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ABSTRACT

Graph embedding techniques are a staple of modern graph learning research. When
using embeddings for downstream tasks such as classification, information about
their stability and robustness, i.e., their susceptibility to sources of noise, stochastic
effects, or specific parameter choices, becomes increasingly important. As one
of the most prominent graph embedding schemes, we focus on node2vec and
analyse its embedding quality from multiple perspectives. Our findings indicate
that embedding quality is unstable with respect to parameter choices, and we
propose strategies to remedy this in practice.

1 INTRODUCTION

Graph representation learning methods are used in numerous tasks, such as graph classification,
that require representing a given data set as elements in a Euclidean space. Many of these methods
involve a certain amount of stochasticity. In node2vec Grover & Leskovec (2016), for instance,
stochasticity is present at several stages of the algorithms, namely in the random walks themselves
and in the random initialization and optimization of the algorithm. This algorithm also depends on a
number of parameters, chosen by the user, such as (i) the length of random walks, (ii) the number
of random walks, (iii) the dimension of the target vector space, and (iv) the neighbourhood size.
Hence, the resulting embeddings can vary considerably. This is illustrated in Figure 1, which depicts
low-dimensional projections of different embeddings of the “Les Misérables” character co-occurrence
network (Knuth, 1994).

In practice, graph representation learning methods are often used under the assumption that their
outputs give a desired result, without formal evidence, and any potential variability in the resulting
embeddings is not commonly studied. We stress that this is not a unique characteristic of node2vec,
and other methods are also prone to it (Grohe, 2020; Hacker, 2020); however, in the interest of
conciseness, our paper focuses only on node2vec. In Hajij et al. (2021), for example, node2vec
is applied to a graph G to obtain a map f : G → R. This map is then used to create a filtration of
the graph G and compute persistent homology (see e.g. Hensel et al. (2021) for a recent survey). In
neuroscience, node2vec has been used in several contexts (Rosenthal et al., 2018; Levakov et al.,
2021), where the embeddings of connectomes have been used to approximate functional connectomes
from the embeddings of the structural ones. However, in none of these applications nor in others is it
formally taken into account that the results could greatly depend on the differences in the resulting
embeddings. Since in principle, the outputs of the algorithm can be different, even if the parameters
are well chosen (for instance with respect to a specific task), it is important to understand the stability
of these methods in order to draw coherent conclusions about the data.

Previous research (Goyal & Ferrara, 2018; Hacker, 2020) suggests that, at least within a range of
parameters, there is a form of stability at a macroscopic level. The clusters found in the point clouds
recover almost exactly the combinatorial type of nodes of the graph or simplices found in the clique
complex of the original graph. The stability exhibited at a macroscopic level motivates a more formal
study of stability, at a more granular level exploring local structures of the embeddings. Some existing
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approaches to the question are explained in Section 2. In Section 3, we present our own approach to
this question, while Section 4 provides the results of our experiments.

Contributions. We study the structural stability of node2vec in a more formal framework by
evaluating embeddings generated from varying sets of parameters to capture the differences that
can be induced by different choices of parameters. We incorporate both “real-world” graph data
sets and well-understood random graph models, which will serve as null models. Overall, we find
that node2vec embeddings can be unstable even for related parameter sets, prompting additional
investigations into the stability and overall veracity of an embedding.

2 BACKGROUND AND RELATED WORK

Figure 1: Different embeddings of the “Les
Misérables” graph for d = 32 dimensions. Each
row shows embeddings that are generated from the
same parameter set. The variability between these
plots is thus an indicator of stochastic effects in the
algorithm. Note that this is only an illustration; in
the remainder of the paper, we will analyse high-
dimensional embeddings directly.

We provide below a short reminder of the
node2vec algorithm; more details can be
found in Grover & Leskovec (2016). There
are several parameters to be chosen by the user,
namely the length L of random walks, the num-
ber N of random walks starting at each node
of the graph, the dimension d of the embedding
space, and the neighbourhood size C. In the ran-
dom walks one can also choose two parameters
p, q which govern the random walks by bias-
ing them towards different behaviours. Briefly,
node2vec (see the appendix1for algorithmic
details), can be divided into the following main
steps

1. Compute a collection of truncated ran-
dom walks, with biases p, q, all of
length L, such that there are precisely
N starting at each node of the graph.

