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ABSTRACT

Multiresolution Matrix Factorization (MMF) is unusual amongst fast matrix fac-
torization algorithms in that it does not make a low rank assumption. This makes
MMF especially well suited to modeling certain types of graphs with complex
multiscale or hierarchical strucutre. While MMF promises to yield a useful wavelet
basis, finding the factorization itself is hard, and existing greedy methods tend to
be brittle. In this paper, we propose a “learnable” version of MMF that carfully op-
timizes the factorization with a combination of reinforcement learning and Stiefel
manifold optimization through backpropagating errors. We show that the resulting
wavelet basis far outperforms prior MMF algorithms and provides the first version
of this type of factorization that can be robustly deployed on standard learning tasks.
Furthermore, we construct the wavelet neural networks (WNN5s) learning graphs
on the spectral domain with the wavelet basis produced by our MMF learning
algorithm. Our wavelet networks are competitive against other state-of-the-art
methods in molecular graphs classification and node classification on citation
graphs. Our complete paper with the Appendix and more experiments is publicly
available at https://arxiv.org/pdf/2111.01940.pdf. We release our
implementation at https://github.com/risilab/Learnable_MMF/.

1 INTRODUCTION

In certain machine learning problems large matrices have complex hierarchical structures that tradi-
tional linear algebra methods based on the low rank assumption struggle to capture. Multiresolution
matrix factorization (MMF) is a relatively little used alternative paradigm that is designed to capture
structure at multiple different scales. MMF has been found to be particularly effective at compressing
the adjacency or Laplacian matrices of graphs with complicated structure, such as social networks
Kondor et al. (2014).

MMF factorizations have a number of advantages, including the fact that they are easy to invert and
have an interpretation as a form of wavelet analysis on the matrix and consequently on the underlying
graph. The wavelets can be used e.g., for finding sparse approximations of graph signals. Finding the
actual MMF factorization however is a hard optimization problem combining elements of continuous
and combinatorial optimization. Most of the existing MMF algorithms just tackle this with a variety
of greedy heuristics and are consequently brittle: the resulting factorizations typically have large
variance and most of the time yield factorizations that are far from the optimal |Teneva et al.| (2016);
Ithapu et al.|(2017); Ding et al.|(2017).

The present paper proposes an alternative paradigm to MMF optimization based on ideas from
deep learning. Specifically, we employ an iterative approach to optimizing the factorization based
on backpropagating the factorization error and a reinforcement learning strategy for solving the
combinatorial part of the problem. While more expensive than the greedy approaches, we find that
the resulting “learnable” MMF produces much better quality factorizations and a wavelet basis that is
smoother and better reflects the structure of the underlying matrix or graph. Unsurprisingly, this also
means that the factorization performs better in downstream tasks.


https://arxiv.org/pdf/2111.01940.pdf
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To apply our learnable MMF algorithm to standard benchmark tasks, we also propose a wavelet
extension of the Spectral Graph Networks algorithm of Bruna et al.|(2014) which we call the Wavelet
Neural Network (WNN). Our experiments show that the combination of learnable MMF optimization
with WNNs achieves state of the art results on several graph learning tasks. Beyond just benchmark
performance, the greatly improved stability of MMF optimization process and the similarity of the
hierarchical structure of the factorization to the architecture of deep neural networks opens up the
possibility of MMF being tightly integrated with other learning algorithms in the future.

2 RELATED WORK

Compressing and estimating large matrices has been extensively studied from various directions,
including Drineas et al.|(2006), Halko et al.|(2011), [Williams & Seeger| (2001) [Kumar et al.[(2012),
Mahoney| (2011), Jenatton et al.| (2010). Many of these methods come with explicit guarantees but
typically make the assumption that the matrix to be approximated is low rank.

MMF is more closely related to other works on constructing wavelet bases on discrete spaces,
including wavelets defined based on diagonalizing the diffusion operator or the normalized graph
Laplacian |Coifman & Maggioni| (2006) Hammond et al.|(201 1)) and multiresolution on trees |Gavish
et al.| (2010) [Lee et al.| (2008). MMF has been used for matrix compression [Ieneva et al.[(2016),
kernel approximation [Ding et al.|(2017)) and inferring semantic relationships in medical imaging data
Ithapu et al.| (2017).

