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Abstract

Community detection is a classical method for understanding the structure of relational
data. In this paper, we study the problem of identifying mixed-membership community
structure. We argue that it is beneficial to perform this task on the line graph, which can
be constructed from an input graph by encoding the relationship between its edges. Here,
we propose a curvature-based algorithm for mixed-membership community detection on
the line graph. Our algorithm implements a discrete Ricci curvature flow under which the
edge weights of a graph evolve to reveal its community structure. We demonstrate the
performance of our approach in a series of benchmark experiments.

Keywords: Line Graph, Mixed-membership community detection, Ollivier-Ricci curva-
ture, Curvature-based Network Analysis

1. Introduction

Community detection is of central importance to the study of relational data, such as graphs
or networks. It seeks to identify clusters or densely interconnected substructures in a given
graph. Such structure is ubiquitous in relational data: We may think of friend circles
in social networks, pathways in biochemical networks or article categories in Wikipedia.
A standard mathematical model for graphs with a community structure is the Stochas-
tic Block Model (SBM), which has led to fundamental insights into the detectability of
communities (Abbe, 2017).

Classically, communities are identified by clustering the nodes of the graph. Popular
methods include the Louvain algorithm (Blondel et al., 2008), the Girvan-Newman algo-
rithm (Girvan and Newman, 2002) and Spectral clustering (Cheeger, 1969; Fiedler, 1973;
Spielman and Teng, 1996). Recently, there has been growing interest in another class of algo-
rithms, which apply a geometric lens to community detection. Curvature-based community
detection seeks to understand the structure of complex networks through a characterization
of their geometry. Curvature is a classical tool in Differential Geometry, which is used to
characterize the local and global properties of geodesic spaces. While originally defined in
continuous spaces, discrete notions of curvature have recently seen a surge of interest. Of
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particular interest are discretizations of Ricci curvature, which is a local notion of curvature
that relates to the volume growth rate of the unit ball in the space of interest (geodesic
dispersion). Curvature-based community detection utilizes the observation that edges be-
tween communities (so called bridges) have low Ricci curvature. By identifying such edges,
we can learn a partition of the graph into its communities.

Much of the existing literature focuses on com-

munities with unique membership, i.e., each node

can belong to one community only. However, in H M
many complex systems that generate relational data, ,

we find mixed-membership structures: A member H C¢O_‘AO<I>O
of a social network might belong to a circle of high !

school friends and a circle of college friends, a pro- G L(G)

tein may have different functional roles in a bio-
chemical network. Consequently, a growing body of Figure 1: Community structure in

literature studies the detection of overlapping com- a graph G and its line
munities (Airoldi et al., 2008; Yang and Leskovec, graph L(G) with node la-
2013; Zhang et al., 2020). Observe that the mixed- bels (top) and edge labels
membership structure precludes the existence of (bottom).

bridges between communities, because the commu-
nities overlap (see also Fig. 1(left)). This renders community detection methods that rely
on graph partitions, such as the curvature-based methods discussed above, inapplicable.

In this paper, we propose a curvature-based algorithm for detecting mixed-membership
community structure. We show that while partition-based approaches do not recover the
natural communities when applied to the original graph, they perform well on the line graph.
The line graph encodes the connectivity between the edges of the graph, rather than the
nodes. This reformulation of the relational information in the graph allows for disentangling
the overlapping community structure. Our proposed curvature-based detection method
then identifies edges in the line graph, which can be cut to partition the graph into its
communities (see Fig. 1(right)).

1.1. Summary of Contributions

The two main contributions of this paper are as follows:

1. We demonstrate that it is beneficial to perform mixed-membership community detec-
tion on the line graph, rather than the original graph. This is of particular importance
for classical partition-based methods that seek to identify communities and cut edges
between them, called bridges. Such bridges do not exist between overlapping commu-
nities in the original graph, but can be found in the line graph.

