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ABSTRACT

Modern-day neural networks are famously large, yet also highly redundant and
compressible; there exist numerous pruning strategies in the deep learning litera-
ture that yield over 90% sparser sub-networks of fully-trained, dense architectures
while still maintaining their original accuracies. Amongst these many methods
though — thanks to its conceptual simplicity, ease of implementation, and efficacy
— Iterative Magnitude Pruning (IMP) dominates in practice and is the de facto
baseline to beat in the pruning community. However, theoretical explanations as
to why a simplistic method such as IMP works at all are few and limited. In this
work, we leverage persistent homology to show that IMP inherently encourages
retention of those weights which preserve topological information in a trained net-
work. Subsequently, we also provide bounds on how much different networks can
be pruned while perfectly preserving their zeroth order topological features, and
present a modified version of the IMP algorithm to do the same.

1 INTRODUCTION

The successes of deep neural networks (DNN5s) across domains such as computer vision (Simonyan
& Zissermanl 2014; He et al., 2016)), speech recognition (Graves et al.| (2013)), natural language pro-
cessing (Vaswani et al., 2017;|Brown et al., 2020), biomedicine (Ronneberger et al.,[2015} Rajpurkar
et al.| 2017), and bioinformatics (Jumper et al.,2021) have made them ubiquitous in both academic
and industrial settings. However, while DNNs boast of being able to achieve state of the art results
on a plethora of complex problems, they also have the dubious honour of being untenably large and
unsuitable for applications with power, memory, and latency constraints. One way of tackling these
issues is to reduce the parameter-counts of DNNs, thereby decreasing their size and energy con-
sumption while improving inference speeds. As a result, the field of neural network pruning which
studies techniques for eliminating unnecessary weights in both pre-trained and randomly initialized
DNNs without loss of accuracies (Mozer & Smolensky, [1988; |Hanson & Pratt, |1988]; [LeCun et al.}
1989; |[Hassib1 & Storkl [1992) has seen renewed interest in recent years (Han et al.| 20155 |L1 et al.}
2016;|Cheng et al., 2017} |[Frankle & Carbin, 2018} |Lee et al., 2018}, Blalock et al., 2020).

1.1 RELATED WORK

Increased activity on the methodological front has subsequently spurred principled analytical efforts
to help explain when or how various pruning methods ostensibly work.

For instance, by way of deriving generalization bounds for DNNs via compression (Arora et al.,
2018)), previous work has provided some theoretical justification for pruned sub-networks. Iterative
Magnitude Pruning (IMP) has been explored via the observation that sparse sub-networks that main-
tain accuracies of the original network are stable to stochastic gradient descent noise and optimize to
linearly connected minima in the loss landscape (Frankle et al.,[2020). A related empirical work has
also looked into how fundamental phenomena such as weight evolution and emergence of distinctive
connectivity patterns are affected by changes in the iterative pruning procedure (Paganini & Forde,
2020). A gradient-flow based framework (Lubana & Dick|2020) has been used to show why certain
importance measures work for pruning early on in the training cycle.
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More recently, papers have also begun studying pruning at initialization, providing insights into
gradient-based methods via conservation laws (Wang et al., [2020; Tanaka et al., [2020), presenting
theoretical analyses of schemes that fall under the purview of sensitivity-based pruning (Hayou et al.,
2020), developing a path-centric framework for studying pruning approaches (Gebhart et al.| |2021),
and looking at magnitude pruning in linear models trained using gradient flow (Elesedy et al.,[2020).

Unfortunately, despite the flurry of contemporary work and results in the area at large, a mathemat-
ically rigorous yet intuitive explanation for why IMP works well remains missing.

1.2 CONTRIBUTIONS

Given its integral place in the present DNN pruning research landscape, there is a strong impetus to
establish a precise but flexible framework which uses the same language to speak of not only IMP,
but also related problems of theoretical and empirical interest such as the Lottery Ticket Hypothe-
sis (LTH) (Frankle & Carbin, [2018), DNN initialization and generalization (Morcos et al.| |2019),
weight rewinding, and fine-tuning (Renda et al., 2020). Towards this end we utilize the formalism
of algebraic topology, which has found increasing application in the characterization of DNN prop-
erties such as learning capacity (Guss & Salakhutdinov, |2018]), latent and activation space structure
(Khrulkov & Oseledets, [2018;|Gebhart et al.,[2019; |Carlsson & Gabrielsson, [2020), decision bound-
aries (Ramamurthy et al.;|2019), and prediction confidence (Lacombe et al.,|2021). Specifically, we
use neural persistence (Rieck et al.,[2018]) — a measure based on persistent homology for assessing
the topological complexity of neural networks — to ascertain which set of weights in the DNN cap-
ture its zeroth-dimensional topological features, and show that IMP with high probability preserves
them. Following this result, the main contributions of our work are:

* A formal yet intuitive framework rooted in persistent homology that can reason about
magnitude-based pruning and helps explain IMP’s empirical success via theoretical lower
bounds regarding its ability to preserve topological information in a trained DNN.

