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ABSTRACT

Representing physical signals at different scales is among the most challenging
problems in engineering. Several multi-scale modeling tools have been devel-
oped to describe physical systems governed by Partial Differential Equations
(PDEs). These tools are at the crossroad of principled physical models and nu-
merical schema. Recently, data-driven models have been introduced to speed-up
the approximation of PDE solutions compared to numerical solvers. Among these
recent data-driven methods, neural integral operators are a class that learn a map-
ping between function spaces. These functions are discretized on graphs (meshes)
which are appropriate for modeling interactions in physical phenomena. In this
work, we study three multi-resolution schema with integral kernel operators that
can be approximated with Message Passing Graph Neural Networks (MPGNNGs).
To validate our study, we make extensive MPGNN s experiments with well-chosen
metrics considering steady and unsteady PDEs.

1 INTRODUCTION AND MOTIVATION

Principled modeling of physical phenomena gives rigorous and interpretable mathematical models,
e.g. Differential Equations (DEs). However, solving these equations analytically is impossible in
most practical cases. To circumvent that, one could seek for an approximated solution through
numerical analysis. When the phenomenon involves information and energy exchange in different
ranges, methods with multi-scale modeling, e.g. multi-grid (multi-resolution) methods, are proposed
for solving DEs. Interactions at different scales are modeled with a pyramidal discretization (Bergot
& Duruflé, 2013; O’Malley et al., 2018). With the multi-scale modeling, the solvers converge more
quickly than single-scale methods (Lie et al., 2017; Passieux et al., 2010).

In Deep Learning (DL), many methods have been proposed for approximating PDE solutions on
a regular grid at a single scale (Um et al., 2020; Thuerey et al., 2020). However, in real world
applications, the domain of PDE:s is often discretized on meshes (represented by Euclidean graphs
where vertices are points in an Euclidean domain and the edges with the distance between those
points), where the nodes and the edges represent respectively the physical states and their interaction.
In this case, we use Graph Neural Networks (GNNs) instead, e.g. Pfaff et al. (2021); Xu et al. (2021).

Some methods use U-net (Ronneberger et al., 2015), e.g. Wandel et al. (2021), to enable long-
range interactions on regular grid data. Recently, Multipole Graph Neural Operator (MGNO, Li
et al., 2020a) introduces a new graph-based method in this category. It learns an operator mapping
between two function spaces by a MPGNN with a multilevel graph. However, Li et al. (2020a) only
focus on reducing computation cost of long-range correlation, inspired by fast multipole methods.

In this work, we explore new ways to extend the multi-scale modeling capacity with neural networks.
We would like to shed light on different numerical schema and understand the reason for the choice
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of multi-scale schema from the lens of DL. We observe in practice that the multi-scale DL models
share a similar structure with some of the numerical schemes . For example, both composed of
a straight-through downscaling and upscaling process, U-net shares a very similar structure with
V-cycle schema in multi-scale numerical analysis (Jaysaval et al., 2016). We then draw inspiration
from discretized multi-resolution schema (Jaysaval et al., 2016) such as W-cycle and F-cycle to
propose new architectures.

In this paper, we propose new multi-scale DL architectures, based on the original MGNO, for learn-
ing representation of multi-scale physical signals by approximating the functional spaces of PDEs.
They are tested with steady and unsteady physical systems. This opens perspectives to rethink the
architecture design for multi-scale problems and help practitioners using U-net to include these nu-
merical schema variants in their study. To the best of our knowledge, this is the first work to explore
new architecture designs for multi-scale problems within the Machine Learning (ML) community.

We organize our paper as follows: in section 2, we describe formally Graph Neural Operators and
the multi-resolution schema. In section 3, we present our evaluation protocol and ablation study.
Finally, in section 4, we conclude our work.