2. Using the random walks as a way to ex-
tract a measure of similarity between
nodes, compute a representation of the
nodes, with the paradigm that nodes
that co-occur more often in random
walks should be more likely to close
by in the Euclidean representation.

3. Obtain a d-dimensional representation
of the nodes of the graph reflecting
the structure of the graph according to
neighbourhoods computed through the
random walks, using the skip-gram ar-
chitecture Mikolov et al. (2013b;a)

We want to study the stability of node2vec more formally. As outlined above, there are several
sources of randomness in the two algorithms, namely in the random walks themselves, in the
initialization and training of the network. One could take the approach of controlling stability at each
step of the algorithm in order to gauge the overall stability. The approach in this paper will be to
first understand the stability of the outputs without controlling the stability of each intermediate step.
However, this question is very broad and complex. In this paper, we propose a preliminary approach
to this question by studying empirically the effects of the change of parameters on the embeddings,
using various measures to assess the stability of the embedding at the microscopic level.

Related work. Although no formal theoretical study of stability has been provided yet, several
approaches to assess “how good” graph embedding methods are have been explored, see for instance
Schumacher et al. (2020); Bonner et al. (2017); Xin et al. (2019) for the study of the stability of

1See https://arxiv.org/abs/2206.08252.
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various graph representation learning methods. These are all empirical approaches. Providing a
theoretical framework for this question has proven to be a difficult task given the many parameters to
control, even in the simplest cases. The aforementioned literature presents two approaches to deciding
whether graph embeddings are good or not are proposed: an approach based on task evaluation and a
more structural or geometric approach. In the task evaluation approach, the embedding method is
usually evaluated on the quality of a downstream task, such as graph classification. This is studied for
example in Schumacher et al. (2020). The drawback of such a method is that it can be specifically
tested only on labelled graphs. At the intersection of the structural and task approach, one finds tasks
such as link and topological feature prediction (Bonner et al., 2017; Xin et al., 2019). In the structural
or geometric approach, the graph embeddings are evaluated on “how well” the embeddings reflect
some aspects of the graph structure. Aspects that can be evaluated include graph reconstruction,
comparison of degree distributions between that of the original and reconstructed graphs, and cluster
preservation. These are then evaluated using various measures for each aspect (Xin et al., 2019). Each
measured aspect takes into account different scales of the graph structure, going from a local scale
where the method is evaluated around each node, to a more global scale where the preservation of the
community structure is measured. The former was already studied to some extent in Hacker (2020)
for k-simplex2vec and in Goyal & Ferrara (2018) for node2vec and similar methods. These
are more related to the question of stability where the central question is: “for a small variation in the
hyperparameters of the algorithm or in the graph structure, is the variation of all criteria described
above small as well?” Some drawbacks of the evaluation methods presented in Bonner et al. (2017);
Xin et al. (2019) is that they evaluate the embeddings only for a fixed choice of parameters for the
embedding algorithms, thus lacking an overview of the overall stability of the methods, omitting the
potential effects of the parameters on the embeddings.

3 METHODS

We consider node2vec as a method to produce a map f : V → Rd, i.e., a map from the set of
nodes V of a graph to a d-dimensional vector space. Hence, f can be considered as creating a
point cloud from a graph or, equivalently, assigning to each node v in the graph a vector f(v) ∈ Rd.
The advantage of this perspective is that our analysis and suggestions apply to a wide variety of
embedding schemes, including graph neural networks. Hence, instead of assessing the mapping f
directly, we assess f in terms of its empirical outputs. To gauge the output of node2vec, we analyse
its stability and quality. The former term refers to the desirable property that embeddings generated
by node2vec should be similar2 to each other across different runs of the algorithm with the same
hyperparameters, whereas the latter term refers to the need for prroducing embeddings that are useful
in downstream tasks, such as the node classification or general knowledge extraction tasks.

