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ABSTRACT

This paper presents the Persistent Weisfeiler-Lehman Random walk scheme (abbre-
viated as PWLR) for graph representations, a novel mathematical framework which
produces a collection of explainable low-dimensional representations of graphs
with discrete and continuous node features. The proposed scheme effectively incor-
porates normalized Weisfeiler-Lehman procedure, random walks on graphs, and
persistent homology. We thereby integrate three distinct properties of graphs, which
are local topological features, node degrees, and global topological invariants, while
preserving stability from graph perturbations. This generalizes many variants of
Weisfeiler-Lehman procedures, which are primarily used to embed graphs with
discrete node labels. Empirical results suggest that these representations can be
efficiently utilized to produce comparable results to state-of-the-art techniques
in classifying graphs with discrete node labels, and enhanced performances in
classifying those with continuous node features.

1 INTRODUCTION

Non-Euclidean data structures are crucial subjects of researches, ranging from interactions among
protein structures to social networking systems Stokes et al. (2020); Senior et al. (2020). Graphs
are commonly utilized for modeling the innate properties of a wide class of these non-Euclidean
structures Baek et al. (2021). A number of strategies producing state-of-the-art results in analyzing
the properties of graphs include graph neural networks (GNN) or message passing neural networks
(MPNN) Kipf & Welling (2017), graph kernels Vishwanathan et al. (2010), Weisfeiler-Lehman
procedures Shervashidze et al. (2011); Weisfeiler & Lehman (1968), random walks Nikolentzos &
Vazirgiannis (2020); Zhang et al. (2018b); Lovasz (1993), and persistent homological techniques
Rieck et al. (2019); Carriere et al. (2020); Edelsbrunner & Harer (2010). These techniques are often
employed to obtain graph representations suitable for graph classifications, which aim to classify
innate properties of graphs by detecting their structural differences. The varying topological structures
of graphs, however, make the task of obtaining a consistent graph representation demanding.

[Related Works] The Weisfeiler-Lehman (WL) isomorphism test measures similarities among
graphs with discrete labels by updating the coloring of nodes, each of which represents a depth k

unfolding tree Weisfeiler & Lehman (1968). Shervashidze et al. implemented the test in the form of
graph kernels, producing state-of-the-art results in classifying graph data sets Vishwanathan et al.
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(2010); Shervashidze et al. (2011). Various literature focused on generalizing the WL procedure that
allows one to represent graphs with continuous node attributes Togninalli et al. (2019); Bodnar et al.
(2021), and incorporate global topological invariants Morris et al. (2017); Rieck et al. (2019).

Utilizing stochastic processes on graphs, such as random walks (RW), is an alternative approach to
embed graphs to real vector spaces. A random walk on a graph is a random course of travel along the
nodes of G characterized by iterative processes of starting from a node and randomly choosing an
adjacent node, or itself, to travel to. A number of state-of-the-art approaches include graph kernels
using return probabilities of RW Zhang et al. (2018b), and comparing the number of common random
walks Borgwardt & Kriegel (2005); Sugiyama & Borgwardt (2015).

Persistent homological techniques are known to be effective for computing the global topological
invariants of data sets Carlsson (2009); Edelsbrunner & Harer (2010); Hofer et al. (2017). One
determines height functions over nodes and edges of G to construct persistence diagrams, which
capture the homological properties of G. The encapsulated properties depend on which features of
graphs the predetermined height function utilizes. These features include node labels Rieck et al.
(2019), and spectral decompositions of the adjacency matrix Carriere et al. (2020).

[Motivation] The motivation for this project originates from instability and non-optimal dimension-
ality of representations obtained from pre-existing approaches. Variants of GNNs do not necessarily
guarantee representation stability with respect to graph perturbations, where a pair of graphs with
similar topological structures may be embedded to a pair of vectors whose distance between them may
be arbitrarily large Xu et al. (2019). The WL procedure also substantially increases the dimensionality
of representations as the number of iterations of the procedure increase Shervashidze et al. (2011).
While graph kernels effectively bound these dimensions, they produce representations that depend on
the choice of training data sets Kashima et al. (2003); Vishwanathan et al. (2010).