2 NEURAL OPERATOR AND ITS GRAPH INSTANTIATIONS

Neural Operator (Kovachki et al., 2021) aims at learning a map from a function defined over
a domain (typically Euclidean space) to another with parameterized models, especially neural net-
works (NNs). The objective is to learn a map Gy : a € F — u € F', where F, F’ are two function
spaces defined on a domain D. At each position in the domain x € D, the following iterative
transformation is applied:

Vi1 () = O’(th(l‘) +b(z) + /

ﬁ¢(a:,cc’)vt(x')du(x’)) Ve e D
D

where § = {W, b, ¢} are parameters. W, b are local affine transformation of v;(z) at each location x.
The parameterized kernel x, integrates v, (') over all ' € D, with 2’ ~ v and v is a (probabilistic)
measure over D. ¢ is a nonlinear Lipschitz activation function. The iteration starts from ¢ = 0 with
the input function a = vy, the solution is the function at final iteration T, i.e. u = vr.

GNO and MGNO (Li et al., 2020b;a). Given that integrating over the whole domain D is in-
tractable, one possible simplification is to integrate only in a subdomain around z, i.e. s(x) C D.
By limiting this subdomain to some i.i.d. sampled neighbors 2’ € N'(z) C s(z), we obtain:
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which can be implemented with a message passing graph neural network, called GNO. The graph
is constructed by connecting the point at position z to its neighbors =’ such that Vo’ € N (z), ||z —
x'|] < r. Here |N(z)| stands for the total number of the neighbors of x. However, when modeling
long-range interactions is necessary, a large s(x) should be considered in GNO, which comes with
an expensive computational cost. To overcome this problem, MGNO considers the following multi-
scale kernel matrix decomposition of the graph kernel:

K~Ki1+Ki2Ky2Ko1+ K1 2K23K33K32K01 + -+

where K/ is the kernel from scale [ to U, the finest scale is 1. To implement this multi-scale kernel,
several architectural designs are proposed in the following section.

Multi-scale kernel implementations. We present in this section, three architectures for multi-
scale kernel implementation: V-MGNO, F-MGNO, and W-MGNO. V-MGNO is proposed in the
original paper (Li et al., 2020a). F-MGNO, and W-MGNO are inspired by multi-resolution methods
(Jaysaval et al., 2016). The V-, F-, and W-MGNO are iterative processes and have in common
three types of kernels as shown in Figure 1: downscale, intra-scale, and upscale kernels. The input
information is propagated in the multi-scale graph by a cascade of down-scale contraction, intra-
scale transformation, and up-scale expansion.



Accepted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Iteration Iteration Iteration Iteration Iteration Iteration
[ g+ 1 to- et 1 b e S

scale

(a) V-MGNO (b) -MGNO (c) W-MGNO

Figure 1: Illustration of MGNOs with different schema: (a) the original V-MGNO, (b) F-MGNO,
and (c) W-MGNO. — (red) are downscale kernels, — (black) are in-scale kernels, — (purple) are
upscale kernels. --+ are skip connections. See Figure 2 for an example of the iterative process.

Coarsest
scale

Figure 2: Example of an iterative process with V-cycle multi-resolution architecture. Similar process
is applied for F-cycle and W-cycle.

Metrics. The goal here is to empirically study the performances of these multi-resolution archi-
tectures and their learning stability. We define the following metrics to compare these multi-scale
architectures: * Number of scales: indicates the number of scales from the finest to the coarsest
one. The choice of the finest and the coarsest scales depends on the discretization schema, and
also on the cutoff energy, as well as the computational budget. * Intra-cycle Kernel Sharing: indi-
cates whether the kernels are shared inside each iteration. This is because F- and W-MGNO may
have several kernels for the same downsampling or upsampling action, e.g. between the coarsest
two scales, W-MGNO (shown in Figure 1) need to several downscaling (red arrows) or upscaling
(purple arrows). e Iteration Kernel Sharing: indicates if the kernels are shared across all iterations.
This allows to study the stability and the complexity of optimizing iterative processes w.r.t. a given
multi-scale architecture.

