rg-NN and Ro-MDP with k = [Nλ] over 1000 repe-
titions under each setting. The three settings are:

(
Nd(0d, Id), Nd(δ11d, Id)

)
,(

t3(0d, Id), t3(δ21d, δ3Id)
)

and
(
Cauchyd(0d, Id),Cauchyd(δ41d, Id)

)
where δ1 =

20√
Nd

, δ2 = 28√
Nd

, δ3 = (1 + 25√
Nd

)2 and δ4 = 1.44√
Nd

. Here δi’s are set to make these
tests have moderate power.
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√
TCovB

(
ZB
w , Z

B
diff

)
−
√
T − 1CovB

(
ZB
w , ZX

)
=

2(N − 1)mn(n−m)

(N − 2)N2σB
w

√
r21 − r20

(2(N − 1)r31
σB
diff

− r20
σB

)
=

2(N − 1)mn(n−m)

(N − 2)N2σB
w

√
r21 − r20

√
N

mn

(
r21 − r20

)
≾

√
r21 − r20√
N3rd

→ 0 ,

by Cauchy–Schwarz inequality r2d ≥ r21 ≥ r20. Thus, we have limN→∞VarB(W ) = a21+a22+a23 >
0 in the usual limit regime. This implies that the covariance matrix of the joint limiting distribution
is of full rank. Then by Cramér-Wold device, Statement (i) holds if W is is asymptotically Gaussian
distributed under the bootstrap null distribution when at least one of constants a1, a2, a3 is nonzero.
We use the Stein’s method (Chen et al., 2010), in particular, the following theorem.

Theorem A.10 (Stein’s Method, Chen et al. (2010), Theorem 4.13) Let
{
ξi, i ∈ J

}
be a ran-

dom field with mean zero, W =
∑

i∈J ξi and Var(W ) = 1, for each i ∈ J there exits Ki ⊂ J
such that ξi and ξKc

i
are independent, then

sup
h∈Lip(1)

∣∣Eh(W )−Eh(Z)
∣∣ ≤√ 2

π
E

∣∣∣∑
i∈J

{
ξiηi −E(ξiηi)

}∣∣∣+∑
i∈J

E
∣∣ξiη2i ∣∣ (A.7)

where ηi =
∑

j∈Ki
ξj , Z is the standard normal random variable.

As long as we show that the right-hand side of (A.7) goes to zero when N → ∞, W converges to
the standard normal distribution by Stein’s Theorem. We can represent the graph by

Gk ≡
(
V = N , E = {(i, j) : Rij > 0, i, j ∈ N}

)
,

where N = {1, . . . , N}. To simplify notations, we let p = m/N, q = n/N , and for each edge
e = (e+, e−) ∈ Gk, let

Je =


0 if ge+ ̸= ge− ,
1 if ge+ = ge− = 1 ,
2 if ge+ = ge− = 0 .

We can reorganize W in the following way:

W =
a1

(
n−1
N−2

(
Ux − p2N(N − 1)r0

)
+ m−1

N−2

(
Uy − q2N(N − 1)r0

))
σB
w

+
a2
√
T
(
Ux − Uy − (p2 − q2)N(N − 1)r0

)
σB
diff

+
(a3 − a2

√
T − 1)

(
nX −m

)
σB

=
∑
e∈G

2Rea1
N − 2

( N

σB
w

(
1(ge+ = 1)− p

)(
1(ge− = 1)− p)− 1(Je = 1) + 1(Je = 2)− p2 − q2

σB
w

)
+
∑
e∈G

2Re
a2
√
T

σB
diff

(
1(ge+ = 1) + 1(ge− = 1)− 2p

)
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+
N∑
i=1

(a3 − a2
√
T − 1)

(
1(gi = 1)− p

)
σB

.

Define the function h : N → R such that h(i) = 1(gi = 1)− p, i ∈ N . Then,(
1(ge+ = 1)− p

)(
1(ge− = 1)− p) = h(e+)h(e−) ,

1(Je = 1) + 1(Je = 2)− p2 − q2 = 2h(e+)h(e−) + (p− q)
(
h(e+) + h(e−)

)
,

1(ge+ = 1) + 1(ge− = 1)− 2p = h(e+) + h(e−) .

Thus, W can be expressed as

W =
∑
e∈Gk

2Re

(
a1
σB
w

h(e+)h(e−) +

(
a2
√
T

σB
diff

− a1(p− q)

σB
w(N − 2)

)(
h(e+) + h(e−)

))

+

N∑
i=1

(a3 − a2
√
T − 1)h(i)

σB

=
∑
e∈Gk

2Rea1
σB
w

h(e+)h(e−) +

(
a2
√
T

σB
diff

− a1(p− q)

σB
w(N − 2)

)
N∑
i=1

2Ri·h(i)

+
N∑
i=1

(a3 − a2
√
T − 1)h(i)

σB

=
∑
e∈Gk

2Rea1
σB
w

h(e+)h(e−)

+

N∑
i=1

(
a2√

pqN(r21 − r20)

(
Ri·

N − 1
− r0

)
− 2a1(p− q)Ri·

σB
w(N − 2)

+
a3√
pqN

)
h(i) ,

where Ri· = (N − 1)R̄i·. Let

b0 =
2a1
σB
w

, bi =
a2
(
R̄i· − r0

)√
pqN(r21 − r20)

− 2a1(p− q)Ri·
σB
w(N − 2)

+
a3√
pqN

for i ∈ N

and ξe = b0Reh(e
+)h(e−) , ξi = bih(i) .