3.1 STABILITY

Our definition of stability is based on the observation that node2vec, like other embedding al-
gorithms, requires the choice of several parameters. Moreover, due to the way the embeddings
are constructed, there is a degree of stochasticity involved—the initialisation of the optimiser, for
instance, has an impact on the output. We consider an embedding scheme to be stable if its outputs
are “reasonably close” for parameter sets that are “reasonably close.” More formally, assuming
that X and Y refer to embeddings of the same graph, obtained from parameter sets ΘX and ΘY ,
respectively, we want

d(X,Y ) ∝ d(ΘX ,ΘY ). (1)

In other words, the distance between embeddings X and Y should be proportional to the distance
between their parameter sets, for some appropriate choice of distance in each case.3 We argue that
this is a natural desirable property of an algorithm because it implies that all conclusions drawn from
a specific embedding change in a predictable way as one chooses different parameters.

2We provide a more precise notion of this similarity below.
3Here, we use a simple distance based on the Hamming metric between parameter sets to obtain a consistent

ordering between parameter sets. We leave a more detailed analysis of this equation for future work.
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To assess the stability of embeddings, we will make use of two measures for comparing point clouds.
First, the Hausdorff distance between two point clouds is defined as

dH(X,Y ) = max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)

}
, (2)

with d(x, Y ) := infy∈Y d(x, y), i.e., the minimum distance from x to the point cloud Y , and vice
versa for d(X, y). The Hausdorff distance is easy to calculate but relies on the relative positions of
the point clouds X and Y in Rd. Hence, the distance is sensitive to the position of the two point
clouds.

To account for small changes in their relative positions,4 we will also work with the Wasserstein
distance of order 2,

W2(X,Y ) :=

(
inf

η : X→Y

∑
x∈X

∥x− η(x)∥22

) 1
2

, (3)

ranging over all bijections η : X → Y between the two point clouds, where we compare embeddings
computed from the same graph.

Given point clouds X1, X2, . . . , Xn, arising from the same parameter set ΘX , we can calculate
their inter-group distances via the two metrics defined above. If node2vec is stable for ΘX , we
expect low variance of such distances. Moreover, following Eq. 1, we permit that the distributions of
inter-group distances become markedly different as the respective parameter sets become increasingly
different. For instance, increasing the number of random walks from L to L + 1 may result in
distributions that are close (in the statistical sense), whereas going from L to L′ ≫ L walks could
result in distributions that are dissimilar to each other.

3.2 QUALITY

The assessment of the quality of an embedding is distinct from its stability. For instance, node2vec
could be replaced by a simple map that assigns each graph to the zero vector. Such an embedding
would be perfectly stable but its output is virtually useless in practice. In the context of graph
learning, embedding quality is often measured in terms of predictive performance for a specific
task, e.g., how well the embedding serves to preserve important nodes or communities. Since we
want to cover situations in which we evaluate node2vec without a specific ground truth, we need
task-independent quality measures.

3.2.1 LINK DISTRIBUTION COMPARISON

Inspired by Xin et al. (2019), we first measure the dissimilarity between the link distributions of
a graph and a link distribution computed using its embedding. Letting A refer to the adjacency
matrix of a graph G = (V,E), we first obtain the observed link distribution PG as PG

ij := Aij/|E|.
PG provides the probability of an edge (i, j) ∈ E, under the assumption that edges are uniformly
distributed. In an embedding X of G, we do not have access to observed edges. However, we may
use a similarity measure s(·, ·) between the representations of individual nodes vi, vj , giving rise to
an empirical link distribution Xin et al. (2019) via

PX
ij :=

1

1 + exp(− s(xi, xj))
, (4)

with xi, xj referring to the representations of vertices vi, vj , respectively. Notice that this distribution
requires normalisation to constitute a proper probability distribution. There are numerous choices
for realising s(xi, xj) in practice; following Xin et al. (2019), we pick the standard Euclidean
inner product of xi, xj , i.e., s(xi, xj) := x⊤

i xj , also known as a linear kernel. Since node2vec
incorporates a similar objective—its training involves minimising inner product expressions—this
formulation has proven useful to assess the output of embedding algorithms Grohe (2020). This
formulation provides us with a suitable quality assessment strategy: taking any measure of statistical
distance dS(·, ·), we use dS

