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ABSTRACT

Multi-view learning tasks typically seek an aggregate synthesis of multiple views
or perspectives of a single data set. The current approach assumes that there is
an ambient space X in which the views are images of X under certain functions
and attempts to learn these functions via a neural network. Unfortunately, such an
approach neglects to consider the geometry of the ambient space. Hierarchically
hyperbolic spaces (HHSes) do, however, provide a natural multi-view arrange-
ment of data; they provide geometric tools for the assembly of different views of
a single data set into a coherent global space, a CAT(0) cube complex. In this
work, we provide the first step toward theoretically justifiable methods for learn-
ing embeddings of multi-view data sets into CAT(0) cube complexes. We present
an algorithm which, given a finite set of finite metric spaces (views) on a finite set
of points (the objects), produces the key components of an HHS structure. From
this structure, we can produce a CAT(0) cube complex that encodes the hyperbolic
geometry in the data while simultaneously allowing for Euclidean features given
by the detected relations among the views.

1 INTRODUCTION

There are many data analysis tasks for which we have multiple views of the same aggregate data set
and for which we must synthesize the different views. These views might be images of objects from
different angles or in different lighting (Geusebroek et al., 2005), or the translations of a single text
into multiple languages (Christodoulopoulos & Steedman, 2015). In many cases, these views en-
code similar information but they also have complementary information that is important to capture.
Aggregating all of the information into a coherent global framework is crucial for obtaining the best
performance on downstream tasks.

The predominant current approach to multi-view learning is to assume that there is an ambient space
X such that the views are images of X under certain functions. Such an approach, while successful,
has drawbacks. Notably, the choice of the geometry of the space in which we represent our aggregate
data set is currently made without theoretical considerations. These methods (Xu et al. (2018); Sun
et al. (2019); Li et al. (2019); Zhao et al. (2017); Wu et al. (2019); Han et al. (2021)) also assume the
maps from the ambient space to the views are obtained via a neural network, which is used simply
as a blackbox and thus prevents mathematical insight and explicability.

Multi-view arrangements of data naturally arise in geometric group theory in the context of hier-
archically hyperbolic spaces (HHSes) (Behrstock et al. (2017)). This hierarchical approach builds
on work in several areas of low dimensional topology, including mapping class groups (Masur &
Minsky (2000), Teichmüller spaces (Brock (2003); Rafi (2014); Durham (2016)), and hyperbolic
3-manifolds (Minsky (2010); Brock et al. (2012)). HHSes provide geometric tools for the assembly
of different views of a single data set into a coherent global space, a CAT(0) cube complex.
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CAT(0) cube complexes are combinatorial objects that are capable of blending a mixture of both
hyperbolic (e.g., tree-like) and Euclidean geometries (Sageev (2014)). We note that previous work
such as Billera et al. (2001); John (2017) exploited the cubical structure of the space of phylogenetic
trees to improve the reconstruction of phylogeny from genetic data.

In this work, we take the first step toward theoretically justifiable methods for learning embeddings
of multi-view data sets into CAT(0) cube complexes. Specifically, given a finite collection of objects
x1, . . . , xn, each occurring as points in a finite collection of views V1, . . . , VK , one can produce
a finite collection T1, . . . , TK of finite trees with leaves the xi. One method for learning these
trees is TREEREP (Sonthalia & Gilbert, 2020). We develop algorithms which learn certain relations
among the views and relative projection data, from which one can produce an HHS structure on
{x1, . . . , xn}. From this HHS structure, we can produce a CAT(0) cube complex that encodes the
hyperbolic geometry in the Ti while simultaneously allowing for Euclidean features given by the
detected relations among the Vi (Behrstock et al. (2021)).

In this paper, our main purpose is to present an algorithm which, given a finite set of finite metric
spaces (views) on a finite set of points (the objects), produces the key components of an HHS
structure.

2 BACKGROUND

(a) 4 cycle (b) Cross

Figure 1: Here are two simple graphs in which: (a) all of the views are independent and (b) all of
the views are related to each other.

Fix n objects x1, . . . , xn and K metric spaces V1, . . . , VK , with each xi representing a point in each
Vj . We think of the xi as being global objects and their representatives in each view Vj as a sort of
projection. For example, take a set of points {xi}ni=1 ⊂ RK and V1, . . . , Vk the K coordinate axes.
Then, the representatives of the xi in the jth copy of R are simply the jth coordinate of each xi.

An HHS is defined axiomatically by relations among its constituent metric spaces (Behrstock et al.
(2017)). We begin with an ambient metric space X with a finite collection of Gromov hyperbolic
geodesic metric spaces V . We note that HHSes were developed to study infinite groups where V is
infinite, but we can and will assume V is finite for simplicity of this discussion.