* Precise upper bounds on the maximum achievable compression ratios for fully-connected,
convolutional, and recurrent layers such that they maintain their zeroth-dimensional topo-
logical features, and realizations of the same for some established architecture-dataset pair-
ings in the pruning literature.

* A topologically-driven algorithm for iterative pruning, which would perfectly preserve their
zeroth-order topological features throughout the pruning process.

2 BACKGROUND & NOTATION

In this section we cover some necessary background on neural network pruning, persistent homol-
ogy, and neural persistence, while also establishing the relevant notation.

2.1 ITERATIVE MAGNITUDE PRUNING

A neural network architecture is a function family f(z;-), which consists of the configuration of
the network’s parameters and the sets of operations it uses to produce outputs from inputs, such as
the arrangement of parameters into convolutions, activation functions, pooling, batch norm, etc. A
model is a particular instantiation of an architecture, i.e., f(x; W) with specific parameters W .

Neural network pruning entails taking as input a model f(z;W) and producing a new model
f(x; M © W*) where M € {0,1}"| is a binary mask that fixes certain parameters to 0, ® is
the elementwise product operator, and WW* is a set of parameters that may differ from V. A number
of different heuristics called scoring functions may be used to construct the mask M, which decide
which weights are to be pruned or kept. Popular scoring functions include the magnitude of the
weights, or some form of the gradients of a specified loss with respect to the weights. If the mask
M is constructed by scoring the parameters of a model per layer, the pruning scheme is said to be
local, whereas if it is constructed by scoring all parameters in the set WV collectively, the pruning
scheme is said to be global.
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The sparsity of the pruned model is W

where | - |4n, 18 a function that counts the number
of non-zeros of the pruned model and |WV| is the total number of parameters in the original model.

The compression ratio () is given as 7 24

oW, Whichis simply the inverse of the sparsity.

Given an initial untrained model f(z, W), iterative magnitude pruning (IMP) takes the following
steps to obtain a sparsified model f(x; Wy ) with p% target sparsity:

1. Train f(x; W,) for t iterations, thereby obtaining the intermediate parameters W ;
2. Mask &% non-zero parameters of lowest magnitude in W) ; to arrive at parameters W;.

3. Repeat the aforementioned steps IV times.

2.2 PERSISTENT HOMOLOGY

Persistent homology (Edelsbrunner et al., 2008)) is a tool used in topological data analysis (TDA)
to understand high-dimensional manifolds, and has been successfully employed in a range of ap-
plications such as analysing natural images (Carlsson et al.,|2008), characterizing graphs (Sizemore
et al., 2017} Rieck et al.,[2017)), and finding relevant features in unstructured data (Lum et al.,[2013).

First, however, the space of interest must be represented as a simplicial complex which is effectively
the extension of the idea of a graph to arbitrarily high dimensions. The sequence of homology groups
(Edelsbrunner & Harer,[2022) of the simplicial complex then formalizes the notion of the topological
features which correspond to the arbitrary dimensional “holes” in the space. For example, holes of
dimension O, 1, and 2 refer to connected components, tunnels, and voids respectively in the space
of interest. Information from the d™ homology group is summarized by the d" Betti number (834)
which merely counts the number of d-dimensional holes; thus a circle has Betti numbers (1, 1), i.e.,
one connected component and one tunnel, while a disc has Betti numbers (1, 0), i.e., one connected
component but no tunnel.

Betti numbers themselves unfortunately are of limited use in practical applications due to their in-
stability and extremely coarse nature, which has prompted the development of persistent homology.
Given a simplicial complex K with an additional set of scales ap < a1 < ... < ap—1 < Gy, ONE
can put K through a filtration, i.e., a nested sequence of simplicial complices ) = Ky C K; C
. Km—1 € K,,, = K. The filtration essentially represents the growth of K as the scale is changed,
and during this process topological features can be created (new vertices may be added, for ex-
ample, which creates a new connected component) or destroyed (two connected components may
merge into one).