2. We propose a curvature-based method that learns an overlapping community structure
by evolving edge weights in the line graph under a Ricci curvature flow (Algorithm 4.1),
reinforcing the meso-scale structure of the network from which the community struc-
ture can be inferred.
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1.2. Related work

Mixed-membership community detection is widely studied in the Network Science and Data
Mining communities. Notable approaches include Bayesian methods (Airoldi et al., 2008;
Hopkins and Steurer, 2017), matrix factorization (Yang and Leskovec, 2013), spectral clus-
tering (Zhang et al., 2020), and vertex hunting (Jin et al., 2017), among others. In addition
to the mixed-membership model that we consider here (Airoldi et al., 2008), there is a sig-
nificant body of literature on closely related overlapping community models (Lancichinetti
et al., 2009; Xie et al., 2013), which also study the problem of learning non-unique node
labels.

Curvature-based community detection methods for non-overlapping communities have
recently received growing interest (Ni et al., 2019; Sia et al., 2019; Weber et al., 2018). Such
approaches utilize notions of discrete curvature (Ollivier, 2010, 2009; Forman, 2003) to par-
tition networks into communities, based on the observation that edges between communities
have low curvature. The absence of such bridges in overlapping communities renders these
approaches inapplicable to the setting studied in this paper. To the best of our knowledge,
our algorithm is the first to study mixed-membership community structure with curvature-
based methods. More generally, curvature-based network analysis (see, e.g., (Weber et al.,
2017a,b)) has been applied in many domains, including to biological (Elumalai et al., 2022;
Weber et al., 2017c; Tannenbaum et al., 2015), chemical (Leal et al., 2021; Saucan et al.,
2018), social (Painter et al., 2019) and financial networks (Sandhu et al., 2016). Community
detection and more generally network analysis via the line graph has been recently studied
in (Chen et al., 2017; Krzakala et al., 2013; Lubberts et al., 2021; Evans and Lambiotte,
2010).

2. Line Graph Curvature

We begin by introducing the notion of a line graph, followed by a definition of a notion of
discrete Ricci curvature for line graphs. We endow graphs with the usual path distance.

2.1. Line Graphs

Consider an unweighted, undirected graph G = (V| E) (the original graph), with node set
V and edge set E C (‘2/) = {{u,v} : u,v € V}. Its line graph is given by the relationship
of its edges, in the sense that an edge in the line graph represents adjacent edges in the
original graph. Formally, let L(G) = (E,£) denote the line graph of G, where £ is given by
all pairs of adjacent edges {{u,v},{r,s}} € &, i.e., for which [{u,v} N {r,s}| = 1.

Of particular interest for this work is the relationship between the structural properties
of the original graph and the line graph. It is easy to see that the following relation of node
degrees holds:

deg({u,v}) = deg(u) + deg(v) — 2. (2.1)

The equation relates the degree of a node in the line graph ({u,v} € L(G)) to that of the
adjacent nodes in the original graph (u,v € G).
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2.2. Discrete Ricci Curvature of Line Graphs

Our notion of discrete curvature relates geodesic dispersion to optimal mass transport.
In particular, we consider the transportation cost between two distance balls (i.e., node
neighborhoods) along an edge in the network. Formally, for an edge e = {v1, v2}, we endow
the neighborhoods of each of its nodes with a uniform measure, i.e.,

1

My, () := dee(or) Vu, s.t.d(u,v1) =1
1

My, (1) = m Yu, s.t.d(u,vy) =1.

We then define Ollivier’s Ricci curvature (Ollivier, 2010) (ORC) with respect to the Wasser-
stein distance W7 between those measures, i.e.,

K:U1U2 =1- Wl(mvlamvz) . (22)

Recall that the Wasserstein distance between measures m,,,, m,, is given by

Wi (M, , My,) = inf / d(u, u"Ym(u,u") du du’ . (2.3)
(u,u’)EV XV

mEL (Myy ,Myy)

Here, I'(my,, my,) denotes the set of all measures between pairs of nodes V x V with
marginals m,, , m,,. Fig. 2 analyzes ORC in a sample SBM.
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Figure 2: ORC of edges in G (left) and of edges in its line graph L (middle) for a two-block
planted SBM of size n = 100 with intra-community edge probability p;, = 0.3,
inter-community edge probability py,: = 0.02. The plot on the right shows the
correlation between edge curvatures in G and L(G).