To address these limitations, we propose the Persistent Weisfeiler-Lehman Random Walk embedding
framework (PWLR), a novel graph embedding formalism which produces a collection of low-
dimensional representations of graphs while preserving stability from graph perturbations. Inspired
from WL Shervashidze et al. (2011) and PWL Rieck et al. (2019) procedures, the PWLR framework
captures local topological features, node degrees, and global topological invariants of graphs by
effectively incorporating the normalized WL procedure, random walks, and persistent homological
approaches. Experimental results suggest that the proposed algorithm produces comparable results to
state-of-the-art techniques in classifying graphs with discrete node labels, and enhanced performances
in classifying those with continuous node attributes or edge weights.

[Contributions] The novelty of the PWLR embedding framework can be summarized as follows.

• A mathematical framework incorporating three distinct topological properties (Theorem 2.1)

• Effective low-dimensional representations for classifying graphs with discrete and continuous
features. (Table 2, 3)

• Stability of representations with respect to graph perturbations (Theorem 2.6)

2 PERSISTENT WEISFEILER-LEHMAN RANDOM WALK GRAPH
REPRESENTATION

[Algorithm] The PWLR scheme obtains a vector representation of a finite graph G as follows: 1 2

'PWLR(G) := '

✓⇣
M

k1
G X

⌘T
M

k2
G

◆
. (1)

We note that k1, k2 are positive integers, X is a |V |⇥ l matrix consisting of a concatenation of node
labels of G, MG is the normalized weighted adjacency matrix of dimension |V |⇥ |V | given by

MG := (D + I)�1(A+ I), (2)
(·)T is the transpose of a matrix, and ' is the Euclidean embedding obtained from persistent homo-
logical features utilizing the updated node labels (Mk1

G X)TMk2
G . The matrix MG is the normalized

1Appendix provided at: https://arxiv.org/abs/2208.13427
2Github repository: https://github.com/spark483/The-PWLR-graph-representation
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Algorithm 1 PWLR Embedding Framework
Input: Graph G = (V,E), iterations (k1, k2), p = 1,MG := (D + I)�1(A + I), X := {L(vi)}vi2V .
Initialize De := {de := (dv, dw) | e = (v, w) 2 E}. (dv is the unweighted degree at v.)
Set 'H0,'H1 := ;, 'H0,Opt,'H1,Opt := [0, · · · , 0] (of length |D|).
Normalized WL: Update X  M

k1
G X

Random Walk: Update X  XTM
k2
G

Persistent homological embedding: Define hE((v1, v2)) := kX(v1)�X(v2)kp
Obtain a set Ẽ by sorting the set E(G) using hE : Ẽ := {ei 2 E(G) | hE(ei)  hE(ej) if i  j}.
for i 2 {1, · · · , |Ẽ|} do

Define E[i] := {ej 2 Ẽ | j  i}, Initialize G[i�1] := (V,E[i�1]), G[i] := (V,E[i]).
Pick ei 2 E[i] \ E[i�1] and compute dei := (dvi

1
, dvi

2
).

if # Comp. G[i] �# Comp. G[i�1] > 0 then
'H0  Concat('H0, [hE(ei) + 1]), 'H0,Opt(dei ) 'H0,Opt(dei ) + (hE(ei) + 1)

end if
if # Cycle G[i] �# Cycle G[i�1] > 0 then

'H1  Concat('H1, [hE(ei)] + 1), 'H1,Opt(dei ) 'H1,Opt(dei ) + (hE(ei) + 1)
end if

end for
Return: 'H0,'H1,'H0,Opt,'H1,Opt.

adjacency convolutional operator used in message passing neural networks (MPNN) Kipf & Welling
(2017); Chen et al. (2020); Velickovic et al. (2018). Theorem 2.1 provides a list of correspondences
among each component of (1) and the utilized algorithms for analyzing finite graphs, the proof of
which is in Appendix E.2.
Theorem 2.1. Given a finite undirected graph G = (V,E) without self-loops, the PWLR procedure

incorporates three disjoint topological properties of G.