We then have

W =
∑
e∈Gk

ξe +

N∑
i=1

ξi .

Plugging in the expressions of σB
w, σB

diff , σB, and by

R2
i· =

N∑
j=1

N∑
l=1

RijRil ≤
1

2

N∑
j=1

N∑
l=1

(
R2

ij +R2
il

)
= N

N∑
j=1

R2
ij ≤ N2(N − 1)r2d ,

we have
Ri·

σB
w(N − 2)

≾
1√
N
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and

|b0| ≾
1√
N2r2d

, |bi| ≾
∣∣R̄i· − r0

∣∣√
N(r21 − r20)

+
1√
N

.

Denote c0 = 1/
√

N2r2d and ci = |R̄i· − r0|/
√

N(r21 − r20) + 1/
√
N , for i ∈ N . Next, we apply

Theorem A.10 to W̃ = W/
√
VarB(W ).

We now define some notations on the graph Gk. Let Gki be the set of edges with one endpoint
vertex i, Gi,2 be the set of edges with at least one endpoint in Gki. Besides, we use nodeGki

to
denote the vertex set connecting by edges in Gki excluding the vertex i and nodeGi,2 to denote the
vertex set connecting by edges in Gi,2 excluding the vertex i. For each edge e = (i, j) ∈ Gk, we
define Ae = Gki ∪ Gkj , Be = Gi,2 ∪ Gj,2 and Ce to be the set of edges that share at least one
common vertex with an edge in Be.

Let J = Gk ∪N , Ke = Ae ∪ {e+, e−} for each edge e = (e+, e−) ∈ Gk and Ki = Gki ∪ {i}
for each vertex i ∈ N . These Ke’s, Ki’s obviously satisfy the assumptions in Theorem A.10 under
the bootstrap null distribution. Then, we define ηe’s, ηi’s as follows:

ηe = ξe+ + ξe− +
∑
e∈Ae

ξe, for each edge e ∈ Gk, and

ηi = ξi +
∑
e∈Gki

ξe, for each node i ∈ N .

By Theorem A.10, we have

sup
h∈Lip(1)

∣∣EBh(W̃ )−EBh(Z)
∣∣

≤
√

2

π

1

VarB(W )
EB

∣∣∣ N∑
i=1

{
ξiηi −EB(ξiηi)

}
+
∑
e∈Gk

{
ξeηe −EB(ξeηe)

}∣∣∣
+

1

Var
3
2
B(W )

( N∑
i=1

EB

∣∣ξiη2i ∣∣+ ∑
e∈Gk

EB

∣∣ξeη2e ∣∣) .
(A.8)

Our next goal is to find some conditions under which the right hand side (RHS) of inequality (A.8)
can go to zero. Since the limit of VarB(W ) is bounded above zero when a1, a2, a3 are not all zeros,
the RHS of inequality (A.8) goes to zero if the following three terms

(A1) EB

∣∣∣∑N
i=1

(
ξiηi −EB(ξiηi)

)
+
∑

e∈Gk

(
ξeηe −EB(ξeηe)

)∣∣∣ ,

(A2)
∑N

i=1EB|ξiη2i | ,

(A3)
∑

e∈Gk
EB|ξeη2e |

go to zero. For (A1), we have

EB

∣∣∣ N∑
i=1

(
ξiηi −EB(ξiηi)

)
+
∑
e∈Gk

(
ξeηe −EB(ξeηe)

)∣∣∣
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≤EB

∣∣∣ N∑
i=1

{
ξiηi −EB(ξiηi)

}∣∣∣+EB

∣∣ ∑
e∈Gk

(
ξeηe −EB(ξeηe)

)∣∣
≤

√√√√ N∑
i=1

VarB
(
ξiηi
)
+

i ̸=j∑
i,j

CovB
(
ξiηi, ξjηj

)

+

√√√√∑
e∈Gk

VarB
(
ξeηe

)
+

e̸=f∑
e,f

CovB
(
ξeηe, ξfηf

)

=

√√√√√ N∑
i=1

VarB
(
ξiηi
)
+

N∑
i=1

∑
j∈nodeGi,2

CovB
(
ξiηi, ξjηj

)
+

√∑
e∈Gk

VarB(ξeηe) +
∑
e∈Gk

∑
f∈Ce\{e}

CovB(ξeηe, ξfηf ) .

