
Accepted to the ICML 2022 Workshop on Topology, Algebra, and Geometry in Machine Learning

DEOSCILLATED ADAPTIVE GRAPH COLLABORATIVE
FILTERING

Zhiwei Liu∗
Salesforce Research
Palo Alto, CA, USA
zhiweiliu@salesforce.com

Lin Meng∗
IFM Lab, Department of Computer Science
Florida State University
Tallahassee, FL, USA
lin@ifmlab.org

Fei Jiang
Department of Computer Science
University of Chicago
Chicago, IL, USA
feijiang@uchicago.edu

Jiawei Zhang
IFM Lab, Department of Computer Science
University of California, Davis
Davis, CA, USA
jiawei@ifmlab.org

Philip S. Yu
Department of Computer Science
University of Illinois, Chicago
Chicago, IL, USA
psyu@uic.edu

ABSTRACT

Collaborative Filtering (CF) signals are crucial for a Recommender System (RS)
model to learn user and item embeddings. High-order information can alleviate
the cold-start issue of CF-based methods, which is modeled through propagating
the information over the user-item bipartite graph. Recent Graph Neural Net-
works (GNNs) propose to stack multiple aggregation layers to propagate high-order
signals. However, there are three challenges, the oscillation problem, varying local-
ity of bipartite graphs, and the fixed propagation pattern, which spoil the ability of
the multi-layer structure to propagate information. In this paper, we theoretically
prove the existence and boundary of the oscillation problem, and empirically study
the varying locality and layer-fixed propagation problems. We propose a new RS
model, named as Deoscillated adaptive Graph Collaborative Filtering (DGCF),
which is constituted by stacking multiple CHP layers and LA layers. We conduct
extensive experiments on real-world datasets to verify the effectiveness of DGCF.
Detailed analyses indicate that DGCF solves oscillation problems, adaptively learns
local factors, and has layer-wise propagation patterns.

1 INTRODUCTION

A Recommender System (RS) Rendle et al. (2009); Rendle (2010); He et al. (2017); Wang et al.
(2019); Zheng et al. (2017); Ying et al. (2018) predicts the interests of users towards items, where
a typical method is to model collaborative signals Wang et al. (2019). Assuming similar users
share relevant items, collaborative signals benefit the learning user and item embeddings given their
interactions. One major issue regarding modeling collaborative signals is the cold-start problem Zheng
et al. (2018); He et al. (2020), where embeddings of users or items with few interactions are
hard to train. To remedy this issue, we can model high-order signals Wang et al. (2019) that
propagate information from multiple hops away over the user-item bipartite graph, thus explicitly
modeling Collaborative Filtering (CF) process. Recently, owing to the development of Graph Neural
Network (GNN) Kipf & Welling (2017); Hamilton et al. (2017); Wu et al. (2019a); Liu et al. (2020a),
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Figure 1: The left part is an example of bipartite graph. The green and red color labels the edges
covered by 3-hop propagation of u2 and u4, respectively. The right part presents the corresponding
3-hop propagation tree of u2 and u4.

we can propagate high-order signals by stacking multiple aggregation layers. Therefore, users (items)
can aggregate the first-order signal from direct neighbors at the first layer and high-order signals
from indirect neighbors at deep layers. However, via experimental analyses on real-world datasets,
we observe three common performance problems of existing GNNs on RS, which are named as
the oscillation problem, varying locality problem, and fixed propagation pattern problem in this
paper, respectively.

Firstly, stacking multiple layers leads to the oscillation problem, which in turn hinders the information
to propagate. Before formally defined, intuitively, oscillation problem occurs if there is an information
gap between the propagation of successive hops. It results from the bipartite structure. As illustrated
in the left part of Figure 1, the direct neighbors of users are all items, while the 2-hop neighbors are all
users. This implies that by aggregating the direct neighbors, users only receive the information from
items, and vice versa. It turns out that the information oscillates between users and items due to the
bipartite graph structure. One quick solution is adding self-loops Kipf & Welling (2017); Wang et al.
(2019) to break the bipartite structure. However, we theoretically prove that it cannot alleviate the
oscillation problem. Additionally, adding self-loops is equivalent to not propagating the information,
which even exacerbates the cold-start issue.