• The component M
k1
G ⇥ (·) (WL) incorporates local topological properties by representing depth k1

unfolding trees with fixed vertices.

• The component (·)⇥M
k2
G (R) incorporates node degrees with local topological properties.

• Lastly, the component '(·) (P) incorporates homological invariants of G, i.e. the connected

components and cycles.

The parameters k1 and k2, each corresponding to the number of iterations of the WL or RW proce-
dure, provide a collection of adaptable graph representations suitable for classification tasks. They
determine the extent of incorporating node attributes and node degrees in constructing graph repre-
sentations. The map ' incorporates global topological characteristics by constructing persistence
diagrams from preset height functions, as will be shown in (13, 15).

Each property mentioned in Theorem 2.1 is known to be crucial for distinguishing isomorphism
classes of graphs. The WL procedure and its variants are well-known for their state-of-the-art results
in classifying graphs Shervashidze et al. (2011); Togninalli et al. (2019). Geerts, Mazowiecki, and
Peréz proved that incorporating node degrees enhances conventional message passing neural networks
(MPNN) in distinguishing nodes based on their attributes Geerts et al. (2021). In addition, persistent
homological algorithms are known to be effective for enhancing the accuracy of graph classification
algorithms Rieck et al. (2019); Carriere et al. (2020). Interested readers may refer to Appendix D for
expositions on random walks and persistent homology. A pseudo-code and a diagram summarizing
the PWLR embedding scheme are outlined in Algorithm 1 and Figure 1. Explicit computations on
how the PWLR algorithm constructs graph representations can be found in Appendix C.

[Normalized WL procedure] We analyze the correspondence between the operator Mk1
G ⇥ (·)

and the node labels obtained from the normalized WL procedure. We first define the normalized WL
procedure, obtained from normalizing a node label updated from a WL procedure by its length.
Definition 2.2 (Normalized WL procedure). Let G := (V,E) be a graph with node attributes
L : V ! Rl

>0. Given a node v 2 V , denote by N(v) the set of nodes which are adjacent to v,
including v itself. Let k · k1 be the l1-norm of a node label, and ãv,w be the weight on edges av,w
from node v to w, with ãv,v = 1. The normalized WL procedure updates the attribute of v by

L(v) 7!

P
w2N(v) ãv,wL(w)P

w2N(v) ãv,wkL(w)k1
. (3)
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Figure 1: A diagram outlining the architecture of the PWLR embedding scheme

If we further assume that the l1-norms of all node attributes are equal to 1, then we immediately
obtain the following correspondence stated in Proposition 2.3. The proposition can be applied to
graphs with discrete node labels, where each node label is embedded to real vector spaces using the
one-hot encoder, see Appendix C for instance.
Proposition 2.3. Suppose that for every node v 2 V (G), the l1 norm of node labels is equal to 1, i.e.

kL(v)k1 = 1. Then the right multiplication M
k1
G ⇥ (·) is equivalent to k1 iterations of normalized

WL procedure applied to G.

Using the above proposition, the over-smoothening phenomenon of WL procedure can be reinterpreted
by using the eigenvectors of MG. Because MG is a stochastic matrix (a square matrix whose sum of
entries is equal to 1 for each row), a vector ⌫ whose entries are all equal to 1 is the right eigenvector
of MG with eigenvalue 1. Denote by ⇡G the left eigenvector of MG with eigenvalue 1, whose entries
will be computed in Theorem 2.5. The limiting behavior of Mk

GX for sufficiently large k can be
obtained from the Perron-Frobenius theorem (See Theorem Appendix D.1):

lim
k!1

M
k
GX = ⌫⇡

T
GX (4)

Note that ⌫⇡T
GX is a matrix whose entries for each column are all identical. We can hence reinterpret

the over-smoothening phenomenon of the WL procedure as the limiting behavior of the operator MG.