The last equality holds as ξiηi and
{
ξjηj

}
j /∈nodeGi,2

are uncorrelated under the bootstrap null dis-

tribution, and ξeηe and {ξfηf}f /∈Ce
are uncorrelated under the bootstrap null distribution. The

covariance part of the edges is a bit complicated to handle directly, so we decompose it into three
parts as follows based on the relationship of e and f :∑

e∈Gk

∑
f∈Ce\{e}

CovB
(
ξeηe, ξfηf

)
=
∑
e∈Gk

∑
f∈Ae\{e}

CovB
(
ξeηe, ξfηf

)
+
∑
e∈Gk

∑
f∈Be\Ae

CovB
(
ξeηe, ξfηf

)
+
∑
e∈Gk

∑
f∈Ce\Be

CovB
(
ξeηe, ξfηf

)
.

With carefully examining these quantities, we can show the following inequalities (A.9)-(A.16).
The details of obtaining (A.9)-(A.16) are provided in Section L.1.

N∑
i=1

VarB(ξiηi) ≾
N∑
i=1

c4i + c20

N∑
i=1

c2i

N∑
j=1

R2
ij . (A.9)

∑
e∈Gk

VarB
(
ξeηe

)
≾ c20

N∑
i=1

c2i

N∑
j=1

R2
ij + c30

N∑
i=1

ci

N∑
j=1

R3
ij + c40

N∑
i=1

( N∑
j=1

R2
ij

)2
. (A.10)

N∑
i=1

∑
j∈nodeGi,2

CovB
(
ξiηi, ξjηj

)
≾

N∑
i=1

∑
j∈nodeGki

(
c0cicjRij(ci + cj) + c20cicjR

2
ij

)

+ c20

∣∣∣ N∑
i=1

∑
j∈nodeGi,2

bibj

N∑
k=1

RikRjk

∣∣∣ . (A.11)
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∑
e∈Gk

∑
f∈Ae\{e}

CovB(ξeηe, ξfηf )

≾ c30

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil

(
cj
(
Rjl +Ril

)
+ cl

(
Rji +Rjl

)
+ ciRjl

)

+ c40

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil

(
Rjl

(
Rji +Rjl +Ril

)
+

N∑
s=1

RjsRls

)

+ c20

∣∣∣ N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRilbjbl

∣∣∣ .

(A.12)

∑
e∈Gk

∑
f∈Be\Ae

CovB(ξeηe, ξfηf ) ≾ c40

N∑
i=1

N∑
j=1

N∑
l ̸=i,j

N∑
s ̸=i,j

RijRjlRlsRsi . (A.13)

∑
e∈Gk

∑
f∈Ce\Be

CovB(ξeηe, ξfηf ) = 0 . (A.14)

N∑
i=1

EB

(
|ξiη2i |

)
≾

N∑
i=1

c3i + c20

N∑
i=1

ci

N∑
j=1

R2
ij . (A.15)

∑
e∈Gk

EB

(
|ξe|η2e

)
≾ c30

N∑
i=1

N∑
j=1

R3
ij + c0

N∑
i=1

c2iRi· + c30

N∑
i=1

Ri·

N∑
j=1

R2
ij . (A.16)

Based on facts that ci ≾ 1 for all i’s, (A1), (A2) and (A3) go to zero as long as the following
conditions hold:

N∑
i=1

c3i → 0 , (A.17)

c20

N∑
i=1

ci

N∑
j=1

R2
ij → 0 , (A.18)

c30

N∑
i=1

N∑
j=1

R3
ij → 0 , (A.19)

c40

N∑
i=1

( N∑
j=1

R2
ij

)2 → 0 , (A.20)

c0

N∑
i=1

c2iRi· → 0 , (A.21)

N∑
i=1

∑
j∈nodeGki

(
c0cicjRij(ci + cj) + c20cicjR

2
ij

)
→ 0 , (A.22)
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c20

N∑
i=1

∑
j∈nodeGi,2

bibj

N∑
l=1

RilRjl → 0 , (A.23)

c30

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil

(
cj(Rjl +Ril) + cl(Rji +Rjl) + ciRjl

)
→ 0 , (A.24)

c20

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRilbjbl → 0 , (A.25)

c40

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil

(
Rjl(Rji +Rjl +Ril) +

N∑
s=1

RjsRls

)
→ 0 , (A.26)

c40

N∑
i=1

N∑
j=1

N∑
l ̸=i,j

N∑
s ̸=i,j

RijRjlRlsRsi → 0 , (A.27)

c30

N∑
i=1

Ri·

N∑
j=1

R2
ij → 0 . (A.28)

Next, we show that the conditions in Theorem 3.1 can ensure (A.17)-(A.28). For Condition (A.17),
we have

N∑
i=1

c3i =
N∑
i=1

( ∣∣R̄i· − r0
∣∣√

N(r21 − r20)
+

1√
N

)3
≾

∑N
i=1

∣∣R̄i· − r0
∣∣3(

N(r21 − r20)
)1.5 +

1√
N

,

so Condition (A.17) holds when
∑N

i=1 |R̄i· − r0|3/(NVr)
1.5 → 0. For Condition (A.18), we have

c20

N∑
i=1

ci

N∑
j=1

R2
ij =

1

N2r2d

N∑
j=1

R2
ij

( ∣∣R̄i· − r0
∣∣√

N(r21 − r20)
+

1√
N

)
≤ max

i∈N

( ∣∣R̄i· − r0
∣∣√

N(r21 − r20)
+

1√
N

)

by
∑N

i=1

∑N
j=1R

2
ij = N(N − 1)r2d. Then by Theorem 1 in Hoeffding (1951) with r taking 3, we

have maxi∈N |R̄i· − r0|/
√
NVr → 0 when

∑N
i=1 |R̄i· − r0|3/(NVr)

1.5 → 0. Condition (A.19)
holds trivially as

c30

N∑
i=1

N∑
j=1

R3
ij ≤

N(N − 1)r2dK

N3r3d
≤ K√

N2r2d

→ 0 .

