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ABSTRACT

Equivariance to permutations and rigid motions is an important inductive bias for
various 3D learning problems. Recently it has been shown that the equivariant
Tensor Field Network architecture is universal- it can approximate any equivariant
function. In this paper we suggest a much simpler architecture, prove that it enjoys
the same universality guarantees and evaluate its performance on Modelnet40.
The code to reproduce our experiments is available at https://github.com/
simpleinvariance/UniversalNetwork

1 INTRODUCTION

Permutations and rigid motions are the basic shape-preserving transformations for point cloud data. In
recent years multiple neural architectures that are equivariant to these transformations were proposed,
and were demonstrated to outperform non-equivariant models on a variety of 3D learning tasks, such
as shape classification (Deng et al., 2021), molecule property prediction and the n-body problem
(Satorras et al., 2021).

A desired and much studied theoretical benchmark for equivariant neural networks is universality -
the ability to approximate any continuous equivariant function. The universality of the translation
equivariant convolutional neural networks was discussed in (Yarotsky, 2022). In contrast, the
expressive power of standard permutation-equivariant graph neural networks such as message passing
networks (Gilmer et al., 2017) is limited (Xu et al., 2018; Morris et al., 2019; 2021). Universality
for graph neural networks can be attained using a ‘lifted approach’, where the input n x n graph
is mapped to high dimensional hidden representations of the permutation group of dimension
n® K = 0,1,2,.... Universality can be achieved by taking a very large KX = n (Maron et al.,
2019b; Ravanbakhsh, 2020).

Our focus in this paper is on equivariant networks for 3 x n point clouds. In this context, universality
of point cloud networks which are equivariant with respect to permutations (and not rigid motions)
was discussed in (Zaheer et al., 2017; Qi et al., 2017), and the opposite case of universality with
respect to rigid motions (and not permutations) was discussed in (Villar et al., 2021; Bogatskiy et al.,
2020). In most of these constructions, The size of the hidden representations in these networks is
proportional to the input dimension 3 - n (though the number of channels may be large).

Many point cloud networks were suggested which are jointly equivariant to permutations and rigid
motions (Deng et al., 2021; Poulenard et al., 2019; Satorras et al., 2021), and have hidden represen-
tations of size ~ 3 - n. While it is currently unknown whether these networks are universal, there
is reason to think they may not be, as separation of d x n point clouds up to equivalence is just
as difficult as separation of graphs (Dym & Lipman, 2017), and this problem (known as the graph
isomorphism problem) has no known polynomial time algorithm (Babai, 2016).

For 3 x n point clouds, an interesting intermediate option between the standard low dimensional
approach and the untractable lifted approach is the ‘semi-lifted’ approach. In this approach, inter-
mediate hidden representations of dimension 3% - n, K = 0,1,2. .. are used, which are essentially
high-dimensional representations of the rigid motion group combined with the standard represen-
tations of the permutation group. In contrast with the fully lifted approach which would require
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hidden representations of dimension (3n)%, the complexity of the semi-lifted approach is linear in
n (typically n > 3) and thus is tractable for moderately sized K. Several papers have proposed
architectures based on the semi-lifted approach, including (Thomas et al., 2018; Klicpera et al., 2021;
Fuchs et al., 2020).

Unlike the more standard low-dimensional approach, it was shown in (Dym & Maron, 2020) that semi-
lifted jointly equivariant architectures can be universal. In particular, universality can be obtained
using the Tensor Field Network (TFN) (Thomas et al., 2018; Klicpera et al., 2021; Fuchs et al., 2020)
jointly equivariant layers. To the date, the construction in (Dym & Maron, 2020) seems to be the
only universality result for jointly equivariant networks at this level of generality. Universality was
obtained for the simpler cases of 2D point clouds (Bokman et al., 2021) (where the group of rotations
is commutative) or 3D point clouds with distinct principal eigenvalues (Puny et al., 2021).

While universality can be obtained using TFN layers, the specific architecture used to obtain univer-
sality was not yet implemented. More importantly, TFN layers are based on the representation theory
of SO(3), which limits the audience of this approach and leads to cumbersome implementation.

