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Abstract

Mode connectivity is a recently discovered property of neural networks stating that
two weight configurations of small loss can usually be connected by a path of small loss.
The mode connectivity property is interesting practically as it has applications to design of
optimizers with better generalization properties and various other applied topics as well as
theoretically as it suggests that loss landscapes of deep networks have very nice properties
even though they are known to be highly non-convex. The goal of this work is to study
connectedness of loss landscapes via the lens of Morse theory. A brief introduction to Morse
theory is provided.
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1. Introduction

Many lines of research suggest that geometric and topological properties of the parameter
manifold of a neural network play a central role in machine learning. Indeed, arguably the
most important algorithm used for training neural networks- stochastic gradient descent-
can be interpreted as the dynamical system defined by the gradient flow of the loss function
on the weight manifold. These flows define potential solutions to a machine learning problem
and thus ultimate parameters for the trained network. Curvature plays an important role in
generalization and mode connectivity (see Hochreiter and Schmidhuber (1994), Hochreiter
and Schmidhuber (1997), Raghavan and Thomson (2020)). However, formal mathematical
tools for studying these geometric properties are still being developed.

One of the most powerful tools in differential topology- Morse theory- studies differ-
entiable manifolds in terms of real-valued functions on them Milnor (2016). This theory
provides a way of reconstructing a manifold M given access to the knowledge of critical
points of a function f : M → R and indexes of Hessians Hessx(f) at these critical points
only (here we mean the number of negative eigenvalues by the index of a symmetric op-
erator). Moreover, guided by this theory, one can recover topology of sub-level sets of the
form Mϵ = f−1((−∞, ϵ]) as well. It is natural to apply it to the setting of machine learning,
taking M to be the weight manifold and f to be the training loss. In this case, Mϵ are
called loss landscapes and are of particular interest when ϵ is close to zero.

The most natural question to ask about Mϵ from topological perspective is whether
they are path-connected. This question has been considered in the deep learning litera-
ture before and experiments show that, indeed, it is often possible to connect two different
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weights of small loss by a path of almost constant small loss for a variety of different prac-
tically interesting architectures (see Raghavan and Thomson (2020),Garipov et al. (2018)).
Connectedness turns out to be of practical importance because some points from the path
normally have better generalization properties and better robustness properties against
some types of adversarial attacks (see Izmailov et al., Zhao et al. (2019)). Later, some
theoretical justifications for this phenomenon have been made as well for some classes of
networks Kuditipudi et al. (2019). These justifications, however, are in the spirit of classical
theoretical computer science rather than geometry or topology.

In the work presented here, we study mode connectivity via the lens of Morse theory. It
can be perceived as building a connection between the saddle points and mode connectivity
phenomena in a hope to shed more light on the structure of loss landscapes. Thinking from
the perspective described above, one might become puzzled, as the following two facts seem
to be contradictory to mode connectivity at first:

1) A common explanation for challenges underlying optimization with deep neural net-
works is the abundance of local minima.

2) According to Morse theory, a sub-level set Mc cannot be connected if there is a local
minimum with loss value c different from the global minimum.

This multi-minima conjecture, however, is only in a seeming contradiction with the
observation of mode connectivity. While parameter landscapes with many minima cannot,
according to Morse theory, also be path connected as epsilon-loss level-sets, it is possible
that their ”thickened” versions are connected, where by ”thickening” we mean letting the
error increase to hit enough index one points to allow connectivity. If the ”thickening”
scenario takes place, this would mean that allowing some changes of loss is essential for the
connectedness of the loss landscapes and is not just a drawback of using numerical methods
for finding the low loss paths. Evaluating the losses at the corresponding index one points
would clarify on how much of a loss change is required.

An alternative and simpler explanation could be that standard optimization algorithms
actually converge to saddle points rather than genuine (local) minima for complex enough
networks. We conducted experiments for a 2-MLP, a 3-MLP and a CNN architectures
trained on MNIST and FashionMNIST tasks to find out which of the two possible explana-
tions takes place.

Surprisingly for us, we observed the second scenario in all cases we considered: the loss
landscapes contain saddle points that can be easily mistaken for local minima. Turns out
that the saddle point convergence phenomenon has been observed before Dauphin et al.
(2014). While this appears to explain mode connectivity in a lot of cases, we definitely
would not completely rule out the first alternative as well. Thus, future directions include
experimenting with bigger architectures and other optimizers to observe the first situation
with required thickening in practise. In such cases it would be extremely interesting to
identify and study the index one points of small loss responsible for connectivity.