3 EXPERIMENTS

We evaluate the performance of our multi-resolution schema F-MGNO and W-MGNO on two fam-
ilies of PDEs, namely 2D steady-state of Darcy flow and 1D viscous unsteady Burgers’ equation.

Datasets. Darcy flow. We construct our first dataset with the following 2-D steady-state PDE
V- (a(2)Vu(z)) = f(z), 2€(0,1)
():0 z € 9(0,1)2

a is a random piecewise constant function parameterizing the PDE, given some f a unique u is
associated with a. In experiments, we approximate the mapping (a, Va) — u

Burgers’ equation. In the second dataset, we consider the following 1-D viscous unsteady PDE
Opu(x,t) + 0y (u?(w,1)/2) = vOpu(x,t), = € (0,27),t € (0,1]
u(z,0) = up(z), x € (0,27)

with periodic boundary conditions. In experiments, we approximate the mapping from the initial
condition g to the solution at time ¢ = 1, i.e. ug — u(-, 1).

For both datasets, 100 examples were generated for train and 100 other ones for validation/test.
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Table 1: Results of our best settings compared to baselines on Darcy flow and Burgers’ equation.
We calculate the means and standard deviations for each model based on 4 runs with different seeds.
All multi-scale models results are achieved with 4 scales.

Model Intra-cycle Iteration Train Error  Test Error
ode Kernel Sharing Kernel Sharing (x1072) (x1072)
1o MLP N/A N/A 11.90+£0.20 12.02+0.40
§ S-“\%\e—sca GCN N/A N/A 11.87£0.15 11.88+0.19
E GNO N/A N/A 6.45+0.21 7.13£0.15
S V-MGNO N/A X 2.69+0.18 5.68+0.30
S A6-se®  F-MGNO (Ours) X X 276£0.15  5.80+0.32
W-MGNO (Ours) X X 2.23+0.11 5.91+0.28
1e MLP N/A N/A 41.89+0.40 42.07+0.11
" S-‘“g\e'sca GCN N/A N/A 27.88+1.46 31.00£1.22
a GNO N/A N/A 15.30+0.17 53.14+0.86
§ V-MGNO N/A e 4.25+0.10 25.76+0.39
Muise®® F-MGNO (Ours) v/ v 319£0.05 2520020
W-MGNO (Ours) X v 3.47+0.07 24.91+0.37

Pipelines Graph nodes are uniformly sampled over the domain with different sample number at
each scale. Graph edges in each scale are calculated to all points in the same scale within a given
distance. For multi-scale models, edges between scales are also calculated likewise. Input node
features are values of the input function vy(x) and their position . Each model predicts u(x). To
avoid divergence in training, we use the orthogonal initialization across all models.

Baseline methods. We compare our proposed F-MGNO and W-MGNO w.r.t. GNO and the orig-
inal V-MGNO. To study to what extent the kernel construction from operator learning standpoint
is helpful, proposed architectures are also compared with MLP and GCN (Kipf & Welling, 2017).
Methods are categorized into single-scale (MLP, GCN, GNO) and multi-scale (V-, F-, W-MGNO).

On learning stability. During training, we found out that the multi-scale architectures with Kaim-
ing initialization (He et al., 2015) used in the original paper may lead to divergence in training. This
is caused by extremely large loss and gradient at the beginning of the training. One possible explica-
tion is that, as the input is transformed through many kernels, an improper initialization will amplify
the norm of features along all the forward steps. We therefore chose orthogonal initialization to
better control the norm of the output.

We did a broad hyperparameter search to tune the model. This showed that the initialization was
crucial in MGNO architectures, with a main importance for the learning rate and even more for the
initialization gain of the orthogonal initialization.

Results. We show our results in Table 1 for Darcy flow and Burgers’ equation. For all variants of
MGNO, we report the results with best architectural metrics.