The goal of this short paper is to present for the first time an implementation of a universal architecture
using the theoretical framework laid out in (Dym & Maron, 2020). This architecture is based on tensor
representations (to be defined), and as a result can be easily understood with a basic background in
linear algebra. The architecture depend on hyper-parameters K and C' which define an architecture
F(K,C) with C channels and representations of dimension at most n - 3%. The union over all
possible (K, C) is dense in the space of jointly equivariant functions. Additionally, for fixed K and
large enough C, this architecture can express all jointly equivariant polynomials of degree K. In
particular, we show that the eigenvalues of the point cloud’s covariance matrix, which are a common
invariant shape descriptor, can be expressed by architectures with K = 6.

Experimentally, with the hardware currently available to us we have been able to train models for
the ModelNet40 classification class with K < 6. These results are presented in Table 1. While our
results are currently not state of the art, we believe this direction is worthy of further study, and may
be a good first step towards the ultimate goal of achieving simple, equivariant networks with strong
theoretical properties and empirical success.

1.1 PRELIMINARIES

Group actions and equivariance Given two (possibly different) vector spaces W7, W5, and a
group G which acts on these vector spaces, we say that f : W7 — W is equivariant if

flgw) = gf(w),Yw € Wy, g € G.

We say f is invariant in the special case where the action of G on W is trivial, that is gws = ws for
all g € G and wy € Wy. When G acts linearly on W we say W is a representation of G.

An important principle in the design of equivariant neural networks is that they be constructed by
composition of simple equivariant functions. To achieve models with strong expressive power, the
input low dimensional representations can be equivariantly mapped ‘up’ to high dimensional ‘hidden’
representations such as irreducible representations (Thomas et al., 2018; Fuchs et al., 2020) or tensor
representations (Kondor et al., 2018; Maron et al., 2018; 2019b;a), and them equivariantly mapped
down again to the output low dimensional representation. We next introduce tensor representations,
and equivariant mappings between tensor representations which will be used in this paper.

Tensor representations Let 7}, denote the vector spaces 7o = R, 7; = R3, T, = R3¥3, T3 =

R3X3%3_ .. . An orthogonal matrix R € O(3) acts on Ty, via
3
Rk —
(R V)il,...,ik - Z Rihleimh s Rikv]’k‘/jlv]éwwa]—k'
Jiseeje=1

We note that R®* : T;, — Tj, can be identified with a mapping R®* : R3" — R3", and as our
notation suggests this mapping is the Kronecker product of R with itself & times. For £ = 0,1,2
applying R®¥ to the scalar/vector/matrix V' € Tj, gives

R®V =V, R®'W =RVand R®>V =RVR'.
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Equivariant mappings we review two basic basic mappings between tensor representations of O(3),
which will later be used to define our equivariant layers.

Tensor product mappings are a standard method to equivariantly map lower order representations to
higher order representations. The tensor product ® : T, X Ty — Tir¢ is defined for V@ e 75 and
V@ e T, by

_ M (2)

sl J1sende”

(Vu) ® V(2>)

[ARTIR 7% IO 1
A proof of the equivariance of tensor product is given in Proposition A.1 in the appendix'. For now
we give a simple example: when k£ = ¢ = 1 the equivariance of the tensor product mapping can be
seen by noting that for vectors v, w € T; and R € O(3) we obtain

(Rv) ® (Rw) = (Rv)(Rw)” = Row” RT = R®*(v @ w).

Contractions are a convenient method for equivariantly mapping high order representations to lower
order representations: for £ > 2, any pair of indices a,b with 1 < a < b < k defines a contraction
mapping Cqp : T, — Tr—2, which is defined by jointly marginalizing over the a, b indices. For
example for a = 2,b = k we have

3
(Cok (V)i ity = D Vir i i o
=1

The equivariance of contractions will be proved in Proposition A.1 in the appendix. Fir now we
present a simple example is the case k = 2,a = 1,b = 2 where we get for every matrix V' € 75 that

0172(‘/) = Z ‘/;J = trace(V)

j=1

and trace : T3 — 7o is indeed a O(3) equivariant mapping.