(
PG, PX

)
as an indicator of the quality of an embedding X . This has

4A more advanced option would be to register point clouds first in order to be invariant to rotations and
translations. We leave this for future work.
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the advantage of being immediately interpretable: lower values indicate a better “fit,” in the sense that
the resulting embedding preserves the link distribution of a graph, thus permitting a reconstruction.

To implement dS(·, ·), we use the Wasserstein distance; while Xin et al. (2019) suggest using a
KL divergence, we prefer the Wasserstein distance because it constitutes a proper metric between
probability distributions, satisfying in particular symmetry and the triangle inequality, two properties
that are indispensable when comparing different embeddings across parameter sets. One advantageous
property of this quality assessment procedure is that it is independent of the dimensionality of the
embeddings; we can thus compare the distributions across all parameter sets.

3.2.2 LINK RECONSTRUCTION

As a second measure for assessing the quality of embeddings, we consider the previously-defined
similarity scores between nodes, i.e., s(xi, xj) := x⊤

i xj , to be a score of classifier that aims to predict
the existence of an edge. Writing sij to denote s(xi, xj), we consider superlevel sets of the form
Eλ := {(i, j) | sij ≥ λ}, for λ ∈ R. For each choice of λ, we treat Eλ as the set of all edges predicted
by the classifier. Ranging over all possible choices for λ, we calculate a contingency table containing
the number of true positives (TP; edges that are correctly predicted), true negatives (TN; non-edges
that are correctly predicted, i.e., edges that are not part of a specific Eλ), false positives (FP), and false
negatives (FN), respectively. This permits us to calculate precision–recall values, and we take the area
under the precision–recall curve (AUPRC) to be a measure of the quality of an embedding (Fawcett,
2006).

AUROC. Alternatively, we could use the TP and FP values to calculate a receiver–operating
characteristic curve and use its area, known as AUC or AUROC, as a measure (Fawcett, 2006). This
is more complicated to interpret in most cases, though, since AUROC assumes a binary classification
task in which two classes have roughly similar sizes. However, most real-life graphs are highly-
imbalanced: out of all the potential edges, only a fraction of them ever exists; a classifier that never
predicts any edges based on an embedding would thus score high in terms of AUROC.

4 EXPERIMENTS

We run node2vec on several different models of graphs on a grid of parameters, using the co-
occurrence network of “Les Misérables” (Knuth, 1994), as well as stochastic block models (SBMs),
exhibiting well-defined community structures. To prevent additional stochastic effects, we focus on
embedding a single instance of the SBM graphs only (using a fixed random seed for the generation of
the graph), as opposed to working with data sets of multiple graphs.5

Implementation. We implemented our analysis in Python, using scikit-learn and pytorch;
our code is publicly available under a 3-Clause BSD License.6

Experimental setup. The first stochastic block model (sbm2) has two blocks of 100 nodes and
intra-block probability 0.2 and inter-block probability 0.8. The second stochastic block model (sbm3)
has three blocks of 100 nodes with intra-block probabilities 0.8 and inter-block probability of 0.2.
For each of these graphs, we run node2vec 10 times for each combination of parameters, to assess
the variance of the algorithm. Our training procedure uses “early stopping” based on the loss, and
we used the following hyperparameter grid: L ∈ {5, 10, 20}, d ∈ {16, 32, 64}, and C ∈ {5, 10},
q ∈ {1, 2}. Similar to Grover & Leskovec (2016), we use a fixed number of N = 10 random walks
to limit the complexity of the problem.7 In total, this parameter grid provides us with an in-depth
view of the performance of node2vec.

5We performed similar analyses for Erdös-Rényi graphs, but found no substantial differences to the results
presented here.

