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ABSTRACT

Recent advances in neural network theory have introduced geometric properties
that occur during training, past the Interpolation Threshold- where the training
error reaches zero. We inquire into the phenomena coined Neural Collapse in the
intermediate layers of the network, and emphasize the innerworkings of Nearest
Class-Center Mismatch inside a deepnet. We further show that these processes
occur both in vision and language model architectures. Lastly, we propose a
Stochastic Variability-Simplification Loss (SVSL) that encourages better geometri-
cal features in intermediate layers, yielding improvements in both train metrics and
generalization.

1 INTRODUCTION

Several recent works have investigated the dynamics of modern deep neural networks (deepnets) past
the point of zero training error Belkin (2021); Nakkiran et al. (2020); Bartlett et al. (2021); Power
et al. (2022). The stage at which the training error reaches zero is called the Interpolation Threshold
(IT), since at this point the learned network function interpolates between training samples. This
is not to be confused with zero-loss, but simply the point where all training samples are correctly
classified. The stage of training beyond the IT is coined the Terminal Phase of Training (TPT) in
Papyan et al. (2020). It was in this paper that the term Neural Collapse (NC) was introduced to
describe four interconnected geometrical phenomena that describe the network behavior past the TPT.
Let us briefly describe the properties of NC that are most relevant for this paper:

(NC1) Variability collapse: As training progresses, the within-class variation of the activations
becomes negligible as these activations collapse to their class-means.

(NC4) Simplification to Nearest Class-Center (NCC): For a given deepnet activation, the network
classifier converges to choosing whichever class has the nearest train class-mean (in standard euclidean
distance).

Following this work, the theory of NC has been widely studied Zhu et al. (2021); Rangamani et al.
(2021); Lu & Steinerberger (2020); Fang et al. (2021); Galanti et al. (2021); Han et al. (2021). A
different line of work Gormez & Koyuncu (2021) has studied Property (NC4) as a method for Early
Exits in deepnets.

Various publications have proposed that geometrical properties of intermediate layers shape the
way deepnets are trained, and largely affect their successes Cohen et al. (2020); Allen-Zhu & Li
(2020); Ben-Shaul & Dekel (2021); Liu & Arik (2020); Alain & Bengio (2017); Baldock et al. (2021).
Further, Galanti et al. (2021) have suggested that variability reduction (NC1) appears in intermediate
layers.
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Figure 1: STL-10 experiment training procedure. We show the accuracy on both the train and test
set, using the different losses: Vanilla Cross-Entropy (Pink) and SVSL (Blue). The SVSL loss
outperforms the vanilla in both metrics. Both models improve in terms of test-performance during
the TPT, shown as the shaded area. In the TPT, both models have a constant training accuracy of 1.

It is still early to determine the effects on NC on generalization. Multiple contributions have suggested
that intermediate layer NCC simplification promotes large margins and generalization Sokolic et al.
(2017); Galanti et al. (2021); Elsayed et al. (2018). On the contrary, Mixon et al. (2020) have
shown that it is possible to achieve NC with random labels. The results shown in this work suggest
intermediate clustering promotion assists the deepnet in generalization for a non-noisy setting. We
delve deeper into the inner workings of NCC Simplification along the lines of Papyan et al. (2020).

1.1 OUR CONTRIBUTIONS

Our contributions can be summarized as follows:

NCC Simplification in Intermediate Model Layers: We show that when looking at the NCC
Mismatch of deepnet intermediate layers, before and during TPT, there is a beautiful geometric
structure that emerges. Namely:

(i) There is a monotone ordering between NCC mismatch in intermediate layers. The mismatch
is lower as the layers gets deeper.

(ii) NCC Simplification is not only apparent in the final layer of the network, and may propagate
back several layers in the network.

NCC-Simplification is apparent in NLP sequence classification tasks using transformers: When
proposed in Papyan et al. (2020), the authors show that Neural Collapse appears in several well-known
Image Classification models: VGG Simonyan & Zisserman (2015), ResNet He et al. (2016), and
DenseNet Huang et al. (2017) on Image Classification datasets. In this paper, we show that NCC
simplification is also apparent in Transformer architectures Vaswani et al. (2017), and even more
surprisingly, in common NLP tasks. The recent surge in transformer architectures for cross-modal
tasks, suggests that there are common behaviors between classic vision architectures, and more recent
mechanisms Radford et al. (2021); Dai et al. (2021); Raghu et al. (2021).