We found that multi-scales methods outperform single-scale ones in both training and test error.
For both datasets, multi-scale methods achieve a decrease of 80-90% training error compared to the
single-scale baselines. This suggests that a better modeling of long-range interaction improves the
expressiveness of the neural network. The same improvement tendency was also observed at test
time. All variants of MGNO reduce the test error by 10-50%. This improvement is less significant
as it may be limited by number of training data samples.

Among the multi-scale models, for both PDEs, more complex F-/W-MGNO performs slightly better
in training, i.e. 2.69 with V-MGNO down to 2.23 (-17%) with W-MGNO for Darcy flow, and 4.25
with V-MGNO down to 3.19 (-25%) with F-MGNO for Burgers’. However, we did not perceive a
significant difference in test error.

Ablation studies. We conducted large-scale ablation studies with results in Tables 2 and 3. We
analyze the influence of different metrics on impacts of architectural metrics on prediction errors:
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Table 2: Ablation studies for Darcy flow.

Method Scal Intra-cycle Iteration Train Error  Test Error ~ Time N. params

etho €4S Kernel Sharing  Kernel Sharing  (x1072) (x1072) /epoch (s) (M)
MLP 1 N/A N/A 11.90+£0.20 12.02+0.40 2.0 0.02
GCN 1 N/A N/A 11.87£0.15 11.88+0.19 34.3 0.03
GNO 1 N/A N/A 6.45+0.21 7.13£0.15 13.1 0.03
V/F/W-MGNO 2 N/A X 4.76+0.35 6.67+£0.43 25.8 11.0
V/FIW-MGNO 2 N/A v 4.88+0.40 6.59+0.24 259 2.74
V-MGNO 3 N/A X 3.63+£0.21 5.77£0.12 28.0 14.1
V-MGNO 3 N/A v 3.24+0.22 6.11+£0.32  27.8 3.55
F/W-MGNO 3 X X 3.03+0.22 5.94+0.38 33.0 19.5
F/W-MGNO 3 v X 2.63+0.19 6.41+£0.24 33.5 14.1
F/W-MGNO 3 X v 2.47+0.15 5.76£0.25 34.5 4.90
F/W-MGNO 3 v v 2.26+0.13 5.87+0.23 34.6 3.55
V-MGNO 4 N/A X 2.69+0.18 5.68+0.30  28.3 15.8
V-MGNO 4 N/A v 2.02+0.11 5.96+0.22 28.3 3.95
F-MGNO 4 X X 2.76£0.15 5.80+0.32 39.2 25.5
F-MGNO 4 v X 1.88+0.12 5.84+0.18 37.1 15.8
F-MGNO 4 X v 1.78+0.05 6.14+0.32 36.5 6.39
F-MGNO 4 v v 1.60+0.13 6.18+0.31 36.9 3.95
W-MGNO 4 X X 2.23+0.11 5.91+0.28 40.9 28.2
W-MGNO 4 v X 1.68+0.13 6.17£0.28 39.2 15.8
W-MGNO 4 X v 1.85+0.08 6.07+£0.33 39.1 7.07
W-MGNO 4 v v 1.57+0.10 6.29+0.27 40.5 3.95

Table 3: Ablation studies for Burgers’ equation.
Intra-cycle . Train Error  Test Error  Time (s) N. params