6https://github.com/aidos-lab/node2vec-surprises
7We consider our work to be a preliminary study of the stability of node2vec and related methods; future

work could tackle even more complex hyperparameter grids.
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(a) Hausdorff distance (b) Wasserstein distance

Figure 2: Distances between embeddings arising from a fixed parameter set for the “Les Misérables”
graph. The distributions are sorted according their parameter set and colour-coded according to
the dimension of the respective embedding. Each boxplot summarises the distribution of pairwise
distances with respect to a specific set of parameters (shown on the x-axis as labels).

Pre-processing. To simplify the comparisons of different embeddings from a same feature space
Rd, we normalise each point cloud so that its diameter is 1. This has no consequences for quality
assessment, but ensures that point clouds remain comparable for the stability analysis.

4.1 ANALYSIS OF “LES MISÉRABLES”

Following the original publication Grover & Leskovec (2016), we first analysed the “Les Misérables”
character co-occurrence network. Figure 1 depicts different embeddings, obtained by applying
Principal Component Analysis (PCA) to the node embeddings generated by node2vec. Each point
in such a plot corresponds to a single node of the graph. Already in these low-dimensional plots, a
large degree of variability becomes apparent—the resulting point clouds have different appearances,
even if we only consider runs with the same parameter set, i.e., all point clouds of a single row of
Figure 1; we acknowledge that variations in the appearance of embeddings can also be a consequence
of PCA. However, the illustration mimics the general usage of node2vec in a data analysis context,
where embedding algorithms are typically used to acquire additional insights or solve data analysis
tasks.

Subsequently, we will proceed with direct analyses of the high-dimensional embeddings, excluding
additional dimensionality reduction algorithms to ensure that we can assess the stability and quality
of node2vec without adding a source of potential noise. Knowing that embeddings of high-
dimensional data sets are prone to incorrect interpretations, we now turn towards a more principled
analysis of the individual point clouds, according to the measures outlined in Section 3.1 and
Section 3.2.

Stability. Figure 2 depicts distance distributions for this data set. The Hausdorff distance exhibits
a larger variance, even within a set of hyperparameters, i.e., over different repetitions of the same
embedding. The Wasserstein distance, by contrast, exhibits smaller variance, hinting at its improved
ability to account for some—not all—transformations of the embeddings that are due to stochasticity.
Using a Wilcoxon signed-rank test (Wilcoxon, 1945), we find that ≈ 77% [≈ 90%] of all pairwise
comparisons between hyperparameter groups are found to be statistically significantly different from
each other for the Hausdorff [Wasserstein] distance (p = 0.05 with Bonferroni correction). This
finding indicates that even if hyperparameter sets differ only by a single value, (i) the resulting
distribution of distances between individual embeddings can be substantially different, and (ii) these
differences are pronounced enough to be detected by standard tests of statistical significance.

Quality. The experiments mentioned above illustrate various ways in which the embeddings appear
to be unstable. To form a clearer picture of this problem, we also assessed quality by aiming to
reconstruct the edges in the graph. Figure 3 depicts the results. We observe that there is a large degree
of variance even for a single parameter set. Somewhat surprisingly, some parameter sets achieve very
low AUPRC values, failing to go well beyond random predictions (AUPRC ≈ 0.09). The variance
for certain choices of parameters—regardless of embedding dimensionality—is still high, indicating
that even a careful selection of data-appropriate parameters does not necessarily lead to consistently
faithful embeddings.
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(a) Link distribution (W2) (b) Link reconstruction (AUPRC)

Figure 3: Quality assessment of “Les Misérables” graph embeddings. For the link distribution
comparison plot (top), we show the distribution of Wasserstein distances between the original link
distribution of the graph and the empirical link distribution of its embeddings. Lower values indicate
a better fit. For the link reconstruction (bottom), we show the AUPRC obtained from reconstructing
edges in the graph based on pairwise scores between embedded vectors. Higher values are desirable.

(a) sbm2 (b) sbm3

Figure 4: Wasserstein distance distributions of sbm2 and sbm3 graphs. Each boxplot summarises
the distribution of pairwise distances with respect to a specific set of parameters (shown on the x-axis
as labels).