Curvature-based community detection, which will be the focus of this paper, relies on
the observation that bridges between communities are more negatively curved than edges
within communities. We give some intuition for this observation: ORC can be linked to
the behavior of two random walks starting at adjacent nodes (Ollivier, 2009; Jost and Liu,
2014). Informally, they are more likely to draw apart if the edge connecting the nodes
has negative ORC, and to draw closer together otherwise. When the random walks start
at nodes adjacent to a bridge, they typically proceed into the communities to which the
respective nodes belong, and consequently draw apart. On the other hand, random walks
starting at nodes adjacent to an internal edge are more likely to stay nearby, as they remain
within the community. Hence, we expect bridges to be much more negatively curved than
internal edges, which is easily confirmed empirically.
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3. Mixed-membership Community Detection on the Line Graph

Community structure is a hallmark feature of networks, characterized by clusters of nodes
that have more internal connections than connections to nodes in other clusters. The focus of
this paper is on networks with mixed-membership, which quantifies the idea of overlapping
communities, so that nodes may belong to more than one cluster.

Definition 1 (Mixed-Membership SBM) A Mixed-Membership Stochastic Block Model
(MMB) (Airoldi et al., 2008), can be seen as an extension of the classical SBM model. In
both models, each element of the adjacency matriz A above the diagonal is an independent
Bernoulli random variable whose expectation only depends on the block memberships of the
corresponding nodes. In the MMB, it is possible that nodes belong to more than one block,
with various affiliation strengths. Specifically, we assume that the expectation E[A] has the
form E[A] = XBXT', where X € [0, 1]"** is the community membership matriz with X in-
dicating the affiliation of node i with community | and ), X; =1, and n denotes the size of
the network. The matriz B € [0, 1]*¥ encodes the block connection probabilities. If X; = 1
for some I, we call vertex i a pure node. When all nodes are pure, we recover the ordinary
SBM model. In our experiments, we consider a planted version where B;; = pin, Vi, and

Bij = Pout, Vi 7£ J-

Of particular importance for classical community detection are edges between clusters,
often called bridges. This includes many popular partition-based approaches (Blondel et al.,
2008; Girvan and Newman, 2002; von Luxburg, 2007), which rely on identifying and cutting
such bridges to partition the graph into communities. However, overlaps between communi-
ties preclude the existence of these bridges, which limits the applicability of partition-based
approaches. In this paper we argue that the line graph provides a natural input for partition-
based mixed-membership community detection. While nodes may not have a unique label
in this model, the adjacent edges may still be internal, connecting two nodes that are in the
same community (at least partially). In this case, each edge is associated with a single com-
munity (see Fig. 1(left)). Consequently, representing the relationships among edges in a line
graph, we disentangle the overlapping communities. Each edge in the line graph appears at
a vertex in the original graph. When the vertex has mixed membership, a bridge between
the communities arises in the line graph (Fig. 1(right)). In Appendix A, we illustrate this
observation on two small sample networks. Notice that the line graph is typically larger
in size than the original graph. This necessitates special attention to the scalability of the
algorithm. In particular, in a graph with n vertices and average degree na,,, we expect to
2, edges. In the line graph, this means nq, vertices and n3a? edges, though this
number increases with greater variation of the vertex degrees in the original graph. The
much larger size of the line graph is also evident in our experiments below, see Table 2. In
the next section, we will discuss a scalable approach that utilizes discrete Ricci curvature
to identify bridges in the line graph.

have n
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Algorithm 1 ORC Ricci flow on the Line Graph
Input: Graph G, threshold A.
Construct line graph L(G) =: L°.
fort=0,...,7—1do
Compute ORC {x!,, }uvee for all edges in the line graph.

Evolve edges under Ricci flow: w!, + (1 — &!,)d!,,.

€
Z{u/,u’}es df},’ul '

Cut edges with weight below threshold (w!, < A), resulting in new graph L!*!.
end

Output: L7.

Renormalize edge weights: w!,, <

4. Curvature-based Approach
4.1. Algorithm

In the community detection literature, approaches based on discrete Ricci curvature have
been studied for unique-membership communities (Ni et al., 2019; Sia et al., 2019; Weber
et al., 2018). Here, we propose a curvature-based method for mized-membership community
detection.