2. Limitations

The experimental part of this work should be taken as preliminary. The networks (both
MLP and CNN) that we studied empirically are small by modern standards and it is not
immediately clear to us how to extend the same computations to much bigger networks.
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In addition, we tested the theory only on MNIST and FMNIST datasets. Finally, we used
only two different optimizers: SGD and ADAM. As was noticed by an anonymous reviewer,
using Hessian-aware optimizing techniques could be a real game-changer here.

3. Preliminaries

3.1. Morse Theory

We use the language of basic differential topology for this subsection. It is still accessible
to people without familiarity with the latter, as the reader can just think of Mn below as
of a closed ball in Rn. We will follow exposition from Milnor (2016) for a brief introduction
to Morse Theory here.

Consider a smooth compact manifold Mn equipped with a smooth function f : M → R.
The following two definitions will be highly important to us.

• A point p ∈ M is critical if gradp(f) = 0.

• Given a map Rn → U ⊆ Mn, defining coordinates x1, . . . , xn around a point x ∈ Mn,

the Hessian of f at x is Hessp(f) = ( ∂2f
∂xi∂xj

)i,j . The operator Hessp(f) depends on the

choice of coordinates in general, but the dimensions n+, n0 and n− of its positive, zero and
negative eigenspaces respectively do not (according to Sylvester’s law of inertia, which is a
general fact about quadratic forms). Define index of x as ind(x) = n−, which is invariant
to choice of coordinates as long as f and x are fixed.

• f is said to be a Morse function if Hessp(f) is non-degenerate for any critical point
p, i.e. if n0 = 0.

Given a Morse function f : M → R, it is possible to reconstruct topology of M from the
knowledge of indexes of critical points of f only. Moreover, defining Mϵ = f−1((−∞, ϵ]),
it turns out that it is also possible to reconstruct topology of Mϵ knowing only indexes
of critical points p ∈ Mϵ. We will not go into full detail about this reconstruction, but
will cover enough for giving the necessary intuition. We need to introduce the following
definition first:

• Given 0 ≤ k ≤ n, we call hk = Dk × Dn−k a k- handle. Of course, all these handles
are the same topologically, that is up to a continuous deformation, but the gluing rules for
reconstruction vary as we will see soon.

We assume that Mn is compact and a basic theorem in Morse theory says that the
set of critical points of a Morse function f is always isolated (Corollary 2.3, p.8, Milnor
(2016)). Thus, given the compactness assumption, this set is actually finite. Also due to
the compactness, we know that f is bounded from below and attains its minimum m. Thus,
we know that Mt = ∅ for t < m and starts changing for m ≥ t. Now, assume that we know
Mt for t < r and want to reconstruct Mt further. Consider two cases:

• The pre-image f−1(r) does not contain any critical points of f . Since the set of critical
points of f is finite, it is possible to take a δ > 0, such that there are no critical points
in f−1((r − δ, r + δ)) as well. Morse theory tells that in this case Mr+δ is diffeomorphic
to Mr−δ (Theorem 3.1, p.12, Milnor (2016)), so nothing changes if we do not hit a critical
point.

• There is a critical p with f(p) = r. Then p is the only critical point satisfying this
equation due to non-degeneracy of the Hessian. Again, take a δ > 0, such that p is the
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only critical point in f−1((r− δ, r+ δ)). According to Morse theory, Mr+δ can be obtained
from Mr−δ by attaching hk to Mr−δ. Moreover, this attachment is performed by gluing
∂Dk ×Dn−k ⊆ Dk ×Dn−k = hk to ∂Mr−δ (see the proof of Theorem 3.2 in Milnor (2016)).

Remark 1 If k = 0, ∂Dk = ∅ and the gluing is just taking a disjoint union. The k = 0 case
is the only case when the number of connected components can increase, as otherwise ∂Dk×
Dn−k is non-empty and thus we just attach a connected set hk to a connected component of
Mr−δ.

Remark 2 If k = 1, ∂Dk = S0 is a disjoint union of two points and ∂D1 × Dn−1 =
Dn−1

∐
Dn−1. Thus, attaching a 1-handle can glue two different connected components to-

gether. The k = 1 case is the only case when the number of connected components can
decrease, as otherwise ∂Dk ×Dn−k is connected, so it can touch only one connected compo-
nent.