Besides the oscillation problem, the varying locality problem of bipartite graph also limits the
propagating ability of the multi-layer structure Xu et al. (2018). It refers to the density of local
structures over the bipartite graph. For example, on the left-hand side of Figure 1, u4 has a lower
local density compared with u2 as the former only directly connects to i4 while the latter connects to
i1, i2 and i3. The 3-hop propagation starting from u4 (red edges in Figure 1) only covers 3 edges
in the bipartite graph. In contrast, the 3-hop propagation of u2 (green edges in Figure 1) covers
almost every edge in the bipartite graph. Specifically, we present the corresponding propagation tree
of u2 and u4 on the right-hand side of Figure 1. There are fewer possible propagation paths for u4
compared with u2.

Last but not least, the fixed propagation pattern at different layers of existing multi-layer RS models He
et al. (2020); Wang et al. (2019); Berg et al. (2017) induces redundant information propagation
between layers. We present an example of the redundancy as the yellow-shaded block on the right-
hand side of Figure 1. The first hop propagation distributes the information of u2 to i1 and i2. Then,
the information from i1 and i2 is propagated to u1 and u2 at the second hop propagation, which is
reversely propagated back at the third hop propagation. This is due to the propagation pattern is fixed
at different layers. One possible solution is to sample layer-dependent neighbors Zou et al. (2019).
However, the current sampling strategy requires additional computation and is not differentiable,
which spoils the training procedure.

In order to tackle the aforementioned problems, we design a new GNN framework specifically for
bipartite graphs, named deep Deoscillated Adaptive Graph Collaborative Filtering (DGCF). We
propose a Cross-Hop Propagation (CHP) layer that remedies the bipartite propagation structure
to resolve the oscillation problem. Compared with existing methods that aggregate only direct
neighbors, the CHP layer also propagates the information from cross-hop neighbors. As a result,
users (items) can also receive the information from cross-hop users (items). Moreover, we design a
Locality-Adaptive (LA) layer which controls the amount of information to propagate. It learns an
influencing factor for each node, which is adaptive to the varying locality of the graph. Multiple CHP

2



Accepted to the ICML 2022 Workshop on Topology, Algebra, and Geometry in Machine Learning

layers and LA layers constitute the DGCF model. It propagates high-order CF signals to train node
embeddings, which is adaptive to the locality of nodes. Due to the space limit, we put our full version
paper online1.

2 PRELIMINARY AND RELATED WORK

Graph Neural Networks (GNNs) Kipf & Welling (2017); Wu et al. (2019a); Liu et al. (2020a); You
et al. (2021) are widely used in recommender system (RS) He et al. (2020); Ying et al. (2018); Wang
et al. (2019). In this section, we review the concepts of GNNs and their association with RS.

2.1 GRAPH NEURAL NETWORK

Given a simple graph G = (V, E), where V and E denote the nodes and edges, respectively. The input
feature of node v can be denoted as xv ∈ Rd and the hidden feature learned at l-th layer is denoted by
h
(l)
v ∈ Rh, where d is dimension of the input feature, and h is the dimension of the hidden features.

We define h
(0)
v = xv. Generally, GNN models have aggregation layer that aggregates features

of selected neighboring nodes The information is propagated from the selected nodes. Note that
‘aggregation’ describes the information diffusion from the view of target nodes, while ‘propagation’ is
from the view of source nodes. Hence, we use them interchangeably in the remaining parts. Formally,
the general propagation layer can be denoted by:

h(l)
v = σ

 ∑
u∈Nv∪{v}

αvuh(l−1)
u W(l−1)

 , (1)

where the set Nv = {u ∈ V|(u, v) ∈ E} is the selected neighboring node set of node v, and W(l)

denotes a linear transformation, and σ denotes a non-linear activation function (e.g., ReLU). αuv

denotes the coefficient between node v and neighboring node u.

2.2 RECOMMENDER SYSTEM

In typical Recommender Systems (RS), user-item interactions can be represented as a user-item
bipartite graph. Meanwhile, GCNs shows unprecedented representation power on many areas
including RS, where the collaborative filtering signal can be modeled via the high-order information
propagation Wang et al. (2019); Fu & He (2021); He et al. (2020); Zhu et al. (2021); Wu et al. (2019b).
Recently, NGCF Wang et al. (2019) is proposed specifically for recommendation, which successfully
models the collaborative signal in bipartite graphs. Different from GCN layers, a NGCF propagation
layer additionally includes dot product to model the propagation messages, which can be denoted as:

E(l) = σ
(
ÃE(l−1)W

(l)
1 + ÂE(l−1) �E(l−1)W

(l)
2

)
(2)

where W
(l)
1 ,W

(l)
2 are linear mapping matrices of the hidden embeddings. E(l) denotes the embed-

dings for both users and items at l−th layer. And Â = D−
1
2 AD−

1
2 , which is different from Ã by

the self-loop. To reduce the time and space complexity, LightGCN He et al. (2020) is proposed,
which shows that a propagation layer without dot product, and redundant linear transformations even
improves performance. Formally, a propagation layer of LightGCN is:

E(l) = ÂE(l−1). (3)

There are other works Berg et al. (2017); Ying et al. (2018); Liu et al. (2020b); Wu et al. (2021); Liu
et al. (2021); Yu et al. (2021); Chen et al. (2020); Huang et al. (2021); Chen et al. (2021) related
to GCN based RS. Though existing works are effective in RS, we find models fail to notice the
oscillation problem when applying the GNN to bipartite graph.

1https://arxiv.org/abs/2011.02100
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3 PROPAGATION ON BIPARTITE GRAPH

Intuitively, the oscillation is caused by the information of user nodes only propagates to item nodes,
and vice versa. Before studying the oscillation problem on bipartite graphs, we present how the
information propagates on an irreducible and aperiodic graph.

Definition 3.1 (Regular Graph): A regular graph is irreducible and aperiodic. Given an input
graph G = (V, E), G is irreducible iff for any two nodes vi and vj , they are accessible to each other.
Meanwhile, a bipartite graph G is periodic thus not regular.

Lemma 3.2 Given an unweighted regular graph G with adjacency matrix A, starting from any initial
distribution vector ν ∈ Rn (with non-negative elements and ‖ν‖1 = 1), the random walk propagation
over the graph G converge to a unique stationary distribution vector.

Definition 3.3 (Bipartite Graph): A bipartite user-item graph is defined as B = (U , I, E), where U
and I are two disjoint sets of nodes, i.e., U ∩ I = φ, denoting users and items, respectively. Every
edge e ∈ E has the form e = (u, i), where u ∈ U and i ∈ I. The corresponding adjacent matrix
A = {0, 1}(|U|+|I|)×(|U|+|I|) of the bipartite graph is defined as:

A =

[
0 R

R> 0

]
, where Ru,i =

{
1 if (u, i) ∈ E
0 otherwise. (4)

If taking account of only user (item) nodes, and creating an edge between users (items) if they are
connected by a common item (user), we construct a user (item) side graph of the original bipartite
graph. The associated side graph of a bipartite graph is defined as:

Definition 3.4 (Side Graph): Given a bipartite graph B = (U , I, E), a user side graph of it is
defined as Gu = (U , Eu), where an edge e ∈ Eu has the form (u1, u2) and u1, u2 ∈ U . The edge
(u1, u2) is constructed from original bipartite graph B, where ∃i ∈ I s.t. (u1, i) ∈ E ∧ (u2, i) ∈ E .
Similarly, we can define an item side graph of B as Gi = (I, Ei).

Lemma 3.2 is proved in our full version paper and it illustrates that the propagation on a regular
graph has a stationary distribution. However, the propagation over a bipartite graph never converges
to a stationary distribution. Consider x0 to be a distribution only on one side of the bi-partition, i.e.,
only on U or only on I. Then, the distribution of x1 at the first step random walk moves entirely to
the other side, and thus, by induction, xt is different for t with different parity. This phenomenon is
oscillation.

Definition 3.5 (Graph Oscillation): Given an input graph G, starting from any initial distribution,
if the random walk over G converges to two stationary distributions respectively on even steps and
odd steps, i.e., limt→∞ Ã2tx0 = π∗1 , limt→∞ Ã2t+1x0 = π∗2 , and π∗1 6= π∗2 , there is an oscillation
problem associated with G.

Theorem 3.6 Given a bipartite graph B = (U , I, E), if its associated user and item side graph are
both regular graphs, there is an oscillation problem associated with B.

All the proofs and the lower bound of the oscillation between successive layers can be found in
the full version paper.

Theorem 3.6 indicates that the oscillation problem exists on bipartite graphs. This suggests that
stacking many layers results in the oscillation problem. Later, we will show oscillation occurs as few
as 4 layers in experiments.