Like previous approaches that utilize Ollivier’s notion of Ricci curvature (e.g., Ni et al.
(2019)), we build on a notion of discrete Ricci flow first proposed by Ollivier (2009):

d
&duv(t) = —Kup(t)dyy(t) {u,v} €€). (4.1)
In our approach, d,, denotes the path distance between adjacent nodes u,v € F in the line
graph and k., Ollivier’s Ricci curvature along that edge. The key idea of the community
detection approach is to consider a family of weighted graphs L! = {E, &, w'} for an input
graph G (LY := L(Q)), which is constructed by evolving the edge weights under Ricci flow,
i.e.,

Wy = (L= Ky)dyy  ({u,v} €8), (4.2)

where the curvature x!,, and path distance d?,, is computed on the graph L!. The procedure
is initialized with the unweighted line graph L(G) =: LY contructed from the input, i.e.,

U =1 for all edges {u,v} € £. In each iteration, the edge weights are renormalized using

Wy,

t — |g‘dfw
“ Z{u’,v’}eg df/v/

Over time, the negative curvature of edges that bridge communities becomes stronger, since
edges with a lower Ricci curvature contract slower under Ricci flow. On the other hand,
edges with higher Ricci curvature contract faster. This results in a decrease of the weight of
internal edges over time, while the weight of the bridges increases (see Fig. 3). With that,
the discrete Ricci flow reinforces the meso-scale structure of the network. Our approach is
schematically shown in Alg. 4.1.

Applying Alg. 4.1 has a coarsening effect: In each iteration, we remove edges with
weights below a predefined threshold A. While bridges are preserved under the Ricci flow,

w

(4.3)
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Figure 3: We consider a two-block planted SBM of size n = 100 with p;, = 0.3 and poy: =
0.02 (as in Fig. 2), visualized in the left panel. We select representative edges
within a community, shown in orange on the graph, and plot the evolution of
their weights in the middle panel. In the right panel, we show this evolution for
selected edges between communities (i.e., bridges), shown in blue on the graph.

edges with less structural importance (such as internal edges) are removed successively as
their weight decreases. The sparsified graph retains the meso-scale structure of the original
graph. In particular, its community structure is preserved.

In order to recover the community structure in the original graph, we cut the edges in
the line graph with the highest weight (or, equivalently, the most negative curvature) after
evolving edge weights for T iterations. The resulting partition of the line graph delivers an
edge clustering from which we infer the community labels: We obtain a mixed-membership
label vector y for each node v by computing

yi(v) = “51

ol

Z Xl(e) ) (44)

66Ev

where x; is the indicator for the edge cluster Cj. Intuitively, each edge belonging to cluster
[ that is incident on a node v adds more evidence of affinity between the node v and the
cluster (.

4.2. Experiments

To measure the performance of the algorithm, we use the normalised mutual information
(NMI) that has been extended to the setting of overlapping communities (Lancichinetti
et al., 2009), one of the commonly used measures in evaluating the quality of the detected
partitions (Xie et al., 2013). A detailed definition of the NMI can be found in Appendix B.

Alg. 4.1 assumes that the edge weight threshold A and the stopping time T are given
at initialization. In the experiments we use modularity as a heuristic for choosing A and
manually fine tune T. We leave a systematic study of hyperparameter choices to future
work.

4.2.1. SYNTHETIC DATA

For the first set of experiments, we generate graphs with p;, = d/n, where the expected
mean degree is chosen to be d = 30, network size n = 300, and we have k = 2 communities.
We consider different probabilities 7, for mixed-membership of a node, ranging from 0.005
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to 0.03. Pure nodes are evenly distributed between the two communities. We vary the ratio
of connection probabilities within and across communities p = poyt/pin from 0 up to 0.1.
For each set of parameters, we generate ny = 10 graphs and run our algorithm, reporting
the average (mean) NMI, and standard deviation (SD). To maintain the detectability of
the communities, we require the generated graphs to have modularity greater than 0.4 with
the ground-truth communities (or 0.35 when p = 0.1 and 7, > 0.025, since modularity
over 0.4 is rare in these cases). Our experimental results (see Tab. 1) demonstrate that the
ORC approach successfully recovers mixed-membership community structure, with an NMI
above 0.8 as we vary p and 7,. As one may expect, the performance of our approach drops
as the probability of intra-community edges or the overlap between communities increase.