Condition (A.20) is equivalent to
∑N

i=1

(∑N
j=1R

2
ij

)2
= o
(
N4r4d

)
. For Condition (A.21), we have

c0

N∑
i=1

c2iRi· =
1

Nrd

N∑
i=1

Ri·

( ∣∣R̄i· − r0
∣∣√

N(r21 − r20)
+

1√
N

)2
≾

1

Nrd

N∑
i=1

Ri·

(
R̄i· − r0

)2
N(r21 − r20)

+
(N − 1)r0

Nrd

44



A NEW RANKING SCHEME FOR MODERN DATA

=
N − 1

Nrd

N∑
i=1

(
R̄i· − r0

)3
N(r21 − r20)

+
2(N − 1)r0

Nrd
,

which goes to zero under the condition
∑N

i=1(R̄i· − r0)
3 = o(NrdVr) and r0 = o(rd). For Condi-

tion (A.22), it is easy to see that

N∑
i=1

∑
j∈nodeGki

c0c
2
i cjRij =

N∑
i=1

∑
j∈nodeGki

c0cic
2
jRij .

Then by ci ≾ 1, we have

N∑
i=1

∑
j∈nodeGki

c0c
2
i cjRij ≾

N∑
i=1

∑
j∈nodeGki

c0c
2
iRij = c0

N∑
i=1

c2iRi· ,

N∑
i=1

∑
j∈nodeGki

c20cicjR
2
ij ≾

N∑
i=1

∑
j∈nodeGki

c20ciR
2
ij = c20

N∑
i=1

ci

N∑
j=1

R2
ij ,

where both the right hand sides go to zero from (A.18) and (A.21). For Condition (A.23), we have

c20

N∑
i=1

∑
j∈nodeGi,2

bibj

N∑
l=1

RilRjl =
N∑
l=1

∑
i∈nodeGkl

∑
j∈nodeGkl

\{i}

bibjRilRjl

=
N∑
l=1

i ̸=j∑
i,j∈nodeGkl

bibjRilRjl ,

which is the same as the condition (A.25). For Condition (A.24), it is easy to see that

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRilcj(Rjl +Ril) =

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRilcl(Rji +Rjl) ,

which means that we only need to deal with the two parts c30
∑N

i=1

∑j ̸=l
j,l∈nodeGki

RjiRilcj(Rjl+Ril)

and c30
∑N

i=1

∑j ̸=l
j,l∈nodeGki

RjiRilciRjl. We have

c30

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRilcj(Rjl +Ril) = c30

N∑
i=1

N∑
j=1

N∑
l ̸=j

cjRjiRil(Rjl +Ril)

≤ c30

N∑
i=1

N∑
j=1

N∑
l=1

cjRji

(
R2

il +R2
jl

)
+ c30

N∑
i=1

Ri·

N∑
j=1

R2
ij ≾ c30

N∑
i=1

Ri·

N∑
j=1

R2
ij ,

c30

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRilciRjl = c30

N∑
i=1

N∑
j=1

N∑
l=1

ciRijRilRjl

≤ c30

N∑
i=1

N∑
j=1

N∑
l=1

ciRij(R
2
il +R2

jl) ≾ c30

N∑
i=1

Ri·

N∑
j=1

R2
ij ,
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and c30
∑N

i=1Ri·
∑N

j=1R
2
ij is bounded by (A.28). For Condition (A.25), first we have

bjbl =
( a2R̃j·√

pqNVr
− 2a1(p− q)Rj·

σB
w(N − 2)

+
a3√
pqN

)( a2R̃l·√
pqNVr

− 2a1(p− q)Rl·
σB
w(N − 2)

+
a3√
pqN

)
=
a22R̃j·R̃l·
pqNVr

+
a2R̃j·√
pqNVr

( a3√
pqN

− 2a1(p− q)Rl·
σB
w(N − 2)

)
+

a2R̃l·√
pqNVr

( a3√
pqN

− 2a1(p− q)Rj·
σB
w(N − 2)

)
+
( a3√

pqN
− 2a1(p− q)Rj·

σB
w(N − 2)

)( a3√
pqN

− 2a1(p− q)Rl·
σB
w(N − 2)

)
and

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil|R̃j·|√
N2Vr

≤
N∑
i=1

N∑
j=1

N∑
l=1

RjiRil|R̃j·|√
N2Vr

=
N∑
i=1

N∑
j=1

RjiRi·|R̃j·|√
N2Vr

≤
N∑
i=1

Ri·

√∑N
j=1R

2
ji

∑N
j=1 R̃

2
j·√

N2Vr

=

∑N
i=1Ri·

√∑N
j=1R

2
ji√

N
≤

√∑N
i=1R

2
i·
∑N

i=1

∑N
j=1R

2
ji√

N
≾
√
N4r21r

2
d .