4 PROPOSED MODEL

We present the structure of our proposed deep Deoscillated adaptive Graph Collaborative
Filtering (DGCF) model. DGCF is a multi-layer GNN model that propagates the CF signals over
the bipartite graph. Instead of propagating information to direct neighbors, it has Cross-Hop Prop-
agation (CHP) layers that resolve the oscillation problem. Moreover, its Locality-Adaptive (LA)
layers learn the propagating factor for each node. Stacking multiple layers adaptively controls the
information to propagate at different layers. The framework is presented in Figure 2.
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Figure 2: Left: Comparison of NGCF and DGCF on the information propagation to u4. Red dash
lines are the cross-hop propagation. The original bipartite graph is in Figure 1. Right: The DGCF
framework to learn embedding of user u4 at layer 2. Green ‘LA’ blocks and gray ‘CHP layer’ blocks
are the locality-adaptive layer and cross-hop propagation layer, respectively.

4.1 CROSS-HOP PROPAGATION LAYER

CHP layer propagates the information for both direct and cross-hop neighbor nodes, which changes
the bipartite structure to a regular graph. The additional cross-hop interactions are exactly from
user and item side graphs of the bipartite graph. Thus, there exists only one stationary distribution
on different parity, i.e., deoscillation. As illustrated on the left-hand side of Figure 2, the red dash
lines represent additional cross-hop propagation of DGCF, compared with only direct propagation of
NGCF model. The node embedding for user u and item i at l-th layer are e

(l)
u ∈ Rd and e

(l)
i ∈ Rd,

respectively. CHP layer outputs the embedding of each node by aggregating the information of
neighbors, e.g., the embedding of a user u at l−th layer:

e(l)
u =

∑
j∈Ñu

α
(l)
j pje

(l−1)
j , (5)

where Ñu denotes neighbors, pj is the fixed normalizing factor, and α(l)
j denotes the adaptive locality

weight of node j. Ñu contains both direct and cross-hop neighbors of user u, as illustrated in the left
part in Figure 2. For example, regarding the bipartite graph in Figure 1, both i4 and u3 are included
in Ñu. pj denotes the importance of the neighbor j. It is a fixed value during training, e.g., the
Laplacian normalizing coefficient. α(l)

j is adaptively learned during training, which adjusts to the
local structure. Analogously, we calculate the item embeddings by also using CHP layers.

Theorem 4.1 The Markov chain induced by the proposed CHP layer is aperiodic. Hence, if the
bipartite graph is connected, the embeddings of CHP layer will converge to a fixed point.

4.2 LOCALITY-ADAPTIVE LAYER

DGCF has an LA layer before a CHP layer, which adaptively controls the propagation process for
each node. It assigns a locality weight for each node at l−th layer, thus denoted as α(l)

j as in Eq. (5).
Since the value of it should be from 0 to 1, we use sigmoid activation to train the weights, i.e.,

α(l) = σ(w
(l)
LA), where w

(l)
LA ∈ R|U|+|I|. (6)

w
(l)
LA is the trainable parameter vector for the l−th LA layer. |U| and |I| denote the number of

users and items, respectively. Intuitively, LA layer assigns an influencing factor to all nodes before
propagation, which is illustrated in Figure 2. Thus, during the aggregation process, it learns the
importance of nodes. Since nodes exist in different local structures with varying densities, it turns out
that the influence factor α controlling the propagation process should be adaptive to the locality. We
verify the correlation between α and the locality by experiments in Sec. 5.4.

Layer-wise adaptive manner. Note that, as we learn different locality weights from layer to layer,
the LA layers also adjust the propagation process in a layer-wise adaptive manner. This is a better
way to propagate information on a graph. Each layer has distinct important substructures. Therefore,
it reduces the redundancy compared with fixed propagation patterns.

5
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Dataset ML1M Amazon Gowalla ML100K
Metric@20 Recall NDCG Recall NDCG Recall NDCG Recall NDCG
BPR-MF 0.2653 0.2149 0.0762 0.0588 0.1371 0.1126 0.2894 0.1907
GCN 0.2628 0.2086 0.0701 0.0569 0.1426 0.1161 0.3025 0.1919
GCN+JK 0.2723 0.2184 0.0611 0.0490 0.1335 0.1095 0.3086 0.1917
GC-MC 0.2611 0.2069 0.0578 0.0475 0.1181 0.0967 0.2966 0.1883
NGCF 0.2693 0.2164 0.1117 0.0886 0.1485 0.1196 0.3146 0.1978
LightGCN 0.2888 0.2334 0.1130 0.0893 0.1584 0.1309 0.3399 0.2137
DGCF 0.3075 0.2501 0.1351 0.1083 0.1707 0.1384 0.3536 0.2290
DGCF-chp 0.2975 0.2420 0.1241 0.0991 0.1657 0.1344 0.3368 0.2159
DGCF-la 0.2967 0.2425 0.1289 0.1030 0.1653 0.1350 0.3385 0.2181

Table 1: Overall Performance Comparison.