Method Scales Sharing Depth sharing (x10-2) (x10-2) Jepoch M)
MLP 1 N/A N/A 41.89+£0.40 42.07+0.11 2.8 0.017
GCN 1 N/A N/A 27.88+1.46 31.00£1.22 1.9 0.025
GNO 1 N/A N/A 15.30+0.17 53.14+0.86 27.1 1.10
V/F/W-MGNO 2 N/A X 7.21+£0.61  25.63£0.53 73.1 10.91
V/F/W-MGNO 2 N/A v 6.35+£0.17  25.67+£0.46 66.5 2.74
V-MGNO 3 N/A X 4.76£0.24  27.22+1.19 77.5 14.13
V-MGNO 3 N/A v 4.22+40.14  26.65+0.49 62.8 3.54
F/W-MGNO 3 X v 4.5940.16  26.64£1.38 77.3 4.89
F/W-MGNO 3 v v 4.02+0.15  25.29+0.86 85.8 3.54
V-MGNO 4 N/A X 4.67£0.16  26.19+0.26 70.1 15.75
V-MGNO 4 N/A v 4.25+0.10  25.76£0.39 74.8 3.95
F-MGNO 4 X v 3.59+£0.09  25.45+0.63 89.5 6.39
F-MGNO 4 v v 3.19+£0.05  25.20+£0.20 77.5 3.95
W-MGNO 4 X v 3.47+0.07  24.91+0.37 100.4 7.06
W-MGNO 4 v v 3.10£0.03  25.61+0.31 77.7 395

* The impact of number of scales: We observe that the more the scales, the lower the training
error. This shows an increasing tendency in model expressiveness w.r.t. scales.

» The impact of kernel sharing: We observe that sharing parameters may help improving
training. However, no major differences in test are noticed when evaluating generalization
to test samples.

Note that different variants of MGNO are the same according to number of scales. For 2-scale
models, V-, F-, and W-MGNO are equivalent. For 3-scale models, F- and W-MGNO are equivalent.

Discussion. To conclude, we confirm with our experiments that multi-scale methods are impor-
tant for better modeling physical signals, by efficiently maintaining long-range interactions in the
spatial domain. Some improvements in training were observed in with F- and W-MGNO, which
may indicate an increase in model expressiveness with F- and W-cycle schemes . However, with
MGNO implementation, the evidence is not strong enough to support this claim. We suggest further
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investigation with other graph-based approaches to better understand more complex cycles. In order
to better generalize to unseen data, more constraints could be added to control train/test trade-off.

4 CONCLUSION

In this work, we empirically studied the challenging task of representing physical signals at different
scales from DL perspective. To do so, we developed two novel multi-scale architectures inspired by
discretized multi-resolution schema (Jaysaval et al., 2016) and a neural integral operator, which is
motivated by multipole theory (Li et al., 2020a). To the best of our knowledge, this is the first work
that proposes to study and design multi-scale DL architectures from numerical schema standpoint.
We proposed two MPGNNs to approximate this neural integral operator and we implemented it
via F-cycle and W-cycle schema. The latter are iterative processes and hence are challenging to
optimize. We defined a set of metrics to evaluate the learning stability of these iterative processes
and their performances. We validated our work on two types of PDEs discretized on graphs.

We argue that this work could open perspectives to study novel multi-scale neural architectures,
beyond U-net, and V-F-W-cycle schema, suitable for multi-scale and/or scarce data. One may con-
sider a further study of discretized multi-resolution schema including the properties of their archi-
tectures and optimization procedures. This could help to design more interpretable and efficient
architectures. Moreover, we think that studying multi-scale neural architectures from discretized
multi-resolution schema’s standpoint could help to get insights about the capabilities of multi-scale
neural architectures to reproduce some properties of discretized multi-resolution schema.

5 REPRODUCTIBILITY STATEMENT

We provide a GitHub repository to reproduce the experiments. We used NVIDIA 12Go single GPUs
to conduct the experiments.


https://github.com/LeonMigu/multi_scale_graph_neural_operator

Accepted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

REFERENCES

Morgane Bergot and Marc Duruflé. Higher-Order Discontinuous Galerkin Method for Pyra-
midal Elements using Orthogonal Bases. Numerical Methods for Partial Differential Equa-
tions, 29(1):144-169, January 2013. doi: 10.1002/num.21703. URL https://hal.
archives-ouvertes.fr/hal-005473109.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. CoRR, abs/1502.01852, 2015. URL http:
//arxiv.org/abs/1502.01852.