Persistent homology tracks these changes, and represents the creation and destruction of a feature
as a point (a;,a;) € R? for indices i < j with respect to the filtration. The collection of all points
corresponding to d-dimensional topological features is called the d persistence diagram (D), and
can be thought of as a collection of Betti numbers at multiple scales. Given a point (z,y) € Dy,
the quantity pers(z,y) := |y — x| is referred to as its persistence, where | - | is an appropriate
metric. Typically, high persistence is considered to correspond to features, while low persistence is
considered to indicate noise (Edelsbrunner et al., [2000).

2.3 NEURAL PERSISTENCE

Neural persistence is a recently proposed measure of structural complexity (Rieck et al.l 2018) that
exploits both network architecture and weight information through persistent homology, to capture
how well trained a DNN is. For example, one can empirically verify that the “complexity” of a
simple, fully connected network as measured by neural persistence increases with learning (Fig. [T)).

Construction of the measure itself relies on the idea that one can view a model f(xz; W) as a
stratified graph G with vertices V, edges E, with a mapping function ¢ : E — )WV that al-
lows for the calculation of the persistent homology of every layer G in the model using a fil-
tration induced by sorting the weights. More precisely, given its set of weights W, at any train-

ing step, let Wmax = maxyuew, |w|, and W, = {|w|/wmax | w € W} be the set of trans-
formed weights indexed in non-ascending order, such that 1 = wj > wj > .. > 0. This
permits one to define a filtration for the Eth layer Gy, as cho) C G,(Cl) C ..., where Gg) =
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Figure 1: Neural persistence for a fully-connected, 6-layer network trained on MNIST. (Left) Layer-
wise normalized neural persistences and (Right) Trial-wise total neural persistences for the entire
network. Means are presented as solid lines, standard deviations are shaded.

(Vi U Vi1, {(w,v) | (u,v) € Ex A¢'(u,v) > w;}), and ¢} (u,v) € W, denotes the transformed
weight of an edge. The relative strength of a connection is thus preserved by the filtration, and
weaker weights with |w| &~ 0 remain close to 0. Additionally, since w’ € [0, 1] for the transformed
weights, the filtration makes the network invariant to scaling of VW, simplifying the comparison of
different networks. Using this filtration one can calculate the persistent homology for every layer
G.. As the filtration contains at most 1-simplices (edges), the topological information captured is
zero-dimensional, i.e. reflects how connected components are created and merged during the filtra-
tion, and can be shown graphically with a 0" persistence diagram (Fig. .

- S 05 -
w, =1 wy = 0.5 wy =0 %

O

y
@) o0
n
in
Wy
LU

LJ
[ ]
[ ]

lo L lo 4L I 1 ”””;’”””

Figure 2: Persistence diagrams (PDs) show how long a particular model “persists” as the network
undergoes the defined filtration (i.e, pruning). From left to right, as the weight threshold, w', de-
creases, the number of connections kept in the two layers (/g and [;) increases. The PD shows the
duration of each structure as a coordinate corresponding to the weight threshold at which the struc-
ture was created (w,), and the weight threshold at which it was destroyed (w,;). The most prominent
structure has the greatest persistence, which is measured by its distance from the diagonal. In this
example, the point indicated by the yellow arrow would indicate the most persistent feature.

Neural persistence of the k™ layer G}, of a DNN is then defined as the p-norm of the persistence
diagram Dy, resulting from the previously discussed filtration, i.e.,

NP(Gy) o= [[Dally = [ 7 pers(e,d)?

(c,d)EDy
Typically p = 2, which captures the Euclidean distance of the points in Dy, to the diagonal.

We note that the above definition strictly corresponds to fully-connected layers, but the notion can
easily be extended to convolutional and recurrent layers by representing the former using appropri-
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ately sized Toeplitz matrices (Goodfellow et al., [2016) and the latter as multiple “unrolled” fully-
connected layers, with the same, shared set of weights.

Neural persistence can also be normalized to values in [0, 1] in a scale-free manner, thus providing
a simple method to compare the structural complexities of differently sized layers across various
architectures. The total neural persistence of a model with L layers is given by the sum of all the
individual layerwise neural persistences, i.e.,

L
NP(G) := Y NP(Gy)
k=1

3 A TOPOLOGICAL PERSPECTIVE ON MAGNITUDE-BASED PRUNING

This section details our interpretation of magnitude pruning (MP) via the lens of neural persistence,
followed by some insights we glean regarding IMP from this novel perspective. Consequently,
we provide a lower bound on the relative topological information that is retained by IMP at every
iteration, define a quantity that gives an upper bound on how much different types of neural network
architectures may be pruned while still conserving its zeroth-dimensional topological features, and
present a topologically-motivated version of IMP that guarantees the same.