[Random Walks] Let P 2 Rn be a probability distribution over the set of nodes of G. The
random walk on G updates P by multiplying its transpose with MG to the right, i.e. P 7! P

T
MG,

where PT is the transpose of P . We generalize the construction above by substituting the probability
distribution P with the matrix of concatenated node attributes X .
Definition 2.4. Let G := (V,E) be a graph with a matrix of concatenated node attributes X . Fix a
positive integer k2. We say that the node attributes are updated from k2 iterations of random walks
(RW) over G if the matrix X is updated to X

T
M

k2
G .

The core difference between WL and RW procedure lies in the difference between left and right
eigenvectors of MG. To elaborate, the left eigenspace of MG with eigenvalue 1 is spanned by the
probability distribution of node degrees.
Theorem 2.5 ((Section 1, Lovasz (1993))). Let G := (V,E) be a finite graph. The left eigenspace of

MG with eigenvalue 1 is spanned by

⇡G :=


dvP

w2V (G) dw

�

v2V (G)

. (5)

Denote by ⌫ the column vector whose entries are all equal to 1. By the Perron-Frobenius Theorem
(Theorem Appendix D.1)

lim
k!1

X
T
M

k
G = X

T
⌫⇡

T
G, (6)

4



Accepted to the ICML 2022 Workshop on Topology, Algebra, and Geometry in Machine Learning

Table 1: A part of classification results obtained from data sets with discrete node labels and
continuous node attributes. Cells notated as N/A indicate graph classification schemes which do not
report classification results on the given graph data set or may have limitations in processing the node
features and edge weights present in the given graph data set. The entries for PROTEINS, BZR, and
COX-2 data sets report the highest classification results obtained from using discrete node labels, or
from using both discrete and continuous attributes if possible. All classification results other than the
proposed method are obtained from pre-existing publications.

MUTAG PTC-FR NCI1 PROTEINS BZR BZR-MD COX2 COX2-MD
WL 88.72±1.11 67.64±0.74 85.58±0.15 76.11±0.64 N/A N/A N/A N/A

PWL-H0 86.10±1.37 67.30±1.50 85.34±0.14 75.31±0.73 N/A N/A N/A N/A
PWL-H1 90.51±1.34 67.15±1.09 85.46±0.16 75.27±0.38 N/A N/A N/A N/A

WWL 87.27±1.50 N/A 85.75±0.25 77.91±0.80 84.42±2.03 69.76±0.94 78.29±0.47 76.33±1.02
RETGK-I,II 90.30±1.10 67.80±1.10 84.50±0.20 78.00±0.30 87.10±0.70 62.77±1.69 81.40±0.60 59.47±1.66
HGK-WL N/A N/A N/A 76.70±0.41 78.59±0.63 68.94±0.65 78.13±0.45 74.61±1.74

FGW 88.42±5.67 N/A 86.42±1.63 74.55±2.74 85.12±4.15 N/A 77.23±4.86 N/A
FC 87.31±0.66 N/A N/A 74.54±0.48 85.61±0.59 75.61±1.13 81.01±0.88 73.41±0.79

GCKN-SUBTREE 91.60±6.70 68.40±7.40 82.00±1.20 77.60±0.40 86.40±0.50 N/A 81.70±0.70 N/A
DM N/A 68.39±3.57 83.07±1.07 76.19±2.91 N/A 73.55±5.76 N/A 72.28±9.37

PERSLAY 89.80±0.90 N/A 73.50±0.30 74.80±0.30 N/A N/A 80.90±1.00 N/A
PWLR-H0 89.52±0.90 69.12±1.16 75.66±0.30 74.62±0.62 89.39±0.74 75.08±1.32 80.61±1.11 71.36±1.46
PWLR-H1 91.97±0.92 67.04±0.67 74.50±0.42 73.02±0.50 89.29±0.66 77.75±0.98 81.02±0.55 69.96±1.26