Encouraging Variability Simplification can assist in training and generalization: We propose
a simple intermediate layer variance collapsing loss which we coin the Stochastic Variability Sim-
plification Loss (SVSL). This loss is shown to improve the performance of a wide-variety of tasks
by encouraging NCC simplification during training. We show that this loss is able to improve NCC
mismatch between intermediate layers, on both the train and test datasets. The different training
stages and their respective metrics can be seen for both losses on the STL-10 dataset in Figure 1. The
same plot is given for all other datasets in the full manuscript 1. In all plots throughout this work, the
x-axis represents the epochs during train.

1For the full manuscript, please see https://arxiv.org/pdf/2201.08924.pdf
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Figure 2: NCC Mismatch for Vision datasets: MNIST, Fashion-MNIST and CIFAR10, using both
vanilla (solid) and SVSL (dashed) losses. Top: train NCC Mismatch, Bottom: test NCC Mismatch.
The shaded pink background shows the TPT for the vanilla loss experiment, and the blue for the
SVSL. The background is shaded purple at epochs when both experiments are in the TPT.

2 PROBLEM SETUP AND BACKGROUND

2.1 SUPERVISED CLASSIFICATION

We study the supervised classification setting. In this paper, our experiments include problems in
both Vision and NLP- Sequence Classification. In Image Classification we are given a training set
of d := 3×W ×H- dimensional RGB images, from C categories. We wish to train a network to
differentiate between different image classes. On the other hand, in Text-Sequence Classification
we are given a training set of sequences. We use standard tokenization techniques to transfer discrete
sequences to a continuous euclidean space. Since different sequences may be in different lengths, we
pad sequences in our experiments to a certain d := MAX PAD constant. Similar to the vision setting,
we wish to find the appropriate class for each text-sequence (of dimension Rd, for C ground-truth
classes).

Let g represent a deepnet, g : Rd → RC where C is the number or classes, and network parameters θ
which are learned through the optimization procedure, or “training”. For the classification setting, the
network decision for input x ∈ Rd is defined as z = argmax1≤c′≤C g (x)c′ . Let L = {l(1), . . . , l(k)}
represent the set of intermediate layers of network g (formally defined in Section 5.3), such that
g := l(k) ◦ · · · ◦ l(1). We define nj as the output dimension of layer j, such that n0 := d and nk := C.
We note g(j) (x) as the outputs of the jth layer of the network for input sample x. Using these
definitions, the following holds: g(j)(x) := l(j) ◦ · · · ◦ l(1) (x). Given a function f and a set of indices
I we introduce the streamlined notation fi := f(xi).

2.2 REPRESENTATION LEARNING

In recent years, the fields of Vision and NLP have both been transformed by representation learning
methods in supervised and unsupervised tasks. The main premise is to learn “representations such
that similar samples stay close to each other, while dissimilar ones are far apart” Weng (2021).
Encouraging clustering in features learned by a deepnet has been a pivotal early idea to improve
representations Xie et al. (2016); Tian et al. (2017). In this paper we will show that encouraging
clustering of intermediate layers can boost performance. We use the normal convention of calling
a sample the Anchor, a similar example Positive and a dissimilar example as Negative. In Vision,
representation learning can be approached by using clustering assignments as pseudo-labels Tian
et al. (2017), invoking similarity between different augmentation of the same sample Zbontar et al.
(2021); Chen et al. (2020); Caron et al. (2021), or even using class labels to wisely pick Positive
and Negative items Khosla et al. (2020). In Language Modeling(LM), Masking and Next-Sentence
prediction(among others) tasks are used to learn semantically robust representations Devlin et al.

3



Accepted to the ICML 2022 Workshop on Topology, Algebra, and Geometry in Machine Learning

(2019); Liu et al. (2019). We use the notion of representation learning by enforcing low inner-class
variability. The methods mentioned only use the penultimate layer of the encoder to penalize the
representations. We conjure that better consistency of class representations in intermediate layers
forces representations in final layers to have better geometrical features. Our method does not need to
sample pairs (positive or negative), and is simple to implement.

3 NEURAL COLLAPSE

We shall now briefly present the particular properties of Neural Collapse that are relevant for this work,
as presented in Papyan et al. (2020); Han et al. (2021). Let g be a given network and {(xi, yi)}i∈ITrain

,
{(xi, yi)}i∈ITest

be the train and test set resp.