4.3 MATRIX FORM

In this section, we present the matrix form propagation of Eq. (5) for all nodes. We use E(l) ∈
R(|U|+|I|)×d to denote embeddings for all user and item nodes at l−th layer. Before proceeding to the
CHP layer, LA layer applies an importance coefficient to each node. Hence, the weighted embedding
matrix is Ẽ(l) = Ω(l)E(l), where Ω(l) is diagonal and Ω(l) ∈ R(|U|+|I|)×(|U|+|I|). Ω(l) contains the
importance factor α(l) in its elements, i.e., Ω(l)(j, j) = α

(l)
j . The direct and cross-hop neighbors

can be inferred by using the adjacent matrix A and the cross-hop matrix C = A2, respectively. We
adopt the Laplacian normalization Kipf & Welling (2017) of both matrices regarding the pi in Eq. (5).
The Laplacian matrix L and the cross-hop Laplacian matrix Lc are defined as:

L = D−
1
2 AD−

1
2 and Lc = D

− 1
2

c CD
− 1

2
c , (7)

respectively. D and Dc are both the diagonal degree matrices, by taking the row-sum of A and C,
respectively. Therefore, the final matrix form of the propagation is:

E(l) = (L+ Lc + I) Ẽ(l−1). (8)

After L−layer propagation, we average the embeddings He et al. (2020) at each layer to construct the
final embedding for prediction, i.e., E∗ = MEAN({E(l)|Ll=0}).

4.4 OPTIMIZATION

The initial embedding is generated from Xavier initializer Glorot & Bengio (2010). The final
prediction between users and items is estimated by the inner product, i.e., ŷ(u, i) = e∗>u e∗i . We use
BPR Rendle et al. (2009) loss to optimize the trainable weights:

L = −
∑

(u,i,j)∈S

log σ
(
ŷ(u, i)− ŷ(u, j)

)
+ λ‖Θ‖22, (9)

where S is generated from the rule that we sample, for each user u, a positive item i and a negative
item j. The first term denotes the BPR interaction loss, and the second term is the regularization for
parameters (λ is a hyper-parameter).

5 EXPERIMENT

In this section, we conduct extensive experiments to show the effectiveness of our proposed model on
four benchmark datasets that include ML100K Harper & Konstan (2015), ML1M Harper & Konstan
(2015), Amazon Movies and TV He & McAuley (2016) and Gowalla Liang et al. (2016). The
statistics of datasets is shown in our full version. All datasets are split as training, validation, and
testing data with corresponding data ratio 7:1:2. In the experiments, we use the validation set to select
the best model for testing.
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Figure 3: Difference of Recall on successive layer pairs.

5.1 EXPERIMENTAL SETTING

To evaluate the model performance, several state-of-the-art methods are used for performance
comparison, including BPR-MF Rendle et al. (2009), GCN Kipf & Welling (2017), GCN with
JKNet (GCN+JK) Xu et al. (2018), GC-MC Berg et al. (2017), NGCF Wang et al. (2019) and
LightGCN He et al. (2020). Besides DGCF, we also introduce DGCF-chp with only CHP layers
and DGCF-la with only LA laysers as two variants into comparison. The evaluation metrics are
Recall@K and NDCG@K, where K=20 by default. All models are validated on the performance
of Recall@20. More implementing details, including parameter settings, the discussion on variants,
high-pass filtering, drop-edge and ε, are elaborated in our full version.

5.2 OVERALL EVALUATION

The overall performance is shown in Table 1. The best performance values on different datasets are
in bold and the second-best values are underlined. Our DGCF model outperforms others in all cases
since it has CHP layer to remedy oscillation problem and LA layers that adaptively learn influence
factors for nodes. We also create two variants for ablation study, with only CHP layers and only LA
layers, i.e., DGCF-chp and DGCF-la, respectively. These two variants yield better values on almost
all datasets compared with other baselines, which indicates the benefits of applying CHP and LA
layers. But they are still worse than the default DGCF. Therefore, we should stack CHP layers and
LA layers to overcome aforementioned problems.