Then

|c20
N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRilbjbl|

≾
∣∣∣c20 N∑

i=1

j ̸=l∑
j,l∈nodeGki

RjiRil
R̃j·R̃l·
NVr

∣∣∣+ c20

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil|R̃j·|√
N2Vr

+ c20

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil

N

≾

∣∣∣∑N
i=1

∑j ̸=l
j,l∈nodeGki

RjiRilR̃j·R̃l·

∣∣∣
N3r2dVr

+

√
N4r21r

2
d

N2r2d
+

∑N
i=1R

2
i·

N3r2d

≾

∣∣∣∑N
i=1

∑j ̸=l
j,l∈nodeGki

RjiRilR̃j·R̃l·

∣∣∣
N3r2dVr

+
r1
rd

+
r21
r2d

,

which goes to zero when
∣∣∣∑N

i=1

∑j ̸=l
j,l∈nodeGki

RjiRilR̃j·R̃l·

∣∣∣ = o(N3r2dVr) and r1 = o(rd). For
Condition (A.26), we have

c40

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil

(
Rjl(Rji +Rjl +Ril) +

N∑
s=1

RjsRls

)
≾ c40

N∑
i=1

N∑
j=1

N∑
l=1

R2
ijRilRjl + c40

N∑
i=1

N∑
j=1

N∑
l ̸=i,j

N∑
s ̸=i,j

RjiRilRjsRls + c40

N∑
i=1

N∑
j=1

N∑
l ̸=i,j

R2
jiR

2
il

≾

∑N
i=1

∑N
j=1

∑N
l=1R

2
ij(R

2
il +R2

jl)

N4r4d
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+

∑N
i=1

∑N
j=1

∑N
l ̸=i,j

∑N
s ̸=i,j RjiRilRjsRls

N4r4d
+

∑N
i=1

(∑N
j=1R

2
ij

)2
N4r4d

≾

∑N
i=1

(∑N
j=1R

2
ij

)2
N4r4d

+

∑N
i=1

∑N
j=1

∑N
l ̸=i,j

∑N
s ̸=i,j RjiRilRjsRls

N4r4d
,

where the first term goes to zero when
∑N

i=1

(∑N
j=1R

2
ij

)2
= o
(
N4r4d

)
and the second term is the

same as the condition (A.27). The condition (A.27) holds when

N∑
i=1

N∑
j=1

N∑
k ̸=i,j

N∑
l ̸=i,j

RijRkl

(
RikRjl +RilRjk

)
= o(N4r4d) .

For Condition (A.28), we have

c30

N∑
i=1

Ri·

N∑
j=1

R2
ij ≤ c30

√√√√ N∑
i=1

R2
i·

N∑
i=1

( N∑
j=1

R2
ij

)2

=

√
N3r21

∑N
i=1

(∑N
j=1R

2
ij

)2
N3r3d

=
r1
rd

√√√√∑N
i=1

(∑N
j=1R

2
ij

)2
N3r4d

,

which goes to zero when r1 = o(rd) and
∑N

i=1

(∑N
j=1R

2
ij

)2
≾ N3r4d.

L.1. Proof of Inequalities (A.9)-(A.16)

L.1.1. PROOF OF (A.9)

For each node i, we have

VarB(ξiηi) =VarB

(
ξi
(
ξi +

∑
e∈Gki

ξe
))

= VarB

(
h(i)2

(
b2i + b0bi

∑
j∈nodeGki

Rijh(j)
))

=EB

(
h(i)4

)
EB

((
b2i + b0bi

∑
j∈nodeGki

Rijh(j)
)2)− (EB

(
h(i)2b2i

))2
=(pq4 + qp4)EB

(
b4i + 2b3i b0

∑
j∈nodeGki

Rijh(j) + b2i b
2
0

( ∑
j∈nodeGki

Rijh(j)
)2)

− b4i p
2q2

=pq(p3 + q3 − pq)b4i + p2q2(p3 + q3)b2i b
2
0

∑
j∈nodeGki

R2
ij

Thus,
N∑
i=1

VarB(ξiηi) ≾
N∑
i=1

c4i + c20

N∑
i=1

c2i

N∑
j=1

R2
ij .
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L.1.2. PROOF OF (A.10)

For each edge e =
(
i, j
)
∈ Gk, we have

ξeηe =b0Rijh(i)h(j)
(
bih(i) + bjh(j)

)
+ b20R

2
ijh(i)

2h(j)2

+ b20Rijh(i)
2h(j)

∑
l∈nodeGki

\{j}

Rilh(l) + b20Rijh(i)h(j)
2

∑
l∈nodeGkj

\{i}

Rljh(l) .