Graph neural networks (GNNs) utilizing the generalization of convolution concept to graphs have
been popularly applied to many learning tasks such as estimating quantum chemical computation,
and modeling physical systems, etc. Spectral methods such as Bruna et al.| (2014) provide one way to
define convolution on graphs via convolution theorem and graph Fourier transform (GFT). To address
the high computational cost of GFT, Xu et al.|(2019) proposed to use the diffusion wavelet bases as
previously defined by (Coifman & Maggioni| (2006) instead for a faster transformation.

3  BACKGROUND ON MULTIRESOLUTION MATRIX FACTORIZATION

The Multiresolution Matrix Factorization (MMF) of a matrix A € R™*" is a factorization of the form
A=UlUuf .. U'HU, ... UU,

where the H and Uy, ..., U matrices conform to the following constraints: (i) Each Uy is an
orthogonal matrix that is a k-point rotation for some small k, meaning that it only rotates k£ coordinates
at a time; (ii) There is a nested sequence of sets Sy, € -+ €Sy € Sy = [n] such that the coordinates
rotated by Uy are a subset of Sy; and (iii) H is an Sy -core-diagonal matrix that is diagonal with a an
additional small S;, x Sy, dimensional “core”. Finding the best MMF factorization to a symmetric
matrix A involves solving

min |A-U! .. . U'HU,...U|. (1)

Spc---cSq SS0=[n]
HeH LUy ,...,.ULeD

Assuming that we measure error in the Frobenius norm, (I)) is equivalent to

- T T2
min U ... U AUy ... U; ||, (2)
SLQ'“981§SOI[7L]
Ui,....UL€O

where ||-||2; is the squared residual norm || H |2, = ;.;.¢i j)s, xs,, |Hij|*. There are two fundamen-

tal difficulties in MMF optimization: finding the optimal nested sequence of Sy is a combinatorially

hard (e.g., there are (‘z) ways to choose k indices out of Sy); and the solution for U, must satisfy

the orthogonality constraint such that UZT U, = I. The existing literature on solving this optimiza-
tion problem [Kondor et al.|(2014) [Teneva et al.| (2016)) Ithapu et al.| (2017) Ding et al.|(2017) has
various heuristic elements and has a number of limitations. First of all, there is no guarantee that
the greedy heuristics (e.g., clustering) used in selecting k rows/columns I, = {i1,..,ix} c S, for
each rotation return a globally optimal factorization. Instead of direct optimization for each rotation
Uy £ I, @1, O; where O; € SO(k) globally and simultaneously with the objective , Jacobi
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MMFs (see Proposition 2 of [Kondor et al.| (2014)) apply the greedy strategy of optimizing them
locally and sequentially. Again, this does not necessarily lead to a globally optimal combination of
rotations. Furthermore, most MMF algorithms are limited to the simplest case of k = 2 where Uy is
just a Givens rotation, which can be parameterized by a single variable, the rotation angle ¢,. This
makes it possible to optimize the greedy objective by simple gradient descent, but larger rotations
would yield more expressive factorizations and better approximations.

In contrast, we propose an iterative algorithm to directly optimize the global MMF objective (I)):

» We use gradient descent algorithm on the Stiefel manifold to optimize all rotations {U, } eL:1
simultaneously, whilst satisfying the orthogonality constraints. Importantly, the Stiefel
manifold optimization is not limited to k = 2 case (Section H).

» We formulate the problem of finding the optimal nested sequence Sy, €---€S; €Sp = [n] as
learning a Markov Decision Process (MDP) that can be subsequently solved by the gradient

policy method of Reinforcement Learning (RL), in which the RL agent (or stochastic policy)
is modeled by graph neural networks (GNN) (Section [5).

We show that the resulting learning-based MMF algorithm outperforms existing greedy MMFs and
other traditional baselines for matrix approximation in various scenarios (see Section [7).