3.1 NEURAL PERSISTENCE & MAGNITUDE PRUNING

Here we explicitly mention the key aspects of neural persistence which can be deduced from the
background covered in Section [2]to arrive at a topological understanding of MP:

* Neural persistence relies on a super-level set filtration (Cohen-Steiner et al., [2009; Bubenik
et al.,|2015) and sorts only the edges of the bipartite graph G, the DNN layer it acts on.

* The weights Wj, of a layer Gy, are normalized to values in [0, 1], disregarding the signs of
the weights W, while still respecting their relative magnitudes.

* All the vertices of G, are already present at the beginning of the filtration and result in m;+
ny, connected components at the start of the filtration, where my, nj, are the cardinalities of
the two vertex sets of G,.

* Entries in the corresponding zeroth-dimensional persistence diagram Dy, are of the form
(1,z),z € Wy, and are situated below the diagonal.

* As the filtration progresses, the weights greater than the threshold a; are introduced in the
zeroth-order persistence diagram, so long as it connects two vertices in GG;, without creating
any cycles (Lacombe et al.| [2021]).

* Subsequently, the filtration ends up with the maximum spanning treeE] (MST) of Gk.

From the viewpoint of persistent homology this implies that all the zeroth-order topological infor-
mation of G, as captured by its neural persistence is encapsulated in the MST of W,.

From the standpoint of magnitude-based prunini] we have a novel topologically-motivated scor-
ing function, whose goal is to maintain the zeroth-order topological information in a set of weights,
and the resulting mask M prunes any weights that are not part of the MST of a particular layer.

We therefore arrive at the following insight regarding IMP and its practical efficacy:

At every iteration, the weights retained by IMP in a layer are likely to overlap significantly with
those present in its MST with relatively high probability. This ensures the pruning step itself does
not severely degrade the zeroth-order topological information learnt by the layer in the previous
training cycle, and in turn provides the network with a sufficiently informative initialization, al-
lowing it train to high levels of accuracy once again.

"For a proof, see Lemmas 1 & 2 in|Doraiswamy et al.
2Since neural persistence by its current definition is applied layer-wise, the insights we gain from using it
through the rest of this paper correspond to local pruning.
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In the following subsections we formalize this intuition by presenting a lower bound on the expected
overlap between the weights in a layer’s MST and those retained by IMP, and upper bounds on how
much a layer can be pruned whilst maintaining its zeroth-order topological information.

3.2 ToOPOLOGICALLY CRITICAL COMPRESSION RATIO

Building off the observation that we only need as many weights as that of the MST of a layer Gy,
to maintain its zeroth-dimensional topological features, we define the following quantity that allows
us to achieve maximal topologically conservative compression.

Definition 3.1. The topologically critical compression ratio (7)) for any graph G with edges F,
vertices V/, and mapping function ¢ : E' — W is defined as the quantity

ST
" MST(@)|

where the function MST(+) denotes the MST of the graph and | - | is the cardinality of a set.

7+ is the maximal achievable compression for the graph G which would perfectly preserve its zeroth-
order topological complexity, assuming the right set of weights (i.e., those in its MST) are retained.

Using Def. in the context of DNN pruning we subsequently arrive at the following result

Theorem 3.2. Given a layer Gy, with weights W, joining my, input nodes to ny, output nodes, for
any compression ratio 1) that perfectly maintains the zeroth-order topological information of Gy, it
holds that n; > n.

Furthermore,

o When Gy is a fully connected layer
mg - Nk

" k=1

o When Gy is a recurrent layer with £y, hidden units
20, — 1

Nr

» When Gy is a convolutional layer

nk'fl'fZ

" e — 1

with (f1, f2) being size of the convolutional kernel. my, ny, are the input and output sizes
respectively of the spatial activations.

3.3 BOUNDS ON THE MST — MP FRACTION OF OVERLAP

We now state a lower bound on the expected overlap in the MST of a layer G with its top-a
weights, where « is the number of weights in its MST, to get a sense of how much of the zeroth-
order topological information in a layer might be retained if we prune it down to its topologically
critical compression ratio simply using the magnitude, thereby formally quantifying IMP’s efficacy.