4.2 STOCHASTIC BLOCK MODELS

We subject two different graphs arising from a stochastic block model formulation to the analysis
described above; sbm2 has two communities, whereas sbm3 has three. Figure 4 shows Wasserstein
distance distributions to assess the quality of the embeddings. Similar to the “Les Misérables” graph,
≈ 91% of all distributions are statistically significantly different from each other, despite being
obtained via highly similar parameter sets. The quality of the embeddings is highly-varying. As
Figure 5 shows, even small changes in the hyperparameters can result in large changes with respect to
AUPRC. Moreover, it is notable that the improvements in terms of AUPRC over a random classifier are
lower than for the “Les Misérables” graph, despite SBMs having a relatively simple graph structure.

(a) sbm2 (b) sbm3

Figure 5: Link reconstruction AUPRC values for the sbm2 and sbm3 graphs. The values of a random
classifier are at 0.50 and 0.40, respectively. Higher values are desirable.

7
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5 DISCUSSION & CONCLUSION

Our experiments indicate that node2vec embeddings can be unstable regardless of parameter com-
binations. Even if embeddings arise from the same set of hyperparameters, there can be a large degree
of variance in terms of both stability and quality (which we measured in terms of reconstructing edges
correctly). Our quality measure is arguably strict in the sense that a reconstruction of neighbourhoods
would be sufficient for many graph learning tasks. Nevertheless, the high degree of variance (in terms
of AUPRC) and the large changes as parameters are being adjusted, raises some concerns about the
reliability or faithfulness of such embeddings. Since node2vec is geared towards producing vector
representations of structured objects, there is a need for a better understanding of how hyperparame-
ters are to be picked in practice. With a specific task—such as node classification—in mind, standard
hyperparameter training strategies can be used. Our analyses indicate that care should be taken when
node2vec, or other vectorisation strategies, are used in an exploratory data analysis (EDA) setting,
i.e., for generating hypotheses or understanding patterns underlying a data set. In such scenarios, we
caution practitioners to rely on individual embeddings.

Strategies. To use embeddings for EDA, we suggest repeating runs with the same parameter set
and studying the respective quality and stability measures. While link reconstruction, for instance,
might not be the ultimate goal, low-variance distributions with high mean AUPRC values are
indicative of hyperparameters that are capable of gleaning at least some structural information
of a graph. In addition, practitioners might experiment with pooling strategies, i.e., averaging
individual embeddings (potentially after aligning them with a Procrustes analysis (Kendall, 1989) or
a registration of distributions (Tang et al., 2017), for instance). Using a single embedding to draw
conclusions about a graph should be avoided.

Future work. Our work paves the way towards a better understanding of embedding algorithms
such as node2vec. For the future, we envision the development of a more theoretical framework in
which to analyse such algorithms and their outputs. We hope that our paper opens up the discussion
of this broad topic, which might not have a simple answer. A better understanding of the behaviour
of such methods will hopefully also result in a principled way for choosing parameters so that they
are guaranteed to result in stable, faithful, and trustworthy embeddings, which reflect properties of
the graphs under consideration (such as the diameter, clustering coefficient, and other properties).

In this context, developing novel stability and quality measures based on e.g., persistent homol-
ogy (PH), a method to obtain multi-scale topological features of point clouds (Hensel et al., 2021),
constitutes an interesting research direction, PH having already demonstrated its expressivity in other
data science contexts such as dimensionality reduction (Rieck & Leitte, 2015) and clustering (Rieck
& Leitte, 2016).

On a theoretical level, our analysis raises questions about the behaviour of truncated random walks.
While the behaviour of random walks is well-understood (Chung, 1997) in the infinite time limit,
not much is known about the behaviour of truncated random walks. A better understanding of the
short-term behaviour or random walks would be beneficial to the study of node2vec stability.
Moreover, these questions also apply to k-simplex2vec and in a broader context also to other
representation learning methods for graphs, as well as simplicial and cell complexes, which have
recently started receiving more attention in the graph learning community (Bodnar et al., 2021b;a).
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