2 METHOD

2.1 SETUP AND OVERVIEW

Our goal is to construct an architecture which produces equivariant functions f : Wy — W7, where
Wy = R3*™ is the space of point clouds, which is acted on by the group of orthogonal transformations
and permutations O(3) x S,,. We note that translation equivariance/invariance can be easily added to
our model by centralizing the input point cloud to have zero mean (see (Dym & Maron, 2020) for
more details). The output representations W; we consider vary according to the task at hand: for
example, classification tasks are invariant to rigid motions and permutations, predicting the trajectory
of a dynamical system is typically equivariant to permutations and rigid motion, while segmentation
tasks are permutation equivariant but invariant to rigid motions.

As in previous works our architecture is a concatenation of several equivariant layers that will be
discussed in detail next. Specifically, it is composed of three main types of layers: Ascending Layers
that map lower order tensor representations up to higher order tensor representations, Descending
Layers which do the opposite and linear layers that allow us to mix different channels. We use a U-net
based (Ronneberger et al., 2015) architecture that first uses ascending layers up to some predefined
maximal order K, and then descends to the required output order (see Figure 1).

2.2 EQUIVARIANT LAYERS

In general we consider mappings between representations of O(3) x .S,, of the form 7;’”0 where
the group action is given by
[(R,0)(V)]; . = R®*(Vo-1(j).c) (1)

J»

!The appendix can be found in the arxiv version of this article (Finkelshtein et al., 2022).
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where we denote elements in ﬁ”xc by V = (Vjc)i<j<n,i<e<c and Vj. € Ty, for every fixed j, c.

Note that for k = 1,C' = 1 we get our input representation 77"~ ! = R3*™_ Qur construction is based
on three basic layers:

Ascending Layers: Ascending layers are parametric mappings A : 7;”0 x R3xm 773?10 which
depend on parameters & = (@, Q2c)e=1,...,c. They use tensor products to obtain higher order
representations and are of the form” V°u! = A(V" X|«), where (using X to denote the j-th

column of X)

‘/}%Ut = Q1¢ (X] ® ‘/Jc) + Qa2c Z X’L ® ‘/ic (2)
i#j

Descending layers: Descending layers are parametric mappings D : 77€"XC — 7?}20 (defined for
k > 2) which are of the form V°u! = D(V"|3), where B = (Bab.c)1<a<b<ki<c<c- They are
defined by:

fot = Z Ba,b,cca,b(‘/jZ’Z)

1<a<b<k

Linear layers: We use the linear layers from (Thomas et al., 2018). These layers are parametric

mappings L : 77€"XC — Enxcl of the form VU = L(V"|y), where v = (Veer J1<e<C1<er <O -
They are defined by:

C
out __ E in
‘/jc’ - Vee! ‘/jc .
c=1

The equivariance of these layers to orthogonal transformations and permutations follows rather easily
from our previous discussion. We prove this formally in Proposition A.2 in the appendix.

2.3 ARCHITECTURE

The architecture we use depends on two
hyper-parameters: the number of chan-
nels C' (which we keep fixed through-

out the network), and the maximal rep- (

nx K
resentation order used K. This choice RS
of hyper-parameters defines a parametric
function space F (K, C), containing func- (’Rnxsk—: RX3E2
tions which gradually map point clouds up ~ Ascending' ¢ K
to K order representations, and then grad- "
ually map back down, using the ascend- (
ing, descending and linear layers discussed — R Standard point-cloud
above. The architecture is visualized in N
Figure 1 (with C' = 1 and using the iden- RS R Output
tification 7z = R3"). We next formally
describe our architecture. Figure 1: Our architecture F (K, C') with C' = 1.

We denote the input point cloud by X € R3*", and define an initial degenerate representation
U ¢ 75“0 which is identically one in all - C' coordinates. we recursively define fork =1,..., K

U® = (A(U(’“‘l), X)) .

where we suppress the dependence of .4 and £ on the learned parameters a(*) and ~(*) for notation
simplicity. Each U*) = U(k)(X ) contains n x C' copies of a 3* dimensional tensor in ;. Next we
denote UK) = V(K) and recursively define for k = K, K —2,...,r 4+ 2 where 7 = K( mod 2)

VoD _ (concat(D(V(k))7 U(k72))) 3)