3.2. Mode Connectivity

Mode connectivity is a recently introduced observation suggesting that, given two param-
eters w1 and w2 from the parameter space of a neural network, both giving very low loss,
it is usually possible to connect them with a curve γ(t), γ(0) = w1, γ(1) = w2, such that
γ(t) is a low-loss parameter for any 0 < t < 1 as well. That is, in words, that two low-loss
weights can be connected by an entire small-loss path. One could naively guess that taking
γ(t) = tw1 + (1 − t)w2 to be the straight line connecting the weights would do the job-
note that this actually far from being the case: in fact, the accuracy can easily drop down
to 20-30 percent for in-between points on the straight line even if the endpoints achieve
90+ percent accuracy Raghavan and Thomson (2020), Garipov et al. (2018). Thus, more
sophisticated curves are needed. The main two practical approaches of finding the curves
the authors are aware of are the following:

• Garipov et al. (2018) suggest using parametrized families of curves connecting w1 and
w2, such as Bezier curves defined by γΘ(t) = (1 − t)2w1 + 2Θt(1 − t) + 2tw2. Given such
a parametrized family, the idea is to find the Θ minimizing the average loss

∫ 1
0 L(γθ(t))dt

and use the corresponding γΘ as the desired low loss curve.
• Raghavan and Thomson (2020) suggest an iterative algorithm based on an approach

that is also introduced in the same paper and that they call Functionally Invariant Paths.
One might wonder about the motivation behind mode connectivity studies. It can be

justified in two possible ways:
• Conceptually, one of the mysteries of machine learning is that many different weight

parameters can have the same train accuracy and it is unclear which setting of the pa-
rameters one should prefer. One of the natural ways of looking at it is introducing an
equivalence relation on the set of parameters and calling two weights equivalent if the give
approximately the same loss and if they can be connected by a curve of approximately the
same loss. It is a very natural relation as it just means that one weight can be continuously
deformed into the other without changing the loss. In these terms, the mode connectivity
comes out as surprising as it says that all low loss parameters are equivalent. Note, however,
that this equivalence is measured only with respect to train loss and they still can be very
different with respect to test loss as well as to other measures of generalization.
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• From the applied point of view, as mentioned above, these paths can be found by effi-
cient algorithms, and it is always helpful to have a lot of different candidates for a solution.
Izmailov et al. use averaging along these paths to find solutions with better generalization
performance. This resulted in the Stochastic Weight Averaging (SWA) algorithm, that has
now been adopted as a PyTorch library. There are other noteworthy applications as well:
for example, Zhao et al. (2019) and Raghavan and Thomson (2022) report that weights from
the low loss paths tend to have better robustness properties with respect to some types of
adversarial attacks.

Finally, we should mention here that there are some previous theoretical works on mode
connectivity. Papers Kuditipudi et al. (2019) and Nguyen (2019) prove that it holds for
certain types of networks, but they do not shed much light on what is going on from a
geometric/topological perspective. Moreover, as was mentioned in the introduction and
as will be elaborated in the next chapter in more detail, mode connectivity at first seems
to contradict classical differential topology knowledge. There is also a recent work Horoi
et al. (2022) that uses Topological Data Analysis to gain topological information about Loss
Surfaces. This work, however, is mostly empirical and just uses TDA as a computational
tool.

4. Morse Theory of Loss Landscapes

To apply Morse theory, one needs to make an appropriate choice of a smooth manifold M
and a smooth function f : M → R. Since we aim at studying Loss Surfaces, a reasonable
choice would be taking M = RD, where D is the dimension of the parameter space and
f(Θ) to be the total loss of a fixed neural network with respect to a fixed dataset at the
parameter Θ. This, however, could raise two concerns: the manifold M is usually assumed
to be compact in the context of Morse theory and f needs to have non-degenrate Hessians at
all critical points. To address both, we suggest taking f(Θ) = L(Θ)+λ||Θ||22 the sum of the
train loss at the point Θ and an l2-regularization term, where regularization term λ should
be ”a very small number”, in order to not affect the dynamics of SGD much. This way, we
can take M to be a closed ball of radius O( 1λ), as f is very big outside of such a ball anyway,
and it is not hard to make f a Morse function this way, because Hess(f) = Hess(L)+λId,
and one thus just needs to pick a λ such that −λ is not in the spectrum of the Hessians
of critical points. We acknowledge, however, that this reasoning might come out a bit to
loose, so one possible direction for future work could be making this part more rigorous.
So, for the purposes of the present work, M is a closed ball of a large radius (proportional
to 1

λ) and f is the train loss with a very slight l2-regularization added. Note that in this
case we have a canonical coordinate system coming from the ambient Euclidean space and
all the Hessian are calculated with respect to that coordinate system.