P\ 7o 0.005 0.0l 0.015 0.02 0.025 0.03
0 0.99 098 098 096 095 0.95
(3.3x107%) (0.01) (0.01) (0.05) (0.04) (0.04)

0.05 0.99 098 097 091 093 0.92
(6.3 x 1073) (0.01) (0.01) (0.09) (0.07) (0.09)

0.1 0.97 096 094 0.87 091 0.89
(0.02) (0.01) (0.04) (0.08) (0.07) (0.03)

Table 1: Mean (SD) of NMI for the proposed mixed-membership community detection ap-
proach via ORC (Alg. 4.1) on a set of mixed-membership SBMs, with varying
probability of mixed-membership nodes m, and different ratios of edges probabili-
ties between and within communities p.

4.2.2. REAL-WORLD DATA

To demonstrate the performance of our algorithm on real data, we consider two data sets,
(i) collaboration networks from DBLP (Yang and Leskovec, 2015), and (ii) ego-networks
from Facebook (Leskovec and Mcauley, 2012), for which ground truth labels are available
through SNAP (Leskovec and Krevl, 2014). The collaboration network is constructed by
a comprehensive list of research papers in computer science provided by the DBLP com-
puter science bibliography. Here, an edge from one author to another indicates that they
have published at least one joint paper. There are intrinsic communities defined by the
publication venue, e.g. journals or conferences. Here, we maintain the choice of two com-
munities, and randomly select two venues whose sizes are over n = 100 and have at least
one overlapping node. We report results for two networks: “DBLP-1” from publication
venues no. 1347 and 1892, and “DBLP-2” from publication venues no. 1347 and 2459. In
the second data set (ego-networks), all the nodes are friends of one central user, and the
friendship circles set by this user can be used as ground truth communities. We carried out
the preprocessing in a similar manner as Zhang et al. (2020), and then select two networks
for which the modularity of the ground-truth communities is greater than 0.5: “FB-1" for
no. 414, and “FB-2” for no. 1684. To better understand the characteristics of the different
real networks, we provide the following summary statistics for each network (see Table 2):
(i) average node degree d, (ii) degree heterogeneity measured by the standard deviation of
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node degrees over d, (iii) the actual proportion of overlapping nodes, and (iv) the mod-
ularity of the ground-truth community. We note that the Facebook networks tend to be
denser, with more overlapping nodes, while the collaboration networks tend to have more
heterogeneous degrees.

n |E| €] k d oq/d T,  Modularity

DBLP-1 | 213 591 5489 2 554 0.93 0.005 0.40
DBLP-2 | 237 670 5935 2 5.65 0.86 0.004 0.45
3
)

FB-1 128 1593 45635 24.89 0.44 0.055 0.53
FB-2 621 12399 718267 39.93 0.69 0.004 0.52

Table 2: Summary statistics of the real networks.

Louvain (G) Louvain (L) Spectra (L) ORC (L)
DBLP-1 0.27 0.48 0.22 0.54
DBLP-2 0.25 0.24 0.20 0.60
FB-1 0.85 0.55 0.10 0.86
FB-2 0.56 0.31 * 0.65

Table 3: NMI of different methods on the real data, where “Louvain” represents the Louvain
algorithm, “Spectra” represents the Spectral clustering method, “ORC” represents
our methods based on ORC, and “G”, “L” indicate that the methods are applied
on the original graph G and its line graph L, respectively. *: this computation
did not finish after a day.

As in the synthetic networks, the proposed method via ORC performs well across all
data sets; see Table 3. We compare the performance of our approach against other popular
community detection methods, specifically the Louvain algorithm (Blondel et al., 2008)
and Spectral clustering (von Luxburg, 2007; Damle et al., 2018), both applied to the line
graph L(G). Our proposed method via ORC outperforms the reference algorithms most
of the time. We emphasize that the proposed method is much more efficient than spectral
clustering, with runtime about 1/10 (DBLP-1: 0.02s/run for Louvain (G), 0.36s/run for
Louvain (L), 244.42s for Spectral (L), and 35.96s for ORC (L)). It is important to note
that the performance of the Louvain algorithm depends on the initialization, so multiple
runs are recommended for improved performance. Here, we output the average performance
from n, = 10 runs. There are various techniques that can be applied to further improve its
performance, but these necessarily increase the time complexity (Strehl and Ghosh, 2003).
The poor performance of spectral clustering on the line graph (third column of Table 3)
should be expected, since unlike in the original graph, the relevant signal is not captured
by the top eigenvectors of its adjacency matrix (Lubberts et al., 2021).