Then we have EB(ξeηe) = b20R
2
ijp

2q2 and

EB(ξeηe)
2 − b40R

4
ijp

4q4 ≤ b20R
2
ij(b

2
i + b2j ) + b30(|bi|+ |bj |)R3

ij

+ b40R
2
ij

( ∑
l∈nodeGki

\{j}

R2
il +

∑
l∈nodeGkj

\{i}

R2
lj

)
≾ c20R

2
ij(c

2
i + c2j ) + c30(ci + cj)R

3
ij

+ c40R
2
ij

( ∑
l∈nodeGki

R2
il +

∑
l∈nodeGkj

R2
lj

)
.

Thus,

∑
e∈Gk

VarB
(
ξeηe

)
≾

N∑
i=1

N∑
j=1

(
c20R

2
ij(c

2
i + c2j ) + c30(ci + cj)R

3
ij

+ c40R
2
ij

( ∑
l∈nodeGki

R2
il +

∑
l∈nodeGkj

R2
lj

))

≾
N∑
i=1

N∑
j=1

(
c20R

2
ij(c

2
i + c2j ) + c30(ci + cj)R

3
ij + c40R

2
ij

( N∑
l=1

R2
il +

N∑
l=1

R2
lj

))

≾c20

N∑
i=1

c2i

N∑
j=1

R2
ij + c30

N∑
i=1

ci

N∑
j=1

R3
ij + c40

N∑
i=1

( N∑
j=1

R2
ij

)2
.

L.1.3. PROOF OF (A.11)

We can further decompose (A.11) as

N∑
i=1

∑
j∈nodeGi,2

\{i}

CovB
(
ξiηi, ξjηj

)

=

N∑
i=1

∑
j∈nodeGki

CovB
(
ξiηi, ξjηj

)
+

N∑
i=1

∑
j∈nodeGi,2

\nodeGki

CovB
(
ξiηi, ξjηj

)
.

For j ∈ nodeGi which means node j connects to node i directly, we have

EB

(
ξiηiξjηj

)
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=EB

(
h(i)2h(j)2

(
b2i + b0bi

∑
k1∈nodeGki

Rik1h(k1)
)(
b2j + b0bj

∑
k2∈nodeGkj

Rjk2h(k2)
))

=EB

(
h(i)2h(j)2

(
b2i + b0biRijh(j)

)(
b2j + b0bjRijh(i)

))
+EB

(
b20bibjh(i)

2h(j)2
( ∑
k1∈nodeGki

\{j}

Rik1h(k1)
)( ∑

k2∈nodeGkj
\{i}

Rjk2h(k2)
))

and
EB

(
ξiηi
)
EB

(
ξjηj

)
= (b2i pq)(b

2
jpq) .

Combining with EB

(
h(i)3

)
= pq(q − p), we have

CovB
(
ξiηi, ξjηj

)
=p2q2(q − p)b0bibjRij(bi + bj)

+ p2q2(q − p)2b20bibjR
2
ij + p3q3b20bibj

N∑
l=1

RilRjl .

Thus, we have

N∑
i=1

∑
j∈nodeGki

CovB(ξiηi, ξjηj)− p3q3b20

N∑
i=1

∑
j∈nodeGki

bibj

N∑
l=1

RilRjl

≾
N∑
i=1

∑
j∈nodeGki

(
|b0||bi||bj |Rij(|bi|+ |bj |) + b20|bi||bj |R2

ij

)
≾

N∑
i=1

∑
j∈nodeGki

(
c0cicjRij(ci + cj) + c20cicjR

2
ij

)
.

For j ∈ nodeGi,2\nodeGki
which means node j does not connect to node i directly, we have

EB

(
ξiηiξjηj

)
=EB

(
h(i)2h(j)2

(
b2i + b0bi

∑
k1∈nodeGki

Rik1h(k1)
)(
b2j + b0bj

∑
k2∈nodeGkj

Rjk2h(k2)
))

=EB

(
h(i)2h(j)2b2i b

2
j

)
+EB

(
b20bibjh(i)

2h(j)2
( ∑
k1∈nodeGki

Rik1h(k1)
)( ∑

k2∈nodeGkj

Rjk2h(k2)
))

,

which implies that

CovB
(
ξiηi, ξjηj

)
= p3q3b20bibj

N∑
l=1

RilRjl .