4  STIEFEL MANIFOLD OPTIMIZATION

The MMF optimization problem in (I)) and (Z)) is equivalent to
min min ®||UL...U1AU1T...ULT||2 (3)
€

Spc-c$1So=[n] Us,...,UL rest?

In order to solve the inner optimization problem of (3, we consider the following generic optimization
with orthogonality constraints:
i X), st. X'X =1 4
Juin F(X), s P )
where I, is the identity matrix and F(X) : R™? — R is a differentiable function. The feasible set
V,(R") ={X e R : X7 X =I,} is referred to as the Stiefel manifold of p orthonormal vectors

in R™ that has dimension equal to np— 2p(p+1). We will view V,(R™) as an embedded submanifold
of R™P.

When there is more than one orthogonal constraint, @) is written as

min F(X1,...,Xy) (5)
XlevPl (R™1 )1'“7ququ (R™2)

where there are g variables with corresponding g orthogonal constraints. For example, in the MMF
optimization problem , suppose we are already given Sy, € - € Sy € Sp = [n] meaning that
the indices of active rows/columns at each resolution were already determined, for simplicity. In
this case, we have ¢ = L number of variables such that each variable X, = O, € R**¥ where
Uy =1,k @1, Op € R™"™ in which [, is a subset of £ indices from S, must satisfy the orthogonality
constraint. The corresponding objective function is

F(Oy,...,01) =|Uy... U AU .. . UL} (6)

resi*

Details about Stiefel manifold optimization is included in the Appendix.

5 REINFORCEMENT LEARNING

5.1 PROBLEM FORMULATION

We formulate the problem of finding the optimal nested sequence of sets Sy, € --- € S; € Sp = [n] as
learning an RL agent in order to solve the MMF optimization in (I)). There are two fundamental parts
to index selection for each resolution level £ € {1, .., L}:
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* Select k indices Iy = {41, .., } © S¢—1 to construct the corresponding rotation matrix Uy
(see Section [).

* Select the set of indices T, c Sy_; of rows/columns that are to be wavelets at this level, and
then be eliminated by setting Sy = Sy_1 \ Ty. To reduce the computational cost, we assume
that each resolution level has only one row/column to be selected as the wavelet (e.g., a
single wavelet) such that |T,| = 1. That means the cardinality of S, reduces by 1 after each
level, d; = n — ¢, and size of the core block of H is (n — L) x (n — L) that corresponds to
exactly n — L active rows/columns at the end.

5.2 MARKOV DECISION PROCESS

A key task for building our model is to specify our index selection procedure. We design an iterative
index selection process and formulate it as a general decision process M = (S, A, P, R,~) as follows.

S is the set of states (or state space) that consists of all possible intermediate and final states in which
each state s € S is a tuple of (A,S, ¢) where ¢ indicates the resolution level, S indicates the set of
active row/column indices, and A = Ags s indicates the sub-matrix of A with indices of rows and
columns are from S (e.g., [S| = dy, A € R9*4¢), We start at state so = (A, [n],0) where A is the
input matrix that MMF tries to factorize (e.g., no rows/columns removed yet) and [n] indicates all

rows/columns are still active. The set of terminal (final) states S* c S includes every state s* that has
{=1L.

A is the set of actions that describe the modification made to current state at each time step. An action
a € A validly applied to a non-terminal state s = (As s, S, £) is a tuple (I, T) where I = {41, ..,ix} ¢S
is the set of k indices corresponding to the rotation matrix Uy, 1, and T c S is the set of wavelet indices
to be returned at this level. This action transforms the state into the next one s’ = (Ag/ s, S, ¢ + 1)
where S’ = S \ T meaning the set of active indices is further shrunk. The action is called invalid for
the current state if and only if [ ¢ Sor T ¢ S.