In these terms, mode connectivity tells us that Mϵ is a connected set for small values
of ϵ > 0. To keep translating from the language of Morse theory to the language of opti-
mization, a critical point of index k is a saddle point with k negative directions and D − k
positive. In particular, since the Hessian is positive-definite at any local minimum as can
be easily seen from the corresponding Fourier approximation, local minima are always of
index 0. Conventional wisdom of deep learning practitioners suggests that there usually are
a lot of different local minima in the small loss valley. This comes out as puzzling because,
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if we take ϵ to be very close to the train loss at any of these minima, which does not happen
to be the global minimum, the corresponding Mϵ can be obtained from Mϵ′ with a close
enough ϵ′ < ϵ by taking the disjoint union with DD(cf. Remark 1). In particular, such Mϵ

cannot be connected, directly contradicting the first sentence of this paragraph. Thus,
a more profound analysis is needed to resolve this apparent paradox.

Going over the reasoning above, one might come up with two possible resolutions: either
the points found by the optimization algorithm are usually saddle points rather than genuine
local minima or, alternatively, it could be that these are genuine local minima, but there
always are saddle points of index 1 very close to glue different components together (see
Remark 2). We observed only the former in the experiments we ran: the points found usually
turn out to have high indexes (see the next section for details). Moreover, turns out that
this phenomenon has also been addressed in the literature Dauphin et al. (2014). While this
appears to explain mode connectivity in a lot of cases, we definitely would not completely
rule out the other aforementioned theoretical resolution as well, as it could be that to
observe this scenario taking place in practise one has to experiment with significantly bigger
networks or use different optimization methods. In any case, the present work should be
perceived as a bridge between two seemingly non-related phenomena of mode connectivity
and abundance of saddle points.

Example 1
Let us consider the case of the linear regression as an illustration. Denote the data matrix

by X and the vector of labels by y. In this case, the train loss is L(w) = ||Xw− y||22. Thus,
it is easy to see that the corresponding Hessian is Hessw(L) = XTX and is independent of
w. This is non-negatively defined, but might be degenerate if the rows of X are not linearly
independent. If one adds a regularization term and considers f(w) = ||Xw − y||22 + λ||w||22
instead, then one obtains Hessw(f) = XTX + λId, which is strictly positive for any λ > 0
no matter how small it is. In terms of optimization, this means that the corresponding
problem is strictly convex. Morse theory tells us that the loss-landscape is diffeomorphic to
the disc DD in this case, which is perfectly consistent with convexity of the problem.

5. Experiments

Numerical computations of indexes at critical points identified by SGD and ADAM could
allow estimation of indexes and insights into architecture of these points as saddle points or
true minima. As explained above, this is important for understanding mode connectivity
in terms of Morse theory. As the index at a critical point is determined by the spectrum
of the Hessian at this point by definition, we decided to plot the corresponding eigenvalue
distributions at some of the critical points as well. It is interesting that the index seemed to
be fairly similar across the critical points for each network and dataset, but the typical index
value varies over different networks and datasets. It would be interesting to understand what
determines this.
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5.1. Set up

We considered the following architectures:

• A 2-layer MLP with the hidden layer of size 10. This gives 7960 parameters in total
for images of size 28× 28.

• A 3-layer MLP with two hidden layers of size 10. This gives 8070 parameters in total
for images of size 28× 28.

• A CNN architecture with two convolutional layers: both with 1 channel, kernel of size
5, stride 1, padding 2 and Maxpool kernel of size 2 and one linear layer mapping from R7×7

to R10. This gives 552 parameters in total for images of size 28× 28.

We trained the corresponding networks on MNIST and FMNIST datasets using Stochas-
tic Gradient Descent with Cross-Entropy loss for the MLP and ADAM optimizer with the
same loss for the CNN. After training, we calculated Hessians of the loss function with
respect to the parameters. We then found the eigenvalues of the Hessians and calculated
their indexes. The reader can see the corresponding plots in the next subsection.