For those baselines, GC-MC performs the worst compared with other models. The poor performance
of GC-MC can be the result of the final MLP layer, which harms the effectiveness of structural
regularization and thus overfits the training data Liu et al. (2019). GCN and GCN+JK have similar
performance, while GCN gets slightly better results on large datasets (e.g., Amazon and Gowalla),
which indicates directly applying graph residual structure cannot benefit the RS. Compared with
other GCN models, LightGCN performs the best. The reason is that LightGCN removes redundant
parameters (e.g., linear transformation) and non-linear activation. Moreover, by averaging the outputs
of different layers, the expressiveness of it is enhanced by a large margin. However, LightGCN still
suffers from the oscillation problem and is not able to adapt to the locality of nodes.

5.3 DISCUSSION ON OSCILLATION PROBLEM

To understand the oscillation problem, we conduct experiments on ML100K. All models run 10 times
for 1− 12 layers. We only use embeddings output from the final layer to predict. The differences2 of
the average performance on Recall among successive layers are reported in Figure 3. We observe
that the performance goes up and down cyclically (i.e., oscillation), which matches the definition.
Though oscillation theoretically appears with infinite layers, it occurs with a few layers in practice as
the performance shows in Figure 3. We notice that the oscillation amplitude of DGCF is the smallest
one compared with other methods, which shows its ability of deoscillation.

5.4 DISCUSSION ON VARYING LOCALITY

In this section, we discuss the correlation between the learned influencing factor α and the density of
nodes. Intuitively, the LA layer balances the information propagation for different nodes, i.e., nodes

2The difference is calculated by (Recalli −Recalli−1), where i denotes the i-th layer.
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(a) Layer 1 (b) Layer 2 (c) Layer 3 (d) Layer 4

Figure 4: Propagation pattern varies on different layers. Darker pixels are greater
values.
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Figure 5: Correlation coefficient of LA layer and
the density of nodes on ML1M.

with lower density should be assigned a higher influencing factor α. We train DGCF on ML1M
dataset. The distributions of nodes’ density and the reciprocal value of α are illustrated in Figure 5.
To better view the correlation, node’s density is calculated as normalization of the logarithm of its
degree. The correlation coefficients ρ w.r.t. users and items are 0.578 and 0.835, respectively. It
indicates 1/α is positively correlated with the density of nodes, which proves that LA layer balances
the influence of nodes regarding the varying locality problem.

5.5 DISCUSSION ON PROPAGATION PATTERN

In this section, we conduct experiments to show how DGCF learns layer-wise aggregation patterns.
Existing GNN RS models only have fixed propagation patterns. For example, NGCF only propagates
information to direct neighbors at different layers. In contrast, DGCF has LA layer that assigns each
node an influencing factor that controls the propagation pattern. Since DGCF has L different LA
layers, it has L different propagation patterns. We implement a 4−layer DGCF model and train it on
ML1M data. We present the propagation patterns on each layer in Figure 4. Due to the sparsity of
the adjacency matrix, we zoom in a local patch (30×30) to view the variations. Each pixel denotes
the normalized value of the product of influence factor and Laplacian matrix, i.e., Ω(L+ Lc). We
observe the propagation pattern varies on different layers. On the first layer, it is a matrix containing
almost every original edge, which suggests information is propagated out widely. Then, on layer
2, 3, and 4, the value on each edge varies and shrinks to a few important edges, which implies the
propagation pattern adaptively concentrates on critical substructures.

6 CONCLUSION

In this paper, we study the oscillation problem, varying locality problem, and fixed aggregation
pattern when applying multi-layer GNN on bipartite graphs. We formally define the graph oscillation
problem and prove its existence on bipartite graphs. To tackle the problems, we propose a new model
DGCF, which stacks multiple LA layers and CHP layers. The overall experiments on four real-world
datasets prove the effectiveness of DGCF. Moreover, we conduct detailed analysis experiments. The
experiment on the depth of the model implies the oscillation on existing models occurs while DGCF
has the smallest amplitude. Also, the experiment regarding the varying locality indicates that DGCF
adaptively learns the influence factor correlated with the density. Additionally, the experiment on
the aggregation pattern demonstrates that DGCF automatically adjusts the aggregation pattern in a
layer-wise manner. Overall, our proposed DGCF avoids oscillation on bipartite graphs, adaptive to
locality, and alleviate redundant aggregation patterns.
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