P is the transition dynamics that specifies the possible outcomes of carrying out an action at time ¢ in
which p(ag|se, .., So) is represented as a parameterized policy network 7y with learnable parameters
6. The whole trajectory is always started by the same s and finished by a terminal state after exactly
L transitions:

a~mg (*|s0) a~mg (+|s1) a~mg(*|sp-1) .
So $1 $9...8,.1—————> 8 €857,

that constructs the nested sequence.

R(s*) is the reward function that specifies the reward after reaching a terminal state s*. The reward
function is defined as negative of the MMF reconstruction loss such that

R(s*)=-||A-UT ... UTHU, ... U||p. )

We want to maximize this final reward that is equivalent to minimize error of MMF in Frobenius
norm (as in problem (I))). Evaluation of the reward requires the Stiefel manifold optimization (see
Section for rotations {Ug}él. Obviously, the final reward in Eq. is the most important.
However, to improve the training quality of the policy, we can define the intermediate reward R(s)
for non-terminal states s = (Ass, S, ) ¢ S* as the immediate improvement of the ¢-th resolution
(L>1¢>0):
T 2

R(S) = _H[UéAé—lUZ ]SSHresi' ®)

Along the trajectory (so, s1, .., SL.), we generate the corresponding sequence of rewards (71,72, ..,7L)

based on (7] [8).

~ is the discount factor, a penalty to uncertainty of future rewards, 0 < v < 1. We define the return or
discounted future reward gy for £ =0,.., L — 1 as

Lot
ge= Y. Yrewe, 9
k=0
which in the case of v = 1 indicates simply accumulating all the immediate rewards and the final
reward along the trajectory.
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5.3 GRAPH CONVOLUTIONAL POLICY NETWORK

In this section, we design our policy network 7y as a graph neural network (GNN) with the message
passing scheme. We consider the symmetric matrix A being represented by a weighted undirected
graph G = (V, E) in which V is the set of nodes such that each node corresponds to a row/column
of A, and F is the set of edges such that the edge (4,j) € E has the weight A; ;. As defined in
Section astate s € Sis atuple (Asg, S, £) in which Ag s is the sub-matrix restricted to the active
rows/columns S, and an action a € A is a tuple (I, T) in which I is the set of k indices corresponding
to the (¢ + 1)-th rotation and T is the set of indices to be returned as wavelets. Practically, a state can
be simply represented by a single binary vector such that if a bit is 1 then the corresponding index is
active, without the need to explicitly storage matrix Ag s that can be efficiently constructed from A
by any numerical toolkit. Our GNN policy network 7y(a|s) learns to encode the underlying graph
represented by Ag s and returns a sample of valid action such that T c I c S. In Section [5.1} we
assume that T contains only a single index that we will call as the pivor i* (e.g., T = {i*}). Thus, the
task of our GNN model is to learn to select the pivot ¢* first, and then select the rest k£ — 1 indices of I
that are highly correlated to the pivot.

The simplest implementation of GNNs is Message Passing Neural Networks (MPNN5s) Gilmer et al.
(2017). Suppose that the node embeddings (messages) My € RY* are initialized by the input
node features where NV is the number of nodes and F' is the number of features for each node.
Iteratively, the messages are propagated from each node to its neighborhood, and then transformed by
a combination of linear transformations and non-linearities, e.g.,

M; =AM, ,, M;=o(M;W, ), (10)

where A is the adjacency matrix; M, and M, ¢ RV*P are the aggregated messages (by summing over
each node’s neighborhood) and the output messages at the ¢’th iteration, respectively; o is a element-
wise non-linearity function (e.g., sigmoid, ReLU, etc.); and W's are learnable weight matrices such
that Wy € RF*P and W, e RP*P for t > 0. Basically, the set of learnable parameters @ of our policy
network 7 includes all W's. In some cases, a graph Laplacian L is used instead of the adjacency
matrix A in model , for example, graph Laplacian L = D' A or its symmetric normalized
version L = I - D™*/2 AD~'/2_ One way to incorporate the set of active rows/columns/nodes S into
our GNN model is by initializing the input node feature with a binary label (f = 1) such that a node v
has label 1 if the v-th row/column is still active, otherwise 0. For a more efficient implementation, we
can execute the message passing in the block Ag s only. Supposing that the message passing scheme
is executed for 7T iterations, we concatenate messages from every iteration together into the final
embedding:

T
M =@ M, e RVPT, (11)

t=1

Model produces the embedding for each node that allows us to define a sampling procedure to
select the pivot ¢*. Given the final embedding M from Eq. (11}, we define the probability P; that
node i € S is being selected as the pivot as:

exp(P)
jesexp(P;)’
In order to make the sampling procedure differentiable for backpropagation, we apply the Gumbel-

max trick|Gumbel| (1954)[Maddison et al.|(2014) Jang et al.|(2017) that provides a simple and efficient
way to draw sample i* as follows:

[

where Pi = ZMi>f'
f

1t = one-hot( arg max [GZ- +log Pi]),
€S

where G; are i.i.d samples drawn from Gumbel (0, 1). Technically, the sample is represented by a one-
hot vector such that the i*-th element is 1. Similarly, T, I and S are represented by vectors in {0, 1}
in which a 1-element indicates the existence of the corresponding index in the set. Furthermore, the
set union and minus operations (e.g., S \ T) can be easily done by vector addition and subtraction,
respectively.

Given the pivot ¥, we compute the similarity score between ¢* and other nodes i € S as C; =
(M;- ., M ;). Finally, we sample k — 1 nodes with the highest similarity scores to i sequentially
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Figure 1: Visualization of some of the wavelets on the Cayley tree of 46 vertices. The low index
wavelets (low ¢) are highly localized, whereas the high index ones are smoother and spread out over
large parts of the graph.

(one-by-one) without replacement by the Gumbel-max trick, that completes our sampling procedure
for action a = (I, T).

The REINFORCE [Williams| (1988)) [Williams| (1992)) Sutton et al.| (2000) update rule for policy
parameters is

9<—9+777£95V910gﬂ'9(a5|8@) for £=0,..,L-1; (12)
where 7 is the learning rate, that is used in training our policy network ¢ in Algorithm [I]

Algorithm 1 MMF learning algorithm optimizing problem

1: Input: Matrix A, number of resolutions L, and constants k, -y, 1, and w.
2: Initialize the policy parameter § at random.

3: while true do
4: Start from state sg > so = (A,[n],0)
5: Initialize Sy < [n] > All rows/columns are active at the beginning.
6: for(=0,..,L -1do
7 Sample action ag = (Tp11, Tey1) from mo(ae|se). > See Section[5.3]
8: Ses1 < Se Ty > Eliminate the wavelet index (indices).
9: Se+1 < (As,, 1 Spa1sSes1, £+ 1) > New state with a smaller active set.
10: end for
11: Given {I,}L |, minimize objective @ by Stiefel manifold optimization to find {O,},. >

Uy=1, 010,
12: for (=0,..,L —1do

13: Estimate the return g, based on Eq. (7), Eq. (8), and Eq. (9).

14: 0 < 0 +1v geVglogme(aelse) > REINFORCE policy update in Eq.
15: end for

16: Terminate if we already completed w episodes.

17: end while

5.4 THE LEARNING ALGORITHM

Putting everything together, our MMF learning algorithm is sketched in Algorithm [I] Iteratively:
(1) we sample a trajectory by running the policy network that indicates the indices for rotation and
wavelet for each resolution, (2) we apply the Stiefel manifold optimization to find the rotations, and
(3) we compute the future rewards and update the parameters of the policy network by REINFORCE
accordingly. The learning terminates when we complete w iterations or episodes. In all our experi-
ments, the learning algorithm can get to sufficient precision in matrix approximation after w = 256
episodes. Figure|l|depicts the wavelet bases at different levels of resolution.