Definition 1 (Train class-means). We define the train class means for layer l(j) and class 1 ≤ c ≤ C
as

µ(j)
c := Avgi∈ITrain,yi=c{g

(j)
i }.

Definition 2 (Train within-class covariance). We define the train within-class covariance for layer
l(j) as

Σ
(j)
W :=

1

C

C∑
c=1

Avgi∈ITrain,yi=c{(g
(j)
i − µ(j)

c )(g
(j)
i − µ(j)

c )⊤}.

Using these definitions, we can formally define properties (NC1) and (NC4) from Papyan et al. (2020).
Let us assume that the network g may be split into two stages: the “feature engineering” stage g(k−1)

and the final classifier layer, l(k) such that g := l(k) ◦ g(k−1).

Definition 3 (NC1 Variability Collapse). Σ
(k−1)
W → 0.

Definition 4 (NC4 Simplification to NCC). Let:

S :=

{
i ∈ ITrain | argmax

1≤c≤C
g (xi)c ̸= argmin

1≤c≤C

∥∥∥g(k−1) (xi)− µ(k−1)
c

∥∥∥
2

}
,

then |S| → 0, where |X| is the number of elements in a finite set X .

In both definitions, the arrow represents the progress with the optimization procedure. Throughout
this paper, we make the assumption that the deepnets are of proper capacity to reach the TPT,
or in other words to “fit” the data. In the experiments we use large architectures that are highly
overparameterized for the given tasks.

4 CONTRIBUTIONS

4.1 NCC MISMATCH IN INTERMEDIATE LAYERS

The results of Papyan et al. (2020) show a clear behavior in terms of NCC-Simplification in the
penultimate layer (see Definition 4). We further investigate the behavior of intermediate layers in
terms of NCC mismatch. Let us define:
Definition 5 (Layer j Train NCC mismatch).

Λ
(j)
Train :=

1

NTrain

∣∣∣∣{argmax
1≤c′≤C

g (xi)c′ ̸= argmin
c′

∥∥∥g(j) (xi)− µ
(j)
c′

∥∥∥
2
| i ∈ ITrain

}∣∣∣∣ . (1)

Definition 6 (Layer j Test NCC mismatch).

Λ
(j)
Test :=

1

NTest

∣∣∣∣{argmax
1≤c′≤C

g (xi)c′ ̸= argmin
c′

∥∥∥g(j) (xi)− µ
(j)
c′

∥∥∥
2
| i ∈ ITest

}∣∣∣∣ . (2)

Our conjectures can now be described as follows
Conjecture 7 (Intermediate Layer ordering using NCC mismatch). There is a clear order between
both train and test NCC mismatch in intermediate layers. The mismatch is lower as the layers get
deeper. In the TPT, for 1 ≤ j ≤ k,

Λ
(j)
Train ≥ Λ

(j+1)
Train and Λ

(j)
Test ≥ Λ

(j+1)
Test . (3)
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Conjecture 8 (NCC mismatch improves in TPT). At each intermediate layer, both the train and test
NCC mismatch decreases from the IT to the End of Training(EOT).

Λ
(j)
Train,IT ≥ Λ

(j)
Train,EOT and Λ

(j)
Test,IT ≥ Λ

(j)
Test,EOT. (4)

4.2 DECREASING NCC MISMATCH USING STOCHASTIC VARIABILITY-SIMPLIFICATION LOSS

In Papyan et al. (2020), the properties shown in Definitions 3 and 4 both act on the penultimate layer
of the network. When considering intermediate feature spaces, the property shown in Definition 3
amounts to promoting class clustering. Promoting class clustering can push samples further from
decision boundaries between classes, and could therefore increase agreement between the nearest
class-center and the classifier. We wish to decrease the NCC mismatch during train, and encourage
better clustering through the intermediate layers. Our loss function is proposed as follows:

Definition 9 (Stochastic Train class-means). Let B := {(xi, yi)}i∈B , where |B| is the Batch-Size.
We define the stochastic train class means for layer l(j), batch B, and class 1 ≤ c ≤ C as

µ
(j)
c,B := Avgi∈B,yi=c{g

(j)
i }.