PWLR-H0+H1 89.47±1.51 68.75±1.39 77.15±0.23 73.94±0.58 88.95±0.90 76.44±1.37 80.88±0.54 71.36±1.46
PWLR-OPT-H0 89.73±1.01 64.02±0.99 75.99±0.23 74.10±0.59 89.46±0.55 72.47±1.44 79.94±0.58 72.10±2.13
PWLR-OPT-H1 91.91±1.61 66.19±1.23 72.76±0.33 73.22±0.39 88.93±0.79 74.18±1.18 80.22±0.84 70.51±1.86

PWLR-OPT-H0+H1 89.17±0.84 65.73±1.16 79.05±0.40 74.46±0.38 89.32±0.83 75.55±1.08 80.97±1.15 72.97±1.00

where each row of XT
⌫⇡

T
G lies in the span of ⇡T

G. Thus, iterations of RW procedures incorporate
information on node degrees with the given node features.

[Persistent Homology] Given k1 iterations of WL procedure and k2 iterations of RW procedure,
we update the matrix of node labels X to (Mk1

G X)TMk2
G . Given a node v 2 V , we use the

abbreviation X
[k1,k2](v) to denote the features of the node v obtained from the matrix (Mk1

G X)TMk2
G .

In the spirit of persistent WL (PWL) procedure Rieck et al. (2019), we characterize the global
topological invariants of G by constructing a sequence of nested subgraphs induced from the updated
matrix (Mk1

G X)TMk2
G . We define the height functions hV : V ! R and hE : E ! R as

hV (v) = 0 for all v 2 V

hE(v1, v2) = kX
[k1,k2](v1)�X

[k1,k2](v2)kp
(7)

where k · kp is the lp-norm over Rl. Let Ẽ be the set E(G) that is sorted using the function hE :

Ẽ := {ei 2 E(G) | hE(ei)  hE(ej) if i  j} (8)

The set of edges Ẽ is sorted in a manner that their heights are in an increasing order. Using the i-th
edge ei of the sorted list Ẽ, we define the subgraphs G[i] as

G
[i] := (V,E[i] := {ej 2 Ẽ | j  i}) (9)

We now obtain a sequence of nested subgraphs of G:

G
[0]

⇢ G
[1]

⇢ G
[2]

⇢ · · · ⇢ G
|E| = G. (10)

The nodes of all G[i]’s are fixed, whereas the edges are added in increasing order of their weights.

� Vector Representation: For each subgraph G
[i], we compute the number of its connected compo-

nents and cycles, corresponding to its 0-th and 1-st homology groups. The ranks of these groups are
known as Betti numbers, denoted respectively as �0(G[i]) and �1(G[i]). As more edges are added,
the 0-th Betti numbers of subgraphs decrease, whereas the 1-st Betti numbers increase. Given an
edge ei 2 Ẽ that is included in G

[i] but not in G
[i�1], the variations in homological invariants can be

computed as follows:

h
i
0 := �0(G

[i�1])� �0(G
[i]) (11)

h
i
1 := �1(G

[i])� �1(G
[i�1]) (12)
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Table 2: A part of classification results obtained from data sets with discrete node labels and
continuous node attributes. Cells notated as N/A indicate graph classification schemes which do not
report classification results on the given graph data set or may have limitations in processing the node
features and edge weights present in the given graph data set. The entries for PROTEINS, BZR, and
COX-2 data sets report the highest classification results obtained from using discrete node labels, or
from using both discrete and continuous attributes if possible. All classification results other than the
proposed method are obtained from pre-existing publications.