6 WAVELET NETWORKS ON GRAPHS

6.1 MOTIVATION

The eigendecomposition of the normalized graph Laplacian operator L =UTHU can be used as the
basis of a graph Fourier transform. Shuman et al.| (2013)) defines graph Fourier transform (GFT) on a
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graph G = (V,E) of a graph signal f € R™ (that is understood as a function f : V' — R defined on the
vertices of the graph) as f U7 f, and the inverse graph Fourier transform as f = U f Analogously
to the classical Fourier transform, GFT provides a way to represent a graph signal in two domains:
the vertex domain and the graph spectral domain; to filter graph signal according to smoothness; and
to define the graph convolution operator, denoted as *g:

f+ag=U((U"g) 0 (U"f)), (13)

where g denotes the convolution kernel, and @ is the element-wise Hadamard product. If we replace
the vector U7 g by a diagonal matrix §, then we can rewrite the Hadamard product in Eq. to
matrix multiplication as UgU f (that is understood as filtering the signal f by the filter §). Based
on GFT, Bruna et al.| (2014)) and |Detferrard et al.| (2016) construct convolutional neural networks
(CNNs) learning on spectral domain for discrete structures such as graphs. However, there are two
fundamental limitations of GFT:

* High computational cost: eigendecomposition of the graph Laplacian has complexity
O(n?), and “Fourier transform” itself involves multiplying the signal with a dense matrix
of eigenvectors.

* The graph convolution is not localized in the vertex domain, even if the graph itself has well
defined local communities.

To address these limitations, we propose a modified spectral graph network based on the MMF wavelet
basis rather than the eigenbasis of the Laplacian. This has the following advantages: (i) the wavelets
are generally localized in both vertex domain and frequency, (ii) the individual basis transforms are
sparse, and (iii) MMF provides a computationally efficient way of decomposing graph signals into
components at different granularity levels and an excellent basis for sparse approximations.

6.2 NETWORK CONSTRUCTION

In the case A is the normalized graph Laplacian of a graph G = (V, ), the wavelet transform (up
to level L) expresses a graph signal (function over the vertex domain) f : V — R, without loss of
generality f € Vg, as:

f(v) = ZZa vt (v)+26m¢ (v), foreach veV,

l=1m

where o, = (f,4",) and 3,, = (f, % ) are the wavelet coefficients. At each level, a set of coordinates
Ty c Sy_1 are selected to be the wavelet indices, and then to be eliminated from the active set by setting
Se=Sp_1 N Ty (see Sectlon@ Practlcally, we make the assumption that we only select 1 wavelet
index for each level (see Section | that results in a single mother wavelet 1)* = [ A];+ . where i* is
the selected index (see Section D We get exactly L mother wavelets 1) = {1/)1 ¥?,..., 4L}, Onthe
another hand, the active rows of H Aj, make exactly NV — L father wavelets gb {¢>L H,, .} mes, -
In total, a graph of IV vertices has exactly IV wavelets (both mothers and fathers). Analogous to the
convolution based on GFT |Bruna et al.|(2014), each convolution layer k = 1, .., K of our wavelet
network transforms an input vector £*~1) of size |V| x Fy,_; into an output f*) of size [V'| x F}, as

£ _U(W 3 oW s 1>) for j=1,....F. (14)

. . . - - k) .
where W is our wavelet basis matrix as we concatenate ¢ and ¢/ column-by-column, gi( j) is a

parameter/filter in the form of a diagonal matrix learned in spectral domain, and o is an element-wise
linearity (e.g., ReLU, sigmoid, etc.).

7 MOLECULAR GRAPHS CLASSIFICATION

We trained and evaluated our wavelet networks (WNNSs) on standard graph classification benchmarks
including four bioinformatics datasets: (1) MUTAG, which is a dataset of 188 mutagenic aromatic
and heteroaromatic nitro compounds with 7 discrete labels|Debnath et al. (1991); (2) PTC, which



Accepted to the ICML 2022 Workshop on Topology, Algebra, and Geometry in Machine Learning

Table 1: Molecular graphs classification. Baseline results are taken from Maron et al.|(2019).