5.2. Plotting indexes and eigenvalues

Recall that the index of a symmetric matrix is just the number of negative eigenvalues the
matrix has. We found the index of the Hessian at a final point (that is at a point found by the
optimizer) to be a fairly robust quantity under fixed architecture, dataset and optimization
procedure. The optimizers did not converge to a single genuine minimum. In fact, the
computations suggest that SGD and ADAM have discovered series of deep saddle points.
Below we provide means and standard deviations of indexes for 10 runs and distributions
of the eigenvalues of the Hessians for one of these runs. Our distributions are qualitatively
similar to those reported in Papyan (2018) for different convolutional networks: they have
large bulks around zero and some rare eigenvalues with spectral gaps on both sides of these
bulks.

5.2.1. CNN

We found the index to be 232.9± 2.88 for MNIST and 238.5± 4.88 for FashionMNIST.

(a) The corresponding index is 234 (b) The corresponding index is 241

5.2.2. 2-MLP

We found the index to be 1980.1±130.4 for MNIST and 3637.9±119.92 for FashionMNIST.
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(c) The corresponding index is 1939 (d) The corresponding index is 3712

5.2.3. 3-MLP

We found the index to be 2033.8±124.00 for MNIST and 3593.3±208.61 for FashionMNIST.

(e) The corresponding index is 2125 (f ) The corresponding index is 3688

5.3. We do hit essentially different solutions

Given that indexes of final points tend to take similar values under different runs of SGD
and ADAM, one might be concerned that for some reason the optimizer just always hits a
neighbourhood of one saddle point with near-optimal loss in this setting. To rule this out,
we found final parameters for 500 initializations of the ADAM optimizer for the CNN and
projected them onto 2D by applying PCA. We used a color map encoding the loss function:
the darker the point is, the smaller the corresponding train loss is. The picture hints that
there are multiple centers of clusters- black points, that are fairly far from each other in
most cases, and the points with lighter colors were supposed to converge to the nearest
black ones. One might be concerned here that reducing the situation to the 2D case might
be too much of a simplification. Note, however, that if two points are observed far apart
after being projected on a plane then it implies that they were even further apart before
the projection.

5.4. Sanity check: linear regression case

Just as a sanity check, we prepared a random linearly separable dataset with 100 points and
2 classes in R2 and used linear regression with SGD training to separate them. Everything
went as expected (see Example 1): the Hessian was the same at every point, it had index
0 and SGD would always converge to the same point for a big enough learning rate.
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5.5. Indexes of random parameters

We also computed indexes of Hessians at parameters initialized randomly by PyTorch.
Surprisingly, they turn out to be lower than indexes of Hessians of trained networks on
average. This might indicate that neural network optimizers have a preference for finding
high-index saddle points. The indexes for random parameters were found to be:

• 2-MLP: 1186.2± 198.25 for MNIST and 2840.9± 387.35 for FashionMNIST.

• 3-MLP: 1410.3± 235.31 for MNIST and 2721.9± 272.12 for FashionMNIST.

• CNN: 182.91± 80.17 for MNIST and 189.48± 79.85 for FashionMNIST.
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6. Conclusion and future directions

We establish a connection between indexes of the Hessians of neural networks and topology
of loss landscapes using Morse theory. We conclude in the cases we observe that mode
connectivity arises because points found by optimizers are actually saddle points of big
indexes rather than genuine local minima. This means that, even though these saddle
points give small train losses, the train losses given by the actual local minima from the
low loss valley must be yet smaller. Moreover, there must be an abundance of saddle
points of index one giving smaller train losses than the points we converge to as well: they
are necessary to glue different connected components corresponding to the different local
minima together. In this sense, abundance of saddle points is a good thing, as otherwise
mode connectivity would not be possible according to Morse theory. The observation that
random networks have lower indexes on average than the final parameters found by the
optimizers also suggests that saddle points might be a good thing after all.
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A very interesting challenge for future work would be developing methods for decreas-
ing the index without increasing the loss. A theoretical scheme for finding third-order local
minima is suggested in Anandkumar and Ge (2016) and is proven to always work and
to have polynomial time complexity. However, Anandkumar and Ge do not provide any
experimental results and it was not clear to us whether it could be done practically and
also it is unclear whether these third-order local minima would be of reasonably small loss.
Nevertheless, trying to implement it and checking the results could be a good possible di-
rection. Alternatively, as suggested by one of the anonymous reviewers, one could use other
Hessian-aware optimization techniques, such as BFGS or LBFGS optimization methods, to
shed more light on the structure of the loss landscapes.

Finally, we were intrigued by the spectral gaps that Hessians of loss functions of neural
networks have. It goes beyond the scope of the present work, but it definitely deserves
being studied on its own.
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