As a result,

N∑
i=1

∑
j∈nodeGi,2

\nodeGki

CovB
(
ξiηi, ξjηj

)
= p3q3b20

∑
j∈nodeGi,2

\nodeGki

bibj

N∑
k=1

RikRjk .
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Hence,

N∑
i=1

∑
j∈nodeGi,2

CovB
(
ξiηi, ξjηj

)
≾

N∑
i=1

∑
j∈nodeGki

(
c0cicjRij(ci + cj) + c20cicjR

2
ij

)

+ c20

∣∣∣ N∑
i=1

∑
j∈nodeGi,2

bibj

N∑
l=1

RilRjl

∣∣∣ .
L.1.4. PROOF OF (A.12)

For f ∈ Ae\{e} which means e and f have one common node, let’s call e = (1, 2), f = (2, 3). We
can firstly write ξ(1,2)η(1,2) and ξ(2,3)η(2,3) as

ξ(1,2)η(1,2)

=b0h(1)h(2)
(
b1h(1) + b2h(2)

)
R12

+ b20h(1)h(2)R12

(
h(1)h(2)R12 + h(1)h(3)R13 + h(2)h(3)R23

)
+ b20h(1)

2h(2)R12

∑
j∈nodeGk1

\{2,3}

R1jh(j) + b20h(1)h(2)
2R12

∑
j∈nodeGk2

\{1,3}

R2jh(j) ,

ξ(2,3)η(2,3)

=b0h(2)h(3)
(
b2h(2) + b3h(3)

)
R23

+ b20h(2)h(3)R23

(
h(2)h(3)R23 + h(1)h(3)R13 + h(1)h(2)R12

)
+ b20h(2)

2h(3)R23

∑
j∈nodeGk2

\{1,3}

R2jh(j) + b20h(2)h(3)
2R23

∑
j∈nodeGk3

\{1,2}

R3jh(j) .

Note that

EB

(
h(i)

)
= 0, EB

(
h(i)2

)
= pq, EB

(
h(i)3

)
= pq(q − p), EB

(
h(i)4

)
= pq(p3 + q3) ,

we have

EB

(
ξ(1,2)η(1,2)ξ(2,3)η(2,3)

)
=p3q3b20R12R23

(
b1b3 + (q − p)b0b1(R13 +R23) + 2(q − p)b0b2R13

+ (q − p)b0b3(R12 +R13) + (p3 + q3)b20R12R23

+ (q − p)2b20R13(2R12 +R13 + 2R23)

+ (p3 + q3)b20R12R23 + p4q4b20
( N∑
j=1

R1jR3j −R12R32

))
and

EB

(
ξ(1,2)η(1,2)

)
EB

(
ξ(2,3)η(2,3)

)
= p4q4b40R

2
12R

2
23 ,
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which further implies that

CovB
(
ξ(1,2)η(1,2), ξ(2,3)η(2,3)

)
− p3q3b20R12R23b1b3

≾ b20R12R23

(
|b0||b1|(R13 +R23) + |b0||b3|(R12 +R13) + |b0||b2|R13

+ b20R13(R12 +R13 +R23) + b20

N∑
j=1

R1jR3j

)
≾ c30R12R23

(
c1(R13 +R23) + c3(R12 +R13) + c2R13

+ c0R13(R12 +R13 +R23) + c0

N∑
j=1

R1jR3j

)
.

As a result,

∑
e∈Gk

∑
f∈Ae\{e}

CovB(ξeηe, ξfηf ) =

N∑
i=1

j ̸=l∑
j,l∈nodeGki

CovB
(
ξ(j,i)η(j,i), ξ(i,k)η(i,k)

)

≾c30

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRik

(
cj(Rjk +Rik) + ck(Rji +Rjk) + ciRjk

)

+ c40

N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRil

(
Rjl(Rji +Rjl +Ril) +

N∑
s=1

RjsRls

)

+ c20

∣∣∣ N∑
i=1

j ̸=l∑
j,l∈nodeGki

RjiRilbjbl

∣∣∣
L.1.5. PROOF OF (A.13)

For f ∈ Be\Ae which means f and e have no common nodes, let us call e = (1, 2) and f = (3, 4).
We can firstly write ξ(1,2)η(1,2) and ξ(3,4)η(3,4) as

ξ(1,2)η(1,2) = b0h(1)h(2)
(
b1h(1) + b2h(2)

)
R12 + b20h(1)

2h(2)2R2
12

+ b20h(1)h(2)R12

(
h(1)h(3)R13 + h(1)h(4)R14

)
+ b20h(1)h(2)R12

(
h(2)h(3)R23 + h(2)h(4)R24

)
+ b20h(1)

2h(2)R12

∑
j∈nodeGk1

\{2,3,4}

R1jh(j)

+ b20h(1)h(2)
2R12

∑
j∈nodeGk2

\{1,3,4}

R2jh(j) ,

ξ(3,4)η(3,4) = b0h(3)h(4)
(
b3h(3) + b4h(4)

)
R34 + b20h(3)

2h(4)2R2
34

+ b20h(3)h(4)R34

(
h(1)h(3)R13 + h(1)h(4)R14

)
+ b20h(3)h(4)R34

(
h(2)h(3)R23 + h(2)h(4)R24

)
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+ b20h(3)
2h(4)R34

∑
j∈nodeGk3

\{1,2,4}

R3jh(j)

+ b20h(3)h(4)
2R34

∑
j∈nodeGk4

\{1,2,3}

R4jh(j) .

As a result, we have

EB

(
ξ(1,2)η(1,2)ξ(3,4)η(3,4)

)
= p4q4b40R

2
12R

2
34 + p4q4b40R12R34

(
2R13R24 + 2R14R23

)
and

CovB
(
ξ(1,2)η(1,2), ξ(3,4)η(3,4)

)
= 2p4q4b40R12R34

(
R13R24 +R14R23

)
.