5. Conclusions

In this paper we have demonstrated the benefits of performing mixed-membership commu-
nity detection on the line graph rather than the original graph. We used this observation to
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propose a curvature-based detection algorithm, which is based on evolving edge weights on
the line graph under a discrete Ricci curvature flow. This effectively coarsens the line graph,
revealing communities of edges in the original graph, which identifies cut locations between
communities even when bridges do not appear. This also results in the identification of
mixed-membership vertices that lie between graph communities.

There are numerous avenues for future investigation: The scalability of the algorithm
may be boosted by using alternative curvature notions or by avoiding the computation of the
full line graph. Another extension would be the incorporation of edge and node weights into
the approach. Combining existing bridge-cutting methods with the methods proposed here
may lead to clustering that is more robust to different kinds of bridges between communities.
Lastly, to evaluate the numerical benefits of the method more comprehensively, a comparison
against a wider selection of competing approaches (e.g., Bayesian methods (Airoldi et al.,
2008)) and a detailed study of hyperparameter dependencies could be performed.
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Appendix A. Additional Examples

We illustrate the idea of mixed-membership community detection on the line graph with
two small examples, one with synthetic data, the other with real data. For the synthetic
example, we generate a MMB with two communities (p;, = 0.3, poyr = 0) overlapping in one
node (labeled “0”) with Xy = 0.5, [ € {1,2}. Community detection on the original graph
G labels node “0” as belonging to one of the communities, whereas community detection
on the line graph correctly recognizes the overlap: In Fig. 4, we see that edges that are
incident to vertices in each of the two communities are separated.

As a second example, we consider a classic benchmark graph with known community

Figure 4: Communities detected on the M M B(2,0.3,0) with node “0” in both communities.
Results are shown for community detection on G (left) and L(G) (right). The
color of the nodes indicates the community label; intra-community edges are
shown in the corresponding color. The results are obtained from T" = 10 iterations
of Alg. 4.1; the threshold A = 0.1 was selected following a modularity analysis
(see sec. 4.2).

structure, the karate club network. We see in Fig. 5 that community detection on the
original graph G mislabels one node in each community. In contrast, community detection
on the line graph recognizes that both nodes have a balanced number of connections in each
of the communities and can therefore be considered to have mixed-membership.

Appendix B. Normalized Mutual Information

For communities C, Co, . .., C%, the community membership of each node 7 can be expressed
as a binary vector of length k. (z;); = 1 if node i belongs to Cy; (z;); = 0 otherwise. The [-th
entry of this vector can be viewed as a random variable Z;, whose probability distribution
is given by P(Z; =1) =ny/n and P(Z; =0) =1— P(Z; = 1), where n; = |C}| and n = |V|.
The same holds for the random variable Y}, associated with another set of communities
C1,C5,...,Ch,. Both the empirical marginal probability distribution Py and the joint
probability distribution P(Z;,Y}) are used to further define entropy H(Z) and H(Zy,Ys).
The conditional entropy of Z; given Y}, is defined as H(Z)|Yy,) = H(Z;,Y,) — H(Yy). The
entropy of Z; with respect to the entire vector Y is based on the best matching between Z;
and the component of Y given by

H(ZY) =, min H(Z[Y:),
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Figure 5: Communities detected on the karate club network. Results are shown for com-
munity detection on G (left) and L(G) (right). The color of the nodes indicates
the community label, nodes with mixed membership are highlighted in green.
Intra-community edges are again shown in the corresponding color. The results
are obtained from 7" = 50 iterations of Alg. 4.1; A was again determined from a
modularity analysis.

The normalised conditional entropy of Z with respect to Y is

H(Z)|Y)
H(Z|Y) = kz l'.

In the same way, we can define H(Y|Z). Finally, the NMI for two sets of communities
C1,Cs,...,Cp and C,Cy, ..., C}, is given by

NMI(Z|Y) =1 - [H(Z|Y) + H(Y|Z)]/2

Hence to use NMI, we convert the label vector y to a binary assignment by first normalising
it by its 2-norm and then thresholding its element by 0.8/k.
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