Theorem 3.3. For a fully connected layer Gy, with normalized weights W;, joining my, nodes at the
input to ny, nodes at the output, for a compression ratio of 0, the fraction of overlap expected in its
top-a weights by magnitude and those in its MST can be lower bounded as

s ; (mknk>

where j = min(my,ng) > 2 and X is the fraction of overlap between the two quantities of interest.
Ifi=1EX]=1
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Corollary 3.4. If a fully connected graph G, is p-sparse, i.e., has a fraction of p non-zero weights
>

, 1 L ( (i, — i) (g, — i)
E[X] > mln{lv me+ng — 1 iz::‘) (;Umknk—l>}

where j = min(my,ng) > 2 and X is the fraction of overlap between the two quantities of interest.
Ifi=1LEX]=1

We note here that these bounds (proofs for which can be found in the arXiv version of this paper at
https://arxiv.org/abs/2206.06563) only give us a sense for how much of the topolog-
ical complexity could be maintained; The exact values for the same would rely on the caluculation
of the neural persistence and therefore depend on the exact distribution of weights W..

3.4 TOPOLOGICAL ITERATIVE MAGNITUDE PRUNING

The aforementioned insights and results thus naturally suggest a simple modification to the IMP
algorithm that would ensure preservation of zeroth-order topological information in every layer.
Following a similar structure as the IMP algorithm in Section we now have Topological-IMP
(T-IMP) that takes the following steps:

1. Find the weights which form the MST and retain them, accounting for o weights out of
% % that one wishes to keep.

2. From the remaining & % - a weights, pick those with the highest magnitudes.

3. Retrain the network.

4. Repreat the process N times until the target sparsity-accuracy is reached.

4 EMPIRICAL SIMULATIONS & RESULTS

4.1 ToOPOLOGICALLY CRITICAL COMPRESSION

To see the practical significance of the topologically critical compression ratio and quantify the
extent of pruning it can achieve, we experimented with combinations of popular datasets and archi-
tectures (Table[T)). Our overall insights from these investigations are:

* Fully connected layers are a lot more redundant and ergo compressible than convolutional
layers, and this seems to hold true across dataset-architecture pairings. The compressibil-
ity of these dense layers is what often seems to present incredibly high numbers for how
compressible a particular model is.

* Amongst convolutional architectures, inherently more efficient architectures (e.g., ResNet)
are less compressible than more redundant ones (e.g., VGG) even by topological metrics.

4.2 BOUNDS ON THE MST — MP FRACTION OF OVERLAP

The bound presented in Thm. was also checked empirically with multiple simulations on dif-
ferent layers of the MNIST fully connected model (Fig. [3). While not the tightest, the bound (and
simulations) still provided substantial support that MP does encourage preservation of zeroth-order
topological features in the DNN weight space. However, preservation of zeroth-order topology only
forms part of the story concerning which weights ought to be kept when pruning DNNs. Extensions
to higher order homologies might perhaps help explain these discrepancies better.

5 DISCUSSION & FUTURE WORK

In this work we presented a novel perspective on IMP leveraging a zeroth-order topological measure,
viz., neural persistence. The resulting insights now provide us with the opportunity to pursue some
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Table 1: Topologically Critical Compression: VGG11 & ResNet

VGG11 (n,) RESNET (1,)
CONV: 4.2295 CONV: 4.1508
CIFAR10* DENSE: 9.8273 DENSE: 8.7671
FINAL: 4.3914 FINAL: 4.1679
CONV: 4.2295 CoNv: 4.1508
CIFAR100* DENSE: 83.7971 DENSE: 39.2638

TINY-IMAGENET!

FINAL: 6.9239

CONV: 4.2672
DENSE: 528.3911
FINAL: 183.3624

FINAL: 4.4389

CONV: 4.3142
DENSE: 144.0225
FINAL: 6.13182
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Figure 3: Top row: Mean percentage overlap (with Std Dev) the top-a weights have with the MST
for different layers of a fully-connected network trained on MNIST. Black dots at the bottom repre-
sent the derived theoretical lower bound for the overlap for each of the respective layers.

exciting avenues on both, theoretical and empirical fronts. These include extensions of the stated
bounds and subsequent theory to stratified graphs to explain global pruning, as well as the extension
of NP to beyond zeroth-order homology which could help uncover a fuller picture of the topological
complexities of DNNGs.

Additionally, topological perspectives on LTH, weight rewinding, single-shot pruning, and other
interesting IMP-adjacent phenomena could lead to not only insights into the interplay between DNN
training and inference dynamics, but also topologically-motivated algorithms to achieve data- and
compute-efficient deep learning pipelines.
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