To each space V ∈ V , there is an associated projection map πV : X → V . The guiding philosophy is
that these projections to hyperbolic spaces encode most of the coarse geometry ofX . This manifests
in several ways, which we will now describe.

First, we can construct an product space
∏
V V by the map Φ : X →

∏
V V given by x 7→

(πV (x))V ∈V . The image of Φ is controlled by certain relations among the elements of V . Two
spaces V,W can be orthogonal V ⊥W , transverse V tW , or nested V vW , though we will not
consider nesting in this iteration of our algorithm.

Orthogonality and transversality are symmetric relations that constrain the coordinates of the image
X →

∏
V V . The orthogonality relation V ⊥ W imposes no constraints; i.e. the composition

X →
∏
V V → V ×W given by x 7→ (πV (x), πW (x)) is surjective (that is, the composition sends

X onto V ×W ).

On the other hand, transversality V t W provides certain consistency inequalities (CI). These are
defined in terms of relative projections ρVW : V → W,ρWV : W → V for V t W , whose images
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have bounded diameter in W and V , respectively, as well as a family of thresholds θV > 0 for each
V ∈ V , which function to differentiate the various projections V .

(CI) For any x, y ∈ X , if dV (πV (x), πV (y)) > θV and DW (πW (x), πW (y) > θW , then up to
switching the roles of x, y, either dV (x, ρWV ) < θV or dW (y, ρVW ) < θW .

Note that this is an exclusive or, that is, exactly one of the dV (x, ρWV ) < θV or dW (y, ρVW ) < θW is
true.

For each pair x, y ∈ X , these consistency inequalities can be converted into a partial order <x,y

on L(x, y). The partial orders across the pairs are further constrained by the following bounded
geodesic image (BGI) property:

(BGI) If x, y ∈ X and V,W ∈ L(x, y) with V tW , then any geodesic [x, y]V in V between x, y
satisfies dV ([x, y]V , ρ

W
V ) < θV .

The idea is that if we have Vi <x,y Vj , then when moving efficiently from x to y in the ambient
space X , we first have to move in Vi and then in Vj .

We now describe how to convert an HHS structure
L(x, y) := {V ∈ V : dV (x, y) > θV }.

One essential tool is the distance formula, which says that

dX(x, y) �
∑

V ∈L(x,y)

dV (πV (x), πV (y)),

where � denotes equality up to scaling by a linear function Masur & Minsky (2000); Behrstock
et al. (2017).

As a consequence, the map Φ : X →
∏
V V behaves like a rough isometric embedding, up to

ignoring the (possibly infinitely-many) components of
∏
V V where pairs of points in the image are

close. In fact, the set of views V is finite in our setting, making Φ a rough isometric embedding.

Let us look at the examples in Figure 1 to understand these definitions. First, consider the 4-cycle
as X in (a). Let us assume that we have two views V(1,2), V(1,4) given by the projections onto the
edges (1, 2) and (1, 4). Now we can see that the map X → V(1,2) × V(1,4) is surjective (i.e., onto)
and, hence, the views are independent. On the other hand, consider the cross in part (b), with views
given by the edges V(1,2) and V(1,3). Then we see thatX → V(1,2)×V(1,3) is not surjective. Further,
when going from node 2 to node 3, we first have to traverse the edge (2, 1) and then the edge (1, 3).
Thus, we see that V(1,2) <2,3 V(1,3) and that the views are transverse.

We briefly remark on the CAT(0) cube complexes produced from the HHS structure on these syn-
thetic examples. In the case when the graph is a tree, the resulting CAT(0) space is again the tree.
And when the graph contains cycles, we get a simplicial complex whose 1-skeleton is the underlying
graph, with higher dimensional cells corresponding to pairwise-orthogonal collections of views.

3 ALGORITHM

For each pair of points xs, xt, we want to learn the relations between the views of the data as we
travel from xs to xt in the ambient space X . To do this, we need to learn the two quantities:

1. The thresholds θVk
for Vk ∈ V .

2. A directed acyclic graph Gst that represents the partial ordering given by the (BGI) prop-
erty.

Given threshold values θVk
, and a pair of points xs and xt, we add the directed edge (Vi, Vj) in Gst

if there exists two points xr1 and xr2 such that
dVi

(xr1 , xt) ≤ θVi
, dVj

(xr2 , xt) > θVj
, dVi

(xr1 , xs) > θVi
, dVj

(xr2 , xs) ≤ θVj
(1)

and for every new pair of points xs′ , xt′ , we have that
dVj (xs′ , xt′) > θVj ⇒ dVi (xr2 , [xs′ , xt′ ]Vi) < θVi

dVi
(xs′ , xt′) > θVi

⇒ dVj

(
xr1 , [xs′ , xt′ ]Vj

)
< θVj

(2)

3



Accepted to the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Here we assume that ρVi

Vj
(Vi) = xr2 and ρVj

Vi
(Vj) = xr1 . Hence satisfying Equation 1 implies that

Property (CI) is satisfied and satisfying Equations 2 that Property (BGI) is satisfied.