MUTAG PTC-FR NCI1 PROTEINS BZR BZR-MD COX2 COX2-MD
WL 88.72±1.11 67.64±0.74 85.58±0.15 76.11±0.64 N/A N/A N/A N/A

PWL-H0 86.10±1.37 67.30±1.50 85.34±0.14 75.31±0.73 N/A N/A N/A N/A
PWL-H1 90.51±1.34 67.15±1.09 85.46±0.16 75.27±0.38 N/A N/A N/A N/A

WWL 87.27±1.50 N/A 85.75±0.25 77.91±0.80 84.42±2.03 69.76±0.94 78.29±0.47 76.33±1.02
RETGK-I,II 90.30±1.10 67.80±1.10 84.50±0.20 78.00±0.30 87.10±0.70 62.77±1.69 81.40±0.60 59.47±1.66

GCKN-SUBTREE 91.60±6.70 68.40±7.40 82.00±1.20 77.60±0.40 86.40±0.50 N/A 81.70±0.70 N/A
PERSLAY 89.80±0.90 N/A 73.50±0.30 74.80±0.30 N/A N/A 80.90±1.00 N/A
PWLR 91.97±0.92 69.12±1.16 77.15±0.23 74.62±0.62 89.39±0.74 77.75±0.98 81.02±0.55 71.36±1.46

PWLR-OPT 91.91±1.61 66.19±1.23 79.05±0.40 74.46±0.38 89.46±0.55 75.55±1.08 80.97±1.15 72.97±1.00

Euler’s characteristic formula (Appendix D.4) implies that whenever an edge e 2 E
[i] is newly added,

either �0 decreases by 1, or �1 increases by 1. Given a connected graph G, there are |V |� 1 heights
on edges which record decrements of �0, and |E|� |V |+1 heights on edges which record increments
of �1. The sorted lists of such heights induce the following representations of graphs:

'
[k1,k2]
H0

:= [hE(ei) + ⌧ | h
i
0 > 0]ei2Ẽ

'
[k1,k2]
H1

:= [hE(ei) + ⌧ | h
i
1 > 0]ei2Ẽ

(13)

The bias term ⌧ (usually equal to 1) distinguishes cases where the height levels hE(ei) are equal to 0
from those where the edges with heights 0 do not occur in G.

� Reduced Dimensions: To further reduce the embedded dimensions, we may record these heights
using the following procedure. Any edge e = (v1, v2) can be represented as a tuple of unweighted
degrees of two nodes de := (dv1 , dv2). We denote by DE the set of tuples of unweighted degrees of
two nodes connected by an edge:

DE := {de := (dv, dw) | e = (v, w) 2 E} (14)

Using the set of tuples, we represent the graphs as |DE |-dimensional real vectors by taking constrained
summations of sorted heights over the set of edges, based on their associated tuples of unweighted
degrees de. Given a fixed tuple d of unweighted degrees, the d-components of the representations
'
[k1,k2]
H0,Opt and '

[k1,k2]
H1,Opt are sums of heights on edges ei such that the values hi

0 (or hi
1, respectively)

are positive, and that the tuples of unweighted degrees dei are equal to d. The explicit definition of
'
[k1,k2]
H0,Opt and '

[k1,k2]
H1,Opt can be thus summarized as shown in the following equation:

'
[k1,k2]
H0,Opt(d) :=

X

ei2Ẽ such that
hi
0>0, dei=d

(hE(ei) + ⌧)

'
[k1,k2]
H1,Opt(d) :=

X

ei2Ẽ such that
hi
1>0, dei=d

(hE(ei) + ⌧)
(15)

[Representation Stability] It is imperative to verify whether the representations from (13, 15)
preserve stability with respect to graph perturbations. Carrière et al. verified that the heat kernel
signature preserves representation stability with respect to graph perturbations Carriere et al. (2020);
Chazal et al. (2016). As for the PWLR scheme, the incorporation of three algorithms allows us
to numerically compute the upper bound of the distance between two representations of graphs.
We leave the proof of the stability theorem in Appendix E.3, which uses geometric ergodicity and
perturbation theory of random walks over finite graphs Schweitzer (1968); Lovasz (1993).
Theorem 2.6 (Stability for PWLR graph representations). Let G,G

0
be two connected graphs with

the same number of nodes. Let ✏ be defined as ✏ := MG �MG0 . Denote by 0 < µ2,G, µ2,G0 < 1 the

6
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Table 3: Dimensions of some graph representations processed in the Random Forest Classifier for
classifying graphs. Cells notated as ”-“ indicate graph data sets which do not have the prescribed
node features. For the first four data sets, the dimensions of representations constructed from WL
and PWL procedures are obtained by processing the discrete node labels of graphs, ignoring any
continuous node features or attributes on edges. The variable h denotes the number of WL iteration
procedures used for obtaining the representations. The asterix ”⇤“ indicates that the obtained graph
representations are subject to changes based on the choice of training data sets.