Then∑
e∈G

∑
f∈Be\Ae

CovB(ξeηe, ξfηf ) ≾ b40
∑
e∈G

∑
f∈Be\Ae

ReRf

(
Re+f+Re−f− +Re+f−Re−f+

)
≾ c40

N∑
i=1

N∑
j=1

N∑
l ̸=i,j

N∑
s ̸=i,j

RijRjlRlsRsi .

L.1.6. PROOF OF (A.14)

When f ∈ Ce\Be, let us call e = (1, 2) and f = (3, 4). We can firstly write ξ(1,2)η(1,2) and
ξ(3,4)η(3,4) as

ξ(1,2)η(1,2) =b0h(1)h(2)
(
b1h(1) + b2h(2)

)
R12 + b20h(1)

2h(2)2R2
12

+ b20h(1)
2h(2)R12

∑
j∈nodeGk1

\{2,3,4}

R1jh(j)

+ b20h(1)h(2)
2R12

∑
j∈nodeGk2

\{1,3,4}

R2jh(j) ,

ξ(3,4)η(3,4) =b0h(3)h(4)
(
b3h(3) + b4h(4)

)
R34 + b20h(3)

2h(4)2R2
34

+ b20h(3)
2h(4)R34

∑
j∈nodeGk3

\{1,2,4}

R3jh(j)

+ b20h(3)h(4)
2R34

∑
j∈nodeGk4

\{1,2,3}

R4jh(j) .

As a result, we have

EB

(
ξ(1,2)η(1,2)ξ(3,4)η(3,4)

)
= p4q4b40R

2
12R

2
34 = EB

(
ξ(1,2)η(1,2)

)
EB

(
ξ(3,4)η(3,4)

)
,

which implies that ∑
e∈G

∑
f∈Ce\Be

CovB(ξeηe, ξfηf ) = 0 .
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L.1.7. PROOF OF (A.15)

EB

(
|ξiη2i |

)
= EB

(
|bih(i)|

(
bih(i) + b0h(i)

∑
j∈nodeGki

Rijh(j)
)2)

= EB

(
|bih(i)3|

)
EB

(
bi + b0

∑
j∈nodeGki

Rijh(j)
)2

= |bi|pq(p2 + q2)(b2i + pqb20

N∑
j=1

R2
ij) ,

which implies that

N∑
i=1

EB

(
|ξiη2i |

)
=

N∑
i=1

|bi|pq(p2 + q2)(b2i + pqb20

N∑
j=1

R2
ij) ≾

N∑
i=1

c3i + c20

N∑
i=1

ci

N∑
j=1

R2
ij .

L.1.8. PROOF OF (A.16)

EB

(
|ξe|η2e

)
=EB

(
|b0h(e+)h(e−)Re|

(
be+h(e

+) + be−h(e
−) + b0h(e

+)h(e−)Re

+ b0h(e
+)

∑
j∈nodeG

ke+
\{e−}

Re+jh(j) + b0h(e
−)

∑
l∈nodeG

ke−
\{e+}

Re−lh(l)
)2)

=EB

(
|b0h(e+)h(e−)Re|

(
be+h(e

+) + be−h(e
−) + b0h(e

+)h(e−)Re

)2)
+EB

(
|b30h(e+)h(e−)Re|

(
h(e+)

∑
j∈nodeG

ke+
\{e−}

Re+jh(j) + h(e−)
∑

l∈nodeG
ke−

\{e+}

Re−lh(l)
)2)

=EB

(
|b0h(e+)h(e−)Re|

(
be+h(e

+) + be−h(e
−) + b0h(e

+)h(e−)Re

)2)
+ 2p3q3(p2 + q2)|b0|3Re

( N∑
j=1

R2
e+j +

N∑
j=1

R2
e−j − 2R2

e

)
+ 2p3q3(q − p)2|b0|3Re

N∑
j=1

Re+jRe−j

≾ |b0|3R3
e + |b0|Re(b

2
e+ + b2e−) + |b0|3Re

( N∑
j=1

R2
e+j +

N∑
j=1

R2
e−j

)
,

which shows that∑
e∈Gk

EB

(
|ξe|η2e

)
≾
∑
e∈Gk

(
|b0|3R3

e + |b0|Re(b
2
e+ + b2e−) + |b0|3Re

( N∑
j=1

R2
e+j +

N∑
j=1

R2
e−j

))

=
N∑
i=1

N∑
j=1

(
|b0|3R3

ij + |b0|Rij(b
2
i + b2j ) + |b0|3Rij

N∑
l=1

(
R2

il +R2
jl

))
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≾
N∑
i=1

N∑
j=1

(
c30R

3
ij + c0Rij(c

2
i + c2j ) + c30Rij

N∑
l=1

(
R2

il +R2
jl

))

≾ c30

N∑
i=1

N∑
j=1

R3
ij + c0

N∑
i=1

c2iRi· + c30

N∑
i=1

Ri·

N∑
j=1

R2
ij .
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