Piyoosh Jaysaval, Daniil V. Shantsev, Sébastien de la Kethulle de Ryhove, and Tarjei Bratte-
land. Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner.
Geophysical Journal International, 207(3):1554-1572, 09 2016. ISSN 0956-540X. doi:
10.1093/gji/ggw352. URL https://doi.org/10.1093/9ji/ggw352.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJUdayYgl.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021. URL https://arxiv.org/abs/2108.08481.

Zong-Yi Li, Nikola B. Kovachki, K. Azizzadenesheli, Burigede Liu, K. Bhattacharya, Andrew Stu-
art, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations. ArXiv, abs/2006.09535, 2020a.

Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
differential equations. CoRR, abs/2003.03485, 2020b. URL https://arxiv.org/abs/
2003.03485.

Knut-Andreas Lie, Olav Mgyner, and Jostein Roald Natvig. Use of Multiple Multiscale Operators To
Accelerate Simulation of Complex Geomodels. SPE Journal, 22(06):1929-1945, 08 2017. ISSN
1086-055X. doi: 10.2118/182701-PA. URL https://doi.org/10.2118/182701-PA.

B. O’Malley, J. Képhazi, M.D. Eaton, V. Badalassi, P. Warner, and A. Copestake. Pyramid finite ele-
ments for discontinuous and continuous discretizations of the neutron diffusion equation with ap-
plications to reactor physics. Progress in Nuclear Energy, 105:175-184, 2018. ISSN 0149-1970.
doi: https://doi.org/10.1016/j.pnucene.2017.12.006. URL https://www.sciencedirect.
com/science/article/pii/S0149197017303062.

Jean-Charles Passieux, Pierre Ladeveze, and David Néron. A scalable time-space multiscale domain
decomposition method: adaptive time scales separation. Computational Mechanics, 46(4):621—
633, 2010. doi: 10.1007/s00466-010-0504-2. URL https://hal.archives—ouvertes.
fr/hal-00485747.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
based simulation with graph networks. In International Conference on Learning Representations,
2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In MICCAI, 2015.

Nils Thuerey, Konstantin Weilenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
Reynolds-averaged Navier—Stokes simulations of airfoil flows. AIAA Journal, 58(1):25-36, 2020.

Kiwon Um, Robert Brand, Yun Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-Loop: Learning
from Differentiable Physics to Interact with Iterative PDE-Solvers. Advances in Neural Informa-
tion Processing Systems, 2020.


https://hal.archives-ouvertes.fr/hal-00547319
https://hal.archives-ouvertes.fr/hal-00547319
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://doi.org/10.1093/gji/ggw352
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/2108.08481
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2003.03485
https://doi.org/10.2118/182701-PA
https://www.sciencedirect.com/science/article/pii/S0149197017303062
https://www.sciencedirect.com/science/article/pii/S0149197017303062
https://hal.archives-ouvertes.fr/hal-00485747
https://hal.archives-ouvertes.fr/hal-00485747

Accepted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Nils Wandel, Michael Weinmann, and Reinhard Klein. Learning incompressible fluid dynamics
from scratch - towards fast, differentiable fluid models that generalize. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
KUDUoRsEphu.

Jiayang Xu, Aniruddhe Pradhan, and Karthikeyan Duraisamy. Conditionally parameterized,
discretization-aware neural networks for mesh-based modeling of physical systems. In
Thirty-Fifth Conference on Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=0yMGEUQKAd2D.


https://openreview.net/forum?id=KUDUoRsEphu
https://openreview.net/forum?id=KUDUoRsEphu
https://openreview.net/forum?id=0yMGEUQKd2D
https://openreview.net/forum?id=0yMGEUQKd2D

	Introduction and motivation
	Neural Operator and its graph instantiations
	Experiments
	Conclusion
	Reproductibility Statement