Definition 10 (Stochastic Variability-Simplification Loss (SVSL)). Let g be a deepnet and ŷi = g(xi)
for (xi, yi) , i ∈ ITrain, yi = c, 1 ≤ c ≤ C. Let B be the batch such that i ∈ B. We also define
γ ∈ N, 1 ≤ γ < k and α ∈ R+ two hyperparameters. The Stochastic Variability-Simplification Loss
function is then defined as

L (ŷi, yi) := CE (ŷi, yi) + η

k∑
j=γ

∥∥∥g(j) (xi)− µ
(j)
c,B

∥∥∥2
2
. (5)

where CE is the well-known Cross-Entropy loss and

η =
α

C (k + 1− γ) |{i ∈ B | yi = c}|
.

The normalizing factor η serves as a mitigating factor in the case of unbalanced batches. It is possible
to define the Variability-Collapse in a non-stochastic fashion, by computing the full class-means at
layer for every epoch. An example implementation of the SVSL is given in the appendix.

Using the SVSL, we claim the following behaviors:
Conjecture 11 (SVSL improves NCC mismatch). Using the properly defined hyperparameters α, γ,
the Stochastic Variability-Simplification Loss encourages lower train and test NCC mismatch in
intermediate layers. In the TPT, for 1 ≤ j ≤ k,

Λ
(j)
Train,Vanilla ≥ Λ

(j)
Train,SVSL and Λ

(j)
Test,Vanilla ≥ Λ

(j)
Test,SVSL. (6)

Conjecture 12 (SVSL can improve test-performance). The EOT test metrics are improved for all
datasets using the SVSL and proper hyperparameter tuning.

4.2.1 MOTIVATION FOR SVSL

The Folding Ball Hypothesis is presented in Chollet (2017) as follows: “Imagine two sheets of colored
paper: one red and one blue. Put one on top of the other. Now crumple them together into a small ball.
That crumpled paper ball is your input data, and each sheet of paper is a class of data in a classification
problem. What a neural network is meant to do is figure out a transformation of the paper ball that
would uncrumple it, so as to make the two classes cleanly separable again”. This geometrical notion
has been used to try to predict the wellness of such transformations, using their geometrical properties
Cohen et al. (2020); Ben-Shaul & Dekel (2021); Alain & Bengio (2017); Montavon et al. (2011).
When measuring NCC mismatch during TPT, the network has near 0-training-error. This essentially
means that the final feature space(where the inputs to the classifier reside) has near perfect clusters
per-class. In Papyan et al. (2020), it is empirically shown that for most deepnets, the penultimate
layer has a single cluster for each class. Thus, measuring the train NCC mismatch between the jth
feature-space and the classifier is similar to checking the NCC mismatch with the ground-truth labels.
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The clustering of feature spaces is an iterative transformation from each layer to the next, where the
quality of clustering assists in clustering at the following stage.

Demanding a low NCC mismatch in early layers of the network may be unsatisfiable, as the input
samples (e.g. images) cannot necessarily be well clustered with such low capacity (small number of
layers). This is the reason we allow the γ hyperparameter to facilitate the earliest layer from which
we require the SVSL. Demanding consistency between the NCC and the classifier early in training
can interfere with the model learning the proper class predictions, so we leverage between the losses
using the α hyperparameter. A different approach can consist of applying the SVSL only during TPT.

5 EXPERIMENT DETAILS

Our experiments aim to demonstrate Conjectures 7,8,11,12 on both Vision and NLP tasks. In Section
5.1 we introduce the datasets that were used. In Section 5.2 we describe the architectures and Section
5.3 goes through the training procedures used.

5.1 DATASETS

For Vision tasks, we use most of the datatsets used in Papyan et al. (2020). Namely: MNIST,
FashionMNIST, CIFAR10, CIFAR100, and STL10. Unlike in Papyan et al. (2020), we do not balance
the datasets explicitly and keep them as they are. We use mean-std train normalization. In order
to get intermediate features, we use PyTorch Hooks Paszke et al. (2019). For the NLP sequence
classification tasks we use a subset of binary datasets from the GLUE benchmark Wang et al. (2018).
We run our experiments on datasets from all three types of tasks: Single-Sentence Tasks: CoLA and
SST-2, Similarity and Paraphrase Tasks: MRPC, and Inference Tasks: RTE. All datasets have 2
classes. In order to make all sequences of the same length, both for computing NCC mismatch and
maintaining same size features, we pad each of the sequences in all datasets to 32 tokens. Intermediate
features are readily given as “hidden states” in Wolf et al. (2020).