For a given set of thresholds, this directed graph could have cycles. Hence we want to measure how
far the directed graph is from being acyclic. To do so, we compute L(G) = (Tr(exp(G) − K))2.
From Wei et al. (2020), we know that L(G) is zero if and only ifG is a directed acyclic graph. Thus,
our overall loss function is

L(θV1
, . . . , θVK

) :=
∑
s6=t

L(Gst).

One idea would be optimize for the threshold values θVi
via gradient descent, but due to the com-

binatorial nature of the objects the gradient of the loss function with respect to the thresholds will
always be 0. Instead we will do a random walk on a mesh in RK as follows. Given a view Vi, let
d
(i)
1 < . . . < d

(i)
Mi

be the unique distances in dVi . Now for any θVi in the interval (d
(i)
a , d

(i)
b ), the

constructed graphs are the same. Hence we can pick Mi − 1 values (τ
(i)
l )l=1,...Mi−1 as the mid-

points of these intervals, as well as one point τ (i)Mi
bigger than d(i)Mi

and one point τ (i)0 smaller than

d
(i)
1 . Thus, we will think of our thresholds as living in the folllowing mesh.

Θ := (θV1
, . . . , θVK

) ∈ {τ (1)0 , . . . , τ
(1)
M1
} × . . .× {τ (K)

0 , . . . , τ
(K)
MK
}.

For the random walk, given Θold, we randomly pick a view Vk and then update θVk
to a uniformly

random value in {τ (k)0 , . . . , τ
(k)
Mk
} to get Θnew. Then for both sets of thresholds we compute the loss

values L(Θold), L(Θnew). If L(Θnew) < L(Θold), we move to the new set of thresholds, otherwise

we move to the new state with probability
(
L(Θold)

L(Θnew)

)2

. Thus, our algorithm is a Markov chain

Monte Carlo method.

4 EXPERIMENTS

We test our algorithms on synthetic data to demonstrate that we find the correct relations. We first
look at simple undirected graphs as the ambient space. The nodes of the graph are our data points
and our views are the projections onto the edges of the graph. The idea is to learn an HHS structure
on this information which will allow us to rebuild the graph.

For the first test, we start with two very simple examples seen in Figure 1. We run our method a
1000 times to see which relations persistently appear. For the 4-cycle, we never get any relations.
Thus, we always get that the views are independent. On the other hand, for the cross, we get that
every view is related to every other view. Thus, we see that our method works in this setting.

In the first generalization, we can look at graphs that are even cycles. For these graphs we should
never have any relations between the views. We can also look at graphs that are trees. For these
graphs, we should have that every pair of views is related. Running our method on these graphs
provides relations that are consistent with our expectations.

Finally, we look at graphs that have both cycles and tree like parts. Specifically, we look at bipartite
graphs for which no cycle has a chord. Examples of such graphs can be seen in Figure 2. Let us look
at the graph on the left of Figure as an example. For this graph, we expect that the edges (views) in
the cycle, (1, 3), (3, 7), (7, 5), (5, 1), are independent of each other and that all other pairs of views
are transverse. This is exactly the set of relations that we get when we run our method. Thus, we
see that on these simple instances our method learns the correct relations between the views.

We note that the relations and relative projections produced by our algorithms are sufficient for
rebuilding the graph. While this is possible to do directly from the initial edge and projection data,
we believe that these synthetic experiments are a good proof of concept.

5 FUTURE WORK AND CONCLUSION

We considered using multi-view metric data to reconstruct an ambient space that is consistent with
the views of the data. We developed an algorithm that uses ideas from geometric group theory to
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Figure 2: Examples of bipartite graphs with no chords.

learn relations between the views. Our algorithm is an MCMC algorithm that use DAG learning
inspired loss functions. Using our algorithm, we show that for certain types of undirected graphs,
we exactly recover the correct relations between the views.

We have shown so far that our method accurately recovers the relations between the views. There
is, however, more work to be done: (1) develop an algorithm that converts a learned HHS structure
into the corresponding CAT(0) space, (2) test the algorithm on other types of synthetic data, as well
as real world data, and (3) speed up the learning algorithm.
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