?Note that this layer was already suggested in (Dym & Maron, 2020), and its structure resembles the structure
of the basic layers in (Zaheer et al., 2017; Maron et al., 2020; Thomas et al., 2018)
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where again we suppress the dependence of D and £ on the learned parameters 3(*~2) and 4(*~2)
for simplicity. Overall we get a function f : 7'1"XC — T7*C of the form

VO = f(X|aW, .. o) gE=D 30
’7(1)’ AR 7’7(K)7’TY(K_2)) A ”7(7‘))'

The function f is permutation and ortho-equivariant when r = 1 or ortho-invariant and permutation
equivariant when » = 0. When » = 0 we can apply a permutation invariant/equivariant network
such as PointNet (Qi et al., 2017) or DGCNN (Wang et al., 2019) to the output of our network
to strengthen the expressive power of our network while maintaining the ortho-invariance and
permutation invariance/equivariance of our overall construction.

Expansion of basic model The basic model we presented up to now is sufficient to prove universal-
ity as discussed in Theorem 3.1 below. However, it is only able to compute polynomials up to degree
K. To enable expression of non-polynomial functions we use the ReLLU activation layer defined in
(Deng et al., 2021) (which easily generalizes to higher representations). To take local information
into account, we expand our ascending layer in equation 2 by adding a summation over the K-nearest
neighbors in feature space, giving

Vi = ane (X5 @ Vie) + 02 »_ Xi @ Ve
i
+ e Z Xz & ‘/u‘
i~j
Finally, we have experimented with adding linear layers which map 7}, equivariantly to itself. When
k = 2 these linear layers are spanned by the linear mappings

VsV, Ve VIV trace(V)I;, VeT,=R

We find that adding these mappings for £ = 2 improves our results, and generalizing this to higher
dimensions is an interesting challenge for further research.

3 THEORETICAL PROPERTIES

We now discuss the expressive power of the architecture F (K, C') defined above. Based on the proof
methodology of (Dym & Maron, 2020), we prove the following theorem (stated formally in the
appendix)

Theorem 3.1. [non-formal statement] For every even K and large enough C > C(K), every
polynomial of degree < K which is permutation equivariant (or invariant) and invariant to rigid
motions can be expressed by functions in F(K, C') composed with simple pooling and centralizing
operations.

Since the invariant/equivariant polynomials are dense in the space of continuous invariant functions
(uniformly on compact sets, see e.g., Lemma 1 in (Dym & Maron, 2020)) this theorem means that
in the limit where K, C — oo our architecture is able to approximate any function invariant to
orthogonal transformations, translations and permutations.

A disadvantage of universality theorems is that it is unclear how big a network is needed to get a
reasonable approximation of a given function. In Theorem B.3, stated and proved in the appendix,
we consider the function A¢,, Which computes the three eigenvalues of the covariance matrix of the
point cloud X, ordered according to size. This is a classical global descriptor (see e.g.,(Puny et al.,
2021; Kazhdan et al., 2004)) which is invariant to permutations and rigid motions. We show that it
can be computed by our networks with representations of order K = 6, composed with a continuous
(non-invariant) function ¢ which can be approximated by an MLP.

4 EXPERIMENTS

In this section, we evaluate our model. In Section 4.1, we describe in details the experimental setup
we have used and in Section 4.2 we present our main results.
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Methods 7/z z/SO(3)  SO(3)/SO®3)
SFCNN Rao et al. (2019) 91.4 84.8 90.1
TFN Thomas et al. (2018) 88.5 85.3 87.6
RI-Conv Zhang et al. (2019) 86.5 86.4 86.4
SPHNet Poulenard et al. (2019) 87.7 86.6 87.6
ClusterNet Chen et al. (2019) 87.1 87.1 87.1
GC-Conv Zhang et al. (2020) 89.0 89.1 89.2
RI-Framework Li et al. (2021) 894 89.4 89.3
VN-PointNet Deng et al. (2021) 717.5 77.5 77.2
VN-DGCNN Deng et al. (2021) 89.5 89.5 90.2
Our method (K=2) 78.3 78.4 77.7
Our method (K=4) 80.4 80.4 78.8
Our method (K=6) 81.6 81.5 80.1
Ours (K=4) w.o. VNReLU (K=4) 514 514 55.2
Ours (K=4) w.o. VNReLU & KNN (K=4) 35.8 35.8 33.8

Table 1: Test clasification accuracy on the ModelNet40 dataset in three train/test scenarios. z stands
for the aligned data augmented by random rotations around the vertical axis and SO(3) indicates
data augmented by random rotations. All models presented in the table are rotation and permutation
invariant (up to numerical inaccuracies).