H Method [ MUTAG [ PTC [ PROTEINS [ NCI1 ‘
DGCNN [Zhang et al[(2018) 85.83 £ 1.7 58.59 +£2.5 75.54+£09 | 7444 +0.5
PSCN |Niepert et al.| (2016) 88.95+44 | 6229 +5.7 75+ 2.5 76.34 + 1.7
DCNN Atwood & Towsley| (2016) N/A N/A 6129+ 1.6 56.61 + 1.0
CCN Hy et al[(2018) B 91.64 +7.2 | 70.62+7.0 N/A 7627 + 4.1
GK [Shervashidze et al.|(2009) 81.39 £ 1.7 55.65 £ 0.5 71.39 + 0.3 62.49 + 0.3
RW |Vishwanathan et al.|(2010) 79.17 + 2.1 5591 +0.3 59.57 + 0.1 N/A
PK|Neumann et al|(2016) 76 +2.7 595+24 73.68 + 0.7 82.54 £ 0.5
WL Shervashidze et al.[(2011) 84.11 £ 1.9 5797 £ 2.5 74.68 +£ 0.5 84.46 + 0.5
IEGN Maron et al](2019) 84.61 £ 10 59.47 +17.3 75.19 + 4.3 7371 +2.6

H MMF [ 86.31 £ 9.47 [ 67.99 + 8.55 [ 78.72 + 2.53 [ 71.04 + 1.53 ‘

consists of 344 chemical compounds with 19 discrete labels that have been tested for positive or
negative toxicity in lab rats Toivonen et al.|(2003); (3) PROTEINS, which contains 1,113 molecular
graphs with binary labels, where nodes are secondary structure elements (SSEs) and there is an edge
between two nodes if they are neighbors in the amino-acid sequence or in 3D space |Borgwardt et al.
(2005); (4) NCI1, which has 4,110 compounds with binary labels, each screened for activity against
small cell lung cancer and ovarian cancer lines |Wale et al.| (2008). Each molecule is represented by
an adjacency matrix, and we represent each atomic type as a one-hot vector and use them as the node
features.

We factorize all normalized graph Laplacian matrices in these datasets by MMF with K = 2 to obtain
the wavelet bases. Again, MMF wavelets are sparse and suitable for fast transform via sparse matrix
multiplication, with the following average percentages of non-zero elements for each dataset: 19.23%
(MUTAG), 18.18% (PTC), 2.26% (PROTEINS) and 11.43% (NCI1).

Our WNNSs contain 6 layers of spectral convolution, 32 hidden units for each node, and are trained
with 256 epochs by Adam optimization with an initial learning rate of 1073, We follow the evaluation
protocol of 10-fold cross-validation from [Zhang et al.| (2018]). We compare our results to several
deep learning methods and popular graph kernel methods. Baseline results are taken from Maron
et al.[(2019). Our WNNs outperform 7/8, 7/8, 8/8, and 2/8 baseline methods on MUTAG, PTC,
PROTEINS, and NCI1, respectively (see Table .

Experiments on node classification on citation graphs and matrix factorization are included in the full
paper athttps://arxiv.org/pdf/2111.01940.pdf.

8 SOFTWARE

We implemented our learning algorithm for MMF and the wavelet networks by PyTorch deep learning
framework (Paszke et al.,[2019). We released our implementation at https://github.com/
risilab/Learnable MMF/|

9 CONCLUSIONS

In this paper we introduced a general algorithm based on reinforcement learning and Stiefel manifold
optimization to optimize Multiresolution Matrix Factorization (MMF). We find that the resulting
learnable MMF consistently outperforms the existing greedy and heuristic MMF algorithms in
factorizing and approximating hierarchical matrices. Based on the wavelet basis returned from
our learning algorithm, we define a corresponding notion of spectral convolution and construct a
wavelet neural network for graph learning problems. Thanks to the sparsity of the MMF wavelets,
the wavelet network can be efficiently implemented with sparse matrix multiplication. We find that
this combination of learnable MMF factorization and spectral wavelet network yields state of the art
results on standard node classification and molecular graph classification.


https://arxiv.org/pdf/2111.01940.pdf
https://github.com/risilab/Learnable_MMF/
https://github.com/risilab/Learnable_MMF/
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