5.2 ARCHITECTURES

Vision: For the vision architectures we follow the guidelines set in Papyan et al. (2020). In
this paper we use solely the ResNet He et al. (2016) architectures. ResNet18 is used for
MNIST, FashionMNIST, and CIFAR10. For CIFAR100 and STL10 the model chosen is the
ResNet50 architecture. The layers for the ResNet architecture that are used in the experiments
are {Layer1,Layer2,Layer3,Layer4,AvgPool,FC} as implemented in TorchVision Marcel & Ro-
driguez (2010). NLP Sequence Classification: For all sequence classification task we use an
Uncased pre-trained BERT Devlin et al. (2019). The layers used for this architecture are the hidden
states of the BERT-architecture. We include the embedding-layer in the BERT architecture, and use
all hidden-states except the final output layer. In total, we have an initial embedding features (1) and
(11) hidden-state layers, for a total of 12 layers in this architecture. In theory, the penultimate layer
can also be used in the optimization process.

5.3 OPTIMIZATION PROCEDURE

Vision: We use the same optimization scheme as in Papyan et al. (2020), using best training hyperpa-
rameters as logged, and follow the same training procedure. We train all datasets for 350 Epochs.
The Batch-Size for all experiments is 128. All vision experiments are trained using a SGD optimizer
as done in the original paper. All SVSL Hyperparameters used are given in Table 2 in Appendix C.
We report the top-1-accuracy on the test datasets. We use a threshold of 0.995 for determining the
Interpolation Threshold.

NLP Sequence Classification: We follow the default hyperparameters as shown in Wolf et al. (2020)
(GLUE finetune example). All experiments are trained using an AdamW Loshchilov & Hutter (2019)
optimizer, and the default hyperparameters for 10 epochs. The Batch-Size for all experiments is 8,
and the tasks are all binary classification. We report test-accuracy for the datasets: RTE, SST-2, and
MRPC, and Matthew’s-Correlation for the CoLA dataset. SVSL Hyperparameters: The SVSL
parameters are found using a simple baysean optimization scheme (AX-BoTorch Balandat et al.
(2020)) for α ∈ [5e − 8, 5e − 5] and layers γ ∈ {1, . . . , 11} on the test set. The purpose of these
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Table 1: Comparing the Test Metrics of CE-Loss(Vanilla) with Stochastic Variability-Simplification
Loss (SVSL) at IT, EOT, and Best-Test-Epoch for both Image and NLP-Sequence Classification
Datasets. The metrics are as defined in Section 5.3 in percents. The Matthew’s -Correlation metric
for the CoLA dataset is multiplied by a factor of 100. We also note whether the best Test-Metrics are
achieved in TPT, for all datasets and methods.

IT EOT Best Test Epoch
Dataset Vanilla SVSL Vanilla SVSL Vanilla In TPT SVSL In TPT
MNIST 99.37 99.36 99.61 99.69 99.65 Yes 99.69 Yes
Fashion MNIST 91.78 93.13 93.82 93.88 93.93 Yes 94.03 Yes
STL10 53.41 55.95 54.11 56.65 54.19 Yes 56.94 Yes
CIFAR10 80.64 80.56 80.96 81.19 80.96 Yes 81.19 Yes
CIFAR100 52.77 53.28 53.31 54.29 53.79 Yes 54.29 Yes
CoLA 51.59 52.91 53.46 55.54 53.95 No 55.54 Yes
RTE 58.84 58.12 55.23 59.57 61.01 No 60.28 Yes
MRPC 70.83 74.26 74.26 75.25 75.00 No 76.71 No
SST-2 87.96 88.42 88.42 88.76 89.22 No 89.22 Yes

experiments is to show the ability to improve the network behavior using the SVSL. Possible future
research includes adding the hyperparameters to as part of the network weights. The hyperparameters
used are recorded in Table 2. We use a threshold of 0.985 for determining the IT.

6 RESULTS

6.1 NCC MISMATCH BEHAVIOR IN INTERMEDIATE LAYERS

We wish to demonstrate the Conjectures 7 and 8. The train and test NCC mismatch metrics for the
MNIST, Fashion-MNIST, and CIFAR10 datasets are visualized in Figure 2 (Solid Lines). The same
metrics for the sequence classification and all Vision experiments are given in the appendix.