4.1 EXPERIMENTAL SETTING

Data We evaluated our proposed network on a standard point cloud classification benchmark,
ModelNet40 (Wu et al., 2015), which consists of 40 classes with 12,311 pre-aligned CAD models,
split into 80% for training and 20% for testing. Classification problems are invariant to rigid motions
and permutations. We preprocess the point cloud to have zero mean to achieve translation invariance,
and then apply the model described in the paper with K even to achieve function invariant to rigid
motions and equivariant to permutations. Finally we apply sum pooling and a fully connected neural
network to achieve a fully invariant model.

Implementation We trained and tested our model on NVidia GTX A6000 GPUs with python 3.9,
Cuda 11.3, PyTorch 1.10.0, PyTorch geometric, and pytorch3d 0.6.0. We trained our model for 100
epochs with a batch size of 32, a learning rate of 0.1, and a seed of 0.

4.2 EXPERIMENTAL RESULTS

We present initial results of our model on the ModelNet40 classification task, under the three standard
evaluation protocols for jointly equivariant architectures: in the first protocol (z/z) train and test data
are augmented with rotations around the z-axis, in the second (z/SO(3)) train data is augmented
by rotations around the z-axis and test data is augmented by general 3D rotations, and in the third
protocol (SO(3)/SO(3)) train and test data are augmented by 3D rotations.

We compared our method to SFCNN (Rao et al., 2019), TFN (Thomas et al., 2018), RI-Conv (Zhang
et al., 2019), SPHNet (Poulenard et al., 2019), ClusterNet (Chen et al., 2019), GC-Conv (Chen et al.,
2019), RI-Framework (Li et al., 2021) and to two variations of Vector Neurons (Deng et al., 2021).
The results of the comparison are shown in Table 1. In general we find that our model does not
perform as well as many of the models we compared too. We do note that our results are obtained
with a relatively small amount of parameters: the variation of our method with the highest empirical
success and largest amount of parameters (K=6) uses 370,000 parameters, while VN-point net uses
five times more parameters and VC-DGCNN uses more than seven times more.

All methods we compared to, as well as our own method, are invariant to rigid motions and per-
mutations. Thus they are hardly effected when the test data is augmented by general 3D rotations
(z/SO(3)) or when both test and train are augmented by 3D rotations (SO(3)/SO(3)) (for comparison,
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see the results for the three augmentation protocols obtained for methods without rotation invariance,
as shown e.g., in (Deng et al., 2021)).

Ablation on our method We examine the contribution of high representations by comparing
different representation orders K = 2,4, 6. As expected we find that higher representation lead to
better accuracy. Without the use of the ReLLU activation layer defined in (Deng et al., 2021), the
accuracy of our method decreases by 29.0%. When we remove the K-nearest neighbors summation
as well, the accuracy of our method decreases by an additional 15.6%.

5 CONCLUSION AND FUTURE WORK

In this short paper we first presented an implementation of a simple, universal, neural network
architecture which is jointly equivariant of permutations and rigid motions. Experimentally, we find
that our model does not perform as well as recent state of the art architectures with joint permutation
and rigid motion invariance. We are currently working on additional expansions to our basic model,
such as the study of equivariant linear mappings on 7; mentioned above, and believe this may lead to
improved results on Modelnet40 and other equivariant learning tasks.

At the same time, we believe the inability of our method, as well as other semi-lifted approaches such
as TFN, to outperform methods with low-dimensional representations is worthy of further study and
raises many interesting questions for further research. For example: Are prevalent low dimensional
models universal? If they aren’t, what equivariant tasks are they likely to fail in? Is there a theoretical
explanation to their success in other tasks? Is it possible that semi-lifted models are more expressive
but are difficult to optimize? If so can this difficulty be alleviated? We hope to address these questions
in future work, and hope others will be inspired to do the same.
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