DATA SETS MUTAG PTC-FR NCI1 PROTEINS BZR BZR-MD COX2 COX2-MD
AVERAGE # NODES 17.93 14.56 29.87 39.06 35.75 21.30 41.22 26.28
AVERAGE # EDGES 19.79 15.00 32.30 72.82 38.36 225.06 43.45 335.12
DISCRETE LABELS 7 19 22 3 10 8 8 7

CONTINUOUS FEATURES - - - 29 3 - 3 -
EDGE ATTRIBUTES - - - - - 1 - 1

# GRAPHS 188 351 4110 1113 405 306 467 303
GRAPH KERNELS (10-FOLD)* 169* 315* 3699* 996* 364* 275* 420* 272*

WL, PWL-H0 (h = 1) 40 148 288 299 N/A N/A N/A N/A
WL, PWL-H0 (h = 10) 15,969 27,139 530,723 329,035 N/A N/A N/A N/A
WL, PWL-H0 (h = 20) 41,825 63,404 � 106 721,222 N/A N/A N/A N/A
PWLR-H0 (ANY k1 ,k2) 28 64 111 620 54 56 33 36
PWLR-H1 (ANY k1 ,k2) 7 8 18 539 6 5 6 5

PWLR-OPT (ANY k1 ,k2) 7 10 10 74 9 8 9 9

second largest eigenvalues of MG and MG0 . Then under certain conditions (see Theorem Appendix

E.4), there exists a fixed constant C > 0 such that

k'
[k1,k2]
Hi

(G)� '
[k0

1,k
0
2]

Hi
(G0)k1 < C(µk2

2,G + µ
k0
2

2,G0 + k✏k1)

A generalization of Theorem 2.6 for both representations from (13, 15) can be found in Theorem
E.4 and Corollary E.5 in Appendix E. The differences between two representations are numerically
controlled by the second largest eigenvalues of MG and MG0 and the perturbation matrix ✏. The
eigenvalues are strictly less than 1 because both matrices are stochastic. Hence, for sufficiently large
k2, the l1-distance between two vectors is controlled by the norm of ✏. Theorem Appendix D.2 further
shows that the updated node features converge to the probability distribution of node degrees. Hence,
the PWLR scheme quantifies the extent of incorporating node degrees to graph representations.

[Time Complexity] The total time complexity for embedding graphs with l-dimensional node
attributes using the PWLR procedure up to k1-iterations of WL kernel and k2-iterations of RW is
O(k1 ⇥ k2 ⇥m⇥ (l + logm)). We refer to Appendix E.4 for further details on computing the time
complexity of the PWLR algorithm.

3 EXPERIMENTS

We implement the PWLR framework in Python and execute experiments on classifying data sets of
finite graphs. Tables 2 and 3 list the classification results and dimensions of representations obtained
from the PWLR procedure and contemporary graph embedding techniques.

[Data sets] We classify cheminformatics graph data sets with discrete and continuous features
Kersting et al. (2016). For classifying graphs with discrete node labels, we choose MUTAG, PTC,
NCI, PROTEINS, and DD data sets. All discrete node labels are one-hot encoded as real coordinate
vectors. For classifying graphs with continuous attributes, we choose PROTEINS, BZR, COX2,
BZR-MD, and COX2-MD data sets. A full table of classification results can be found in Appendix B.