6.2 VARIABILITY-SIMPLIFICATION LOSS

In this section we wish to demonstrate how using the intermediate-layer SVSL can improve training
procedure and generalization. In Section 4.2.1 we describe the underlying logic behind the proposed
cost. We advocate that in networks where intermediate NCC mismatch is lower, perform better in the
TPT stage. Let us first demonstrate the correctness of Conjecture 11. Figure 2 (Dashed Line) shows
the train and test NCC mismatch of the network using the SVSL with the proposed hyperparameters,
for MNIST, FashionMNIST, and CIFAR10. The visualization for the remaining Image datasets is
given in the appendix. It is clear that for all datasets, and almost all layers, the NCC mismatch
improves when using the SVSL. The same conclusions can be seen for all NLP datasets in the
complete manuscript.

We shall show the validity of Conjecture 12. Table 1 compares the test-performance of the vanilla
Cross-Entropy (CE) loss with that of the SVSL on all datasets. This comparison is done at the IT,
EOT, and also at the best Test-Epoch. We see that SVSL outperforms the vanilla CE at almost all
stages of training. We also see that most datasets reach their best Test-Scores during TPT. Even
when using the best possible Test Epoch, the SVSL loss achieves better or as-good results in all but
one dataset. When the best Test Epoch is not achieved in the TPT, the scores achieved at the best
Test-Epoch are comparable to the ones achieved at EOT. Practitioners in the field often look at regions
of near-zero training-error, and use a validation set to choose the proper early-stopping criterion. This
stage is formally given as the TPT, and hence a convincing method is to look at the performance
mainly in this region. In these tasks we use the testing set as a proxy for the validation set. We see that
even when allowing ourselves to look at all Test-Scores, the SVSL still achieves better performance
on an array of tasks. All training graphs with both losses are given for the Vision datasets in Figures
1 and in the appendix. In practice, one may use a hold-out validation/cross-validation set to choose
the best epoch and achieve similar results to the maximal points in the plots.
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Table 2: SVSL-Hyperparametrs used for Image and NLP sequence-classification tasks, optimized
using BoTorch Balandat et al. (2020).

α γ
MNIST 1e− 5 Layer 1
F-MNIST 1e− 5 Layer 1
STL10 1e− 5 Layer 1
CIFAR10 4e− 6 AvgPool
CIFAR100 1e− 5 Layer 3
CoLA 5e− 6 1
RTE 1e− 7 11
MRPC 1e− 7 11
SST-2 4.132e− 5 10

7 DISCUSSION AND POSSIBLE APPLICATIONS

We point out two additional perspectives when looking at the results given in this work:

(i) First-Layer NCC mismatch may suggest at the dataset “dificulty”: When looking at
NCC mismatch in early layers of the network, there is an interesting thought experiment that
can be suggested. On one end, if the beginning layers have a very low NCC mismatch during
the TPT - this means that the network is already achieving very good class clustering early
on. The earlier this happens, the less capacity the model has to achieve this clustering. When
looking at Figure 2 (MNIST) - we see that in the first layer, we already have a mismatch of
∼ 0.16. Since MNIST is a very simple task, this might be intuitive. However, when looking
at Figure 2 (CIFAR10) - we see that the first layer only reaches 0.6 mismatch. This again, is
intuitive as CIFAR10 is a hard task and we would not expect a few layers to be enough to
properly cluster the features. This can be shown in several of the graphs along this paper.
Perhaps this notion of thinking can aid in defining a concept of “dataset dificulty” for a
certain model architecture.

(ii) NCC-Collapse may be useful for efficient inference in large models: In most experiments
shown in the paper, the NCC-Collapse does not happen solely in the penultimate model
layer. In fact, in some architectures the collapse propagates a few layers back in the network.
Suppose that for a trained network, the collapse occurs from all layers after layer j. This
means that in order to get the prediction of the model on a new sample, we only need run a
forward pass up to the j-th layer, and find the nearest train class-means (which needs to be
computed once). In very deepnets, this can result in more efficient inference time.

We hope that these points and others shown in this paper can encourage researchers to explore further
the geometrical phenomena in intermediate layers.

8 CONCLUSION

In this paper, we expand the notion of NCC-Mismatch as proposed in Papyan et al. (2020). We
describe how looking at intermediate layers of the network can assist in understanding the geometric
phenomena that is Neural Collapse. This paper further expands these notions to NLP tasks, and
shows common structure in the different modalities. We also show how encouraging inner-layer
class-center consistency can assist in the training and generalization. We hope further research using
these methods can continue to enrich the study in deepnets and their training paradigms. We further
our discussion into possible usecases of results brought forward in the appendix.
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