[Procedures] For implementing the PWLR embedding scheme, we choose two numbers of
iterations k1 and k2 from 0 to 29. We denote by “PWLR-H0” and “PWLR-H1” the vectors obtained
from (13), “PWLR-OPT-H0” and “PWLR-OPT-H1” the vectors obtained from (15), and by “PWLR-
H0+H1” and “PWLR-OPT-H0+H1” the vectors obtained from concatenating the two vectors “PWLR-
H0” and “PWLR-H1” (“PWLR-OPT-H0” and “PWLR-OPT-H1”, respectively). We implemented 10
iterations of 10-fold cross validations for classifying graph data sets, along with inner 5-fold cross
validations over the training sets for tuning the hyperparmeters using grid search. As a classifier,
we use the random forest classifier Breiman (2001) to effectively assess the contributions of the
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architecture of the embedding framework. The optimal number of iterations k1 and k2 for classifying
graphs are provided in Appendix B,

[Results and Highlights] To evaluate the performance of the proposed algorithm in classifying
graphs, we compare the PWLR scheme with WL kernel (WL) Shervashidze et al. (2011), Persistent
WL representations (PWL) Rieck et al. (2019), Wasserstein WL kernel (WWL) Togninalli et al.
(2019), graph kernels based on return probabilities of random walks (RetGK) Zhang et al. (2018b),
hash graph kernels (HGK) Morris et al. (2016), Fused Gromov-Wasserstein kernels (FGW) Titouan
et al. (2019), filtration curves for graph representations (FC) O’Bray et al. (2021), the supervised
version of graph convolutional kernel networks using subtree features (GCKN-subtree) Chen et al.
(2020), Perslay Carriere et al. (2020), and DeepMap (DM) Ye et al. (2020).. The first two procedures
can represent graphs with discrete node labels. All other techniques can process graphs with both
discrete and continuous node features, and weights on edges. All contemporary classification
results are imported from available results recorded in pre-existing publications. Comparisons in
classification results obtained from other graph kernels or graph neural networks (GNN) can be found
in Appendix B. Table 2 records the highest averages and standard deviations obtained from each
graph classification techniques. Experimental results suggest that our PWLR embedding framework
possesses two key empirical merits for representing graphs.

� Low-dimensional Embeddings: The proposed scheme constructs a collection of low-dimensional
representations independent from the choice of training data sets and the number of iterations k1
and k2. As shown in Table 3, it constructs fixed low-dimensional graph representations which
produce comparable results to contemporary techniques. We especially notice that the “PWLR-OPT”
representations (15) obtained for graphs in large data sets are of substantially smaller dimensions
than those obtained from graph kernels or WL procedures. Representations obtained from graph
kernel based methods are characterized by inner products between embeddings of graphs and those
from the training data set. As such, they heavily depend on the choice of training data. In addition,
subsequent iterations of WL procedure substantially increases the number of obtainable distinct node
labels, thus inevitably increasing the dimensions of representations.

� Classification Results: The PWLR embedding framework produces comparable results to state-
of-the-art techniques in classifying graphs with discrete node labels, and enhances these techniques
in classifying graphs with continuous node attributes. While the PWLR embedding framework falls
short in classifying some data sets with discrete node labels, all the proposed representations are of
low dimensions, a property difficult to guarantee from other graph kernel techniques. As for other
graph data sets with both discrete and continuous attributes along with weights on edges, the PWLR
embedding framework improves or produces comparable state-of-the-art classification results.

4 CONCLUSION

The problem of embedding graphs to real vector spaces requires a careful approach to how properties
of graphs can be adequately incorporated to their representations. We address this question by
introducing a novel mathematical framework for graph representations which guarantees stability
with respect to graph perturbations as well as incorporates local topological features, node degrees,
and global topological invariants. Experimental results suggest that our PWLR embedding framework
provides low-dimensional representations effective for classifying graphs with both discrete and
continuous node features. Meanwhile, the PWLR scheme implicitly assumes that the graphs are
undirected and stochastically fixed. Future research may hence focus on extending the proposed
framework to such graphs.
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